Diffusive Shock Acceleration: the Fermi Mechanism
Matthew G. Baring
1997-11-16
The mechanism of diffusive Fermi acceleration at collisionless plasma shock waves is widely invoked in astrophysics to explain the appearance of non-thermal particle populations in a variety of environments, including sites of cosmic ray production, and is observed to operate at several sites in the heliosphere. This review outlines the principal results from the theory of diffusive shock acceleration, focusing first on how it produces power-law distributions in test-particle regimes, where the shock dynamics are dominated by the thermal populations that provide the seed particles for the acceleration process. Then the importance of non-linear modifications to the shock hydrodynamics by the accelerated particles is addressed, emphasizing how these subsequently influence non-thermal spectral formation.
MODEL OF DIFFUSERS / PERMEATORS FOR HYDROGEN PROCESSING
Hang, T; William Jacobs, W
2007-08-27
Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper.
Ricci, Laura
Introduction Epidemic virus diffusion: models Epidemic algorithms Gossip algorithms EpidemicD in Computer Science #12;Introduction Epidemic virus diffusion: models Epidemic algorithms Gossip algorithms Outline 1 Introduction 2 Epidemic virus diffusion: models 3 Epidemic algorithms 4 Gossip algorithms #12
Volumetric Modeling with Diffusion Surfaces Kenshi Takayama
Igarashi, Takeo
Volumetric Modeling with Diffusion Surfaces Kenshi Takayama The University of Tokyo Olga Sorkine ERATO Abstract The modeling of volumetric objects is still a difficult problem. Solid texture synthesis colors from nearby surfaces. A straightfor- ward way to compute color diffusion is to solve a volumetric
Model for Diffusion-Induced Ramsey Narrowing
Alexander Romanenko; Leonid Yatsenko
2008-01-22
Diffusion-induced Ramsey narrowing that appears when atoms can leave the interaction region and repeatedly return without lost of coherence is investigated using strong collisions approximation. The effective diffusion equation is obtained and solved for low-dimensional model configurations and three-dimensional real one.
Asymptotics for the maximum likelihood estimators of diffusion models
Jeong, Minsoo
2009-05-15
In this paper I derive the asymptotics of the exact, Euler, and Milstein ML estimators for diffusion models, including general nonstationary diffusions. Though there have been many estimators for the diffusion model, their asymptotic properties were...
Forecasting Turbulent Modes with Nonparametric Diffusion Models
Tyrus Berry; John Harlim
2015-01-27
This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.
Chen, Lei
Interest in oxy-fuel combustion as one of the leading carbon capture technologies has grown significantly in the past two decades. Experimental studies have shown higher CO concentration in oxy-fuel diffusion flames than ...
Modelling international wind energy diffusion: Are the patterns of induced diffusion `S'
Feigon, Brooke
Modelling international wind energy diffusion: Are the patterns of induced diffusion `S' shaped datasets, the paper explores the patterns of international wind energy diffusion in OECD countries. The model employed in the paper predicted that wind energy, as a complex and expensive innovation, would
A Diffusion Model in Population Genetics with Mutation and Dynamic
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University May 24, 2008 Mike O'Leary (Towson University) A Diffusion Model in Genetics May Miller, Georgetown University Mike O'Leary (Towson University) A Diffusion Model in Genetics May 24, 2008
Distributed Wind Diffusion Model Overview (Presentation)
Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.
2014-07-01
Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.
Repeated interaction model for diffusion-induced Ramsey narrowing
Walsworth, Ronald L.
Repeated interaction model for diffusion-induced Ramsey narrowing Yanhong Xiao 1, Irina Novikova 2. Xiao et al., Phys. Rev. Lett. 96, 043601 (2006)] we characterized diffusion-induced Ramsey narrowing presentation of the repeated interaction model of diffusion-induced Ramsey narrowing, with particular focus
A model for the diffuse attenuation coefficient of downwelling irradiance
Lee, Zhongping
A model for the diffuse attenuation coefficient of downwelling irradiance Zhong-Ping Lee1 Naval] The diffuse attenuation coefficient for downwelling irradiance (Kd) is an important parameter for ocean of downwelling irradiance, J. Geophys. Res., 110, C02016, doi:10.1029/2004JC002275. 1. Introduction [2] Diffuse
Intermittency in Turbulent Diffusion Models with a Mean Gradient
Majda, Andrew J.
Intermittency in Turbulent Diffusion Models with a Mean Gradient Andrew J Majda and Xin T TongE30, 62G32 Submitted to: Nonlinearity 1. Introduction Turbulent diffusion is the transportation and diffusion. Its application ranges from the spread of hazardous plumes and mixing properties of turbulent
Use of Neural Networks with Advection-Diffusion-Reaction Models
Hawai'i at Manoa, University of
Use of Neural Networks with Advection-Diffusion-Reaction Models to Estimate Large-Scale Movements-350 #12;Adam, M. S., and J. R. Sibert, Use of Neural Networks with Advection-Diffusion-Reaction Models Motivation 2 2 The model 2 3 Parameterizing movement fields 4 3.1 User of neural networks 5 3.2 Scaling
Measure of Diffusion Model Error for Thermal Radiation Transport
Kumar, Akansha
2013-04-19
and computational time. However, this approximation often has significant error. Error due to the inherent nature of a physics model is called model error. Information about the model error associated with the diffusion approximation is clearly desirable...
Diffusion model of the non-stoichiometric uranium dioxide
Moore, Emily, E-mail: emily.moore@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Guéneau, Christine, E-mail: christine.gueneau@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Crocombette, Jean-Paul, E-mail: jean-paul.crocombette@cea.fr [CEA Saclay, DEN DEN, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex (France)
2013-07-15
Uranium dioxide (UO{sub 2}), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U–O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation. - Graphical abstract: Complete description of Oxygen–Uranium diffusion as a function of composition at various temperatures according to the developed Dictra model. - Highlights: • Assessment of a uranium–oxygen diffusion model with Dictra. • Complete description of U–O diffusion over wide temperature and composition range. • Oxygen model includes terms for interstitial and vacancy migration. • Interaction terms between defects help describe non-stoichiometric domain of UO{sub 2±x}. • Uranium model is separated into mobility terms for the cationic species.
A Mesoscale Diffusion Model in Population Genetics with
O'Leary, Michael
' & $ % A Mesoscale Diffusion Model in Population Genetics with Dynamic Fitness Mike O'Leary Towson University Judith R. Miller Georgetown University 1 #12;A mesoscale diffusion model in population genetics that dominance and epistasis are absent. April 28, 2005 Mike O'Leary and Judith Miller Slide 2 #12;A mesoscale
Research Article A Social Diffusion Model with an Application on
Chen, Sheng-Wei
may not intuitively interpret such scenario. This work is to design a diffusion model which is capable of managing the aforementioned scenario. To demonstrate the usefulness of our model, we simulate the diffusion Huge success of viral marketing nowadays clearly shows that acquaintances indeed greatly influence
Kinetic Modeling of Counterflow Diffusion Flames of Butadiene
Senkan, Selim M.
Kinetic Modeling of Counterflow Diffusion Flames of Butadiene SILVIA GRANATA, TIZIANO FARAVELLI structures of counterflow diffusion and fuel-rich premixed 1,3-butadiene flames, to better understand the need for improved models and also the opportunity of new experiments of butadiene oxidation
Lin, Yiheng; Xia, Guangrui [Department of Materials Engineering, The University of British Columbia, 309-6350 Stores Rd, Vancouver, British Columbia V6T 1Z4 (Canada); Yasuda, Hiroshi; Wise, Rick [Texas Instruments, 13121 TI Blvd., Dallas, Texas 75243 (United States); Schiekofer, Manfred; Benna, Bernhard [Texas Instruments Deutschland GmbH, Haggertystrasse 1, 85356 Freising (Germany)
2014-10-14
The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si?.??Ge?.??:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si?.??Ge?.??:C than for Si:C. In Si?.??Ge?.??:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusion any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.
Maeta, Takahiro; Sueoka, Koji
2014-08-21
Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.
Zhang, Qi, S.M. Massachusetts Institute of Technology
2008-01-01
While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...
Matrix rheology effects on reaction rim growth II: coupled diffusion and creep model
Podladchikov, Yuri
Matrix rheology effects on reaction rim growth II: coupled diffusion and creep model D. W. SCHMID,1 of the matrix that surrounds the reaction sites where the volume change takes place. Consequently, mineral reactions and the mechanical response of the rock matrix are coupled. A companion paper in this issue
Stress and diffusion induced interface motion: Modelling and numerical simulations
Styles, Vanessa
Stress and diffusion induced interface motion: Modelling and numerical simulations Harald Garcke of Mathematics, University of Sussex, Brighton, BN1 9QH, U.K. Abstract We propose a phase field model for stress stress effects. In this paper we will demonstrate that the model can also be used to describe other
Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity,
Cambridge, University of
Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity for the overall transformation kinetics of niobium carbide precipitation in austenite that takes into account the precipitation and coarsening reactions to be treated in a single model. The model is compared with published
The ramifications of diffusive volume transport in classical fluid mechanics
Bielenberg, James R. (James Ronald), 1976-
2004-01-01
The thesis that follows consists of a collection of work supporting and extending a novel reformulation of fluid mechanics, wherein the linear momentum per unit mass in a fluid continuum, m, is supposed equal to the volume ...
Diffusion and Dispersion Characterization of a Numerical Tsunami Model
Tolkova, Elena
Diffusion and Dispersion Characterization of a Numerical Tsunami Model David Burwell, Elena Tolkova and Arun Chawla February 6, 2007 1 Introduction Method Of Splitting Tsunami (MOST) is a depth averaged long wave tsunami inundation model that was originally developed by Titov and Synolakis (1995) for 1D
Mechanical effects in cookoff modeling
Gross, R.J.; Baer, M.R.; Hobbs, M.L.
1994-07-01
Complete cookoff modeling of energetic material in confined geometries must couple thermal, chemical and mechanical effects. In the past, modeling has focused on the prediction of the onset of combustion behavior based only on thermal-chemistry effects with little or no regard to the mechanical behavior of the energetic material. In this paper, an analysis tool is outlined which couples thermal, chemical, and mechanical behavior for one-dimensional Geometries comprised of multi-materials. A reactive heat flow code, XCHEM, and a quasistatic mechanics code, SANTOS, have been completely coupled using, a reactive, elastic-plastic constitutive model describing pressurization of the energetic material. This new Thermally Reactive Elastic-plastic explosive code, TREX, was developed to assess the coupling, of mechanics with thermal chemistry making multidimensional cookoff analysis possible. In this study, TREX is applied to confined and unconfined systems. The confined systems simulate One-Dimensional Time to explosion (ODTX) experiments in both spherical and cylindrical configurations. The spherical ODTX system is a 1.27 cm diameter sphere of TATB confined by aluminum exposed to a constant external temperature. The cylindrical ODTX system is an aluminum tube filled with HMX, NC, and inert exposed to a constant temperature bath. Finally. an unconfined system consisting of a hollow steel cylinder filled with a propellant composed of Al, RMX, and NC, representative of a rocket motor, is considered. This model system is subjected to transient internal and external radiative/convective boundary conditions representative of 5 minutes exposure to a fire. The confined systems show significant pressure prior to ignition, and the unconfined system shows extrusion of the propellent suggesting that the energetic material becomes more shock sensitive.
Modelling Electrical Car Diffusion Based on Agent Tao Zhang, 3
Aickelin, Uwe
to include things like car parking charges, price of electrical car, energy awareness and word of mouth. In this paper we present a first case study related to the introduction of a new car park charging schemeModelling Electrical Car Diffusion Based on Agent 1 Lei Yu, ,2 Tao Zhang, 3 Siebers Peer-Ola, 4
MECHANICAL MODELS FOR INTERSEISMIC DEFORMATION IN
Kanda, Ravi
MECHANICAL MODELS FOR INTERSEISMIC DEFORMATION IN SUBDUCTION ZONES Thesis by Ravi V. S. Kanda that mechanical coupling on such asperities alone is sufficient to explain currently available geodetic
Diffusion-controlled reactions modeling in Geant4-DNA
Karamitros, M.; Luan, S.; Bernal, M.A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H.N.; Stepan, V.; Incerti, S.
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The performance advantage is presented in terms of complexity, and the accuracy of the new algorithm is demonstrated by simulating radiation chemistry in the context of the Geant4-DNA project. Application The time-dependent radiolytic yields of the main chemical species formed after irradiation are computed for incident protons at different energies (from 50 MeV to 500 keV). Both the time-evolution and energy dependency of the yields are discussed. The evolution, at one microsecond, of the yields of hydroxyls and solvated electrons with respect to the linear energy transfer is compared to theoretical and experimental data. According to our results, at high linear energy transfer, modeling radiation chemistry in the trading compartment representation might be adopted.
Characterization and modeling of thermal diffusion and aggregation in nanofluids.
Gharagozloo, Patricia E.; Goodson, Kenneth E.
2010-05-01
Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.
Thermomechanics of damageable materials under diffusion:modeling and analysis
Tomas Roubicek; Giuseppe Tomassetti
2014-12-16
We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and, if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z Premanand Ramadass model of solvent diffusion describing the growth of solid-electrolyte inter- faces SEIs in Li-ion cells incorporating carbon anodes. The model assumes that a reactive solvent component diffuses through the SEI
THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS
M. WILLIAMS
1999-08-01
The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.
Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang; Perriot, Romain Thibault; Tonks, Michael; Stanek, Christopher Richard
2014-11-07
This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO_{2} were derived for both intrinsic conditions and under irradiation. The importance of the large X_{eU3O} cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.
Stojmenovic, Ivan
Reality Technology and Systems, Beihang University, Beijing 100191, China Guangdong Petrochemical Equipment Fault Diagnosis Key Laboratory Guangdong University of Petrochemical Technology, Guangdong 525000 models to study the diffusion process. The authors in [7] analyzed the behavior diffusion using an event
Doctoral Defense "Thermal-hydro-mechanical model
Kamat, Vineet R.
Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used
modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion agreement. Finally, a chemical kinetic mechanism of gas turbine combustion for Jet Propellant-10 has been
Molecular Modeling of Diffusion on a Crystalline PETN Surface
Lin, P; Khare, R; Gee, R H; Weeks, B L
2007-07-13
Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.
Modelling of unidirectional thermal diffusers in shallow water
Lee, Joseph Hun-Wei
1977-01-01
This study is an experimental and theoretical investigation of the temperature field and velocity field induced by a unidirectional thermal diffuser in shallow water. A multiport thermal diffuser is essentially a pipe laid ...
LHC Beam Diffusion Dependence on RF Noise: Models And Measurements
Mastorides, T.; Rivetta, C.; Fox, J.D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; ,
2010-09-14
Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted using time-domain simulations and models [2]. In this work, initial measurements at the LHC supporting the above theoretical formalism and simulation predictions are presented.
Numerical study of energy diffusion in King models
Tom Theuns
1995-11-07
The energy diffusion coefficients D_n(E) (n=1,2) for a system of equal mass particles moving self-consistently in an N-body realisation of a King model are computed from the probability per unit time, P(E, Delta E), that a star with initial energy E will undergo an energy change Delta E. In turn, P is computed from the number of times during the simulation that a particle in a state of given energy undergoes a transition to another state. These particle states are defined directly from the time evolution of E by identifying them with the event occuring between two local maxima in the E(t) curve. If one assumes next that energy changes are uncorrelated between different states, one can use diffusion theory to compute D_n(E). The simulations employ N=512, 2048,... , 32768 particles and are performed using an implementation of Aarseth's direct integrator N-body1 on a massively parallel computer. The more than seven million transitions measured in the largest N simulation provide excellent statistics. The numerically determined D(E)'s are compared against their theoretical counterparts which are computed from phase-space averaged rates of energy change due to independent binary encounters. The overall agreement between them is impressive over most of the energy range, notwithstanding the very different type of approximations involved, giving considerable support to the valid usage of these theoretical expressions to simulate dynamical evolution in Fokker-Planck type calculations.
DETAILED CHEMISTRY MODELING OF LAMINAR DIFFUSION FLAMES ON PARALLEL COMPUTERS
. The gasjet diffusion flame is the basic element of many combustion systems, such as gas turbines, ramspeed, threedimensional, turbulent reacting systems, gasjet laminar diffusion flames constitute a problem jets, and industrial furnaces. Furthermore, the fundamental understand ing of laminar diffusion flames
Unsteady Flamelet Modeling of Soot Formation in Turbulent Diffusion Flames
Pitsch, Heinz
and molecular oxygen. In practical devices of technical relevance, such as Diesel engines and gas turbines, soot of Applied Mechanics and Engineering Science Center for Energy and Combustion Research, University and Reactive Systems Combustion, Science, and Technology, 158, pp. 389-406, 2000 #12;Unsteady Flamelet Modeling
Cosmology with matter diffusion
Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br
2013-11-01
We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field ? which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter ?. The standard ?CDM model can be recovered by setting ? = 0. If diffusion takes place (? > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.
Regulation mechanisms in spatial stochastic development models
Dmitri Finkelshtein; Yuri Kondratiev
2008-09-04
The aim of this paper is to analyze different regulation mechanisms in spatial continuous stochastic development models. We describe the density behavior for models with global mortality and local establishment rates. We prove that the local self-regulation via a competition mechanism (density dependent mortality) may suppress a unbounded growth of the averaged density if the competition kernel is superstable.
Jie Li; Stefano Zippilli; Jing Zhang; David Vitali
2015-08-10
Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because, although their expected effects can be significant in various realistic situations, it is non-trivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Perot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the cavity size, the trapping frequency and the momentum diffusion induced by the collapse models, allowing to detect them even in the presence of standard environmental noises.
Subgrid models for mass and thermal diffusion in turbulent mixing
Sharp, David H; Lim, Hyunkyung; Li, Xiao - Lin; Gilmm, James G
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the Batchelor scale, allows a feasible approach to the modeling of high Schmidt number flows.
Ponce, V. Miguel
JOURNAL OF HYDROLOGIC ENGINEERING / OCTOBER 1999 / 371 PARKING LOT STORAGE MODELING USING DIFFUSION holding storm water in parking lots is examined by using a diffusion wave model of catchment dynamics. Four extreme storm types are applied to four typical parking lot sizes to assess the sensitivity
Analysis and Simulation of a Meso-scale Model of Diffusive Resistance of Bacterial Biofilms to
Demaret, Laurent
Analysis and Simulation of a Meso-scale Model of Diffusive Resistance of Bacterial Biofilms Most bacteria live in biofilm communities, which offer protection against harmful external impacts mathematical model that focuses on the diffusive resistance that a growing biofilm exerts against penetration
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University PDE Seminar Vanderbilt University November 2008 Mike O'Leary (Towson University are joint with Judith Miller, Georgetown University. Mike O'Leary (Towson University) A Diffusion Model
Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random 2002; published 13 March 2003) We model trading and price formation in a market under the assumption for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure
Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces
James A. Smith; Jeffrey M. Lacy; Barry H. Rabin
2014-07-01
12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.
Continuum modeling of diffusion and dispersion in dense granular...
Office of Scientific and Technical Information (OSTI)
Author Affiliations Los Alamos National Laboratory Los Alamos National Laboratory Mechanical & Aerospace Engineering, Princeton University Mechanical & Aerospace Engineering,...
Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis
Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)
1993-12-01
This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.
Li Ion Diffusion Mechanisms in the Crystalline Electrolyte Yaojun A. Du and N. A. W. Holzwarth*,z
Holzwarth, Natalie
electronically September 6, 2007. Recently, there has been a lot of interest in solid electrolyte ma- terialsLi Ion Diffusion Mechanisms in the Crystalline Electrolyte -Li3PO4 Yaojun A. Du and N. A. W. Holzwarth*,z Department of Physics, Wake-Forest University, Winston-Salem, North Carolina 27109, USA Solid
Measurement and Modeling of Solute Diffusion Coefficients in Unsaturated Soils
Chou, Hsin-Yi
2010-01-01
Diffusion and flow in gravel, soil, and whole rock, AppliedEds. ) (2002), Methods of Soil Analysis Part 4 PhysicalUnsaturated Volcanic Ash Soils, Vadose Zone Journal, 8(4),
Classical Coordination Mechanisms in the Chemical Model
Fradet, Pascal
great souvenir! Abstract Originally, the chemical model of computation has been proposed as a sim- pleClassical Coordination Mechanisms in the Chemical Model J.-P. Ban^atre P. Fradet Y. Radenac-Pierre Ban^atre) had with Gilles on topics related with programming in general and chemical programming
Modeling the mechanical response of PBX 9501
Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng; Thompson, Darla G
2010-01-01
An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.
Carl H. Gibson
2000-12-18
Self-gravitational structure formation theory for astrophysics and cosmology is revised using nonlinear fluid mechanics. Gibson's 1996-2000 theory balances fluid mechanical forces with gravitational forces and density diffusion with gravitational diffusion at critical viscous, turbulent, magnetic, and diffusion length scales termed Schwarz scales. Instability occurs for scales larger than the largest Schwarz scale rather than only for scales larger than the acoustic scale introduced by Jeans 1902. From the new theory, the inner-halo-dark-matter of galaxies consists of dark proto-globular-star-cluster (PGC) clumps of small-planetary-mass objects called primordial fog particles (PFPs) formed soon after decoupling at 300,000 years. PFPs explain Schild's 1996 "rogue planets >... likely to be the missing mass" of a quasar lens-galaxy. WIMP dark matter fluid is super-diffusive and fragments at large L_SD scales to form outer-galaxy-halos. In the beginning of structure formation 30,000 years after the Big Bang the viscous Schwarz scale L_SV matched the horizon scale L_H at proto-galaxy-supercluster masses, decreasing to proto-galaxy fragments at 300,000 years. WIMP diffusivities from observed outer-halo (L_SD) scales indicate WIMP particle masses in the neutrino rather than neutralino range.
Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model
Davis, Mark
2011-01-01
In this article we extend earlier work on the jump-diffusion risk-sensitive asset management problem [SIAM J. Fin. Math. (2011) 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the HJB equation is a partial integro-differential equation (PIDE). By combining viscosity solutions with a change of notation, a policy improvement argument and classical results on parabolic PDEs we prove that the HJB PIDE admits a unique smooth solution. A verification theorem concludes the resolution of this problem.
MODELLING WAX DIFFUSION IN CRUDE OILS: THE COLD FINGER , A. Fasano
Primicerio, Mario
MODELLING WAX DIFFUSION IN CRUDE OILS: THE COLD FINGER DEVICE S. Correra , A. Fasano , L. Fusi , M. Primicerio Abstract In this paper we show how to obtain wax diffusivity and solubility in crude oils from obtained in simulations are in agreement with data of field experiments. 1 Introduction Waxy crude oils
Wax diffusivity under given thermal gradient: a mathematical model , A. Fasano
Primicerio, Mario
Wax diffusivity under given thermal gradient: a mathematical model S. Correra , A. Fasano , L. Fusi , M. Primicerio , F. Rosso Abstract In this paper we describe how to obtain wax diffusivity and solubility in a saturated crude oil using the measurements of solid wax deposit in the experimental apparatus
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University World Conference on Nonlinear Analysis Orlando, FL July 2008 Mike O'Leary of this work are joint with Judith Miller, Georgetown University. Mike O'Leary (Towson University) A Diffusion
Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda
Schmeiser, Christian
Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda A. Klar y C. Schmeiser z Abstract Radiative heat transfer equations including heat conduction are considÂ ered situations are presented. Keywords. radiative heat transfer, asymptotic analysis, nonlinear diffusion limit
Modelling CO2 diffusion and assimilation in a leaf with axisymmetric finite volumes
Herbin, RaphaÃ¨le
Modelling CO2 diffusion and assimilation in a leaf with axisymmetric finite volumes Emily GallouÃ«t. This paper deals with the numerical simulation of the diffusion and assimilation by photosynthesis of CO2 medium, from experimental measurements of the pointwise value of internal CO2 concentration, giving some
Modeling of diffusive mass transport in micropores in cement based materials
Yamaguchi, Tetsuji, E-mail: yamaguchi.tetsuji@jaea.go.j [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Negishi, Kumi [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Taiheiyo Consultant Company Limited, 2-4-2, Osaku, Sakura, Chiba 285-8655 (Japan); Hoshino, Seiichi; Tanaka, Tadao [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan)
2009-12-15
In order to predict long-term leaching behavior of cement constituents for safety assessments of radioactive waste disposal, we modeled diffusive mass transport in micropores in cement based materials. Based on available knowledge on the pore structure, we developed a transport porosity model that enables us to estimate effective porosity available for diffusion (transport porosity) in cement based materials. We microscopically examined the pore structure of hardened cement pastes to partially verify the model. Effective diffusivities of tritiated water in hardened cement pastes were also obtained experimentally, and were shown to be proportional to the estimated transport porosity.
Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE...
Mechanical Modeling of a WIPP Drum Under Pressure | Department...
Office of Environmental Management (EM)
Mechanical Modeling of a WIPP Drum Under Pressure Mechanical Modeling of a WIPP Drum Under Pressure This document was used to determine facts and conditions during the Department...
A Signal Processing Model of Quantum Mechanics
Chris Thron; Johnny Watts
2012-05-08
This paper develops a deterministic model of quantum mechanics as an accumulation-and-threshold process. The model arises from an analogy with signal processing in wireless communications. Complex wavefunctions are interpreted as expressing the amplitude and phase information of a modulated carrier wave. Particle transmission events are modeled as the outcome of a process of signal accumulation that occurs in an extra (non-spacetime) dimension. Besides giving a natural interpretation of the wavefunction and the Born rule, the model accommodates the collapse of the wave packet and other quantum paradoxes such as EPR and the Ahanorov-Bohm effect. The model also gives a new perspective on the 'relational' nature of quantum mechanics: that is, whether the wave function of a physical system is "real" or simply reflects the observer's partial knowledge of the system. We simulate the model for a 2-slit experiment, and indicate possible deviations of the model's predictions from conventional quantum mechanics. We also indicate how the theory may be extended to a field theory.
Modeling Information Diffusion in Implicit Networks Jaewon Yang
Thrun, Sebastian
--Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks time, assembled from many small pieces, and conveyed through social networks as well as other means
Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells
Weber, Adam Z.
2008-01-01
phenomena. Keywords: Modeling, PEFC, gas-diffusion layer,and a vapor. Furthermore, a PEFC produces liquid water atis formed on the cathode of the PEFC, and it must be removed
Lilien, Gary Louis
1978-01-01
This paper deals with the background, development and calibration of a model of innovation-diffusion, designed to help allocate government field test and demonstration resources in support of a photovoltaic technology ...
A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy Balance Model
DÃaz, JesÃºs Ildefonso
A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy Balance Model R. BERMEJO,1 J. This model belongs to the category of energy balance models introduced independently by the climatologists M climate. The energy balance model we are dealing with consists of a two-dimensional nonlinear parabolic
Diffusion in silicon isotope heterostructures
Silvestri, Hughes Howland
2004-05-14
The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.
Mechanical Model for Relativistic Blast Waves
A. M. Beloborodov; Z. L. Uhm
2006-09-02
Relativistic blast waves can be described by a mechanical model. In this model, the "blast" -- the compressed gas between the forward and reverse shocks -- is viewed as one hot body. Equations governing its dynamics are derived from conservation of mass, energy, and momentum. Simple analytical solutions are obtained in the two limiting cases of ultra-relativistic and non-relativistic reverse shock. Equations are derived for the general explosion problem.
Matthewson, M. John
Modeling of Diffusion Through Optical Fiber Coatings Janet L. Mrotekat, M. John Matthewsonb coatings was modeled by using an analytical solution to the diffusion equation and so was only applicable. Keywords: diffusion, optical fiber reliability, moisture, coatings, and finite element analysis 1
Modeling cation diffusion in compacted water-saturatedNa-bentonite at low ionic strength
Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.
2007-08-28
Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm{sup -3} (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm{sup -3}.
Goddard III, William A.
that vitrification is not suffi- cient to arrest water mobility: water can still diffuse in the glassy carbohydrate by the computational cost of atomistic simulations. We study here the relaxation of a 12.2% water-glucose (WG) glass
Mechanisms and Geochemical Models of Core Formation
Rubie, David C
2015-01-01
The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so m...
Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models
Subramanian, Venkat
Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models, Berkeley, California 94720-8168, USA Lithium-ion batteries are typically modeled using porous electrode the active materials of porous electrodes for a pseudo-two- dimensional model for lithium-ion batteries
Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models
Subramanian, Venkat
Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models materials of porous electrodes for a rigorous pseudo-2D model for lithium-ion batteries. Concentration in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One
Thermal, chemical, and mechanical cookoff modeling
Hobbs, M.L.; Baer, M.R.; Gross, R.J.
1994-08-01
A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show
Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells
Weber, Adam Z.; Newman, John
2008-08-29
In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.
A mechanical model of the smartphone's accelerometer
Gallitto, Aurelio Agliolo
2015-01-01
To increase the attention of students, several physics experiments can be performed at school, as well at home, by using the smartphone as laboratory tools. In the paper we describe a mechanical model of the smartphone's accelerometer, which can be used in classroom to allow students to better understand the principle of the accelerometer even by students at the beginning of the study in physics.
Continuous time random walk models for fractional space-time diffusion equations
Sabir Umarov
2014-09-14
In this paper continuous time random walk models approximating fractional space-time diffusion processes are studied. Stochastic processes associated with the considered equations represent time-changed processes, where the time-change process is a L\\'evy's stable subordinator with the stability index $\\beta \\in (0,1).$ In the parer the convergence of constructed CTRWs to time-changed processes associated with the corresponding fractional diffusion equations are proved using a new analytic method.
Quantum-Mechanical Model of Spacetime
Jarmo Makela
2007-06-20
We consider a possibility to construct a quantum-mechanical model of spacetime, where Planck size quantum black holes act as the fundamental constituents of space and time. Spacetime is assumed to be a graph, where black holes lie on the vertices. Our model implies that area has a discrete spectrum with equal spacing. At macroscopic length scales our model reproduces Einstein's field equation with a vanishing cosmological constant as a sort of thermodynamical equation of state of spacetime and matter fields. In the low temperature limit, where most black holes are assumed to be in the ground state, our model implies the Unruh and the Hawking effects, whereas in the high temperature limit we find, among other things, that black hole entropy depends logarithmically on the event horizon area, instead of being proportional to the area.
STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...
Office of Scientific and Technical Information (OSTI)
STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El-Azab 36 MATERIALS SCIENCE dislocation dynamics; mesoscale deformation of metals; crystal mechanics...
A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity
Shen, Jun, E-mail: jun.shen@nrc-cnrc.gc.ca; Zhou, Jianqin; Gu, Caikang [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada); Neill, Stuart [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada); Michaelian, Kirk H.; Fairbridge, Craig [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada)] [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada); Astrath, Nelson G. C.; Baesso, Mauro L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)] [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)
2013-12-15
A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10{sup ?5} and (1.427 ± 0.009) × 10{sup ?7} m{sup 2}?s{sup ?1}, respectively, in very good agreement with accepted literature values.
Popov, Branko N.
Modeling lithium diffusion in nickel composite graphite Venkat R. Subramanian, Ping Yu, Branko N. Exchange current and diffusion coef®cient for the lithium-diffusion are predicted. # 2001 Elsevier Science computers, and camcorders. The distinguished feature of lithium-ion batteries is the use of intercalation
Modeling the radiation belt electrons with radial diffusion driven by the solar wind
Li, Xinlin
Modeling the radiation belt electrons with radial diffusion driven by the solar wind A. B. Barker1 October 2005. [1] On the basis of the correlation between the solar wind and radiation belt electron fluxes, we develop a model to simulate the MeV electron phase space density variations from L = 3 to L
A STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEM MODELING CENTRIFUGATION OF FLOCCULATED of BV entropy solutions of a strongly degenerate convection-di#11;usion problem modeling centrifugation- boundary value problem numerically, i.e., to simulate the centrifugation process. 1. Introduction We
Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor
Mora, Thierry
Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular
AdHeat: An Influence-based Diffusion Model for Propagating Hints to Match Ads
Cortes, Corinna
AdHeat: An Influence-based Diffusion Model for Propagating Hints to Match Ads Hongji Bao Google edchang@google.com ABSTRACT In this paper, we present AdHeat, a social ad model con- sidering user influence in addition to relevance for match- ing ads. Traditionally, ad placement employs the relevance
Mechanical Models of Fault-Related Folding
Johnson, A. M.
2003-01-09
The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).
Lumb, Matthew P.; Steiner, Myles A.; Geisz, John F.; Walters, Robert J.
2014-11-21
The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.
Carl H. Gibson
1999-04-18
The theory of gravitational structure formation in astrophysics and cosmology is revised based on real fluid behavior and turbulent mixing theory. Gibson's 1996-1998 theory balances fluid mechanical forces with gravitational forces and density diffusivity with gravitational diffusivity at critical viscous, turbulent, magnetic, and diffusion length scales termed Schwarz scales L_SX. Condensation and void formation occurs on non-acoustic density nuclei produced by turbulent mixing for scales L>=L_SXmax rather than on sound wave crests and troughs for L>=L_J as required by Jeans's 1902 linear acoustic theory. Schwarz scales L_SX = L_SV, L_ST, L_SM, or L_SD may be smaller or larger than Jeans's scale L_J. Thus, a very different "nonlinear" cosmology emerges to replace the currently accepted "linear" cosmology. According to the new theory, most of the inner halo dark matter of galaxies consists of planetary mass objects that formed soon after the plasma to neutral gas transition 300,000 years after the Big Bang. These objects are termed primordial fog particles (PFPs) and provide an explanation for Schild's 1996 "rogue planets ... likely to be the missing mass" of his observed quasar-lens galaxy, inferred from the twinkling frequencies of both quasar images and their phased difference.
User's guide to the MESOI diffusion model and to the utility programs UPDATE and LOGRVU
Athey, G.F.; Allwine, K.J.; Ramsdell, J.V.
1981-11-01
MESOI is an interactive, Lagrangian puff trajectory diffusion model. The model is documented separately (Ramsdell and Athey, 1981); this report is intended to provide MESOI users with the information needed to successfully conduct model simulations. The user is also provided with guidance in the use of the data file maintenance and review programs; UPDATE and LOGRVU. Complete examples are given for the operaton of all three programs and an appendix documents UPDATE and LOGRVU.
Human walking model predicts joint mechanics, electromyography and mechanical economy
Endo, Ken
In this paper, we present an under-actuated model of human walking, comprising only a soleus muscle and flexion/extension monoarticular hip muscles. The remaining muscle groups of the human leg are modeled using quasi-passive, ...
Analysis of model equations for stress-enhanced diffusion in coal
Segatti, Antonio
Analysis of model equations for stress-enhanced diffusion in coal layers Andro Mikeli´c Andro coal seams. A typical procedure is the injection of carbon dioxide via deviated wells drilled inside the coal seams. Carbon dioxide displaces the methane adsorbed on the internal surface of the coal
TWO SPINORIAL DRIFT-DIFFUSION MODELS FOR QUANTUM ELECTRON TRANSPORT IN GRAPHENE
Jüngel, Ansgar
. Introduction Graphene is a new semiconductor material, which is a subject of great interest for nanoscale [3]. Physically, graphene is a two-dimensional semiconductor with a zero-width band gap, consistingTWO SPINORIAL DRIFT-DIFFUSION MODELS FOR QUANTUM ELECTRON TRANSPORT IN GRAPHENE NICOLA ZAMPONI
Aubertin, Michel
CONCEPTUAL AND NUMERICAL MODELS OF OXYGEN DIFFUSION, SULPHIDE OXIDATION AND ACID MINE DRAINAGE The generation and transport of acid mine drainage (AMD) through discretely fractured porous media is simulated. RÉSUMÉ La génération et le transport des produits issus du drainage minier acide (DMA) dans un milieu
Mathematical Model for Mixing Reactants in a Capillary Microreactor by Transverse Diffusion of
Krylov, Sergey
. The theory uses a single simplifying assumption that the longitudinal diffusion is negligible; this assumption is readily satisfied. We then develop a numerical model of TDLFP and use it to simulate. These requirements can be met by confining the nanoliter-volume reaction mixture in a microfabricated well,5 oil drop
Non-Linear Drying Diffusion and Viscoelastic Drying Shrinkage Modeling in Hardened Cement Pastes
Leung, Chin K.
2010-07-14
The present research seeks to study the decrease in diffusivity rate as relative humidity (RH) decreases and modeling drying shrinkage of hardened cement paste as a poroviscoelastic respose. Thin cement paste strips of 0.4 and 0.5 w/c at age 3 and 7...
Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells
Schmidt, Volker
Cells Yun Wang* and Xuhui Feng Renewable Energy Resources Lab (RERL) and National Fuel Cell Research the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell
Weber, Adam
2010-03-05
A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.
Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model
Donnelly, Catherine, E-mail: C.Donnelly@hw.ac.uk [Heriot-Watt University, Department of Actuarial Mathematics and Statistics (United Kingdom)
2011-10-15
We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.
Transient model of an intermediate surge system for the Paducah Gaseous Diffusion Plant
Beard, B.; Blankenship, J.G.; McGrady, P.W.
1989-09-01
Engineering design work (Reference 1) is underway for intermediate surge systems to be added to the Paducah Gaseous Diffusion Plant (PGDP) cascade as part of the Process Inventory Control System (PICS) project. These systems would be located between 000 buildings and lower half 00 buildings and would remove or add inventory during cascade transients in order to protect cascade compressors from overload and surge. Similar systems were operated in the Oak Ridge Gaseous Diffusion Plant cascade and are operated in the Portsmouth Gaseous Diffusion Plant cascade. A steady state flow analysis of the system to be installed at the PGDP has been made. The flow analysis did not address response of the surge system to the cascade transients, nor did it address automatic control of the system. The need to address these issues prompted development of the transient model described in this report. 2 refs., 8 figs., 2 tabs.
Modeling diffusion of electrical appliances in the residential sector
McNeil, Michael A.; Letschert, Virginie E.
2009-11-22
This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.
Modeling Planarization in Chemical-Mechanical Leonard Borucki
, 2002 Abstract A mathematical model for chemical-mechanical polishing is developed. The ef- fects of padModeling Planarization in Chemical-Mechanical Polishing Leonard Borucki , Dilek Alagoz , Stephanie and compared to experimental data. 1 Problem Description 1.1 Physical Problem Chemical-mechanical polishing
Shell-shocked diffusion model for the light curve of SN2006gy
Nathan Smith; Richard McCray
2007-10-18
We explore a simple model for the high luminosity of SN 2006gy involving photon diffusion of shock-deposited thermal energy. The distinguishing property of the model is that the large ``stellar'' radius of 160 AU required to prevent adiabatic losses is not the true stellar radius, but rather, the radius of an opaque, unbound circumstellar envelope, created when 10 Msun was ejected in the decade before the supernova in an eruption analogous to that of eta Carinae. The supernova light is produced primarily by diffusion of thermal energy following the passage of the blast wave through this shell. This model differs from traditional models of supernova debris interacting with external CSM in that here the shell is optically thick and the escape of radiation is delayed. We show that any model attempting to account for SN2006gy's huge luminosity with radiation emitted by ongoing CSM interaction fails for the following basic reason: the CSM density required to achieve the observed luminosity makes the same circumstellar envelope opaque, forcing a thermal diffusion solution. In our model, the weaker CSM interaction giving rise to SN2006gy's characteristic Type IIn spectrum and soft X-rays is not linked to the power source of the visual continuum; instead, it arises after the blast wave breaks free of the opaque shell into the surrounding wind. While a simple diffusion model can explain the gross properties of the early light curve of SN2006gy, it predicts that the light curve must plummet rapidly at late-times, unless an additional power source is present.
A. Besser; U. S. Schwarz
2007-10-24
Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings.
LANL: Mechanical testing and modeling in MST
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
etc.). As the effects of processing are to critical to accurate prediction of its mechanical behavior, MST hosts a range of metallographic and characterization tools. Specific...
A Conceptual Approach to Two-Scale Constitutive Modelling For Hydro-Mechanical Coupling
Giang D. Nguyen; Abbas El-Zein; Terry Bennett
2014-06-05
Large scale modelling of fluid flow coupled with solid failure in geothermal reservoirs or hydrocarbon extraction from reservoir rocks usually involves behaviours at two scales: lower scale of the inelastic localization zone, and larger scale of the bulk continuum where elastic behaviour can be reasonably assumed. The hydraulic conductivities corresponding to the mechanical properties at these two scales are different. In the bulk elastic host rock, the hydraulic conductivity does not vary much with the deformation, while it significantly changes in the lower scale of the localization zone due to inelastic deformation. Increase of permeability due to fracture and/or dilation, or reduction of permeability due to material compaction can take place inside this zone. The challenge is to predict the evolution of hydraulic conductivities coupled with the mechanical behaviour of the material in all stages of the deformation process. In the early stage of diffuse deformation, the permeability of the material can be reasonably assumed to be homogenous over the whole Representative Volume Element (RVE) However, localized failure results in distinctly different conductivities in different parts of the RVE. This paper establishes a general framework and corresponding field equations to describe the hydro-mechanical coupling in both diffuse and localized stages of deformation in rocks. In particular, embedding the lower scale hydro-mechanical behaviour of the localization zone inside an elastic bulk, together with their corresponding effective sizes, helps effectively deal with scaling issues in large-scale modelling. Preliminary results are presented which demonstrate the promising features of this new approach.
NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES
Patel, Harsh Jay
2013-09-27
a node in the fluid to solid (aggregate or the particle) ? b number of discrete velocities 14 In order to stochastically solve the stochastic solute diffusion equation (Eq. 6), initial and boundary conditions are specified before solving...) Model........................................... 1.2.2 The Diffusion Limited Aggregation-Cellular Automata (DLA-CA) Model................................................................................................ 1.2.3 The Reaction-Diffusion...
A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...
A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...
Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...
Broader source: Energy.gov (indexed) [DOE]
-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano...
Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed Mn/Ti Oxides
Kerisit, Sebastien N.; Chaka, Anne M.; Droubay, Timothy C.; Ilton, Eugene S.
2014-10-23
Mixed Mn/Ti oxides present attractive physicochemical properties such as their ability to accommodate Li for application in Li-ion batteries. In this work, atomic parameters for Mn were developed to extend an existing shell model of the Li-Ti-O system and allow simulations of pure and lithiated Mn and mixed Mn/Ti oxide polymorphs. The shell model yielded good agreement with experimentally-derived structures (i.e. lattice parameters and inter-atomic distances) and represented an improvement over existing potential models. The shell model was employed in molecular dynamics (MD) simulations of Li diffusion in the 1×1 c direction channels of LixMn1 yTiyO2 with the rutile structure, where 0 ? x ? 0.25 and 0 ? y ? 1. In the infinite dilution limit, the arrangement of Mn and Ti ions in the lattice was found to have a significant effect on the activation energy for Li diffusion in the c channels due to the destabilization of half of the interstitial octahedral sites. Anomalous diffusion was demonstrated for Li concentrations as low as x = 0.125, with a single Li ion positioned in every other c channel. Further increase in Li concentration showed not only the substantial effect of Li-Li repulsive interactions on Li mobility but also their influence on the time dependence of Li diffusion. The results of the MD simulations can inform intrinsic structure-property relationships for the rational design of improved electrode materials for Li-ion batteries.
Schmeiser, Christian
-to-cell adhesion K. Anguige , RICAM, Austrian Academy of Sciences, Altenbergerstr. 69, A-4040 Linz, Austria C incorporates the effects of volume filling and cell-to-cell adhesion. The formal continuum limit of the model is a nonlinear diffusion equation with a diffusivity which can become negative if the adhesion coefficient
Fernandez, Raul; Cuevas, Jaime; Maeder, Urs K.
2010-08-15
The interaction between concrete/cement and swelling clay (bentonite) has been modeled in the context of engineered barrier systems for deep geological disposal of high-level radioactive waste. The geochemical transformations observed in laboratory diffusion experiments at 60 and 90 {sup o}C between bentonite and different high-pH solutions (K-Na-OH and Ca(OH){sub 2}-saturated) were reconciled with the reactive transport code CrunchFlow. For K-Na-OH solutions (pH = 13.5 at 25 {sup o}C) partial dissolution of montmorillonite and precipitation of Mg-silicates (talc-like), hydrotalcite and brucite at the interface are predicted at 60 {sup o}C, while at 90 {sup o}C the alteration is wider. Alkaline cations diffused beyond the mineralogical alteration zone by means of exchange with Mg{sup 2+} in the interlayer region of montmorillonite. Very slow reactivity and minor alteration of the clay are predicted in the Ca(OH){sub 2}-bentonite system. The model is a reasonable description of the experiments but also demonstrates the difficulties in modeling processes operating at a small scale under a diffusive regime.
Anand, Lallit
In this paper we develop a thermodynamically-consistent coupled-theory which accounts for diffusion of hydrogen, diffusion of heat, and large elastic–viscoplastic deformations of metals. The theory should be of utility in ...
Samavatian, Majid; Halvaee, Ayoub; Amadeh, Ahmad Ali; Khodabandeh, Alireza
2014-12-15
Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup ?5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion process led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.
Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues [Normandie Université-Université de Rouen-ENSICAEN-UMR 6508 LaMIPS, Laboratoire commun CNRS-NXP-PRESTO-ENSICAEN-UCBN 2, rue de la Girafe BP 5120, F-14079 Caen (France)
2014-09-14
Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method, is proposed.
Mechanics,Mechanisms and Modeling of the Chemical Mechanical Polishing Process
Noh, Kyungyoon
The Chemical Mechanical polishing (CMP) process is now widely employed in the Integrated Circuit Fabrication. However, due to the complexity of process parameters on the material removal rate (MRR), mechanism of material ...
Modeling Different Failure Mechanisms in Metals
Zhang, Liang
2012-02-14
Material failure plays an important role in human life. By investigating the failure mechanisms, people can more precisely predict the failure conditions to develop new products, to enhance product performances, and most ...
Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor
Thierry Mora; Howard Yu; Ned S. Wingreen
2009-10-05
We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.
Mesoscopic modeling of stochastic reaction-diffusion kinetics in the subdiffusive regime
Emilie Blanc; Stefan Engblom; Andreas Hellander; Per Lötstedt
2015-03-24
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again.
Fault Models for Quantum Mechanical Switching Networks
Jacob Biamonte; Jeff S. Allen; Marek A. Perkowski
2010-01-19
The difference between faults and errors is that, unlike faults, errors can be corrected using control codes. In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models. Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method is shown to detect each of the considered faults.
Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model
Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.
2011-05-15
We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.
Numerical modeling of two-phase behavior in the PEFC gas diffusion layer
Mukherjee, Partha Pa223876 [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory
2009-01-01
A critical performance limitation in the polymer electrolye fuel cell (PEFC) is attributed to the mass transport loss originating from suboptimal liquid water transport and flooding phenomena. Liquid water can block the porous pathways in the fibrous gas diffusion layer (GDL) and the catalyst layer (CL), thus hindering oxygen transport from the flow field to the electrochemically actives sites in the catalyst layer. In this paper, the study of the two phase behavior and the durability implications due to the wetting characteristics in the carbon paper GDL are presented using a pore-scale modeling framework.
Modeling thermal/chemical/mechanical response of energetic materials
Baer, M.R.; Hobbs, M.L.; Gross, R.J.
1995-07-01
An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.
Statistical Mechanics Approaches to the Modeling of Nonlinear Earthquake Physics
1 Statistical Mechanics Approaches to the Modeling of Nonlinear Earthquake Physics John B. Rundle1, IN Abstract. We discuss the problem of earthquake forecasting in the context of new models for the dynamics to the modeling of earthquake faults. We show that the frictional failure physics of earthquakes in these complex
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.
2014-12-14
We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Modeling of Mechanical Overlap Joints in Magnetic Shields
Crawford, Anthony C
2015-01-01
This study determines a useful value to use for the gap width of mechanical overlap joints in models of magnetic shielding. The average value of 0.1 mm is found to agree with measurements.
Modeling Control Mechanisms with Normative Multiagent Systems
van der Torre, Leon
of renewable energy. We apply a conceptual model based on normative multiagent systems (NMAS). We propose to stimulate the production of #12;energy from renewable sources [20]. The ruling involves an obligation for energy sup- pliers to produce evidence of having distributed a certain minimal amount of renewable energy
Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
Keuter, Thomas, E-mail: t.keuter@fz-juelich.de; Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaßen, Robert; Buchkremer, Hans Peter [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-1), 52425 Jülich (Germany)
2015-01-01
Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.
Halim, Suhaila Abd; Razak, Rohayu Abd; Ibrahim, Arsmah; Manurung, Yupiter HP
2014-06-19
In image processing, it is important to remove noise without affecting the image structure as well as preserving all the edges. Perona Malik Anisotropic Diffusion (PMAD) is a PDE-based model which is suitable for image denoising and edge detection problems. In this paper, the Peaceman Rachford scheme is applied on PMAD to remove unwanted noise as the scheme is efficient and unconditionally stable. The capability of the scheme to remove noise is evaluated on several digital radiography weld defect images computed using MATLAB R2009a. Experimental results obtained show that the Peaceman Rachford scheme improves the image quality substantially well based on the Peak Signal to Noise Ratio (PSNR). The Peaceman Rachford scheme used in solving the PMAD model successfully removes unwanted noise in digital radiographic image.
A mechanical model for Fourier's law of heat conduction
David Ruelle
2011-02-27
Nonequilibrium statistical mechanics close to equilibrium is a physically satisfactory theory centered on the linear response formula of Green-Kubo. This formula results from a formal first order perturbation calculation without rigorous justification. A rigorous derivation of Fourier's law for heat conduction from the laws of mechanics remains thus a major unsolved problem. In this note we present a deterministic mechanical model of a heat-conducting chain with nontrivial interactions, where kinetic energy fluctuations at the nodes of the chain are removed. In this model the derivation of Fourier's law can proceed rigorously.
Fast Explicit Operator Splitting Method for Convection-Diffusion Equations
Kurganov, Alexander
to the one- and two-dimensional systems of convection-diffusion equations which model the polymer flooding) processes in fluid mechanics, astrophysics, me- teorology, multiphase flow in oil reservoirs, polymer flow
Shibayama, Shigehisa [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan) [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)] [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
2013-08-19
The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.
Facilitated diffusion of proteins on chromatin
O. Benichou; C. Chevalier; B. Meyer; R. Voituriez
2011-01-26
We present a theoretical model of facilitated diffusion of proteins in the cell nucleus. This model, which takes into account the successive binding/unbinding events of proteins to DNA, relies on a fractal description of the chromatin which has been recently evidenced experimentally. Facilitated diffusion is shown quantitatively to be favorable for a fast localization of a target locus by a transcription factor, and even to enable the minimization of the search time by tuning the affinity of the transcription factor with DNA. This study shows the robustness of the facilitated diffusion mechanism, invoked so far only for linear conformations of DNA.
Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells
Weber, Adam Z.
2008-01-01
Single- and Two-Layer PEMFC Diffusion Medium , Internationalthe Oxygen Reduction Reaction in a PEMFC , Journal of the
New Approach to Bounded Quantum--Mechanical Models
Francisco M. Fernández
2008-05-21
We develop an approach for the treatment of one--dimensional bounded quantum--mechanical models by straightforward modification of a successful method for unbounded ones. We apply the new approach to a simple example and show that it provides solutions to both the bounded and unbounded type of models simultaneously
A mechanical approach to mean field spin models
Giuseppe Genovese; Adriano Barra
2009-05-07
Inspired by the bridge pioneered by Guerra among statistical mechanics on lattice and analytical mechanics on 1+1 continuous Euclidean space-time, we built a self-consistent method to solve for the thermodynamics of mean-field models defined on lattice, whose order parameters self average. We show the whole procedure by analyzing in full details the simplest test case, namely the Curie-Weiss model. Further we report some applications also to models whose order parameters do not self-average, by using the Sherrington-Kirkpatrick spin glass as a guide.
A Specific N = 2 Supersymmetric Quantum Mechanical Model: Supervariable Approach
Shukla, Aradhya
2015-01-01
By exploiting the supersymmetric invariant restrictions on the chiral and anti-chiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1)-dimensional N = 2 supersymmetric quantum mechanical model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (\\theta, \\bar\\theta). We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N = 2 SUSY quantum mechanical model is a model for Hodge theory.
Dynamics of Enzyme Digestion of a Single Elastic Fiber Under Tension: An Anisotropic Diffusion Model
Ascânio D. Araújo; Arnab Majumdar; Harikrishnan Parame swaran; Béla Suki
2009-10-07
We study the enzymatic degradation of an elastic fiber under tension using an an isotropic random-walk model, coupled with binding-unbinding reactions that weaken the fiber. The fiber is represented by a chain of elastic springs in series, surrounded by two layers of sites along which enzyme molecules can diffuse. Through numerical simulations we show that the fiber stiffness decreases exponentially with two distinct regimes. The time constant associated with the first regime decreases with increasing applied force, which is in agreement with published experimental data. In addition, a simple mean field calculation allows us to partition the time constant into geometrical, chemical and externally controllable factors, which is corroborated by the simulations.
Phase transitions in a reaction-diffusion model on a line with boundaries
Khorrami, Mohammad Aghamohammadi, Amir
2014-03-15
A one-dimensional model on a line of length L is investigated, which involves particle diffusion as well as single particle annihilation. There are also creation and annihilation at the boundaries. The static and dynamical behaviors of the system are studied. It is seen that the system could exhibit a dynamical phase transition. For small drift velocities, the relaxation time does not depend on the absorption rates at the boundaries. This is the fast phase. For large velocities, the smaller of the absorption rates at boundaries enter the relaxation rate and makes it longer. This is the slow phase. Finally, the effect of a random particle creation in the bulk is also investigated.
Notes 01. Modeling of mechanical (lumped parameter) elements
San Andres, Luis
2008-01-01
1 / ? Luis San Andr?s 2008 1.1 Handout # 1 Modeling of Mechanical (Lumped Parameter) Elements The fundamental components of a mechanical system are: masses or inertias, springs (stiffnesses), and dampers. Lumped elements lead to ordinary... into another form of energy (usually heat). Dampers relate the element force (torque) to a translational (angular) velocity. MEEN 617 Notes: Handout 1 / ? Luis San Andr?s 2008 1.2 Our objective: to determine equivalent system elements as those capable...
Proton diffusion pathways and rates in Y-doped BaZrO3 solid oxide electrolyte from quantum mechanics
Goddard III, William A.
Proton diffusion pathways and rates in Y-doped BaZrO3 solid oxide electrolyte from quantum in the BYZ electrolyte. Indeed, the calculated values bracket the experimental value of Ea=0.44 eV. Based been proposed for the BYZ electrolyte. The thermal librations of BO6 octahedra and uncorrelated thermal
Analytical Modeling of Soil Solution Monitoring by Diffusion in Porous Cups
Shaw, Benjamin D.; Tuli, Atac; Wei, Jing-Bin; Hopmans, Jan W.
2010-01-01
in situ soil water extraction methods to monitor soil soluteeach of the soil solution extraction methods. An alternativethe diffusion and vacuum extraction methods was conducted by
Presently, the PV industry is switching to the selective emitter design, where the phosphorus densityIMPROVING THE PREDICTIVE POWER OF MODELING THE EMITTER DIFFUSION BY FULLY INCLUDING or a spin-on source. In the selective emitter design, the phosphorus density is significantly reduced
Standing Waves in a Two-Dimensional Reaction-Diffusion Model with the Short-Wave Instability
Epstein, Irving R.
Standing Waves in a Two-Dimensional Reaction-Diffusion Model with the Short-Wave Instability Milos 25, 1998; In Final Form: October 19, 1998 Various patterns of standing waves are found beyond with rotational symmetry in systems with circular geometry. We also find standing waves consisting of periodic
Modeling the Mechanical Performance of Die Casting Dies
R. Allen Miller
2004-02-27
The following report covers work performed at Ohio State on modeling the mechanical performance of dies. The focus of the project was development and particularly verification of finite element techniques used to model and predict displacements and stresses in die casting dies. The work entails a major case study performed with and industrial partner on a production die and laboratory experiments performed at Ohio State.
Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau
2014-03-01
Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights
Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami
Kirby, James T.
Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami Simon J. Daya,*, Philip: Kalapana; Hilo; Kahului; Honolulu; Hilina; Hawaii; earthquake; slump; tsunami; volcano; Kilauea; extension earthquake to have affected Hawaii, after the slightly larger Great Kau earthquake of 1868 (Brigham, 1909
Modelling of the static and dynamic mechanical properties of human
Haslwanter, Thomas
Modelling of the static and dynamic mechanical properties of human otoliths DISSERTATION zur of the city of Paris #12;#12;Abstract The aim of this study is a numerical investigation of the static in the inner ears. They sense accelerations of the head. In the static case, information retrieved from them
Mechanisms, Models, and Simulations of Metal-Coated Fiber Consolidation
Wadley, Haydn
pro-gas turbine engines and other aerospace structures because cess.[6] Recent micromechanicalMechanisms, Models, and Simulations of Metal-Coated Fiber Consolidation R. VANCHEESWARAN, J of Ti-6Al-4Vcoated SiC fibers contained in cylindrical canisters have revealed an unexpectedly high
Implementation of two-equation soot flamelet models for laminar diffusion flames
Carbonell, D.; Oliva, A.; Perez-Segarra, C.D.
2009-03-15
The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)
Ortiz, Michael
) Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, and mechanical engineering. The deleterious effect of hydrogen on the mechanical properties of metals and alloys as the two most viable for stable phases. Material degradation via the formation of brittle hydride phases,9
Saylor, John R.
1997-01-01
diffusion in a liquid-filled lung model J. R. Saylor Abstract A noninvasive method for obtaining quantitative images of differential diffusion in liquid-filled lung models is presented. The method utilizes, pollutants, medications etc.) in the lung during gas-phase respiration. Clinical studies, as well
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Goossens, D. J.
2015-01-01
Diffuse scattering from a crystal contains valuable information about the two-body correlations (related to the nanoscale order) in the material. Despite years of development, the detailed analysis of single crystal diffuse scattering (SCDS) has yet to become part of the everyday toolbox of the structural scientist. Recent decades have seen the pair distribution function approach to diffuse scattering (in fact, total scattering) from powders become a relatively routine tool. However, analysing the detailed, complex, and often highly anisotropic three-dimensional distribution of SCDS remains valuable yet rare because there is no routine method for undertaking the analysis. At present, analysis requiresmore »significant investment of time to develop specialist expertise, which means that the analysis of diffuse scattering, which has much to offer, is not incorporated thorough studies of many compounds even though it has the potential to be a very useful adjunct to existing techniques. This article endeavours to outline in some detail how the diffuse scattering from a molecular crystal can be modelled relatively quickly and largely using existing software tools. It is hoped this will provide a template for other studies. To enable this, the entire simulation is included as deposited material.« less
Mechanical properties and modeling of seal-forming lithologies
Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Mazariegos, R.; Ibanez, W.
1993-01-01
Specific goals and accomplishments of this research include: (1) The evaluation of models of salt diaper ascent that involve either power law, dislocation creep as determined experimentally by Horseman et al. (1993) or linear, fluid-assisted creep as reported by Spiers et al. (1988, 1990, 1992). We have compared models assuming these two, experimentally evaluated flow laws and examined the predictions they make regarding diaper incubation periods, ascent velocities, deviatoric stresses and strain rates. (2) The evaluation of the effects of differential loading on the initiation an of salt structures. (3) Examination of the role of basement faults on the initiation and morphologic evolution of salt structures. (4) Evaluation of the mechanical properties of shale as a function of pressure and determination of the nature of its brittle-ductile transition. (5) Evaluation of the mechanical anisotropies of shales with varying concentrations, distributions and preferred orientations of clay. (6) The determination of temperature and ratedependencies of strength for a shale constitutive model that can be used in numerical models that depend on viscous formulations. (7) Determination of the mechanisms of deformation for argillaceous rocks over awide range of conditions. (8) Evaluation of the effects of H[sub 2]O within clay interlayers, as adsorbed surface layers.
Zhang, Lei; Lander, Arthur D; Nie, Qing
2012-01-01
computational model for intestinal tissue renewal. Cellrenewal through suppression of Wnt-ß-catenin signaling [11]. Mathematical models
Mathematical modeling of mechanical vibration assisted conductivity imaging
Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je
2014-01-01
This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...
Effective Diffusion-Medium Thickness for Simplified Polymer-Electrolyte-Fuel-Cell Modeling
Weber, Adam; Weber, Adam Z.
2008-07-30
In this manuscript, conformal mapping is applied to a rib/channel domain of a polymer-electrolyte-fuel-cell diffusion medium. The analysis leads to the calculation of an effective diffusion-medium thickness, which can subsequently be used in 1-D simulations to account for the average rib/channel 2-D geometric effect. Extensions of the analysis to anisotropic and multilayer diffusion media are also given. Both equations and figures show the impact on a given variable at the catalyst layer of having a combined conducting/nonconducting boundary across from it.
Surveying Diffusion in Complex Geometries. An Essay
Denis Grebenkov
2009-09-08
The surrounding world surprises us by the beauty and variety of complex shapes that emerge from nanometric to macroscopic scales. Natural or manufactured materials (sandstones, sedimentary rocks and cement), colloidal solutions (proteins and DNA), biological cells, tissues and organs (lungs, kidneys and placenta), they all present irregularly shaped "scenes" for a fundamental transport "performance", that is, diffusion. Here, the geometrical complexity, entangled with the stochastic character of diffusive motion, results in numerous fascinating and sometimes unexpected effects like diffusion screening or localization. These effects control many diffusion-mediated processes that play an important role in heterogeneous catalysis, biochemical mechanisms, electrochemistry, growth phenomena, oil recovery, or building industry. In spite of a long and rich history of academic and industrial research in this field, it is striking to see how little we know about diffusion in complex geometries, especially the one which occurs in three dimensions. We present our recent results on restricted diffusion. We look into the role of geometrical complexity at different levels, from boundary microroughness to hierarchical structure and connectivity of the whole diffusion-confining domain. We develop a new approach which consists in combining fast random walk algorithms with spectral tools. The main focus is on studying diffusion in model complex geometries (von Koch boundaries, Kitaoka acinus, etc.), as well as on developing and testing spectral methods. We aim at extending this knowledge and at applying the accomplished arsenal of theoretical and numerical tools to structures found in nature and industry.
Mechanical Modeling of a WIPP Drum Under Pressure
Smith, Jeffrey A.
2014-11-25
Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the drums will still open provided the pressure is high enough. Investigation teams should look for displaced drum lids when searching for drums that have pressurized and failed. The mechanical modeling study for this program is summarized in the following memo. Following a brief introduction, there is a summary of a brief literature review of previous pressure testing of drums, an explanation of the model, presentation of the key results, some discussion, and concluding with a summary and key points.
Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro
Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain
2012-05-15
We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.
Luettmer-Strathmann, Jutta
Study of the Thermal Diffusion Behavior of Alkane/Benzene Mixtures by Thermal Diffusion Forced mixtures of linear alkanes (heptane, nonane, undecane, tridecane, pentadecane, heptadecane) in benzene has and temperatures. The Soret coefficient ST of the alkane was found to be negative for these n-alkane/benzene
Ziebarth, Benedikt Gumbsch, Peter; Mrovec, Matous; Elsässer, Christian
2014-09-07
Sodium decorated stacking faults (SFs) were recently identified as the primary cause of potential-induced degradation in silicon (Si) solar-cells due to local electrical short-circuiting of the p-n junctions. In the present study, we investigate these defects by first principles calculations based on density functional theory in order to elucidate their structural, thermodynamic, and electronic properties. Our calculations show that the presence of sodium (Na) atoms leads to a substantial elongation of the Si-Si bonds across the SF, and the coverage and continuity of the Na layer strongly affect the diffusion behavior of Na within the SF. An analysis of the electronic structure reveals that the presence of Na in the SF gives rise to partially occupied defect levels within the Si band gap that participate in electrical conduction along the SF.
MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS
Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep; Sun, Xin; Khaleel, Mohammad A.
2008-03-26
This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed to capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.
Cooperative folding of muscle myosins: I. Mechanical model
Matthieu Caruel; Jean-Marc Allain; Lev Truskinovsky
2015-10-12
Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A typical example is a conformational change in myosin II responsible for the power-stroke in skeletal muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone. We show that in this analytically transparent model, characterized by a rugged energy landscape, the ground states are always highly coherent, single-phase configurations. We argue that such cooperative behavior, ensuring collective conformational change, is due to the dominance of long- range interactions making the system non-additive. The detailed predictions of our model are in agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard devices. Some features displayed by the model are also recognizable in the behavior of other biological systems with passive multi-stability and long-range interactions including detaching adhesive binders and pulled RNA/DNA hairpins.
Swift, Michael
Introduction Aim of the Paper Game Model Defense Mechanism 1 Defense Mechanism 2 Hidden Difficulty Model Defense Mechanism 1 Defense Mechanism 2 Hidden Difficulty Puzzle Conclusions Outline 1 Introduction 2 Aim of the Paper 3 Game Model Player Actions Payoff Functions 4 Defense Mechanism 1
Magnetic and Mechanical Analysis of the HQ Model Quadrupole Designs for LARP
Felice, Helene
2008-01-01
on the magnetic and mechanical design of the HQ models willIII. M ECHANICAL A NALYSIS A. Mechanical design Within LARP,two different mechanical design concepts are under study
Kostic, Milivoje M.
(parabolic differential equation), allowing infinite speed of thermal energy propagation (i.e., a change mass-energy equivalence with `thermon' quasi-particle leading to inertia of heat transfer. Thermal research and applications, related to the conclusions deduced and open questions posed. www.kostic.niu.edu/Nature_of_Thermal_and_Mechanical_Energy
A mechanical model of early salt dome growth
Irwin, Frank Albert
1988-01-01
salt and the upper layer representing the overlying sediment, is used to study the mechanics of growth in the early stages of salt dome formation. Three cases of this model, each representing a particular rate of removal of the surface topography..., are examined to determine which case best fits observations of salt domes in East Texas, Northwest Germany, and the North Sea. These observations include the spacing and growth rate of the dome and the amount of deformation of the sediments above the dome...
Griesel, Alexa
in the southern recirculation gyre region, near topographic obstacles and down- stream in the KE jet, where, correlate well with the magnitudes of eddy velocity. The KE jet suppresses cross- stream mixing only in some better than those in bins defined by a regular geographic grid. Cross-stream diffusivities are elevated
Atomistic Models of Long-Term Hydrogen Diffusion in Metals M. P. Ariza1,a
Ortiz, Michael
and efficient storage of hydrogen is one of the key challenges in developing a hydrogen economy. Recently-speed, high-capacity, reversible hydrogen storage applications. Notably, the absorption and desorption be considered as an ideal tool for the study of many deformation-diffusion coupled phenomena in hydrogen-storage
Modeling the Q-cycle mechanism of transmembrane energy conversion
Anatoly Yu. Smirnov; Franco Nori
2011-06-29
The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a thermodynamic efficiency of the order of 32% or higher.
Statistical mechanics models for multimode lasers and random lasers
Antenucci, F; Berganza, M Ibáñez; Marruzzo, A; Leuzzi, L
2015-01-01
We review recent statistical mechanical approaches to multimode laser theory. The theory has proved very effective to describe standard lasers. We refer of the mean field theory for passive mode locking and developments based on Monte Carlo simulations and cavity method to study the role of the frequency matching condition. The status for a complete theory of multimode lasing in open and disordered cavities is discussed and the derivation of the general statistical models in this framework is presented. When light is propagating in a disordered medium, the system can be analyzed via the replica method. For high degrees of disorder and nonlinearity, a glassy behavior is expected at the lasing threshold, providing a suggestive link between glasses and photonics. We describe in details the results for the general Hamiltonian model in mean field approximation and mention an available test for replica symmetry breaking from intensity spectra measurements. Finally, we summary some perspectives still opened for such...
The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics
Espinosa, Horacio D.
The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics O. Loh & A. Vaziri # Society for Experimental Mechanics 2007 Abstract Response to mechanical stimuli largely dictates cellular the hierarchical cell structure. As experimental and model-based investigations in cell mechanics advance
N + 1 dimensional quantum mechanical model for a closed universe
T. R. Mongan
1999-02-10
A quantum mechanical model for an N + 1 dimensional universe arising from a quantum fluctuation is outlined. (3 + 1) dimensions are a closed infinitely-expanding universe and the remaining N - 3 dimensions are compact. The (3 + 1) non-compact dimensions are modeled by quantizing a canonical Hamiltonian description of a homogeneous isotropic universe. It is assumed gravity and the strong-electro-weak (SEW) forces had equal strength in the initial state. Inflation occurred when the compact N -3 dimensional space collapsed after a quantum transition from the initial state of the univers, during its evolution to the present state where gravity is much weaker than the SEW force. The model suggests the universe has no singularities and the large size of our present universe is determined by the relative strength of gravity and the SEW force today. A small cosmological constant, resulting from the zero point energy of the scalar field corresponding to the compact dimensions, makes the model universe expand forever.
Quantum diffusion dynamics in nonlinear systems: A modified kicked-rotor model
Gong Jiangbin [Department of Physics and Centre of Computational Science and Engineering, National University of Singapore, 117542 (Singapore); Wang Jiao [Temasek Laboratories and Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Singapore), National University of Singapore, 117542 (Singapore)
2007-09-15
Using a simple method analogous to a quantum rephasing technique, a simple modification to a paradigm of classical and quantum chaos is proposed. The interesting quantum maps thus obtained display remarkably rich quantum dynamics. Emphasis is placed on the destruction of dynamical localization without breaking periodicity, unbounded quantum anomalous diffusion in integrable systems, and transient dynamical localization. Experimental realizations of this work are also discussed.
BDP: BrainSuite Diffusion Pipeline
Leahy, Richard M.
BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography
The mechanisms underlying convergent evolution in the plumage patterns of birds
Gluckman, Thanh-Lan
2015-03-03
receptors (Yoshihara et al. 2012). Models of within-feather pattern formation The proposed organizing mechanism for within-feather pattern formation in birds is reaction-diffusion, based on Alan Turing’s (1952) original proposition The mechanisms...
Free Body Analysis, Beam Mechanics, and Finite Element Modeling of the Mandible of Alligator
Free Body Analysis, Beam Mechanics, and Finite Element Modeling of the Mandible of Alligator arm mechanics, 2D and 3D beam mod- els, and three high-resolution finite element models- pared with the beam models, the Alligator finite element models exhibited less spatial variability
Bachas, C.P.
1988-02-01
We review the solution and properties of the diffusion equation in a hierarchical or ultrametric space. 11 refs.
The von Neumann model of measurement in quantum mechanics
Mello, Pier A.
2014-01-08
We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The von Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.
Shingledecker, Christopher N
2014-01-01
Research over the past four decades has shown a rich variety of complex organic molecular content in some meteorites. This current study is an attempt to gain a better insight into the thermal conditions experienced by these molecules inside meteorites during atmospheric entry. In particular, we wish to understand possible chemical processes that can occur during entry and that might have had an effect on complex organic or prebiotic species that were delivered in this way to the early Earth. A simulation was written in Fortran to model heating by the shock generated during entry and the subsequent thermal diffusion inside the body of a meteorite. Experimental data was used for the thermal parameters of several types of meteorites, including iron-nickel and several classes of chondrites. A Sutton-Graves model of stagnation-point heating was used to calculate peak surface temperatures and an explicit difference formula was used to generate thermal diffusion profiles for both chondrites and iron-nickel type met...
Guzik, J.A.; Swenson, F.J.
1997-12-01
We compare the thermodynamic and helioseismic properties of solar models evolved using three different equation of state (EOS) treatments: the Mihalas, D{umlt a}ppen & Hummer EOS tables (MHD); the latest Rogers, Swenson, & Iglesias EOS tables (OPAL), and a new analytical EOS (SIREFF) developed by Swenson {ital et al.} All of the models include diffusive settling of helium and heavier elements. The models use updated OPAL opacity tables based on the 1993 Grevesse & Noels solar element mixture, incorporating 21 elements instead of the 14 elements used for earlier tables. The properties of solar models that are evolved with the SIREFF EOS agree closely with those of models evolved using the OPAL or MHD tables. However, unlike the MHD or OPAL EOS tables, the SIREFF in-line EOS can readily account for variations in overall Z abundance and the element mixture resulting from nuclear processing and diffusive element settling. Accounting for Z abundance variations in the EOS has a small, but non-negligible, effect on model properties (e.g., pressure or squared sound speed), as much as 0.2{percent} at the solar center and in the convection zone. The OPAL and SIREFF equations of state include electron exchange, which produces models requiring a slightly higher initial helium abundance, and increases the convection zone depth compared to models using the MHD EOS. However, the updated OPAL opacities are as much as 5{percent} lower near the convection zone base, resulting in a small decrease in convection zone depth. The calculated low-degree nonadiabatic frequencies for all of the models agree with the observed frequencies to within a few microhertz (0.1{percent}). The SIREFF analytical calibrations are intended to work over a wide range of interior conditions found in stellar models of mass greater than 0.25M{sub {circle_dot}} and evolutionary states from pre-main-sequence through the asymptotic giant branch (AGB). It is significant that the SIREFF EOS produces solar models that both measure up to the stringent requirements imposed by solar oscillation observations and inferences, and are more versatile than EOS tables. {copyright} {ital 1997} {ital The American Astronomical Society}
On models for viscoelastic fluid-like materials that are mechanically incompressible and
Cerveny, Vlastislav
On models for viscoelastic fluid-like materials that are mechanically incompressible and thermally of the full NavierStokesFourier system. J. Math. Fluid Mech., 11:274302, 2009 Mechanically incompressible;Viscoelastic fluids Maxwell model F l lsld µm m Mechanical analogue: Spring energy storage. Dashpot
Double-link expandohedra: a mechanical model for expansion of a virus
Guest, Simon
Double-link expandohedra: a mechanical model for expansion of a virus By F. KovÂ´acs1 , T. Tarnai2), the derived expandohedra provide a mechanical model for the experimen- tally observed swelling of viruses such as cowpea chlorotic mottle virus (CCMV). A fully symmetric swelling motion (a finite mechanism) is found
Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate
Paris-Sud XI, Université de
Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate Ludovic Cassan1 Abstract: The article describes the hydraulic functioning of a mixed water level control hydro- mechanical of the model to reproduce the functioning of this complex hydro-mechanical system. CE database Subject headings
Design and modeling of carbon nanotube-based compliant mechanisms
DiBiasio, Christopher M. (Christopher Michael)
2007-01-01
The objective of this research is to generate the knowledge required to adapt macro- and microscale compliant mechanism theory to design carbon nanotube-based nano-scale compliant mechanisms. Molecular simulations of a ...
element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro-mechanical properties of the materials modelled are chosen to be representative of a potential injection site. For high on the injection process, and on site and rock properties. Rutqvist et al. (2008) showed through a coupled
Asymptotic Analysis of Complex Automata models for Reaction-Diffusion systems
by many single scale models, constructed to simulate the rele- vant sub-processes, choosing appropriately
Song, Jing, 1972-
2004-01-01
Building proper reaction mechanisms is crucial to model the system dynamic properties for many industrial processes with complex chemical reaction phenomena. Because of the complexity of a reaction mechanism, computer-aided ...
Blum, Rick
A Statistical and Physical MechanismsBased Interference and Noise Model for Array Observations is a member of IEEE. K. F. McDonald is a student member. 1 #12; Abstract A statistical noise model is developed from mathematical modeling of the physical mechanisms that generate noise in communication
Heinemann, Detlev
Motivation Methods Model configuration Results Forecasting Summary & Outlook 1/ 14 Retrieving. 17, 2015 #12;Motivation Methods Model configuration Results Forecasting Summary & Outlook 2/ 14 Motivation Sky Imager based shortest-term solar irradiance forecasts for local solar energy applications
A Mechanical Model for Erosion in Copper Chemical-Mechanical Polishing
Noh, Kyungyoon
The Chemical-mechanical polishing (CMP) process is now widely employed in the ultralarge scale integration chip fabrication. Due to the continuous advances in semiconductor fabrication technology and decreasing sub-micron ...
Brindley, T. L.; Tarantino, J. J.; Locke, A. L. [CDM, 325 Kentucky Ave., Kevil, Kentucky 42053 (United States); Dollins, D. W. [Department of Energy, Paducah Gaseous Diffusion Plant, Paducah Kentucky 42001 (United States)
2006-07-01
This paper describes how 4-Dimensional (4D) Data Visualization Modeling was used to evaluate historical data and to help guide the decisions for the sampling necessary to complete a Remedial Investigation/Feasibility Study (RI/FS) for the burial ground sites at the Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP). DOE at the Paducah Site is primarily involved in environmental cleanup and landlord activities. The scope of this project was to prepare a work plan for identifying the data available and the data required to conduct an RI/FS for the Burial Ground Operable Unit (BGOU) located within and near PGDP. The work plan focuses on collecting existing information about contamination in and around the burial grounds and determining what additional data are required to support an assessment of risks to human health and the environment and to support future decisions regarding actions to reduce these risks. (authors)
The effect of variable thermal diffusivity on kinematic models of subduction
Steinle-Neumann, Gerd
at the surface and thermal insulating effects once subducted. Temperature differences between models based on the interpretation of seismic tomog- raphy suggest that subducting slabs penetrate the whole
Weber, Adam
2010-01-01
component for successful PEFC operation, especially underIt is also critical for good PEFC durability and lifetime. Aand transport throughout the PEFC, mathematical modeling has
Guin, J.A.
1998-12-31
The overall objective of this project was to investigate the diffusion of coal and petroleum asphaltenes in the pores of a supported catalyst. Experimental measurements together with mathematical modeling was conducted to determine how the diffusion rate of asphaltenes, as well as some model compounds, depended on molecule sizes and shapes. The process of diffusion in the pores of a porous medium may occur by several mechanisms. Hindered diffusion occurs when the sizes of the diffusion molecules are comparable to those of the porous pores through which they are diffusing. Hindered diffusion phenomena have been widely observed in catalytic hydrotreatment of asphaltenes, heavy oils, coal derived liquids, etc. Pore diffusion limitations can be greater in spent catalysts due to the deposition of coke and metals in the pores. In this work, a general mathematical model was developed for the hindered diffusion-adsorption of solute in a solvent onto porous materials, e. g. catalysts, from a surrounding bath. This diffusion model incorporated the nonuniformities of pore structures in the porous media. A numerical method called the Method of Lines was used to solve the nonlinear partial differential equations resulting from the mathematical model. The accuracy of the numerical solution was verified by both a mass balance in the diffusion system and satisfactory agreement with known solutions in several special cases.
Mechanical modeling of the plastic bonded explosive LX17
Clayton, Kyle Martin
2001-01-01
and time prohibitive to use as a method of characterization, so micromechanical models are developed here. First, the viscoelastic binder and elastic particles are characterized to be used in the developed models. Analytic micromechanics models...
Substrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics/
Gherman, Benjamin F.
Substrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane. With the current results, recent kinetic data for CH3X (X ) H, CH3, OH, CN, NO2) substrate hydroxylation in MMOH
Three-body interactions improve the prediction of rate and mechanism in protein folding models
Plotkin, Steven S.
Three-body interactions improve the prediction of rate and mechanism in protein folding models M. R-body interactions on rate and mechanism in protein folding by using the results of molecular dynamics simulations that stabilize protein structures and govern protein folding mechanisms is a fundamental problem in molecular
Neutrino mass mechanisms in 3-3-1 models: A short review
C. A. de S. Pires
2014-12-03
In this paper we review some mechanisms that provide light neutrinos in the framework of 3-3-1 gauge models without exotic leptons. In regard to the minimal 3-3-1 model, we call the attention to the fact that the perturbative regime of the model goes until 5 TeV. This requires alternative mechanisms in order to generate light neutrinos. In this review we discuss two mechanisms capable of generating light neutrinos in the framework of the minimal 3-3-1 model. In regard to the 3-3-1 model with right-handed neutrinos, we call the attention to the fact that in it mechanisms that generate light left-handed neutrinos also generate light right-handed neutrinos. Finally, we call the attention to the fact that the 3-3-1 model with right-handed neutrinos accommodate naturally the inverse seesaw mechanism.
An improved structural mechanics model for the FRAPCON nuclear fuel performance code
Mieloszyk, Alexander James
2012-01-01
In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...
Characterization and modeling of polysilicon MEMS chemical-mechanical polishing
Tang, Brian D. (Brian David), 1980-
2004-01-01
Heavily used in the manufacture of integrated circuits, chemical-mechanical polishing (CMP) is becoming an enabling technology for microelectromechanical systems (MEMS). To reliably use CMP in the manufacturing process, ...
On an instability exhibited by the ballistic-diffusive heat conduction model of Xu and Hu
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Christov, I. C.; Jordan, P. M.
2013-11-13
We show that the constitutive relation for the thermal flux proposed by Xu & Hu (2011) admits an unconditional instability. We also highlight the difference between mathematical models containing delay and those that include relaxation effects.
Hand and Finger Kinematics and their Neural Mechanisms Lucia Castellanos August 2013 CMU-ML-13Statistical Models and Algorithms for Studying Hand and Finger Kinematics and their Neural Mechanisms Lucia Castellanos August 2013 CMU-ML-13-108 #12;#12;Statistical Models and Algorithms for Studying
Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general
Alvarez, Pedro J.
Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general substrate ethanol on benzene fate and transport in fuel-contaminated groundwater and to discern the most influential benzene plume elongation mechanisms. The model, developed as a module for the Reactive Transport in 3
A new model for myosin dimeric motors incorporating Brownian ratchet and powerstroke mechanisms
Kawai, Ryoichi
A new model for myosin dimeric motors incorporating Brownian ratchet and powerstroke mechanisms motor proteins in general. A single motor domain is modeled using our previous work on hybrid motors that exhibit elements of both a powerstroke and a Brownian motor mechanism. The different behavior observed
Li, Teng
In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin Lou1,b) 1 Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77005, USA 2 Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland
Paris-Sud XI, Université de
inherent to management accounting innovation and change. Initially, organizational actors can be in three1 Title: The effects of uncertainty, trust, structure and resistance to change in the diffusion of management accounting innovations: an agent based modeling approach. Author 1: Bertrand Masquefa1 , Ph
Diffusive Acceleration of Ions at Interplanetary Shocks
Matthew G. Baring; Errol J. Summerlin
2005-06-08
Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.
A Study of Information Diffusion over a Realistic Social Network Model
Khan, Maleq
by indicating controlling parameters underlying certain phenomena. Despite the possible outcomes and the recent and do not take ground realities into account [2], [3]. This is particularly true in the context of socio statistical models, power grid failures, flows of information on communication and transportation
Internship Parallel Computer Evaluation Parallelization of a Lagrangian Particle Diffusion Model
use case is a nuclear accident like a core meltdown at a atomic power plant, where atomic radiation emits in the air. The Lagrangian model can predict how the nuclear cloud spreads under different that will be computed. Particle: One single molecule floating in the wind field. Compute unit: One unit that runs
van der Zwaan, Bob; Rosler, Hilke; Kober, Tom; Aboumahboub, Tino; Calvin, Katherine V.; Gernaat, David; Marangoni, Giacomo; McCollum, David
2013-11-01
We investigate the long-term global energy technology diffusion patterns required to reach a stringent climate change target with a maximum average atmospheric temperature increase of 2°C. If the anthropogenic temperature increase is to be limited to 2°C, total CO2 emissions have to be reduced massively, so as to reach substantial negative values during the second half of the century. Particularly power sector CO2 emissions should become negative from around 2050 onwards according to most models used for this analysis in order to compensate for GHG emissions in other sectors where abatement is more costly. The annual additional capacity deployment intensity (expressed in GW/yr) for solar and wind energy until 2030 needs to be around that recently observed for coal-based power plants, and will have to be several times higher in the period 2030–2050. Relatively high agreement exists across models in terms of the aggregated low-carbon energy system cost requirements on the supply side until 2050, which amount to about 50 trillion US$.
Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal
2014-05-12
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (?D{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of ?D{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N???5) linear algorithm was more accurate in extracting ?D{sub B} (errors?models. Although adding random noises to DCS data resulted in ?D{sub B} variations, the mean values of errors in extracting ?D{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of ?D{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors?
Dynamics of multiphoton excitation and quantum diffusion in Rydberg atoms
Chu, Shih-I; Wang, Kwanghsi
1989-02-15
with a different excitation mechanism. In this paper, we emphasize the study of the two major excitation mechanisms: quantum diffusion and multiphoton resonant excitation. The region dominated by quantum diffusion lies in the frequency range ?c
Lisal, Martin
Molecular-level simulations of chemical reaction equilibrium and diffusion in slit and cylindrical study of the effects of confinement on chemical reaction equilibrium and diffusion in both slit nanopores 1. Introduction The behaviour of chemical reactions confined in nanopores is of extensive
Diffusion between evolving interfaces
Janne Juntunen; Juha Merikoski
2010-11-19
Diffusion in an evolving environment is studied by continuos-time Monte Carlo simulations. Diffusion is modelled by continuos-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution domi- nates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces. Article reference: Journal of Physics: Condensed Matter 22, 465402 (2010).
Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels
Zarbo, Liviu P.; Sinova, Jairo; Knezevic, I.; Wunderlich, J.; Jungwirth, T.
2010-01-01
in vacuum. This makes the SO coupling-based effects experimentally accessible and enables the use of SO coupling as a tool for purely electrical generation and manipulation of spins in devices.1?4 The prototype spintronic device using SO coupling as a...DEG chan- nel of an experimentally relevant spintronic model device which is schematically depicted in Fig. 1?a?. The typical de- vice is of a few micrometers in size and this is considerably larger than the Fermi wavelength in the 2DEG channel...
Modeling heat conduction and radiation transport with the diffusion equation in
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission MissionModeling distributed generation in theheat
STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...
Office of Scientific and Technical Information (OSTI)
and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical...
Implementation of an anisotropic mechanical model for shale in Geodyn
Attaia, A.; Vorobiev, O.; Walsh, S.
2015-05-15
The purpose of this report is to present the implementation of a shale model in the Geodyn code, based on published rock material models and properties that can help a petroleum engineer in his design of various strategies for oil/gas recovery from shale rock formation.
Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao; Li, Hui, E-mail: hli4@unl.edu [Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)] [Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)
2014-05-07
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.
Supporting random wave models: a quantum mechanical approach
J. D. Urbina; K. Richter
2003-04-23
We show how two-point correlation functions derived within non-isotropic random wave models are in fact quantum results that are obtained in the appropriate limit in terms of the exact Green function of the quantum system. Since no statistical model is required for this derivation, this shows that taking the wave functions as Gaussian processes is the only assumption of those random wave models. We also show how for clean systems the two-point correlation function defined through an energy average defines a Gaussian theory which substantially reduces the spurious contributions coming from the normalisation problem.
Uncertainty Quantification in Modeling HIV Viral Mechanics H.T. Banks1,2
Uncertainty Quantification in Modeling HIV Viral Mechanics H.T. Banks1,2 , Robert Baraldi1 for the resulting parameter estimates. Key Words: In-host HIV-1 progression models, uncertainty quantification of [7] for further analysis. A major motivation for revisiting this model is its potential to be readily
Mechanics-Based Modeling of Bending and Torsion in Active Cannulas
transmissions. In this paper, we consider both bending and torsion, describing the total elastic energy storedMechanics-Based Modeling of Bending and Torsion in Active Cannulas D. Caleb Rucker, and Robert J cannula more accurately than previous models, reducing tip error by 72% over a bending-only model, and 35
Boerner, A. J.; Maldonado, D. G.; Hansen, Tom
2012-09-01
Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC
2006-09-28
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.
Modelling the mechanical interaction between flowing materials and retaining wire structures
Gagliardini, Olivier
Modelling the mechanical interaction between flowing materials and retaining wire structures Franc Sols Solides Structures, UJF-INPG-CNRS, Grenoble, France Received 10 March 2004; received in revised, design of structural elements may require analysing the mechanical interac- tion between a flowing
Travelling wave solutions for a quasilinear model of Field Dislocation Mechanics
Scheichl, Robert
Mechanics to a scalar problem in one spatial dimension and investigate the existence of static and slowTravelling wave solutions for a quasilinear model of Field Dislocation Mechanics Amit Acharya in the static case is not proper and it is shown that no comparison principle holds. The findings indicate
NUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA-HIGH
Boyer, Edmond
in the cementitious matrix can react with carbon dioxide dissolved in the water filling the crack. Autogenous healingNUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA into the crack and leads to a partial recovery of mechanical properties (Young's modulus, tensile strength
Identifying Mathematical Models of the Mechanically Ventilated Lung Using Equation Discovery
Kersting, Kristian
1 Identifying Mathematical Models of the Mechanically Ventilated Lung Using Equation Discovery in intensive care medicine by all means. Nevertheless, it can induce severe mechanical stress to the lung, which generally impairs the outcome of the therapy. To reduce the risk of a ventilator induced lung
Venables, John
methods. Programs are coded in MatlabP ® P6.5; the calculation is fast, and the evolving diffusion field and island shapes can be seen visually in the form of MatLab movies. Capture numbers are calculated
Mechanical Systems on an almost Kähler model of a Finsler Manifold
Mehmet Tekkoyun; O?uzhan Çelik
2012-11-06
In this study, we present a new analogue of Euler-Lagrange and Hamilton equations on an almost K\\"ahler model of a Finsler manifold. Also, we give some corollories about the related mechanical systems and equations.
Application of the 3-D Hydro-Mechanical Model GEOFRAC in enhanced geothermal systems
Vecchiarelli, Alessandra
2013-01-01
GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it is based on statistical input representing ...
Haldar, Krishnendu 1978-
2012-12-06
Magnetic shape memory alloys (MSMAs) are a class of active materials that de- form under magnetic and mechanical loading conditions. This work is concerned with the modeling of MSMAs constitutive responses. The hysteretic ...
DISLOCATION GENERATION IN Si: A THERMO-MECHANICAL MODEL BASED ON MEASURABLE PARAMETERS*
Balzar, Davor
DISLOCATION GENERATION IN Si: A THERMO-MECHANICAL MODEL BASED ON MEASURABLE PARAMETERS* Bhushan for predicting dislocation distribution generated by thermal stresses in Si is described. We use that can minimize dislocation generation for improved solar cell performance. INTRODUCTION Dislocations
Johnson, Joy Marie
2015-01-01
A theoretical modeling approach is developed to predict silica-specific instability in chemical-mechanical polishing (CMP) slurries. In CMP, the formation of large agglomerates is of great concern, as these large particles ...
Sheng, Nuo, 1977-
2006-01-01
Polymer/clay nanocomposites have been observed to exhibit enhanced thermal/mechanical properties at low weight fractions (We) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly ...
Modeling Regional Air Quality Using the Near-Explicit Master Chemical Mechanism
Li, Jingyi
2014-08-01
structure, allowing an explicit calculation of SOA formation from individual model species. Earlier attempts in this area were aimed at developing mechanisms for regional SOA using a small number of representative species (Griffin et al., 2002b; Griffin...
Skerry, Benjamin James Oliver
2013-07-06
I have investigated epigenetic mechanisms of acquired endocrine-resistance in breast cancer using an in vitro model system based on estrogen-dependent MCF7 cells and their derivatives, LCC1 and LCC9. LCC1 cells, derived ...
Derivation of Ohm's Law in a Deterministic Mechanical Model
Chernov, Nikolai
GSP-1 Moscow V-334, Russia Abstract We study the Lorentz gas in small external electric and magnetic/T, with T the "temperature," is equal to both the asymptotic decay rate of the Gibbs entropy and minus the sum which incorporates a frictional term designed to model the interaction of the test particle with a "heat
A Convergent Reaction-Diffusion Master Equation
Samuel A Isaacson
2013-06-28
The reaction-diffusion master equation (RDME) is a lattice stochastic reaction-diffusion model that has been used to study spatially distributed cellular processes. The RDME is often interpreted as an approximation to spatially-continuous models in which molecules move by Brownian motion and react by one of several mechanisms when sufficiently close. In the limit that the lattice spacing approaches zero, in two or more dimensions, the RDME has been shown to lose bimolecular reactions. The RDME is therefore not a convergent approximation to any spatially-continuous model that incorporates bimolecular reactions. In this work we derive a new convergent RDME (CRDME) by finite volume discretization of a spatially-continuous stochastic reaction-diffusion model popularized by Doi. We demonstrate the numerical convergence of reaction time statistics associated with the CRDME. For sufficiently large lattice spacings or slow bimolecular reaction rates, we also show the reaction time statistics of the CRDME may be approximated by those from the RDME. The original RDME may therefore be interpreted as an approximation to the CRDME in several asymptotic limits.
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.
2015-07-28
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore »equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
Prinja, A.K.
1998-09-01
In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.
Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof Energy ModelSEI Layer | Department of
Paris-Sud XI, Université de
Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model In this paper we present the development of the macroscopic model describing the hydro-mechanical coupling) In this paper we present the macroscopic model describing the hydro-mechanical behaviour of such class
Ohbuchi, Ryutarou
Takahiko Furuya and Ryutarou Ohbuchi, Diffusion-on-Manifold Aggregation of Local Features for Shape-based 3D Model Retrieval, accepted as oral paper, Proc. ACM International Conference on Multimedia Information Retrieval (ICMR) 2015, Shanghai, China. 1 Diffusion-on-Manifold Aggregation of Local Features
Emergent Semiclassical Time in Quantum Gravity. I. Mechanical Models
Edward Anderson
2007-11-04
Strategies intended to resolve the problem of time in quantum gravity by means of emergent or hidden timefunctions are considered in the arena of relational particle toy models. In situations with `heavy' and `light' degrees of freedom, two notions of emergent semiclassical WKB time emerge; these are furthermore equivalent to two notions of emergent classical `Leibniz--Mach--Barbour' time. I futhermore study the semiclassical approach, in a geometric phase formalism, extended to include linear constraints, and with particular care to make explicit those approximations and assumptions used. I propose a new iterative scheme for this in the cosmologically-motivated case with one heavy degree of freedom. I find that the usual semiclassical quantum cosmology emergence of time comes hand in hand with the emergence of other qualitatively significant terms, including back-reactions on the heavy subsystem and second time derivatives. I illustrate my analysis by taking it further for relational particle models with linearly-coupled harmonic oscillator potentials. As these examples are exactly soluble by means outside the semiclassical approach, they are additionally useful for testing the justifiability of some of the approximations and assumptions habitually made in the semiclassical approach to quantum cosmology. Finally, I contrast the emergent semiclassical timefunction with its hidden dilational Euler time counterpart.
Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience
2009-07-01
The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.
A. Zurita; J. E. Beckman; M. Rozas; S. Ryder
2002-03-15
In this paper we make a quantitative study of the hypothesis that the diffuse H-alpha emitted from the discs of spiral galaxies owes its origin to the ionizing photons escaping from HII regions. We use the H-alpha measurements of the complete set of HII regions in the spiral NGC 157, for which an HI density map was available, to derive a family of models which predict the ionizing photon distribution in the disc of this galaxy. The predicted diffuse H-alpha surface brightness distributions from our models were compared with the observed distributions showing that, in general terms, the hypothesis of density bounding for the HII regions allows us to predict well the spatial distribution of the diffuse ionized gas. In the model yielding the best fit to the data, the regions of lower luminosity lose a constant fraction of their ionizing flux to their surroundings, while for HII region luminosities above a specific transition value the ionizing escape fraction is a rising function of the Ha luminosity.
Towards a physics-based modelling of the electro-mechanical coupling in EAPs
Noy Cohen; Andreas Menzel; Gal deBotton
2015-02-03
Due to the increasing number of industrial applications of electro-active polymers (EAPs), there is a growing need for electromechanical models which accurately capture their behavior. To this end, we compare the predicted behavior of EAPs undergoing homogenous deformations according to three electromechanical models. The first model is a continuum based model composed of the mechanical Gent model and a linear relationship between the electric field and the polarization. The electrical and the mechanical responses according to the second model are based on the polymer microstructure, whereas the third model incorporates a neo-Hookean mechanical response and a microstructural based long-chains model for the electrical behavior. In the microstructural motivated models the integration from the microscopic to the macroscopic levels is accomplished by the micro-sphere technique. Four types of homogeneous boundary conditions are considered and the behaviors determined according to the three models are compared. The differences between the predictions of the models are discussed, highlighting the need for an in-depth investigation of the relations between the structure and the behaviors of the EAPs at microscopic level and their overall macroscopic response.
Efficient Barrier Synchronization Mechanism for the BSP Model on Message-Passing Architectures
Ha, Soonhoi
Efficient Barrier Synchronization Mechanism for the BSP Model on Message-Passing Architectures Jin-742, KOREA jinsoo, sha, csjhonÂ¡ @comp.snu.ac.kr Abstract The Bulk Synchronous Parallel (BSP) model of computa- tion can be used to develop efficient and portable programs for a range of machines
A non-isothermal PEM fuel cell model including two water transport mechanisms in the
Münster, Westfälische Wilhelms-Universität
A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations
P. Evesque
2005-07-04
It has been proposed recently a new incremental modelling to describe the mechanics of soil. It is based on two parameters called the pseudo Young modulus E=1/Co and the pseudo Poisson coefficient n, which both evolve during compression. Evolution of n is known since it shall fit the Rowe's law of dilatancy, but Co has to be evaluated from experiment. In this paper we proposed a way to evaluate the Co variation from other mechanical modelling. The way cyclic behaviour of drained sample can be modelled is also described.
Modelling the Mechanics and Hydrodynamics of Swimming E. coli
Jinglei Hu; Mingcheng Yang; Gerhard Gompper; Roland G. Winkler
2015-08-04
The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hy- drodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is com- posed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vor- tices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force- dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.
Vajda, Sandor
EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Spring 2015) Thermodynamics is the study in order to take place? We will study the thermodynamics of two types of processes: mechanical, or the chemical conversion of glucose into useful work), and a good understanding of thermodynamics is essential
Doughty, C.; Tsang, C.F.
2009-08-01
A complex fracture model employing two populations for diffusion and sorption is proposed to analyze three representative single-well injection-withdrawal (SWIW) tracer tests from Forsmark and Laxemar, the two sites under investigation by the Swedish Nuclear Fuel and Waste Management Company (SKB). One population represents the semi-infinite rock matrix and the other represents finite blocks that can become saturated, thereafter accepting no further diffusion or sorption. The diffusion and sorption parameters of the models are inferred by matching tracer breakthrough curves (BTCs). Three tracers are simultaneously injected, uranine (Ur), which is conservative, and rubidium (Rb) and cesium (Cs), which are non-conservative. For non-sorbing tracer uranine, the finite blocks become saturated with test duration of the order of 10 hours, and both the finite and the semi-infinite populations play a distinct role in controlling BTCs. For sorbing tracers Rb and Cs, finite blocks do not saturate, but act essentially as semi-infinite, and thus BTC behavior is comparable to that obtained for a model containing only a semi-infinite rock matrix. The ability to obtain good matches to BTCs for both sorbing and non-sorbing tracers for these three different SWIW data sets demonstrates that the two-population complex fracture model may be a useful conceptual model to analyze all SWIW tracer tests in fractured rock, and perhaps also usual multiwell tracer tests. One of the two populations should be semi-infinite rock matrix and the other finite blocks that can saturate. The latter can represent either rock blocks or gouge within the fracture, a fracture skin zone, or stagnation zones.
Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling
Eapen, Jacob; Murty, Korukonda; Burchell, Timothy
2014-06-02
Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.
Bourg, I.C.
2009-01-01
diffusion in compacted water- saturated sodium bentonite at2000. QINS studies of water diffusion in Na-montmorillonite.1996. Thermodynamic properties of water in compacted sodium
Som, S; Longman, D. E.; Luo, Z; Plomer, M; Lu, T; Senecal, P.K.; Pomraning, E (Energy Systems); (Univ. of Connecticut); (CONVERGENT Science)
2012-01-01
Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.
Chalupecký, Vladimír; Kruschwitz, Jens; Muntean, Adrian
2012-01-01
We consider a two-scale reaction diffusion system able to capture the corrosion of concrete with sulfates. Our aim here is to define and compute two macroscopic corrosion indicators: typical pH drop and gypsum profiles. Mathematically, the system is coupled, endowed with micro-macro transmission conditions, and posed on two different spatially-separated scales: one microscopic (pore scale) and one macroscopic (sewer pipe scale). We use a logarithmic expression to compute values of pH from the volume averaged concentration of sulfuric acid which is obtained by resolving numerically the two-scale system (microscopic equations with direct feedback with the macroscopic diffusion of one of the reactants). Furthermore, we also evaluate the content of the main sulfatation reaction (corrosion) product---the gypsum---and point out numerically a persistent kink in gypsum's concentration profile. Finally, we illustrate numerically the position of the free boundary separating corroded from not-yet-corroded regions.
Moisture Diffusion in Asphalt Binders and Fine Aggregate Mixtures
Vasconcelos, Kamilla L.
2011-08-08
cost in highway maintenance and vehicle operations. One key mechanism of how moisture reaches the asphalt-aggregate interface is by its permeation or diffusion through the asphalt binder or mastic. Different techniques are available for diffusion...
Review of enhanced vapor diffusion in porous media
Webb, S.W.; Ho, C.K.
1998-08-01
Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.
Shell model nuclear matrix elements for competing mechanisms contributing to double beta decay
Horoi, Mihai
2013-12-30
Recent progress in the shell model approach to the nuclear matrix elements for the double beta decay process are presented. This includes nuclear matrix elements for competing mechanisms to neutrionless double beta decay, a comparison between closure and non-closure approximation for {sup 48}Ca, and an updated shell model analysis of nuclear matrix elements for the double beta decay of {sup 136}Xe.
B. Mehlig; M. Wilkinson; V. Bezuglyy; K. Gustavsson; K. Nakamura
2009-01-20
We consider the diffusion of independent particles experiencing random accelerations by a space- and time-dependent force as well as viscous damping. This model can exhibit several asymptotic behaviours, depending upon the limiting cases which are considered, some of which have been discussed in earlier work. Here we explore the full space of dimensionless parameters, and introduce an "asymptotic phase diagram" which delineates the limiting regimes.
Bosonic seesaw mechanism in a classically conformal extension of the Standard Model
Naoyuki Haba; Hiroyuki Ishida; Nobuchika Okada; Yuya Yamaguchi
2015-08-27
We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy the perturbativity of the running couplings and the electroweak vacuum stability as well as the naturalness of the electroweak scale.
Statistical mechanics of a correlated energy landscape model for protein folding funnels
Plotkin, Steven S.
Statistical mechanics of a correlated energy landscape model for protein folding funnels Steven S correlations in conjunction with the a priori specification of the existence of a particularly low energy state provide a method of introducing the aspect of minimal frustration to the energy landscapes of random
ELSEVIER Physica D 107 (1997) 322-325 Statistical mechanics of correlated energy landscape models
Plotkin, Steven S.
1997-01-01
ELSEVIER Physica D 107 (1997) 322-325 PHYSICA Statistical mechanics of correlated energy landscape in the energy landscape of heteropolymers and proteins, specifically their role in the glass transition q are quantitatively similar to the results for an uncorrelated landscape or random energy model
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
Paris-Sud XI, Université de
1 Angular approach combined to mechanical model for tool breakage detection by eddy current sensors solution is proposed for the estimate of cutting force using eddy current sensors implemented close eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability
ES2A7 -Fluid Mechanics Example Classes Model Answers to Example Questions (Set III)
Thomas, Peter J.
ES2A7 - Fluid Mechanics Example Classes Model Answers to Example Questions (Set III) Question 1 10610 40031.8 -- ×=×= × × == APN RT d Question 2: Type of Fluid #12;Consider 2 identical vertical tubes are filled with the same height of fluid: A Newtonian fluid is used with tube X whereas a non-Newtonian fluid
Guidoni, Leonardo
Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure). We have recently developed a QM/MM extension of a Car-Parrinello scheme [5]. These hybrid Car functional theory embedded in a classical force field description. The power of such a combined Car
Efficiency analysis of a pneu-mechanical Wave Energy Converter : model of the device losses,
Psaltis, Demetri
ENAC/ Efficiency analysis of a pneu-mechanical Wave Energy Converter : model of the device losses. Van Herle 1 Mots Clés: Efficiency Analysis, Power Take Off, Renewable Energy, WEC, Wave Energy. 1 have been focused on the efficiency of the different technologies on a test rig and building
Mechanics of complex bodies: commentary on the unified modelling of material substructures
Paolo Maria Mariano
2008-03-26
Basic issues of the general model-building framework of the mechanics of complex bodies are discussed. Attention is focused on the representation of the material elements, the conditions for the existence of ground states in conservative setting and the interpretation of the nature of the various balance laws occurring.
Construction of a Mechanical Model for the Expansion of a Virus
Guest, Simon
Construction of a Mechanical Model for the Expansion of a Virus S.D. Guest1 , F. KovÃ¡cs2 , T@eng.cam.ac.uk, fax +44 1223 332662 Abstract Many viruses have an outer protein coat with the structure of a truncated icosahedron, and can expand following changes to the environment around the virus. The protein coat consists
Lin, Liwei
Introduction to Finite Element Modeling Engineering analysis of mechanical systems have been of the FEM (don't misuse the FEM - a numerical tool) Finite Element Analysis A typical finite element quantities (e.g., strains and stresses) at selected elements Basic Theory The way finite element analysis
EXCHANGE FUNCTIONS Exchange Functions is a speci cation mechanism for designing and a model for
Filman, Robert E.
to monitor and control a manufacturing process is an embedded system. 74 #12;exchange functions 75 exampleCHAPTER SEVEN EXCHANGE FUNCTIONS Exchange Functions is a speci cation mechanism for designing and a model for describing distributed and embedded systems.* Exchange Functions assumes ex- plicit processes
Comparison of problem model change mechanisms issued from CSP and TRIZ
Paris-Sud XI, Université de
1 Comparison of problem model change mechanisms issued from CSP and TRIZ RRoollaanndd DDee GGuuiioo satisfaction problem (CSP), on the other hand. Keywords: over-constrained problems, dialectical methods issued from CSP and TRIZ 2 · a set of evaluation parameters, which represent the objective of the problem
EXISTENCE OF A SOLUTION IN AN AGE DEPENDENT TRANSPORT-DIFFUSION
Pacard, Frank
water treatment plant may include both transport and diffusion. When the residence time of sludge for the steady states of a settler (in a waste water treat- ment plant). This kind of equations is introduced. The settling mechanism is modeled in the term V , or sludge velocity. It includes the water velocity (depending
Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite
Zok, Frank
Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks tolerance and notch insensitivity in continuous fiber ceramic composites (CFCCs).1 These mechanisms play
Mavko, B.; Cizelj, L. (Jozef Stefan Inst., Reactor Engineering Div., P.O. Box 100, 61111 Ljubljana, Slovenia (YU))
1992-05-01
In this paper a model for estimating the failure probability of axially cracked steam generator tubes is proposed. The model compares observed crack length distribution with critical crack length distribution by means of probabilistic fracture mechanics. The observed crack length is influenced by measured data, measurement reliability, sizing accuracy, and predicted crack growth rate. The critical crack length is defined by a deterministic mechanical model. All cracks are conservatively assumed to extend through the tube wall. The effect of the plugging limit is studied along with the number of cracked tubes to perform risk-based lifetime optimization of steam generators. A numerical example presented considers hypothetical accidental operating conditions during a feedwater line break.
2015-01-01
in a viral model of multiple sclerosis. J Neuroimmunol 23.in a chronic model of multiple sclerosis. Nature 422: 60.embryonic fibroblasts; MS, multiple sclerosis; NDM, neural
Parallel flow diffusion battery
Yeh, H.C.; Cheng, Y.S.
1984-01-01
A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.
Parallel flow diffusion battery
Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)
1984-08-07
A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.
Sub-discretized surface model with application to contact mechanics in multi-body simulation
Johnson, S; Williams, J
2008-02-28
The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.
Comparison of QM-Only and QM/MM Models for the Mechanism of Tungsten-Dependent Acetylene Hydratase
Liao, Rongzhen
Comparison of QM-Only and QM/MM Models for the Mechanism of Tungsten-Dependent Acetylene Hydratase-only and QM/MM approaches for the modeling of enzymatic reactions. For this purpose, we present a QM/MM case of the previously suggested one-water attack mechanism. The QM/MM calculations with the minimal QM region M1 (32
Folds above angular fault bends: mechanical constraints for backlimb trishear kinematic models
Zhang, Li
2004-11-15
for the degree of MASTER OF SCIENCE Approved as to style and content by: Judith S. Chester (Chair of Committee) Frederick M. Chester (Member) Charles P. Aubeny (Member) Andrew Hajash Jr. (Head of Department) August 2003 Major Subject: Geology iii ABSTRACT Folds... above Angular Fault Bends: Mechanical Constraints for Backlimb Trishear Kinematic Models. (August 2003) Li Zhang, B.E.; M.S., Southwest Petroleum Institute, P.R.China Chair of Advisory Committee: Dr. Judith S. Chester The backlimb trishear velocity eld...
Fang, Yilin; Nguyen, Ba Nghiep; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain
2013-09-12
Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermal-hydro-mechanical model into a single software, and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model is developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on Rigid Body-Spring Model (RBSM), one of the discrete methods to model discontinuous rock system. Poisson’s effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. Global Array Toolkit was used to build the model to permit the high performance simulations of the coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poisson’s effect for the prediction of CO2 sequestration.
Bulk and surface controlled diffusion of fission gas atoms
Andersson, Anders D.
2012-08-09
Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion in UO{sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.
Pruess, Karsten; Zhang, Keni
2008-11-17
For purposes of geologic storage, CO2 would be injected into saline formations at supercritical temperature and pressure conditions, and would form a separate phase that is immiscible with the aqueous phase (brine). At typical subsurface temperature and pressure conditions, supercritical CO2 (scCO2) has lower density than the aqueous phase and would experience an upward buoyancy force. Accordingly, the CO2 is expected to accumulate beneath the caprock at the top of the permeable interval, and could escape from the storage formation wherever (sub-)vertical pathways are available, such as fractures or faults through the caprock, or improperly abandoned wells. Over time, an increasing fraction of CO2 may dissolve in the aqueous phase, and eventually some of the aqueous CO2 may react with rock minerals to form poorly soluble carbonates. Dissolution into the aqueous phase and eventual sequestration as carbonates are highly desirable processes as they would increase permanence and security of storage. Dissolution of CO2 will establish phase equilibrium locally between the overlying CO2 plume and the aqueous phase beneath. If the aqueous phase were immobile, CO2 dissolution would be limited by the rate at which molecular diffusion can remove dissolved CO2 from the interface between CO2-rich and aqueous phases. This is a slow process. However, dissolution of CO2 is accompanied by a small increase in the density of the aqueous phase, creating a negative buoyancy force that can give rise to downward convection of CO2-rich brine, which in turn can greatly accelerate CO2 dissolution. This study explores the process of dissolution-diffusion-convection (DDC), using high-resolution numerical simulation. We find that geometric features of convection patterns are very sensitive to small changes in problem specifications, reflecting self-enhancing feedbacks and the chaotic nature of the process. Total CO2 dissolution rates on the other hand are found to be quite robust against modest changes in problem parameters, and are essentially constant as long as no dissolved CO2 reaches the lower boundary of the system.
Modeling, simulation, and testing of the mechanical dynamics of and RF MEMS switch.
Sumali, Hartono; Epp, David S.; Massad, Jordan Elias; Dyck, Christopher William; Starr, Michael James
2005-07-01
Mechanical dynamics can be a determining factor for the switching speed of radio-frequency microelectromechanical systems (RF MEMS) switches. This paper presents the simulation of the mechanical motion of a microswitch under actuation. The switch has a plate suspended by springs. When an electrostatic actuation is applied, the plate moves toward the substrate and closes the switch. Simulations are calculated via a high-fidelity finite element model that couples solid dynamics with electrostatic actuation. It incorporates non-linear coupled dynamics and accommodates fabrication variations. Experimental modal analysis gives results in the frequency domain that verifies the natural frequencies and mode shapes predicted by the model. An effective 1D model is created and used to calculate an actuation voltage waveform that minimizes switch velocity at closure. In the experiment, the switch is actuated with this actuation voltage, and the displacements of the switch at various points are measured using a laser Doppler velocimeter through a microscope. The experiments are repeated on several switches from different batches. The experimental results verify the model.
Exotic see-saw mechanism for neutrini and leptogenesis in a Pati-Salam model
Addazi, Andrea; Ricciardi, Giulia
2015-01-01
We discuss non-perturbative corrections to the neutrino sector, in the context of a D-brane Pati-Salam-like model, that can be obtained as a simple alternative to $SO(10)$ GUT's in theories with open and unoriented strings. In such D-brane models, exotic stringy instantons can correct the right-handed neutrino mass matrix in a calculable way, thus affecting mass hierarchies and modifying the see-saw mechanism to what we name exotic see-saw. For a wide range of parameters, a compact spectrum of right-handed neutrino masses can occur that gives rise to a predictive scenario for low energy observables. This model also provides a viable mechanism for Baryon Asymmetry in the Universe (BAU) through leptogenesis. Finally, a Majorana mass for the neutron is naturally predicted in the model, leading to potentially testable neutron-antineutron oscillations. Combined measurements in neutrino and neutron-antineutron sectors could provide precious informations on physics at the quantum gravity scale.
Eric Wachsman; Keith L. Duncan
2006-09-30
This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.
A minimal model for the inelastic mechanics of biopolymer networks and cells
Lars Wolff; Klaus Kroy
2012-05-27
Live cells have ambiguous mechanical properties. They were often described as either elastic solids or viscoelastic fluids and have recently been classified as soft glassy materials characterized by weak power-law rheology. Nonlinear rheological measurements have moreover revealed a pronounced inelastic response indicative of a competition between stiffening and softening. It is an intriguing question whether these observations can be explained from the material properties of much simpler in-vitro reconstituted networks of biopolymers that serve as reduced model systems for the cytoskeleton. Here, we explore the mechanism behind the inelastic response of cells and biopolymer networks, theoretically. Our analysis is based on the model of the inelastic glassy wormlike chain that accounts for the nonlinear polymer dynamics and transient crosslinking in biopolymer networks. It explains how inelastic and kinematic-hardening type behavior naturally emerges from the antagonistic mechanisms of viscoelastic stress-stiffening due to the polymers and inelastic fluidization due to bond breaking. It also suggests a simple set of schematic constitutive equations which faithfully reproduce the rich inelastic phenomenology of biopolymer networks and cells.
Song, Zhichao
2012-01-01
H. , 2003. Fracture mechanics analysis of thin coatingsK.L. , 1985. Contact Mechanics, Cambridge University Press,J. , Chaboche, J. L. , 1994. Mechanics of Solid Materials.
Mechanical rejuvenation and over-aging in the soft glassy rheology model
Mya Warren; Joerg Rottler
2008-07-04
Mechanical rejuvenation and over-aging of glasses is investigated through stochastic simulations of the soft glassy rheology (SGR) model. Strain- and stress-controlled deformation cycles for a wide range of loading conditions are analyzed and compared to molecular dynamics simulations of a model polymer glass. Results indicate that deformation causes predominantly rejuvenation, whereas over-aging occurs only at very low temperature, small strains, and for high initial energy states. Although the creep compliance in the SGR model exhibits full aging independent of applied load, large stresses in the nonlinear creep regime cause configurational changes leading to rejuvenation of the relaxation time spectrum probed after a stress cycle. During recovery, however, the rejuvenated state rapidly returns to the original aging trajectory due to collective relaxations of the internal strain.
J. Jeknic-Dugic; M. Dugic; A. Francom
2013-08-13
We observe a Quantum Brownian Motion (QBM) Model Universe in conjunction with recently established Entanglement Relativity and Parallel Occurrence of Decoherence. The Parallel Occurrence of Decoherence establishes the simultaneous occurrence of decoherence for two mutually irreducible structures (decomposition into subsystems) of the total QBM model universe. First we find that Everett world branching for one structure excludes branching for the alternate structure and in order to reconcile this situation branching cannot be allowed for either of the structures considered. Second, we observe the non-existence of a third, "emergent structure", that could approximate both structures and also be allowed to branch. Ultimately we find unless world-branching requires additional criteria or conditions, or there is a privileged structure, that we provide a valid model that cannot be properly described by the Everett Interpretation of Quantum Mechanics.
Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers
R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge
2011-12-01
The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved
Bahrami, Majid
Effect of Polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity robust model is devel- oped for estimating GDL thermal conductivity. The model considers PTFE addition of thermal conductivity on PTFE, MPL, and compression is considered. Thermal contact resistances between GDL
S--I--R Epidemic Models with Directed Diffusion D. B. Meade y and F. A. Milner yz
Meade, Douglas B.
the questions of global existence and asymptotic behavior are open. Just as is observed with the heat equation, the speed of transmission of the infection is infinite, making this model rather unrealistic for many support. In contrast, the new model retains the finite speed of transmission and does permit the spread
Statistical mechanics model for the transit free energy of monatomic liquids
Duane C. Wallace; Eric D. Chisolm; N. Bock; G. De Lorenzi-Venneri
2010-04-19
In applying Vibration-Transit (V-T) theory of liquid dynamics to the thermodynamic properties of monatomic liquids, the point has been reached where an improved model is needed for the small (approx. 10%) transit contribution. Toward this goal, an analysis of the available high-temperature experimental entropy data for elemental liquids was recently completed [D. C. Wallace, E. D. Chisolm, and N. Bock, Phys. Rev. B 79, 051201 (2009)]. This analysis yields a common curve of transit entropy vs. T/\\theta_{tr}, where T is temperature and \\theta_{tr} is a scaling temperature for each element. In the present paper, a statistical mechanics model is constructed for the transit partition function, and is calibrated to the experimental transit entropy curve. The model has two scalar parameters, and captures the temperature scaling of experiment. The calibrated model fits the experimental liquid entropy to high accuracy at all temperatures. With no additional parameters, the model also agrees with both experiment and molecular dynamics for the internal energy vs. T for Na. With the calibrated transit model, V-T theory provides equations subject to ab initio evaluation for thermodynamic properties of monatomic liquids. This will allow the range of applicability of the theory, and its overall accuracy, to be determined. More generally, the hypothesis of V-T theory, which divides the many-atom potential energy valleys into random and symmetric classes, can also be tested for its application beyond monatomic systems.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Anderson-Cook, Christine M.; Morzinski, Jerome; Blecker, Kenneth D.
2015-08-19
Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidatemore »inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. As a result, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model.« less
Multiscale simulation of xenon diffusion and grain boundary segregation in UO?
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Andersson, David A.; Tonks, Michael R.; Casillas, Luis; Vyas, Shyam; Nerikar, Pankaj; Uberuaga, Blas P.; Stanek, Christopher R.
2015-07-01
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO? have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore »the interaction between Xe atoms and three different grain boundaries in UO? (?5 tilt, ?5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less
Pruess, Karsten
2008-01-01
Properties of the Supercritical CO2–Water Pure Interface, J.and pressure conditions, supercritical CO2 (scCO2) has lowerthe overlying free supercritical CO2 phase. This is modeled
Wells, G N; Maraldi, Mirko
2011-01-01
stream_source_info heat_treatment_solver.py.txt stream_content_type text/plain stream_size 14746 Content-Encoding ISO-8859-1 stream_name heat_treatment_solver.py.txt Content-Type text/plain; charset=ISO-8859-1 """This... T = 2.0e-2 # thermal conductivity delta = case_data['delta'] # heat boundary flux coefficient T_ext = case_data['T_ext'] # external temperature # Mechanical parameters rho = 5.0e-7 # solid mass density eta = 5.0e-8 # viscous stress parameter # Mass...
Collins, James J.
Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise Daichi NozakiHugh-Nagumo FHN neuronal model, the optimal noise variance for SR could be minimized with 1. In this study, we model. We demonstrate that the aforementioned effect of 1/f noise is related to the dynamical
Mueller, Karl
for the mechanics and kinematics of compressive wedges Phaedra Upton,1,2 Karl Mueller,3 and Yue-Gau Chen4 Received develop three-dimensional mechanical models of a compressive wedge and investigate how the form and kinematics of the outboard wedge are affected by variation in initial topography, material properties
A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir
Boyer, Edmond
A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR of New South Wales, Sydney 2052, Australia. Abstract The constitutive thermo-hydro-mechanical equations is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro
Rood, Richard B; Jablonowski, Christiane
2012-10-31
This project focuses on evaluating the role of subgrid-scale dissipation in the dynamical core of atmospheric models. All dynamical cores of atmospheric general circulation models (GCMs) employ some form of subgrid-scale dissipation, either explicitly specified or inherent in the chosen numerical schemes. The dissipation processes are needed to keep the simulation stable or to satisfy important physical properties, and the hope is that they capture and mimic in some poorly understood way the true processes at the unresolved subgrid scale. There is no physical basis that such dissipation can accomplish this. We originally posed a set of numerical test cases chosen or designed to isolate the role of the filters and fixers on both the dynamical variables (pressure, temperature, velocity, vorticity) and trace constituents. From these test case results, we synthesize the information to determine the impact of the subgrid-scale assumptions on weather and climate models.
Microstructure and Mechanical Properties of n-irradiated Fe-Cr Model Alloys
Matijasevic, Milena; Al Mazouzi, Abderrahim
2008-07-01
High chromium ( 9-12 wt %) ferritic/martensitic steels are candidate structural materials for future fusion reactors and other advanced systems such as accelerator driven systems (ADS). Their use for these applications requires a careful assessment of their mechanical stability under high energy neutron irradiation and in aggressive environments. In particular, the Cr concentration has been shown to be a key parameter to be optimized in order to guarantee the best corrosion and swelling resistance, together with the least embrittlement. In this work, the characterization of the neutron irradiated Fe-Cr model alloys with different Cr % with respect to microstructure and mechanical tests will be presented. The behavior of Fe-Cr alloys have been studied using tensile tests at different temperature range ( from -160 deg. C to 300 deg. C). Irradiation-induced microstructure changes have been studied by TEM for two different irradiation doses at 300 deg. C. The density and the size distribution of the defects induced have been determined. The tensile test results indicate that Cr content affects the hardening behavior of Fe-Cr binary alloys. Hardening mechanisms are discussed in terms of Orowan type of approach by correlating TEM data to the measured irradiation hardening. (authors)
On the Vainshtein mechanism in the minimal model of massive gravity
Renaux-Petel, Sébastien, E-mail: srenaux@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, Université Pierre and Marie Curie - Paris VI, CNRS-UMR 7589, 4 place Jussieu, Paris, 75252 (France)
2014-03-01
We reinvestigate the fate of the Vainhstein mechanism in the minimal model of dRGT massive gravity. As the latter is characterised by the complete absence of interactions in the decoupling limit, we study their structure at higher energies. We show that in static spherically symmetric configurations, the lowest energy scale of interactions is pushed up to the Planck mass. This fact points towards an absence of Vainshtein mechanism in this framework, but does not prove it. By resorting to the exact vacuum equations of motion, we show that there is indeed an obstruction that precludes any recovery of General Relativity under the conditions of stationarity and spherical symmetry. However, we argue that the latter are too restrictive and might miss some important physical phenomena. Indeed, we point out that in generic non spherically symmetric or time-dependent situations, interactions arising at energies arbitrarily close to the energy scale of the decoupling limit reappear. This leads us to question whether the small degree of spherical symmetry breaking in the solar system can be sufficient to give rise to a successful Vainshtein mechanism.
On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture
Grassl, Peter; Gallipoli, Domenico; Wheeler, Simon J
2014-01-01
A 2D lattice approach to describe hydraulic fracturing is presented. The interaction of fluid pressure and mechanical response is described by Biot's theory. The lattice model is applied to the analysis of a thick-walled cylinder, for which an analytical solution for the elastic response is derived. The numerical results obtained with the lattice model agree well with the analytical solution. Furthermore, the coupled lattice approach is applied to the fracture analysis of the thick-walled cylinder. It is shown that the proposed lattice approach provides results that are independent of the mesh size. Moreover, a strong geometrical size effect on nominal strength is observed which lies between analytically derived lower and upper bounds. This size effect decreases with increasing Biot's coefficient.
Oscillation of a Rotating Levitated Droplet: Analysis with a Mechanical Model
Kitahata, Hiroyuki; Koyano, Yuki; Matsumoto, Satoshi; Nishinari, Katsuhiro; Watanabe, Tadashi; Hasegawa, Koji; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka
2015-01-01
A droplet of millimeter-to-centimeter scale can exhibit electrostatic levitation, and such levitated droplets can be used for the measurement of the surface tension of the liquids by observing the characteristic frequency of oscillatory deformation. In the present study, a simple mechanical model is proposed by considering a single mode of oscillation in the ellipsoidal deformation of a levitated rotating droplet. By measuring the oscillation frequency with respect to the rotational speed and oscillation amplitude, it is expected that the accuracy of the surface tension measurement could be improved. Using the proposed model, the dependences of the characteristic frequency of oscillatory deformation and the averaged aspect ratio are calculated with respect to the rotational angular velocity of a rotating droplet. These dependences are found to be consistent with the experimental observations.
Equilibrium statistical mechanics and energy partition for the shallow water model
Renaud, Antoine; Bouchet, Freddy
2015-01-01
The aim of this paper is to use large deviation theory in order to compute the entropy of macrostates for the microcanonical measure of the shallow water system. The main prediction of this full statistical mechanics computation is the energy partition between a large scale vortical flow and small scale fluctuations related to inertia-gravity waves. We introduce for that purpose a discretized model of the continuous shallow water system, and compute the corresponding statistical equilibria. We argue that microcanonical equilibrium states of the discretized model in the continuous limit are equilibrium states of the actual shallow water system. We show that the presence of small scale fluctuations selects a subclass of equilibria among the states that were previously computed by phenomenological approaches that were neglecting such fluctuations. In the limit of weak height fluctuations, the equilibrium state can be interpreted as two subsystems in thermal contact: one subsystem corresponds to the large scale v...
Testing spontaneous wave-function collapse models on classical mechanical oscillators
Lajos Diósi
2014-11-17
We show that the heating effect of spontaneous wave-function collapse models implies an experimentally significant increment $\\Delta T$ of equilibrium temperature in a mechanical oscillator. The obtained form $\\Delta T$ is linear in the oscillator's relaxation time $\\tau$ and independent of the mass. The oscillator can be in a classical thermal state, the effect $\\Delta T$ is classical for a wide range of frequencies and quality factors. We note that the test of $\\Delta T$ does not necessitate quantum state monitoring but tomography. In both gravity-related (DP) and continuous spontaneous localization (CSL) models the strong-effect edge of their parameter range can be challenged in existing experiments on classical oscillators. For the CSL theory, the conjectured highest collapse rate parameter values become immediately constrained by evidences from current experiments on extreme slow-ring-down oscillators.
Ressel, G.; Primig, S. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Christian Doppler Laboratory for Early Stages of Precipitation, Montanuniversität Leoben, A-8700 Leoben (Austria); Parz, P.; Puff, W. [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria); Leitner, H.; Clemens, H. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria)
2014-03-28
In order to improve the mechanical properties at elevated temperatures, several types of steels are mechanically alloyed with yttria. The processes that are active during milling differ dependent on the individual powder constituents. Nevertheless, some theories exist which try to describe the mechanism of producing a metastable phase during milling. However, even in the system iron–yttria, the mechanisms taking place during milling are still not well understood. By using the example of a simple iron–yttria model alloy, this paper attempts to elucidate the structure of mechanically milled powder particles and, consequently, to clarify the functionality of mechanical alloying in the last stage of milling. Positron annihilation experiments on milled materials revealed “open” volumes which are enriched in yttria. Electron backscatter diffraction and atom probe tomography as complimentary techniques allowed an identification of these “open” volumes as mainly vacancies, where enrichments of Y and O occur. From these results, it can be concluded that especially vacancies are responsible for producing a metastable phase, whereby yttria is dissolved in pure iron.
Microfabricated diffusion source
Oborny, Michael C. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
Wisconsin at Madison, University of
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical range of such methods by deriv- ing schemes for multivariate multiple linear regression -- a manifold ] , ^ = ¯y - ^¯x. (2) If x and y are multivariates, one can easily replace the mul- tiplication and division
Montgomery-Smith, Stephen
Predictions in Injection Molded Short-fiber Reinforced Composites Babatunde O. Agboolaa , David A. Jackb , S Properties C. Computational Modeling E. Injection molding 1. Introduction and overview of problem Short-fibers in an injection molded composite will vary within the part, producing spatial inhomogeneity in the orientation
Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development
Thomas D. Montenegro-Johnson; Andrew A. Smith; David J. Smith; Daniel Loghin; John R. Blake
2013-09-04
Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.
A fully resolved active musculo-mechanical model for esophageal transport
Wenjun Kou; Amneet Pal Singh Bhalla; Boyce E. Griffith; John E. Pandolfino; Peter J. Kahrilas; Neelesh A. Patankar
2015-01-09
Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, which is modeled as an actively contracting, fiber-reinforced tube. A simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are then extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall due to the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.
Bower, Allan F; Sethuraman, Vijay A; 10.1016/j.jmps.2011.01.003
2011-01-01
We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode-electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted c...
Commercial Building Partnerships Replication and Diffusion
Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.
2013-09-16
This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.
Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis; Nerikar, Pankaj; Vyas, Shyam; Uberuaga, Blas P.; Stanek, Christopher R.
2014-10-31
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO_{2} have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO_{2} ( ?5 tilt, ?5 twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.
Nguyen, H.L.; Wey, Mingjyh.
1990-01-01
Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.
Dominic J. O'. Lee
2015-04-17
Presented here, is a technical manuscript that may form the basis of later published work. In it, we develop a statistical mechanical model to describe a closed loop plectoneme, applicable for when the closed loop is sufficiently supercoiled. The model divides the system up into end loops and a braided section; the end loops are assumed to contribute little to the super-coil writhe. Within the braided section, the model incorporates interactions that depend on the structure of the molecule; in particular, we consider those that depend on helical structure. A method for approximating the steric interactions is utilized that we had previously used in other publications. We go on to construct variational approximations for our closed loop plectoneme model in two cases. The first case is where helix dependent interactions are strong, and in the second case they are considered weak. In developing these approximations, we approximate the Fuller-White condition by replacing, in all expressions that depend on twist, writhe with average writhe, valid when the braided section is sufficiently long. How this approximation is made and the conditions when this approximation is valid are also discussed. The approximation allows for a Legendre transformation of the free energy, which with the introduction of moment (or torque), effectively allowing for twist and average writhe to be treated independently in the transformed (Gibbs like) free energy. Next, we then show how one may compute the average writhe of the braided section. Lastly, we discuss how some of the approximations considered may be relaxed, and discuss how the resulting model free energy might be computed by MC simulation.
A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer
Frauenfelder, Hans; Fenimore, Paul W
2015-01-01
We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long. The interaction between the neutron and a proton in the protein takes place during the transit of the wave packet. The wave packet exerts the force $F(t) = dQ(t)/dt$ on the protein moiety, a part of the protein surrounding the struck proton. $Q(t)$ is the wave vector (momentum) transferred by the neutron wave packet to the proton during the transit. The ensuing energy is stored in the energy landscape and returned to the neutron as the wave packet exits. Kinetic energy thus is changed into potential energy and back. The ...
Damien Vandembroucq; Stéphane Roux
2011-12-05
We discuss aging and localization in a simple "Eshelby" mesoscopic model of amorphous plasticity. Plastic deformation is assumed to occur through a series of local reorganizations. Using a discretization of the mechanical fields on a discrete lattice, local reorganizations are modeled as local slip events. Local yield stresses are randomly distributed in space and invariant in time. Each plastic slip event induces a long-ranged elastic stress redistribution. Mimicking the effect of aging, we focus on the behavior of the model when the initial state is characterized by a distribution of high local yield stress values. A dramatic effect on the localization behavior is obtained: the system first spontaneously self-traps to form a shear band which then only slowly widens. The higher the "age" parameter the more localized the plastic strain field. Two-time correlation computed on the stress field show a divergent correlation time with the age parameter. The amplitude of a local slip event (the prefactor of the Eshelby singularity) as compared to the yield stress distribution width acts here as an effective temperature-like parameter: the lower the slip increment, the higher the localization and the decorrelation time.
Mass-Spring Model for Simulation of Heart Valve Tissue Mechanical Behavior Peter E. Hammer1,2,4,*
1 Mass-Spring Model for Simulation of Heart Valve Tissue Mechanical Behavior Peter E. Hammer1, Cambridge, MA Abbreviated title: Mass-Spring Model for Simulation of Heart Valve Tissue * Address, MA, USA. E-mail address: peter.hammer@childrens.harvard.edu. #12;2 Abstract Heart valves
Paris-Sud XI, Université de
1 Thermo-mechanical FE model with memory effect for 304L austenitic stainless steel presenting. Keywords: 304L stainless steel; thermal fatigue; F.E. modelling. #12;2 1 Introduction The 304L stainless-hardened stainless steel were carried out by Taleb and Hauet [4], Taheri et al [5]. To predict the behaviour
A Mechanical Analog of the Two-bounce Resonance of Solitary Waves: Modeling and Experiment
Roy H. Goodman; Aminur Rahman; Michael Bellanich; Catherine Morrision
2015-03-28
We describe a simple mechanical system, a ball rolling along a specially-designed landscape, that mimics the dynamics of a well known phenomenon, the two-bounce resonance of solitary wave collisions, that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to verify one aspect of chaotic scattering, the so-called two-bounce resonance.
Swift, D. C.; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan
2002-01-01
Ab initio quantum mechanics was used to construct a thermodynamically complete and rigorous equation of state for beryllium in the hexagonal and body-centred cubic structures, and to predict elastic constants as a function of compression. The equation of state agreed well with Hugoniot data and previously-published equations of state, but the temperatures were significantly different. The hexagonal/bcc phase boundary agreed reasonably well with published data, suggesting that the temperatures in our new equation of state were accurate. Shock waves were induced in single crystals and polycrystalline foils of beryllium, by direct illumination using the TRIDENT laser at Los Alamos. The velocity history at the surface of the sample was measured using a line-imaging VISAR, and transient X-ray diffraction (TXD) records were obtained with a plasma backlighter and X-ray streak cameras. The VISAR records exhibited elastic precursors, plastic waves, phase changes and spall. Dual TXD records were taken, in Bragg and Laue orientations. The Bragg lines moved in response to compression in the uniaxial direction. Because direct laser drive was used, the results had to be interpreted with the aid of radiation hydrodynamics simulations to predict the loading history for each laser pulse. In the experiments where there was evidence of polymorphism in the VISAR record, additional lines appeared in the Bragg and Laue records. The corresponding pressures were consistent with the phase boundary predicted by the quantum mechanical equation of state for beryllium. A model of the response of a single crystal of beryllium to shock loading is being developed using these new theoretical and experimental results. This model will be used in meso-scale studies of the response of the microstructure, allowing us to develop a more accurate representation of the behaviour of polycrystalline beryllium.
Cassata, William
2012-01-01
pluton from 40 Ar/ 39 Ar geochronology and thermal modeling.for 40 Ar/ 39 Ar geochronology of naturally deformed rocks.1995. Multipath diffusion in geochronology. Contributions to
Investigation on mechanism of coal liquefaction-hydrocracking of model compounds
Wu, J.Z. [Tongji Univ. (China); Gao, J.S.; Hang, Y.Z. [East China Univ. of Science and Technology (China); Oelert, H.H. [Inst. of Chemical and Fuel (Germany)
1997-12-31
There is strong evidence for the existence of -O-CH{sub 2}- and -CH{sub 2}-CH{sub 2}-bridge linkages in coal, especially in low rank coals, so there is a close relationship between hydrocracking kinetic of model compounds and coal liquefaction. In a tube autoclave with the volume of 17 ml the hydrocracking experiments of six model compounds are carried out in the presence of tetralin. The results show that the stability order of six model compounds in hydrocracking is as follows: Ph-Ch{sub 2}-Ph > Ph-O-Ph > Ph-Ch{sub 2}-Ch{sub 2}-Ph > Ph-O-CH{sub 2}-Ph > Ph-CH{sub 2}-S-CH{sub 2}-Ph > Ph-CH{sub 2}-S-S-CH{sub 2}-Ph. Introducing 10% (in weight) of benzyl phenyl ether can increase the decomposition ratios of diphenyl methane and diphenyl ether from 4.3% to 12.6% and 18.3% to 31.5% respectively. From the hydrocracking kinetic experiments for both benzyl phenyl ether (BPE) and dibenzyl (DB), the reaction corresponds to first order. The apparent activation (DE) is 83.9 kJ/mol for BPE and 150 kJ/mol for DB in the range of temperature 330--450 C, that is, the same as coal liquefaction. The influence of initial hydrogen pressure on hydrocracking of model compounds is also described in this paper. Under the conditions of the experiments the decomposition ratios (DR) of model compounds increase linearly with the increase of initial hydrogen pressure, e.g., DR is only 34.3% under 3.0 MPa (420 C), but 56.8% can be obtained when the initial hydrogen pressure reaches 8.5 MPa. Moreover, changing the initial pressure can influence not only DR of model compounds but also their hydrocracking mechanisms. Applying Mo-Ni, Y- and 5A-sieves to hydrocracking of model compounds are all effective. For more stable compounds such as dibenzyl methane and diphenyl ether the Y-sieve is better than the Mo-Ni catalyst, but it is just contrary to crack for benzyl phenyl ether.
Perceived consequences and concerns in the diffusion of Internet2 at Texas A&M University
Mendoza Diaz, Noemi Veronica
2009-05-15
development and its relationship to universities. There were two theoretical models of change used, Diffusion of Innovations and Concerns-Based Adoption Model (CBAM). Specifically, “the consequences of change” was the focus in the Diffusion model, and “the...
The abelian confinement mechanism revisited: New aspects of the Georgi–Glashow model
Anber, Mohamed M.
2014-02-15
The confinement problem remains one of the most difficult problems in theoretical physics. An important step toward the solution of this problem is Polyakov’s work on abelian confinement. The Georgi–Glashow model is a natural testing ground for this mechanism which has been surprising us by its richness and wide applicability. In this work, we shed light on two new aspects of this model in 2+1 D. First, we develop a many-body description of the effective degrees of freedom. Namely, we consider a non-relativistic gas of W-bosons in the background of monopole–instanton plasma. Many-body treatment is a standard toolkit in condensed matter physics. However, we add a new twist by supplying the monopole–instantons as external background field. Using this construction along with a mean-field approximation, we calculate the form of the potential between two electric probes as a function of their separation. This potential is expressed in terms of the Meijer-G function which interpolates between logarithmic and linear behavior at small and large distances, respectively. Second, we develop a systematic approach to integrate out the effect of the W-bosons at finite temperature in the range 0?T
A 1-dimensional statistical mechanics model for nucleosome positioning on genomic DNA
Tesoro, S; Morozov, A N; Sulaiman, N; Marenduzzo, D
2015-01-01
The first level of folding of DNA in eukaryotes is provided by the so called '10nm chromatin fibre', where DNA wraps around histone proteins (approx. 10 nm in size) to form nucleosomes, which go on to create a zig zagging 'bead on a string' structure. In this work we present a one dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We consider both the case of homogeneous DNA, where the problem can be mapped to a Tonks gas, and that of genomic sheep DNA, where our modelling is informed by high-resolution nucleosome positioning data. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally, we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on ...
Improvement of Stent Retriever Design and Efficacy of Mechanical Thrombectomy in a Flow Model
Wenger, Katharina; Nagl, Frank; Wagner, Marlies Berkefeld, Joachim
2013-02-15
In vitro experiments were performed to evaluate the efficacy of mechanical intracranial thrombectomy comparing the newly developed Aperio stent retriever and standard devices for stroke treatment. The Aperio (A), with an increased working length of 4 cm and a special cell design for capturing and withholding clots, was compared to three benchmark devices: the Solitaire retrievable stent (B), the Merci X6 (C), and the Merci L5 retriever (D). In a vascular glass model with pulsatile flow, reminiscent of the M1 segment of the middle cerebral artery, we repeatedly induced occlusion by generating thrombi via a modified Chandler loop system. The numbers of recanalization attempts, peripheral embolizations, and recanalizations at the site of occlusion were recorded during 10 retrieval experiments with each device. Eleven devices were able to remove the blood clots from the occluded branch. In 34 of 40 experiments, restoration of flow was obtained in 1-3 attempts. The main differences between the study devices were observed in terms of clot withholding and fragmentation during retrieval. Although there was only one fragmentation recorded for device A, disengagement of the whole clot or peripheral embolization of fragments occurred more frequently (5-7 times) with devices B, C, and D. In a vascular model, the design of device A was best at capturing and withholding thrombi during retrieval. Further study will be necessary to see whether this holds true in clinical applications.
Analytical solutions to matrix diffusion problems
Kekäläinen, Pekka
2014-10-06
We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.
A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer
Hans Frauenfelder; Robert D. Young; Paul W. Fenimore
2015-08-20
We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long. The interaction between the neutron and a proton in the protein takes place during the transit of the wave packet. The wave packet exerts the force $F(t) = dQ(t)/dt$ on the protein moiety, a part of the protein surrounding the struck proton. $Q(t)$ is the wave vector (momentum) transferred by the neutron wave packet to the proton during the transit. The ensuing energy is stored in the energy landscape and returned to the neutron as the wave packet exits. Kinetic energy thus is changed into potential energy and back. The interaction energy is proportional to $Q$, not to $Q^2$. To develop and check the ELM, we use published work on dehydrated proteins after reversing improper normalizations. In such proteins only vibrations are active and the effects caused by the neutron momentum can be studied undisturbed by external fluctuations. ELM has predictive power. For example it quantitatively predicts the observed inelastic incoherent fraction $S(Q, T)$ over a broad range of temperature and momentum $Q$ with one coefficient if $S(0, T)$ is known.
Solid-state diffusion in amorphous zirconolite
Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.
2014-11-14
We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.
Wang, Yong, Ph. D. Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics
2008-01-01
This thesis aims to explore operation mechanisms of a special type of mechanical face seals: the flexible metal-to-metal face seal (FMMFS). Unique features of the FMMFS include much more flexibility in the circumferential ...
Telleria, Maria J
2010-01-01
This thesis explains when, and why, solder-based phase change materials (PCMs) are best-suited as a means to modify a robotic mechanism's kinematic and elastomechanic behavior. The preceding refers to mechanisms that possess ...
Song, Zhichao
2012-01-01
adhesion in microelectromechanical systems. ASME J. Tribol.microtribology for microelectromechanical systems. Wear 200,forces in microelectromechanical systems: mechanisms,
Song, Zhichao
2012-01-01
surface adhesion in microelectromechanical systems. ASME J.microtribology for microelectromechanical systems. Wear 200,forces in microelectromechanical systems: mechanisms,
Diffusion of n-type dopants in germanium
Chroneos, A.; Bracht, H.
2014-03-15
Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.
Seismic triggering by rectified diffusion in geothermal systems
Sturtevant, Bradford; Kanamori, Hiroo; Brodsky, Emily E.
1996-01-01
diffusion in geothermal systems Bradford Sturtevant Graduateof pressure In geothermal systems, fluid flow throughsystems. The modeled geothermal system consists of fractured
18.366 Random Walks and Diffusion, Spring 2003
Bazant, Martin Z.
Discrete and continuum modeling of diffusion processes in physics, chemistry, and economics. Topics include central limit theorems, continuous-time random walks, Levy flights, correlations, extreme events, mixing, ...
18.366 Random Walks and Diffusion, Spring 2005
Bazant, Martin Z.
Discrete and continuum modeling of diffusion processes in physics, chemistry, and economics. Topics include central limit theorems, continuous-time random walks, Levy flights, correlations, extreme events, mixing, ...
Han, Rongbin
2012-07-16
) and image processing techniques. From these imaging techniques, three pavement air void properties, radius of each air void (r), number of air voids (N), and average shell distance between two air voids (rNFB) were obtained to use as model inputs...
Mechanical Engineering ME 3720 FLUID MECHANICS
Panchagnula, Mahesh
Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics
Mechanisms of B cell Synapse Formation Predicted by Stochastic Simulation
Philippos K. Tsourkas; Nicole Baumgarth; Scott I. Simon; Subhadip Raychaudhuri
2006-10-19
The clustering of B cell receptor (BCR) molecules and the formation of the protein segregation structure known as the immunological synapse appears to precede antigen (Ag) uptake by B cells. The mature B cell synapse is characterized by a central cluster of BCR/Ag molecular complexes surrounded by a ring of LFA-1/ICAM-1 complexes. Recent experimental evidence shows receptor clustering in B cells can occur via mechanical or signaling-driven processes. An alternative mechanism of diffusion and affinity-dependent binding has been proposed to explain synapse formation in the absence of signaling-driven processes. In this work, we investigated the biophysical mechanisms that drive immunological synapse formation in B cells across the physiological range of BCR affinity (KA~10^6-10^10 M-1) through computational modeling. Our computational approach is based on stochastic simulation of diffusion and reaction events with a clearly defined mapping between probabilistic parameters of our model and their physical equivalents. We show that a diffusion-and-binding mechanism is sufficient to drive synapse formation only at low BCR affinity and for a relatively stiff B cell membrane that undergoes little deformation. We thus predict the need for alternative mechanisms: a difference in the mechanical properties of BCR/Ag and LFA-1/ICAM-1 bonds and/or signaling driven processes.
Huang, Rui
Isothermal stress relaxation in electroplated Cu films. II. Kinetic modeling Rui Huanga Department experimental results obtained from isothermal stress relaxation tests of electroplated Cu thin films-boundary and interface diffusivities in electroplated Cu films, which pro- vides a useful method to evaluate
Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L.
1981-01-01
This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.
Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter; Austin, Phillip A.; Bacmeister, J.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; Del Genio, Anthony D.; De Roode, Stephan R.; Endo , Satoshi; Franklin, Charmaine N.; Golaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco A.; Jean-Louis, Dufresne; Kang, In-Sik; Kawai, Hideaki; Koehler, M.; Larson, Vincent E.; Liu, Yangang; Lock, Adrian; Lohmann, U.; Khairoutdinov, Marat; Molod, Andrea M.; Neggers, Roel; Rasch, Philip J.; Sandu, Irina; Senkbeil, Ryan; Siebesma, A. P.; Siegenthaler-Le Drian, Colombe; Stevens, Bjorn; Suarez, Max; Xu, Kuan-Man; Von Salzen, Knut; Webb, Mark; Wolf, Audrey; Zhao, M.
2013-12-26
Large Eddy Models (LES) and Single Column Models (SCM) are used in a surrogate climate change 101 to investigate the physical mechanism of low cloud feedbacks in climate models. Enhanced surface-102 driven boundary layer turbulence and shallow convection in a warmer climate are found to be 103 dominant mechanisms in SCMs.
Hammes-Schiffer, Sharon
Model Proton-Coupled Electron Transfer Reactions in Solution: Predictions of Rates, Mechanisms isotope effects for proton-coupled electron transfer (PCET) reactions. These studies are based, the solvent is represented as a dielectric continuum, and the active electrons and transferring protons
Lyakhovsky, Vladimir
Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications of predicted profiles: topography, uplift rate, and shear strain. The present topography of Mount Sedom stage and at the Plio-Pleistocene pre-emergent stage of the Sedom diapir, respectively. The uplift
Neumaier, Arnold
Proceedings in Applied Mathematics and Mechanics, 15 October 2007 Uncertainty modeling in autonomous robust spacecraft system design Martin Fuchs1 , Arnold Neumaier1 , and Daniela Girimonte2 1 system engineers or even of completely automated design methods capturing the reasoning of the system
Ritchie, Robert
. For the hydrogen economy to be fully realized though, efficient hydrogen storage and transportation, for exampleA statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture 2009 Received in revised form 10 September 2009 Accepted 17 October 2009 Keywords: Hydrogen
Komatitsch, Dimitri
Three-dimensional mechanical models for the June 2000 earthquake sequence in the south Iceland, University of Iceland, Reykjavik, Iceland A B S T R A C TA R T I C L E I N F O Article history: Received 11 Keywords: South Iceland seismic zone Lithospheric heterogeneity influences Finite-element method Co
Borja, Ronaldo I.
Mechanical models of fracture reactivation and slip on bedding surfaces during folding June 2008 Accepted 5 June 2008 Available online 13 June 2008 Keywords: Fold Fracture reactivation Bed methods to investigate the reactivation of fractures (opening and shearing) and the development of bedding
Gan, Yixiang; Kamlah, Marc
2008-07-01
In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)
Acoustic Enhancement of Surface Diffusion Chengping Wu,
Zhigilei, Leonid V.
provides an attractive alternative to thermal activation in thin film growth on heat-sensitive substrates to the thermal activation in thin film growth on heat-sensitive substrates. 2. MECHANISMS OF ACOUSTIC ACTIVATION, Russia *S Supporting Information ABSTRACT: The idea of acoustic activation of surface diffusion
. This process provides the easiest pathway for diffusion of compact clusters of sizes 4, 6, and 8 of cluster dif- fusion and dissociation in metal (100) epitaxy have been based on the central assumption of a col- lective atomic process, shear motion of a dimer belonging to a compact cluster. This previously
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bouskill, N. J.; Riley, W. J.; Tang, J. Y.
2014-12-11
Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowgroundmore »respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model–observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.« less
Modeling and Field Results from Seismic Stimulation
Majer, E.; Pride, S.; Lo, W.; Daley, T.; Nakagawa, Seiji; Sposito, Garrison; Roberts, P.
2006-05-30
Modeling the effect of seismic stimulation employing Maxwell-Boltzmann theory shows that the important component of stimulation is mechanical rather than fluid pressure effects. Modeling using Biot theory (two phases) shows that the pressure effects diffuse too quickly to be of practical significance. Field data from actual stimulation will be shown to compare to theory.
Bradonjic, Milan [Los Alamos National Laboratory
2009-01-01
In this paper we study reputation mechanisms, and show how the notion of reputation can help us in building truthful online auction mechanisms. From the mechanism design prospective, we derive the conditions on and design a truthful online auction mechanism. Moreover, in the case when some agents may lay or cannot have the real knowledge about the other agents reputations, we derive the resolution of the auction, such that the mechanism is truthful. Consequently, we move forward to the optimal one-gambler/one-seller problem, and explain how that problem is refinement of the previously discussed online auction design in the presence of reputation mechanism. In the setting of the optimal one-gambler problem, we naturally rise and solve the specific question: What is an agent's optimal strategy, in order to maximize his revenue? We would like to stress that our analysis goes beyond the scope, which game theory usually discusses under the notion of reputation. We model one-player games, by introducing a new parameter (reputation), which helps us in predicting the agent's behavior, in real-world situations, such as, behavior of a gambler, real-estate dealer, etc.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bouskill, N. J.; Riley, W. J.; Tang, J.
2014-08-18
Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differedmore »from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.« less
MECHANICAL TEST RESULTS ON DIPOLE MODEL C-l 25 mm ALUMINUM COLLARS
Peters, C.
2010-01-01
RESULTS ON DIPOLE MODEL C-1 25 mm ALUMINUM COLLARS C. PetersRESULTS ON DIPOLE MODEL C-I 25 mm ALUMINUM COLLARS· CraigON DIPOLE MODEL C-I 25 mm ALUMINUM COLLARS Craig Peters
Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.
2014-09-14
Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.
FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES
MEACHAM, J.E.
2003-11-10
This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.
Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Mazariegos, R.; Ibanez, W.
1993-06-01
Specific goals and accomplishments of this research include: (1) The evaluation of models of salt diaper ascent that involve either power law, dislocation creep as determined experimentally by Horseman et al. (1993) or linear, fluid-assisted creep as reported by Spiers et al. (1988, 1990, 1992). We have compared models assuming these two, experimentally evaluated flow laws and examined the predictions they make regarding diaper incubation periods, ascent velocities, deviatoric stresses and strain rates. (2) The evaluation of the effects of differential loading on the initiation an of salt structures. (3) Examination of the role of basement faults on the initiation and morphologic evolution of salt structures. (4) Evaluation of the mechanical properties of shale as a function of pressure and determination of the nature of its brittle-ductile transition. (5) Evaluation of the mechanical anisotropies of shales with varying concentrations, distributions and preferred orientations of clay. (6) The determination of temperature and ratedependencies of strength for a shale constitutive model that can be used in numerical models that depend on viscous formulations. (7) Determination of the mechanisms of deformation for argillaceous rocks over awide range of conditions. (8) Evaluation of the effects of H{sub 2}O within clay interlayers, as adsorbed surface layers.
A Continuum Coupled Moisture-mechanical Constitutive Model for Asphalt Concrete
Shakiba, Maryam
2013-12-09
The presence and flow of moisture degrade engineering properties of asphalt concrete as part of thermodynamic, chemical, physical, and mechanical processes. This detrimental effect is referred to as moisture damage. The aim of this dissertation...
Mechanism-based constitutive modeling of L1? single-crystal plasticity
Yin, Yuan, 1977-
2006-01-01
Ni3Al, an L12 structure intermetallic crystal, is the basic composition of the [gamma]' precipitates in nickel-based superalloys and is a major strengthening mechanism contributing to the superalloys' outstanding ...
Characterization and Modeling of Chemical-Mechanical Polishing for Polysilicon Microstructures
Tang, Brian D.
Long the dominant method of wafer planarization in the integrated circuit (IC) industry, chemical-mechanical polishing is starting to play an important role in microelectromechnical systems (MEMS). We present an experiment ...
Wee, Brian (Brian J.)
2013-01-01
This thesis seeks to assess the viability of a space qualified shape memory polymer (SMP) mechanical counter pressure (MCP) suit. A key development objective identified by the International Space Exploration Coordination ...
3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures
Rawal, Chakra
2012-07-16
Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum...
Lu, Yihong C. S
2010-01-01
Osteoarthritis (OA) is the most common form of joint disorder. Individuals who have sustained an acute traumatic joint injury are at greater risk for the development of OA. The mechanisms by which injury causes cartilage ...
Mechanical characterization and modelling of the heavy tungsten allow IT180
Scapin, M
2015-01-01
Pure tungsten or its alloys(WHA) find applications in several fields, especially due to the fact that these materials show a good combination of mechanical and thermal properties and they are commonly used in aerospace, automotive, metal working processes, military and nuclear technologies. Looking at the scientific literature, a lack in the mechanical characterization over wide ranges in temperature and strain-rates was found, especially forW–Ni–Cu alloys.
Journal Diffusion Factors a measure of diffusion? Tove Faber Frandsen
Paris-Sud XI, Université de
1 Journal Diffusion Factors a measure of diffusion? Tove Faber Frandsen Royal School of Library In this paper we show that the measure of diffusion introduced by Ian Rowlands called the Journal Diffusion Factor (JDF) is highly negatively correlated with the number of citations, leading highly cited journals
Moll, Ryan; Stellmach, Stephan
2015-01-01
Oscillatory double-diffusive convection (ODDC) (also known as semi- convection) refers to a type of double diffusive instability that occurs in regions of planetary and stellar interiors which have a destabilizing thermal stratification and a stabilizing mean molecular weight stratification. In this series of papers, we use an extensive suite of three-dimensional (3D) numerical simulations to quantify the transport of heat and chemical species by ODDC. Rosenblum et al. (2011) first showed that ODDC can either spontaneously form layers, which significantly enhance the transport of heat and chemical species compared to mi- croscopic transport, or remain in a state dominated by large scale gravity waves, in which there is a more modest enhancement of the turbulent transport rates. Subsequent studies in this series have focused on identifying under what condi- tions layers form (Mirouh et al. 2012), and quantifying transport through layered systems (Wood et al. 2013). Here we proceed to characterize transport thr...
Liu, Jiangchuan (JC)
networks Data diffusion Broadcast Hybrid PUSH PULL Location information a b s t r a c t Data-centric design information to interested nodes and thus demand efficient diffusion mechanisms. In such applications, a data-centric. A pioneer work on data-centric routing is direct diffusion [2], which suggests a two-phase pull algorithm
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
Gerhard Groessing
2013-04-12
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder's group on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schr\\"odinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wave functions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" nonlocality.
Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.
2015-07-01
Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.
Daniel Brown
2006-03-24
An analysis is made of a moving disturbance using a directed cyclic graph. A statistical approach is used to calculate the alternative positions in space and state of the disturbance with a defined observed time. The probability for a freely moving entity interacting in a particular spatial position is calculated and a formulation is derived for the minimum locus of uncertainty in position and momentum. This is found to accord with calculations for quantum mechanics. The model has proven amenable to computer modelling; a copy of the "SimulTime" program is available on request.
Analytical modelling of hydrogen transport in reactor containments
Manno, V.
1983-01-01
There are two diffusion processes, molecular and turbulent, which should be modelled in different ways. Molecular diffusion is modelled by Wilke's formula for the multi-component gas diffusion, where the diffusion constants ...
Mechanisms of aerosol-forced AMOC variability in a state of the art climate model
with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model
Mitchell, John Anthony; Epp, David S.; Wittwer, Jonathan W.
2005-10-01
Damping vibrations is important in the design of some types of inertial sensing devices. One method for adding damping to a device is to use magnetic forces generated by a static magnetic field interacting with eddy currents. In this report, we develop a 2-dimensional finite element model for the analysis of quasistatic eddy currents in a thin sheet of conducting material. The model was used for design and sensitivity analyses of a novel mechanical oscillator that consists of a shuttle mass (thin sheet of conducting material) and a set of folded spring elements. The oscillator is damped through the interaction of a static magnetic field and eddy currents in the shuttle mass. Using a prototype device and Laser Dopler Velocimetry (LDV), measurements were compared to the model in a validation study using simulation based uncertainty analyses. Measurements were found to follow the trends predicted by the model.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Anand, M.; Rajagopal, K.; Rajagopal, K. R.
2003-01-01
Multiple interacting mechanisms control the formation and dissolution of clots to maintain blood in a state of delicate balance. In addition to a myriad of biochemical reactions, rheological factors also play a crucial role in modulating the response of blood to external stimuli. To date, a comprehensive model for clot formation and dissolution, that takes into account the biochemical, medical and rheological factors, has not been put into place, the existing models emphasizing either one or the other of the factors. In this paper, after discussing the various biochemical, physiologic and rheological factors at some length, we develop a modelmore »for clot formation and dissolution that incorporates many of the relevant crucial factors that have a bearing on the problem. The model, though just a first step towards understanding a complex phenomenon, goes further than previous models in integrating the biochemical, physiologic and rheological factors that come into play.« less
R. Fedele; M. A. Man'ko; V. I. Man'ko; V. G. Vaccaro
2002-07-30
It is shown that the transmission line technology can be suitably used for simulating quantum mechanics. Using manageable and at the same time non-expensive technology, several quantum mechanical problems can be simulated for significant tutorial purposes. The electric signal envelope propagation through the line is governed by a Schrodinger-like equation for a complex function, representing the low-frequency component of the signal, In this preliminary analysis, we consider two classical examples, i.e. the Frank-Condon principle and the Ramsauer effect.
Diffusion of tungsten clusters on tungsten (110) surface
Chen, Dong; Hu, Wangyu; Yang, Jianyu; Deng, Huiqiu; Sun, Lixian; Gao, Fei
2009-04-01
Using molecular dynamics simulation and modified analytic embedded-atom method, we have investigated the self-diffusion of clusters on a tungsten (110) surface. As compared to the linear-chain configuration, the close-packed islands for tungsten clusters containing more than nine adatoms have been predicted to be more stable with the relatively lower binding energies. The migration energies show an interesting and oscillating behavior with increasing cluster size. The tetramer, hexamer and octamer have obviously higher migration energies than the others. The different atomic configurations and diffusion mechanisms have been determined during the diffusion processes. It is clear that the dimer-shearing mechanism occurs inside the hexamer, while it occurs at the periphery of heptamer. The successive hopping mechanism of individual atom is of critical importance in the migration of the clusters containing five or fewer adatoms. In addition, the diffusion of a cluster with nine adatoms is achieved through the changes of the cluster shape.
Mechanisms of light harvesting by photosystem II in plants
Amarnath, Kapil; Schneider, Anna R; Fleming, Graham R
2015-01-01
Light harvesting by photosystem II (PSII) in plants is highly efficient and acclimates to rapid changes in the intensity of sunlight. However, the mechanisms of PSII light harvesting have remained experimentally inaccessible. Using a structure-based model of excitation energy flow in 200 nanometer (nm) x 200 nm patches of the grana membrane, where PSII is located, we accurately simulated chlorophyll fluorescence decay data with no free parameters. Excitation movement through the light harvesting antenna is diffusive, but becomes subdiffusive in the presence of charge separation at reaction centers. The influence of membrane morphology on light harvesting efficiency is determined by the excitation diffusion length of 50 nm in the antenna. Our model provides the basis for understanding how nonphotochemical quenching mechanisms affect PSII light harvesting in grana membranes.
Development of a model to calculate mechanical specific energy for air hammer drilling systems
Okuchaba, Boma Jeremiah
2009-05-15
drilling time could be reduced. Real-time monitoring of Mechanical Specific Energy will enable drilling engineers to detect when the optimum drilling rate for a given set of drilling parameters is not being achieved. Numerous works have been done on air...
Development of anomalous diffusion among crowding proteins
Margaret R. Horton; Felix Höfling; Joachim O. Rädler; Thomas Franosch
2010-03-19
In cell membranes, proteins and lipids diffuse in a highly crowded and heterogeneous landscape, where aggregates and dense domains of proteins or lipids obstruct the path of diffusing molecules. In general, hindered motion gives rise to anomalous transport, though the nature of the onset of this behavior is still under debate and difficult to investigate experimentally. Here, we present a systematic study where proteins bound to supported lipid membranes diffuse freely in two dimensions, but are increasingly hindered by the presence of other like proteins. In our model system, the surface coverage of the protein avidin on the lipid bilayer is well controlled by varying the concentration of biotinylated lipid anchors. Using fluorescence correlation spectroscopy (FCS), we measure the time correlation function over long times and convert it to the mean-square displacement of the diffusing proteins. Our approach allows for high precision data and a clear distinction between anomalous and normal diffusion. It enables us to investigate the onset of anomalous diffusion, which takes place when the area coverage of membrane proteins increases beyond approximately 5%. This transition region exhibits pronounced spatial heterogeneities. Increasing the packing fraction further, transport becomes more and more anomalous, manifested in a decrease of the exponent of subdiffusion.
Tang, Xianzhu [College of William and Mary, Williamsburg, VA (United States); Boozer, A.H. [Columbia Univ., New York, NY (United States)
1996-12-31
A wide range of transport problems are of advection-diffusion type. Typical fluid problems of this type are the relaxation of temperature differences in a room or the spread of a contaminant in a river. Important examples in plasma include the relaxation of electrons in a region of stochastic magnetic field lines and the evolution of the magnetic field embedded in a conducting fluid. The archetypal model equation is the advection-diffusion equation. The quantity being transported is {phi}. The flow velocity of the medium, v(x, t), is assumed given and independent of {phi}. The diffusive flux is {Tau}{sub d} = -D{del}{phi}. If the flow is chaotic, the properties of the transport are determined by the spatial and time dependence of the finite time Lyapunov exponent {lambda}({xi}, t). The rapid diffusive transport occurs only along the field line (s line) of the vector s, which defines the stable direction in which neighboring points asymptotically converge. The topology of the s lines affects the diffusive transport through the finite time Lyapunov exponent. We discover that the spatial variation of the finite time Lyapunov exponent along the s lines is smooth and determined by the topology of the s lines. For example, the finite time Lyapunov exponent reaches local minima if the s line makes a sharp bend. These topological bends hinder the diffusive transport and act as a barrier for diffusive relaxation. Such barriers for diffusion reside inside the chaotic region and they persist even the flow is highly chaotic. In the case of the electron relaxation in a region of stochastic field lines, there is a rapid diffusive relaxation of the spatial inhomogeneity in the electron distribution function which is typical of the chaotic transport of a passive scalar. But the diffusive relaxation of the pitch angle distribution is much slower.
Andersohn, Alexander
2013-08-27
-suited for multiscale modeling, I came across the term representative volume element (or RVE) used commonly in biomaterials. Not finding a definition for the mesoscale well-suited for the aim of multiscale modeling, an alternative definition was provided herein... are similar, there are some clear differences. The differences outlined in this section are evidence that a new definition for the mesoscale, tailored for multiscale modeling, was needed. Some elements of the RVE, which is mostly used in biomaterials...
Broader source: Energy.gov [DOE]
Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...
Reverse-selective diffusion in nanocomposite membranes
Reghan J. Hill
2005-10-27
The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the particle volume fraction (Merkel et al., Science, 296, 2002). This intriguing observation contradicts even qualitative expectations based on Maxwell's classical theory of conduction/diffusion in composites with homogeneous phases. This letter presents a simple theoretical interpretation based on classical models of diffusion and polymer physics. An essential feature of the theory is a polymer-segment depletion layer at the inclusion-polymer interface. The accompanying increase in free volume leads to a significant increase in the local penetrant diffusivity, which, in turn, increases the bulk permeability while exhibiting reverse selectivity. This model captures the observed dependence of the bulk permeability on the inclusion size and volume fraction, providing a straightforward connection between membrane microstructure and performance.
Jung, Yong-Woon; Mascagni, Michael
2014-09-28
We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and ?-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low ?-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.
ES2A7 -Fluid Mechanics Example Classes Model Answers to Example Questions (Set II)
Thomas, Peter J.
of msvp = 2 -1 . Calculate the mean model wind tunnel speed if the model is made to 1/10 scale. Assume in a wind tunnel. The airspeed range to be investigated is at the docking end of its range, a maximum -=-=-= --- Question 4: Sliding Board #12;A board with an area slides down an inclined ramp as is schematically
Broader source: Energy.gov [DOE]
NREL, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be developing a physics-based computational degradation model to assess the kinetic oxidation rates; realistic model light attenuation and transport; and multi-layer treatment with variable properties Simulation based experimental design.
Burnham, A K; Gee, R; Maiti, A; Qiu, R; Rajasekar, P; Weeks, B; Zepeda-Ruiz, L
2005-11-03
Experimental measurements suggest that pentaerythritoltetranitrate (PETN) undergoes changes at the molecular level that cause macroscopic changes in the overall PETN powder characteristics over time. These changes have been attributed to the high molecular mobility of PETN, but the underlying mechanism(s) responsible for this redistribution are still uncertain. Two basic approaches have been implemented in the past year to provide insight into the nature of these underlying mechanisms. The first approach is of an experimental nature, utilizing both AFM and evaporation measurements, which address both surface mobility and evaporation. These data include AFM measurements performed at LLNL and evaporation rate measurements performed at Texas Tech. These results are compared to earlier vapor pressure measurements performed at SNL, and estimates of recrystallization time frames are given. The second approach utilizes first-principle calculations and simulations that will be used to compare directly to those experimental quantities measured. We are developing an accurate intermolecular potential for PETN, which via kinetic Monte Carlo (KMC) simulations would mimic real crystallite shapes. Once the basic theory is in place for the growth of single crystallites, we will be in a position to investigate realistic grain coarsening phenomena in multi-crystallite simulations. This will also enable us to study how to control the morphological evolution, e.g., through thermal cycling, or through the action of custom additives and impurities.
Mechanical & Aerospace Engineering
Mechanical & Aerospace Engineering With the increases in computational power and numerical methods a series of research challenges. These challenges involve many branches of mechanical engineering: mechanics, dynamics, tribology, statistical modeling, experimentation, and numerical methods. During
Dalan, Fabio.
Part I: The diapycnal diffusivity in the ocean is one of the least known parameters in current climate models. Measurements of this diffusivity are sparse and insufficient for compiling a global map. Inferences from inverse ...
Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chakraborty, S.; Mahapatra, D. R. [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)
2014-05-28
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80?nm.
Bottom Drag, eddy diffusivity, wind work and the power integrals
Young, William R.
Bottom Drag, eddy diffusivity, wind work and the power integrals Bill Young, Andrew Thompson field i.e., the meridional heat flux is pro Moreover, the mechanical energy balance in a statistical Moreover, the mechanical energy balance in a statistically st Appendix A) is U-2 x = | - 2 |2 + hyp
Zakhor, Avideh
for Mechatronic Systems" Klaus Janschek Technische Universität Dresden, Germany ABSTRACT Mechatronic systems. This makes mechatronic systems increasingly highly critical subject to failures at different technological such as "systems" (in particular mechatronic systems), "models", "design" and "dependability" with special focus
Derivation of Newton's Law of Gravitation Based on a Fluid Mechanical Singularity Model of Particles
Xiao-Song Wang
2006-10-25
We speculate that the universe may be filled with a kind of fluid which may be called aether or tao. Thus, Newton's law of gravitation is derived by methods of hydrodynamics based on a sink flow model of particles.
Song, Zhichao
2012-01-01
Greenwood, J.A. , 1997. Adhesion of elastic spheres. Proc.to the Maugis model of adhesion between elastic spheres. J.determination of interfacial adhesion properties by wedge
A Mechanical Fluid-Dynamical Model For Ground Movements At Campi...
The most important roles in the proposed model are played by the effect of lateral stress-strain discontinuities marking the inner caldera borders and by the response of the...
Lester, Brian T
2015-08-25
the local and global responses of this system with an emphasis on the response of these composites to thermal loadings. First, the effective transformation characteristics of SMA composites with a stiff, elastic matrix are modeled using an efficient...
Heydarkhan Tehrani, Ardeshir
2013-08-26
of such numerical studies are based on characterizing the MNPCs through simple microstructures, as circular particles or straight fibers embedded in a specific polymer matrix. Although these geometries are effective in virtual modeling some types of composite...
Mechanical and Aerospace Engineering
and lithium ion batteries. Our interest is to understand how solid diffusion generates mechanical stresses in lithium batteries. Using input from ab initio and molecular dynamic simulations, we investigated to the presence of ionic fluxes. The second example is on the insertion of lithium into silicon in silicon anodes
Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms
Suh, Dong-Myung; Sun, Xin
2013-09-01
In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.
A. Singer; Z. Schuss; D. Holcman
2007-09-02
The radiation (reaction, Robin) boundary condition for the continuum diffusion equation is widely used in chemical and biological applications to express reactive boundaries. The underlying trajectories of the diffusing particles are believed to be partially absorbed and partially reflected at the reactive boundary, however, the relation between the reaction (radiation) constant in the Robin boundary condition and the reflection probability is still unclear. In this paper we clarify the issue by finding the relation between the reaction (radiation) constant and the absorption probability of the diffusing trajectories at the boundary. We analyze the Euler scheme for the underlying It\\^o dynamics, which is assumed to have variable drift and diffusion tensor, with partial reflection at the boundary. Trajectories that cross the boundary are terminated with a given probability and otherwise are reflected in a normal or oblique direction. We use boundary layer analysis of the corresponding Wiener path integral to resolve the non-uniform convergence of the probability density function of the numerical scheme to the solution of the Fokker-Planck equation with the Robin boundary condition, as the time step is decreased. We show that the Robin boundary condition is recovered in the limit iff trajectories are reflected in the co-normal direction. We find the relation of the reactive constant to the termination probability. We show the effect of using the new relation in numerical simulations.
Anomalous diffusion in fractal globules
Mikhail V. Tamm; Leonid I. Nazarov; Alexey A. Gavrilov; Alexander V. Chertovich
2016-01-07
The fractal globule state is a popular model for describing chromatin packing in eukaryotic nuclei. Here we provide a scaling theory and dissipative particle dynamics (DPD) computer simulation for the thermal motion of monomers in the fractal globule state. Simulations starting from different entanglement-free initial states show good convergence which provides evidence supporting the existence of unique metastable fractal globule state. We show monomer motion in this state to be sub-diffusive described by $\\langle X^2 (t)\\rangle \\sim t^{\\alpha_F}$ with $\\alpha_F$ close to 0.4. This result is in good agreement with existing experimental data on the chromatin dynamics which makes an additional argument in support of the fractal globule model of chromatin packing.
Xie, S; Boyle, J S; Cederwall, R T; Potter, G L; Zhang, M; Lin, W
2004-02-19
This study implements a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM2) model to reduce its excessive warm season daytime precipitation over land. The new triggering mechanism introduces a simple dynamic constraint on the initiation of convection that emulates the collective effects of lower level moistening and upward motion of the large-scale circulation. It requires a positive contribution from the large-scale advection of temperature and moisture to the existing positive Convective Available Potential Energy (CAPE) for model convection to start. In contrast, the original convection triggering function in CAM2 assumes that convection is triggered whenever there is positive CAPE, which results in too frequent warm season convection over land arising from strong diurnal variation of solar radiation. We examine the impact of the new trigger on CAM2 simulations by running the climate model in Numerical Weather Prediction (NWP) mode so that more available observations and high-frequency NWP analysis data can be used to evaluate model performance. We show that the modified triggering mechanism has led to considerable improvements in the simulation of precipitation, temperature, moisture, clouds, radiations, surface temperature, and surface sensible and latent heat fluxes when compared to the data collected from the Atmospheric Radiation Measurement (ARM) program at its South Great Plains (SGP) site. Similar improvements are also seen over other parts of the globe. In particular, the surface precipitation simulation has been significantly improved over both the continental United States and around the globe; the overestimation of high clouds in the equatorial tropics has been substantially reduced; and the temperature, moisture, and zonal wind are more realistically simulated. Results from this study also show that some systematic errors in the CAM2 climate simulations can be detected in the early stage of model integration. Examples are the extremely overestimated high clouds in the tropics in the vicinity of ITCZ and the spurious precipitation maximum in the east of the Rockies. This has important implications in studies of these model errors since running the climate model in NWP mode allows us to perform a more in-depth analysis during a short time period where more observations are available and different model errors from various processes have not compensated for the systematic errors.
Central engines of Gamma Ray Bursts. Magnetic mechanism in the collapsar model
Maxim V. Barkov; Serguei S. Komissarov
2008-09-08
In this study we explore the magnetic mechanism of hypernovae and relativistic jets of long duration gamma ray bursts within the collapsar scenario. This is an extension of our earlier work [1]. We track the collapse of massive rotating stars onto a rotating central black hole using axisymmetric general relativistic magnetohydrodynamic code that utilizes a realistic equation of state and takes into account the cooling associated with emission of neutrinos and the energy losses due to dissociation of nuclei. The neutrino heating is not included. We describe solutions with different black hole rotation, mass accretion rate, and strength of progenitor's magnetic field. Some of them exhibits strong explosions driven by Poynting-dominated jets with power up to $12\\times10^{51} {erg s}^{-1}$. These jets originate from the black hole and powered via the Blandford-Znajek mechanism. A provisional criterion for explosion is derived. A number of simulation movies can be downloaded from http://www.maths.leeds.ac.uk/~serguei/research/movies/anim.html
Evans, James W. [Ames Laboratory; Liu, Da-Jiang [Ames Laboratory
2014-05-20
We develop statistical mechanical models amenable to analytic treatment for the dissociative adsorption of O2 at hollow sites on fcc(100) metal surfaces. The models incorporate exclusion of nearest-neighbor pairs of adsorbed O. However, corresponding simple site-blocking models, where adsorption requires a large ensemble of available sites, exhibit an anomalously fast initial decrease in sticking. Thus, in addition to blocking, our models also incorporate more facile adsorption via orientational steering and funneling dynamics (features supported by ab initio Molecular Dynamics studies). Behavior for equilibrated adlayers is distinct from those with finite adspecies mobility. We focus on the low-temperature limited-mobility regime where analysis of the associated master equations readily produces exact results for both short- and long-time behavior. Kinetic Monte Carlo simulation is also utilized to provide a more complete picture of behavior. These models capture both the initial decrease and the saturation of the experimentally observed sticking versus coverage, as well as features of non-equilibrium adlayer ordering as assessed by surface-sensitive diffraction.
Evans, James W. [Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011 (United States) [Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Liu, Da-Jiang [Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011 (United States)] [Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011 (United States)
2014-05-21
We develop statistical mechanical models amenable to analytic treatment for the dissociative adsorption of O{sub 2} at hollow sites on fcc(100) metal surfaces. The models incorporate exclusion of nearest-neighbor pairs of adsorbed O. However, corresponding simple site-blocking models, where adsorption requires a large ensemble of available sites, exhibit an anomalously fast initial decrease in sticking. Thus, in addition to blocking, our models also incorporate more facile adsorption via orientational steering and funneling dynamics (features supported by ab initio Molecular Dynamics studies). Behavior for equilibrated adlayers is distinct from those with finite adspecies mobility. We focus on the low-temperature limited-mobility regime where analysis of the associated master equations readily produces exact results for both short- and long-time behavior. Kinetic Monte Carlo simulation is also utilized to provide a more complete picture of behavior. These models capture both the initial decrease and the saturation of the experimentally observed sticking versus coverage, as well as features of non-equilibrium adlayer ordering as assessed by surface-sensitive diffraction.
Skinner, F. K.; Department of Medicine , University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4; Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8 ; Ferguson, K. A.; Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8
2013-12-15
There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.
Statistical Mechanics of Two-dimensional Foams: Physical Foundations of the Model
Marc Durand
2015-07-16
In a recent series of papers [1--3], a statistical model that accounts for correlations between topological and geometrical properties of a two-dimensional shuffled foam has been proposed and compared with experimental and numerical data. Here, the various assumptions on which the model is based are exposed and justified: the equiprobability hypothesis of the foam configurations is argued. The range of correlations between bubbles is discussed, and the mean field approximation that is used in the model is detailed. The two self-consistency equations associated with this mean field description can be interpreted as the conservation laws of number of sides and bubble curvature, respectively. Finally, the use of a "Grand-Canonical" description, in which the foam constitutes a reservoir of sides and curvature, is justified.
Barker, Erin I.; Choi, Kyoo Sil; Sun, Xin; Deda, Erin; Allison, John; Li, Mei; Forsmark, Joy; Zindel, Jacob; Godlewski, Larry
2014-09-30
Magnesium alloys have become popular alternatives to aluminums and steels for the purpose of vehicle light-weighting. However, Mg alloys are hindered from wider application due to limited ductility as well as poor creep and corrosion performance. Understanding the impact of microstructural features on bulk response is key to improving Mg alloys for more widespread use and for moving towards truly predicting modeling capabilities. This study focuses on modeling the intrinsic features, particularly volume fraction and morphology of beta phase present, of cast Mg alloy microstructure and quantifying their impact on bulk performance. Computational results are compared to experimental measurements of cast plates of Mg alloy with varying aluminum content.
Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics
Lawrence E. Thomas
2012-04-29
We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given.
Knott, Michael [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom)] [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Best, Robert B., E-mail: robertbe@helix.nih.gov [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)
2014-05-07
Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.
L\\'evy Fluctuations and Tracer Diffusion in Dilute Suspensions of Algae and Bacteria
Zaid, Irwin M; Yeomans, Julia M
2010-01-01
Swimming microorganisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a microorganism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer'...
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials
Paolo Amore; Francisco M. Fernández
2014-10-21
We generalize a recently proposed small-energy expansion for one-dimensional quantum-mechanical models. The original approach was devised to treat symmetric potentials and here we show how to extend it to non-symmetric ones. Present approach is based on matching the logarithmic derivatives for the left and right solutions to the Schr\\"odinger equation at the origin (or any other point chosen conveniently) . As in the original method, each logarithmic derivative can be expanded in a small-energy series by straightforward perturbation theory. We test the new approach on four simple models, one of which is not exactly solvable. The perturbation expansion converges in all the illustrative examples so that one obtains the ground-state energy with an accuracy determined by the number of available perturbation corrections.
Structure of Laminar Sooting Inverse Diffusion Flames
Mikofski, Mark A
2007-01-01
Combust. Structure of Laminar Sooting Inverse Diffusion2002, p. 252. Structure of Laminar Sooting Inverse Diffusion219-226. Structure of Laminar Sooting Inverse Diffusion
Ã?agin, Tahir
1 Presented at the 27th Leeds-Lyon Symposium on Tribology, Tribological Research: From Model Experiment to Industrial Problems: Mechanics, Materials Science, Physico-chemistry Lyon, France, September 5
Welch, Stephen; Miles, Steward; Kumar, Suresh; Lemaire, Tony; Chan, Alan
A hierarchy of coupling strategies for integrating advanced three-dimensional modelling methodologies for prediction of the thermo-mechanical response of structures in fire has been developed and systematically assessed. ...
Sandia Energy - Diffusion Bonding Characterization
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
bond surface is poor or only the region near this corner. Diffusion 7-8-9 "Diffusion Welding and Brazing," in Welding Handbook, 7th ed., American Welding Society, 1980, p 311-335...
A quantum mechanical model for the relationship between stock price and stock ownership
Cotfas, Liviu-Adrian [Faculty of Economic Cybernetics, Statistics and Informatics, Academy of Economic Studies, 6 Piata Romana, 010374 Bucharest (Romania)
2012-11-01
The trade of a fixed stock can be regarded as the basic process that measures its momentary price. The stock price is exactly known only at the time of sale when the stock is between traders, that is, only in the case when the owner is unknown. We show that the stock price can be better described by a function indicating at any moment of time the probabilities for the possible values of price if a transaction takes place. This more general description contains partial information on the stock price, but it also contains partial information on the stock owner. By following the analogy with quantum mechanics, we assume that the time evolution of the function describing the stock price can be described by a Schroedinger type equation.
A quantum mechanical model for the relationship between stock price and stock ownership
Liviu-Adrian Cotfas
2012-09-05
The trade of a fixed stock can be regarded as the basic process that measures its momentary price. The stock price is exactly known only at the time of sale when the stock is between traders, that is, only in the case when the owner is unknown. We show that the stock price can be better described by a function indicating at any moment of time the probabilities for the possible values of price if a transaction takes place. This more general description contains partial information on the stock price, but it also contains partial information on the stock owner. By following the analogy with quantum mechanics, we assume that the time evolution of the function describing the stock price can be described by a Schrodinger type equation.
Melanin, a promising radioprotector: Mechanisms of actions in a mice model
Kunwar, A.; Adhikary, B.; Jayakumar, S.; Barik, A.; Chattopadhyay, S.; Raghukumar, S.; Priyadarsini, K.I.
2012-10-15
The radioprotective effect of extracellular melanin, a naturally occurring pigment, isolated from the fungus Gliocephalotrichum simplex was examined in BALB/C mice, and the probable mechanism of action was established. At an effective dose of 50 mg/kg body weight, melanin exhibited both prophylactic and mitigative activities, increasing the 30-day survival of mice by 100% and 60%, respectively, after exposure to radiation (7 Gy, whole body irradiation (WBI)). The protective activity of melanin was primarily due to inhibition of radiation-induced hematopoietic damages as evidenced by improvement in spleen parameters such as index, total cellularity, endogenous colony forming units, and maintenance of circulatory white blood cells and platelet counts. Melanin also reversed the radiation-induced decrease in ERK phosphorylation in splenic tissue, which may be the key feature in its radioprotective action. Additionally, our results indicated that the sustained activation of AKT, JNK and P38 proteins in splenic tissue of melanin pre-treated group may also play a secondary role. This was also supported by the fact that melanin could prevent apoptosis in splenic tissue by decreasing BAX/Bcl-XL ratio, and increasing the expressions of the proliferation markers (PCNA and Cyclin D1), compared to the radiation control group. Melanin also reduced the oxidative stress in hepatic tissue and abrogated immune imbalance by reducing the production of pro-inflammatory cytokines (IL6 and TNF?). In conclusion, our results confirmed that fungal melanin is a very effective radioprotector against WBI and the probable mechanisms of radioprotection are due to modulation in pro-survival (ERK) signaling, prevention of oxidative stress and immunomodulation. -- Highlights: ? Melanin showed promising radioprotection under pre and post irradiation condition. ? Melanin protects the hematopoietic system from radiation induced damage. ? Melanin modulates pro-survival pathways, immune system and prevents oxidative stress.
Mechanism of bistability: Tonic spiking and bursting in a neuron model Andrey Shilnikov*
Calabrese, Ronald
. The methods of qualitative theory of slow-fast sys- tems applied to biophysically realistic neuron models can Neurons are observed in one of three fundamental, gener- ally defined modes: silence, tonic spiking formation 3,4 . Neurons in bursting mode differ in their ability to transmit information and respond
Broader source: Energy.gov [DOE]
Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.
Clapham, Lynann
The Magnetic Flux Leakage (MFL) inspection method is the most cost effective technique for detecting corrosion and metal loss in in-service pipelines. The principle of the technique is relatively straightforward) has become a powerful modeling tool for studying MFL signals from corrosion defects [1
Fission Enhanced diffusion of uranium in zirconia
Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H
2005-01-01
This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.
HINDERED DIFFUSION OF COAL LIQUIDS
Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster
1996-01-01
It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.
Diffusion on (110) Surface of Molecular Crystal Pentaerythritol Tetranitrate
Wang, J; Golfinopoulos, T; Gee, R H; Huang, H
2007-01-25
Using classical molecular dynamics simulations, we investigate the diffusion mechanisms of admolecules on the (110) surface of molecular crystal pentaerythritol tetranitrate. Our results show that (1) admolecules are stable at off lattice sites, (2) admolecules diffuse along close-packed [1{bar 1}1] and [{bar 1}11] directions, and (3) admolecules detach from the surface at 350K and above. Based on the number of diffusion jumps as a function of temperature, we estimate the jump frequency to be v=1.14 x 10{sup 12} e{sup -0.08eV/kT} per second.
Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco
2013-12-18
This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.
Yang, Ying; Field, Kevin G; Allen, Todd R.; Busby, Jeremy T
2015-09-01
Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.
J. Froehlich; M. Griesemer; B. Schlein
2000-09-27
In models of (non-relativistic and pseudo-relativistic) electrons interacting with static nuclei and with the (ultraviolet-cutoff) quantized radiation field, the existence of asymptotic electromagnetic fields is established. Our results yield some mathematically rigorous understanding of Rayleigh scattering and of the phenomenon of relaxation of isolated atoms to their ground states. Our proofs are based on propagation estimates for electrons inspired by similar estimates known from $N$-body scattering theory.
Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.
2007-02-02
Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.
Oterkus, Selda [Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Madenci, Erdogan, E-mail: madenci@email.arizona.edu [Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Agwai, Abigail [Intel Corporation, Chandler, AZ 85226 (United States)
2014-05-15
This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.
Ozcelik, Ozgur
2008-01-01
17th ASCE Engineering Mechanics Conference , Newark, U.S.A,Journal of Engineering Mechanics, ASCE , 129(12). Thoen, B.Journal of Engineering Mechanics , 129(12), 2003. Van Den
BRANNON,REBECCA M.
2000-11-01
A theory is developed for the response of moderately porous solids (no more than {approximately}20% void space) to high-strain-rate deformations. The model is consistent because each feature is incorporated in a manner that is mathematically compatible with the other features. Unlike simple p-{alpha} models, the onset of pore collapse depends on the amount of shear present. The user-specifiable yield function depends on pressure, effective shear stress, and porosity. The elastic part of the strain rate is linearly related to the stress rate, with nonlinear corrections from changes in the elastic moduli due to pore collapse. Plastically incompressible flow of the matrix material allows pore collapse and an associated macroscopic plastic volume change. The plastic strain rate due to pore collapse/growth is taken normal to the yield surface. If phase transformation and/or pore nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface. To permit hardening, the yield stress of matrix material is treated as an internal state variable. Changes in porosity and matrix yield stress naturally cause the yield surface to evolve. The stress, porosity, and all other state variables vary in a consistent manner so that the stress remains on the yield surface throughout any quasistatic interval of plastic deformation. Dynamic loading allows the stress to exceed the yield surface via an overstress ordinary differential equation that is solved in closed form for better numerical accuracy. The part of the stress rate that causes no plastic work (i.e-, the part that has a zero inner product with the stress deviator and the identity tensor) is given by the projection of the elastic stressrate orthogonal to the span of the stress deviator and the identity tensor.The model, which has been numerically implemented in MIG format, has been exercised under a wide array of extremal loading and unloading paths. As will be discussed in a companion sequel report, the CKP model is capable of closely matching plate impact measurements for porous materials.
Probing the quantum phase transition in the Dicke model through mechanical vibrations
J. P. Santos; K. Furuya; F. L. Semião
2011-03-04
This paper is concerned with quantum dynamics of a system coupled to a critical reservoir. In this context, we employ the Dicke model which is known to exhibit a super radiant quantum phase transition (QPT) and we allow one of the mirrors to move under a linear restoring force. The electromagnetic field couples to the movable mirror though radiation pressure just like in typical optomechanical setups. We show that, in the thermodynamical limit, the super-radiant phase induces a classical driving force on the mirror without causing decoherence.
Diffusion-controlled generation of a proton-motive force across a biomembrane
Anatoly Yu. Smirnov; Sergey E. Savel'ev; Franco Nori
2009-12-04
Respiration in bacteria involves a sequence of energetically-coupled electron and proton transfers creating an electrochemical gradient of protons (a proton-motive force) across the inner bacterial membrane. With a simple kinetic model we analyze a redox loop mechanism of proton-motive force generation mediated by a molecular shuttle diffusing inside the membrane. This model, which includes six electron-binding and two proton-binding sites, reflects the main features of nitrate respiration in E. coli bacteria. We describe the time evolution of the proton translocation process. We find that the electron-proton electrostatic coupling on the shuttle plays a significant role in the process of energy conversion between electron and proton components. We determine the conditions where the redox loop mechanism is able to translocate protons against the transmembrane voltage gradient above 200 mV with a thermodynamic efficiency of about 37%, in the physiologically important range of temperatures from 250 to 350 K.
Adsorption of small weak organic acids on goethite: Modeling of mechanisms
Filius, J.D.; Hiemstra, T.; Riemsdijk, W.H. Van
1997-11-15
The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids.
International diffusion practice : lessons from South Korea's New Village Movement
Kim, Jung Hwa, M.C.P. Massachusetts Institute of Technology
2013-01-01
This research focuses on how South Korea's development model-namely, the Saemaul Undong, or the New Village Movement-is diffused internationally, in particular, to the developing country of Vietnam. South Korea's successful ...
Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.
2013-03-01
Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.
Memory effects and active Brownian diffusion
Ghosh, Pulak K; Marchegiani, Giampiero; Marchesoni, Fabio
2015-01-01
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer's diffusivity. To this purpose we propose and solve two alternative models. In the first one we simply assume that the environmental fluctuations governing the swimmer's propulsion are exponentially correlated in time, whereas in the second one we account for possible damped fluctuations of the propulsion velocity around the swimmer's axis. The corresponding swimmer's diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.
Memory effects and active Brownian diffusion
Pulak K. Ghosh; Yunyun Li; Giampiero Marchegiani; Fabio Marchesoni
2015-11-19
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer's diffusivity. To this purpose we propose and solve two alternative models. In the first one we simply assume that the environmental fluctuations governing the swimmer's propulsion are exponentially correlated in time, whereas in the second one we account for possible damped fluctuations of the propulsion velocity around the swimmer's axis. The corresponding swimmer's diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.
Correspondences between Wavelet Shrinkage and Nonlinear Diffusion
variants [8,31], total variation (TV) diffusion [2], or balanced forward-backward (BFB) diffusion [21
Rodriguez, David
2011-01-01
Experimental tests of Bell inequalities often require supplementary assumptions, one of the usual ones being the "no-enhancement" assumption. Here we show how an already well known Local Hidden Variables (LHV) model for the Clauser-Horne-Shimony-Holt inequality, when extended to account for the probabilities of detection when the polarizers are removed (such as how it would need to be done in a test of the Clauser-Horne inequality), gives rise, as the most natural feature, to the so-called "enhancement" (breaking of the no-enhancement assumption formulated by Clauser and Horne themselves for the operational expression of their inequality). Aside from exposing that key role of enhancement, our work is useful (at least in our case it has been) to gain understanding on some other known results. We also add some comments that we think may be thought-provoking.
Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.
2012-11-01
Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation methods should be used with caution in patients with sparse fibroglandular tissue distribution.
Invariants in Supersymmetric Classical Mechanics
A. Alonso Izquierdo; M. A. Gonzalez Leon; J. Mateos Guilarte
2000-04-07
The bosonic second invariant of SuperLiouville models in supersymmetric classical mechanics is described.
A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames
Gülder, Ömer L.
A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames Marc 26 March 2011 Keywords: High-pressure Zero-gravity Laminar ethylene diffusion flames Soot modeling were studied numeri- cally in coflow ethyleneair laminar diffusion flames between 0.5 and 5 atm
A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames
Groth, Clinton P. T.
A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames Marc xxxx Keywords: High-pressure Zero-gravity Laminar ethylene diffusion flames Soot modeling a b s t r a c in coflow ethyleneair laminar diffusion flames between 0.5 and 5 atm. Computations were per- formed
Zhai, Yuhu
2013-07-16
The United States ITER Project Office (USIPO) is responsible for design of the Toroidal Field (TF) insert coil, which will allow validation of the performance of significant lengths of the conductors to be used in the full scale TF coils in relevant conditions of field, current density and mechanical strain. The Japan Atomic Energy Agency (JAEA) will build the TF insert which will be tested at the Central Solenoid Model Coil (CSMC) Test facility at JAEA, Naka, Japan. Three dimensional mathematical model of TF Insert was created based on the initial design geometry data, and included the following features: orthotropic material properties of superconductor material and insulation; external magnetic field from CSMC, temperature dependent properties of the materials; pre-compression and plastic deformation in lap joint. Major geometrical characteristics of the design were preserved including cable jacket and insulation shape, mandrel outline, and support clamps and spacers. The model is capable of performing coupled structural, thermal, and electromagnetic analysis using ANSYS. Numerical simulations were performed for room temperature conditions; cool down to 4K, and the operating regime with 68kA current at 11.8 Tesla background field. Numerical simulations led to the final design of the coil producing the required strain levels on the cable, while simultaneously satisfying the ITER magnet structural design criteria.
Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve; Allan, James D.; Zaveri, Rahul A.; Fast, Jerome D.; Hodnebrog, Oivind; Denier van der Gon, Hugo; McFiggans, Gordon
2014-11-08
We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.
Robert Podgorney; Chuan Lu; Hai Huang
2012-01-01
Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.
Charalambos Papelis; Wooyong Um
2003-03-01
The interaction of radionuclides and other contaminants with minerals and other aquifer materials controls the rate of migration of these contaminants in groundwater. The stronger these interactions, the more a radionuclide will be retarded. Processes such as sorption and diffusion often control the migration of inorganic compounds in aquifers. In addition, these processes are often controlled by the nature of ions of interest, the nature of the aquifer materials, and the specific geochemical conditions. Parameters describing sorption and diffusion of radionuclides and other inorganic ions on aquifer materials are used in transport codes to predict the potential for migration of these contaminants into the accessible environment. Sorption and diffusion studies can help reduce the uncertainty of radionuclide transport modeling on the Nevada Test Site (NTS) and other nuclear testing areas. For example, reliable sorption equilibrium constants, obtained under a variety of conditions, can be used to suggest a plausible sorption mechanism and to provide retardation parameters that can be used in transport models. In addition, these experiments, performed under a variety of conditions, can lead to models that can accommodate changing geochemical conditions. Desorption studies can probe the reversibility of reactions and test whether the reversibility assumed by equilibrium models is justified. Kinetic studies can be used to probe the time-dependent limitations of reactions and suggest whether an equilibrium or kinetic model may be more appropriate. Finally, spectroscopic studies can be used to distinguish between different sorption mechanisms, and provide further guidance with respect to model selection.
Is the Higgs Mechanism of Fermion Mass Generation a Fact? A Yukawa-less First-Two-Generation Model
Diptimoy Ghosh; Rick Sandeepan Gupta; Gilad Perez
2015-08-06
It is now established that the major source of electroweak symmetry breaking (EWSB) is due to the observed Higgs particle. However, whether the Higgs mechanism is responsible for the generation of all the fermion masses, in particular, the fermions of the first two generations, is an open question. In this letter we present a construction where the light fermion masses are generated through a secondary, subdominant and sequestered source of EWSB. This fits well with the approximate U(2) global symmetry of the observed structure of the flavor sector. We first realize the above idea using a calculable two Higgs doublet model. We then show that the first two generation masses could come from technicolor dynamics, while the third generation fermions, as well as the electroweak gauge bosons get their masses dominantly from the Higgs mechanism. We also discuss how the small CKM mixing between the first two generations and the third generation, and soft mixing between the sequestered EWSB components arise in this setup. A typical prediction of this scenario is a significant reduction of the couplings of the observed Higgs boson to the first two generation of fermions.
State protection under collective damping and diffusion
Ponte, M. A. de [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil); Departamento de Fisica, Universidade Regional do Cariri, 63010-970 Juazeiro do Norte, CE (Brazil); Mizrahi, S. S. [Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Moussa, M. H. Y. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil)
2011-07-15
In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.
Mechanical Properties and Plasticity of a Model Glass Loaded Under Stress Control
Vladimir Dailidonis; Valery Ilyin; Pankaj Mishra; Itamar Procaccia
2014-06-09
Much of the progress achieved in understanding plasticity and failure in amorphous solids had been achieved using experiments and simulations in which the materials were loaded using strain control. There is paucity of results under stress control. Here we present a new method that was carefully geared to allow loading under stress control either at $T=0$ or at any other temperature, using Monte-Carlo techniques. The method is applied to a model perfect crystalline solid, to a crystalline solid contaminated with topological defects, and to a generic glass. The highest yield stress belongs to the crystal, the lowest to the crystal with a few defects, with the glass in between. Although the glass is more disordered than the crystal with a few defects, it yields stress is much higher than that of the latter. We explain this fact by considering the actual microscopic interactions that are typical to glass forming materials, pointing out the reasons for the higher cohesive nature of the glass. The main conclusion of this paper is that the instabilities encountered in stress-control condition are the identical saddle-node bifurcation seen in strain-control. Accordingly one can use the latter condition to infer about the former. Finally we discuss temperature effects and comment on the time needed to see a stress controlled material failure.
Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E.., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL
2006-12-13
Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.
Mechanical & Aerospace Engineering
Mechanical & Aerospace Engineering Bone is a biological material with excellent material properties the properties at lower level serve as inputs for modeling at the next structural level. Mechanical properties and applied mechanics at Northwestern University. Prior to joining the faculty of mechanical engineering
Reduction of phosphorus diffusion in germanium by fluorine implantation
El Mubarek, H. A. W. [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)
2013-12-14
The control of phosphorus (P) diffusion in germanium (Ge) is essential for the realisation of ultrashallow n-type junctions in Ge. This work reports a detailed study of the effect of fluorine (F) co-implantation on P diffusion in Ge. P and F profiles were characterized by secondary ion mass spectroscopy. The ion implantation damage was investigated using cross sectional transmission electron microscopy. It is shown that F co-implantation reduces the implanted P profile width and reduces both intrinsic and extrinsic P diffusion in Ge. A defect mediated mechanism for the strong influence of F co-implantation on P diffusion in Ge is proposed and invokes the formation of F{sub n}V{sub m} clusters in the F-amorphized Ge layer. A fraction of these F{sub n}V{sub m} clusters decorate the interstitial type end-of-range defects in the re-grown Ge layer and the rest react during re-growth with interstitial germanium atoms diffusing back from the amorphous crystalline interface. The Ge vacancies are then annihilated and mobile interstitial F is released and out diffuses from the surface. This results in a re-grown Ge layer which has a low vacancy concentration and in which the P diffusion rate is reduced. These results open the way to the realization of enhanced Ge n-type devices.
Reaction Diffusion patterns in Pseudoplatystoma fishes
Aldo Ledesma-Durán; Héctor Juárez-Valencia; Iván Santamaría-Holek
2016-01-05
This paper studies how patterns derived from a system of reaction-diffusion equations may vary significantly depending upon boundary and initial conditions, as well as in the spatial dependence of the coefficients involved. From an extensive numerical study of the BVAM model, we demonstrate that the geometric pattern of a reaction-diffusion system is not uniquely determined by the value of the parameters in the equation. From this result, we suggest that the variability of patterns among individuals of the same species may have its roots in this sensitivity. Furthermore, this study analyzes briefly how the inclusion of the advection and the space dependency in the parameters of the model influences the forms of a specific pattern. The results of this study are compared to the skin patterns that appear in Pseudoplatystom} fishes.
Cosmic ray penetration in diffuse clouds
Morlino, G; Krause, J
2015-01-01
Cosmic rays are a fundamental source of ionization for molecular and diffuse clouds, influencing their chemical, thermal, and dynamical evolution. The amount of cosmic rays inside a cloud also determines the $\\gamma$-ray flux produced by hadronic collisions between cosmic rays and cloud material. We study the spectrum of cosmic rays inside and outside of a diffuse cloud, by solving the stationary transport equation for cosmic rays including diffusion, advection and energy losses due to ionization of neutral hydrogen atoms. We found that the cosmic ray spectrum inside a diffuse cloud differs from the one in the interstellar medium (ISM) for energies smaller than $E_{br}\\approx 100$ MeV, irrespective of the model details. Below $E_{br}$, the spectrum is harder (softer) than that in the ISM if the latter is a power law $\\propto p^{-s}$ with $s$ larger (smaller) than $\\sim0.42$. As a consequence also the ionization rate due to CRs is strongly affected. Assuming an average Galactic spectrum similar to the one infe...
Li, Yangmin
2014-01-01
-based proportion compliant mechanisms. Precis Eng (2014), http://dx.doi.org/10.1016/j.precisioneng.2013 analytical model for flexure-based proportion compliant mechanisms Qiaoling Menga , Yangmin Lia,b, , Jia Xua model for flexure-based proportion compliant mechanisms. The displacement and stiffness calculations
Multicomponent Gas Diffusion in Porous Electrodes
Fu, Yeqing; Dutta, Abhijit; Mohanram, Aravind; Pietras, John D; Bazant, Martin Z
2014-01-01
Multicomponent gas transport is investigated with unprecedented precision by AC impedance analysis of porous YSZ anode-supported solid oxide fuel cells. A fuel gas mixture of H2-H2O-N2 is fed to the anode, and impedance data are measured across the range of hydrogen partial pressure (10-100%) for open circuit conditions at three temperatures (800C, 850C and 900C) and for 300mA applied current at 800C. For the first time, analytical formulae for the diffusion resistance (Rb) of three standard models of multicomponent gas transport (Fick, Stefan-Maxwell, and Dusty Gas) are derived and tested against the impedance data. The tortuosity is the only fitting parameter since all the diffusion coefficients are known. Only the Dusty Gas model leads to a remarkable data collapse for over twenty experimental conditions, using a constant tortuosity consistent with permeability measurements and the Bruggeman relation. These results establish the accuracy of the Dusty Gas model for multicomponent gas diffusion in porous med...
Telleria, Maria J.
We explain when, and why, solder-based phase change materials (PCMs) are best-suited as a means to modify a robotic mechanism's kinematic and elastomechanic behavior. The preceding refers to mechanisms that possess joints ...
Liu, H.H.
2012-01-01
Strength and elasto-plastic properties of non- industrialplastic regimes. The impact of damage on mechanical and hydraulic properties
Schlegel, Nicole-Jeanne
2011-01-01
ice sheet model with a mesoscale climate model By Nicole-ice sheet model with a mesoscale climate model Copyrightice sheet model with a mesoscale climate model by Nicole-
Non-Brownian molecular self-diffusion in bulk water
Janez Stepišnik; Aleš Mohori?; Igor Serša
2010-10-06
The paper presents the velocity autocorrelation spectrum of bulk water measured by a new technique of NMR modulated gradient spin echo method. This technique is unprecedented for the spectrum measurement in the frequency interval between a few Hz to about 100 kHz with respect to directness and clarity of results and shows that a simple model of Brownian self-diffusion is not applicable to describe the diffusion dynamics of water molecules. The observed temperature dependant spectra of water show the existence of a slow chain-like dynamics in water, which we explain by coupling of diffusing molecule to broken bonds in the hydrogen bond network.
Mechanical resonators for storage and transfer of electrical and optical quantum states
S. A. McGee; D. Meiser; C. A. Regal; K. W. Lehnert; M. J. Holland
2013-05-29
We study an optomechanical system in which a microwave field and an optical field are coupled to a common mechanical resonator. We explore methods that use these mechanical resonators to store quantum mechanical states and to transduce states between the electromagnetic resonators from the perspective of the effect of mechanical decoherence. Besides being of fundamental interest, this coherent quantum state transfer could have important practical implications in the field of quantum information science, as it potentially allows one to overcome intrinsic limitations of both microwave and optical platforms. We discuss several state transfer protocols and study their transfer fidelity using a fully quantum mechanical model that utilizes quantum state-diffusion techniques. This work demonstrates that mechanical decoherence should not be an insurmountable obstacle in realizing high fidelity storage and transduction.
Formation mechanism and properties of CdS-Ag2S nanorod superlattices
Wang, Lin-Wang; Demchenko, Denis O.; Robinson, Richard D.; Sadtler, Bryce; Erdonmez, Can K.; Alivisatos, A. Paul; Wang, Lin-Wang
2008-08-11
The mechanism of formation of recently fabricated CdS-Ag{sub 2}S nanorod superlattices is considered and their elastic properties are predicted theoretically based on experimental structural data. We consider different possible mechanisms for the spontaneous ordering observed in these 1D nanostructures, such as diffusion-limited growth and ordering due to epitaxial strain. A simplified model suggests that diffusion-limited growth partially contributes to the observed ordering, but cannot account for the full extent of the ordering alone. The elastic properties of bulk Ag{sub 2}S are predicted using a first principles method and are fed into a classical valence force field (VFF) model of the nanostructure. The VFF results show significant repulsion between Ag{sub 2}S segments, strongly suggesting that the interplay between the chemical interface energy and strain due to the lattice mismatch between the two materials drives the spontaneous pattern formation.
Boerner, A. J.; Maldonado, D. G.
2012-06-01
This report contains the technical basis in support of the DOE?s derivation of Authorized Limits (ALs) for the DOE Paducah C-746-U Landfill. A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines. The ORISE-derived soil guidelines are specifically applicable to the Landfill at the end of its operational life. A suggested 'upper bound' multiple of the derived soil guidelines for individual shipments is provided.
A. I. Asvarov
2000-01-21
In present study I examine the capability of diffusive shock acceleration mechanism to explain existing data on radio emission from evolved large diameter shell-type adiabatic supernova remnants (SNRs). Time-dependent ''onion-shell'' model for the radio emission of SNRs is developed, which is based on the assumptions: a) acceleration takes place from thermal energies and test-particle approximation is valid; b) the problem of injection is avoided by introducing, like Bell (1978), two injection parameters; c) to take into consideration very late stages of SNR evolution the analytic approximation of Cox and Andersen (1982) for the shell structure is used; c)no radiative cooling. Constructed Surface Brightness - Diameter $(\\Sigma -D)$ tracks are compared with the empirical $\\Sigma -D$ diagram. The main conclusion of the study is that the DSA mechanism is capable of explaining all the statistics of radio SNRs including very large diameter remnants and giant galactic loops.
Nutter, D.; Stewart, M.; Muyshondt, A.
1997-07-01
Contaminant transport in groundwater is modeled using an advection diffusion equation. The diffusion component of the model is due to molecular diffusion and advection through the flow passages in the soil matrix which are smaller than the resolvable length scales. In addition to the physical diffusion, the advection/diffusion equation requires a certain amount of diffusion for the governing equations to be stable. If there is insufficient physical diffusion the cell Peclet number is less than 2 and oscillations in the solution occur. Balance numerical diffusion must be supplied for a stable solution. Numerical simulations of contaminant transport in groundwater flows must therefore include accurate models of as many of three forms of diffusion. One represents the subscale fluid path diffusion (either tensor, vector, or scalar in form), another is the scalar molecular diffusion (scalar), and the numerical stabilizing diffusion (again either tensor, vector, or scalar in form). The final result must reasonably model contaminant spread and transport for the predictions to be useful. In the literature, measurements of contaminant diffusivity are usually made using one dimensional experiments. Because of the dependence on higher level models to capture all of the physics in contaminant transport, it is to validate these models using realistic multidimensional geometries with comparisons to experimental data. Here, the effects of different diffusion models are examined and compared for two important cases. The first is a contaminant plume originating at the surface and extracted at a drain. The second case is an isolated region of contamination which is advected and diffused towards the drain. In the second case, qualitative comparisons can be made with limited visualization data. These results will eventually be used with a comprehensive experimental program to validate models of diffusion transport.
Portable vapor diffusion coefficient meter
Ho, Clifford K. (Albuquerque, NM)
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Reaction and diffusion in turbulent combustion
Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)
1993-12-01
The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.
Transport and diffusion in the embedding map
N. Nirmal Thyagu; Neelima Gupte
2009-05-20
We study the transport properties of passive inertial particles in a $2-d$ incompressible flows. Here the particle dynamics is represented by the $4-d$ dissipative embedding map of $2-d$ area-preserving standard map which models the incompressible flow. The system is a model for impurity dynamics in a fluid and is characterized by two parameters, the inertia parameter $\\alpha$, and the dissipation parameter $\\gamma$. We obtain the statistical characterisers of transport for this system in these dynamical regimes. These are, the recurrence time statistics, the diffusion constant, and the distribution of jump lengths. The recurrence time distribution shows a power law tail in the dynamical regimes where there is preferential concentration of particles in sticky regions of the phase space, and an exponential decay in mixing regimes. The diffusion constant shows behaviour of three types - normal, subdiffusive and superdiffusive, depending on the parameter regimes. Phase diagrams of the system are constructed to differentiate different types of diffusion behaviour, as well as the behaviour of the absolute drift. We correlate the dynamical regimes seen for the system at different parameter values with the transport properties observed at these regimes, and in the behaviour of the transients. This system also shows the existence of a crisis and unstable dimension variability at certain parameter values. The signature of the unstable dimension variability is seen in the statistical characterisers of transport. We discuss the implications of our results for realistic systems.
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore »of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Lithium diffusion at Si-C interfaces in silicon-graphene composites
Odbadrakh, Khorgolkhuu [Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); McNutt, N. W. [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Nicholson, D. M. [Computational Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Department of Physics, University of North Carolina, Asheville, North Carolina 28804 (United States); Rios, O. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Keffer, D. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)
2014-08-04
Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.
Biosensor as a Reaction-Diffusion System
Ghosh, Surya K; Sain, Anirban
2012-01-01
We model a biosensor as a reaction-diffusion process in a confined geometry. When a solution containing unknown concentration of antigens are injected into the closed chamber of the sensor, the antigens diffuse and react with a functionalised surface. These surface reactions are then converted to an optical signal, the intensity of which indicates the level of antigen content in the solution. We probe the spatio-temporal behavior of the system by studying the governing equations, using mean field approximation and numerical integration. Mean field analysis gives important insights about the dynamics, but in order to compare with real experiments and extract the values of the relevant kinetic parameters, numerical integration was necessary. We track down the operating conditions for quick and efficient response of the sensor.
Sooting Behaviour Dynamics of a Non-Bouyant Laminar Diffusion Flame
Fuentes, Andres; Legros, Guillaume; Rouvreau, Sebastien; Joulain, Pierre; Vantelon, Jean-Pierre; Torero, Jose L; Fernandez-Pello, Carlos
2007-01-01
Local soot concentrations in non-buoyant laminar diffusion flames have been demonstrated to be the outcome of two competitive processes, soot formation and soot oxidation. It was first believed that soot formation was the controlling mechanism...