Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sample Preparation Laboratory Training - Course 204 | Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Preparation Laboratory Training - Course 204 Who Should Attend This course is mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS...

2

Overcoming the far-field diffraction limit via absorbance modulation  

E-Print Network (OSTI)

Diffraction limits the resolution of far-field lithography and imaging to about half of the wavelength, which greatly limits the capability of optical techniques. The proposed technique with absorbance modulation aims to ...

Tsai, Hsin-Yu Sidney

2011-01-01T23:59:59.000Z

3

Microfluidic Sample Preparation for Immunoassays  

SciTech Connect

Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

2001-08-09T23:59:59.000Z

4

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

5

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

6

Single-site addressing of ultracold atoms beyond the diffraction limit via position dependent adiabatic passage  

E-Print Network (OSTI)

We propose a single-site addressing implementation based on the sub-wavelength localization via adiabatic passage (SLAP) technique. We consider a sample of ultracold neutral atoms loaded into a two-dimensional optical lattice with one atom per site. Each atom is modeled by a three-level \\Lambda-system in interaction with a pump and a Stokes laser pulse. Using a pump field with a node in its spatial profile, the atoms at all sites are transferred from one ground state of the system to the other via stimulated Raman adiabatic passage, except the one at the position of the node that remains in the initial ground state. This technique allows for the preparation, manipulation, and detection of atoms with a spatial resolution better than the diffraction limit, which either relaxes the requirements on the optical setup used or extends the achievable spatial resolution to lattice spacings smaller than accessible to date. In comparison to techniques based on coherent population trapping, SLAP gives a higher addressing resolution and has additional advantages such as robustness against parameter variations, coherence of the transfer process, and the absence of photon induced recoil. Additionally, the advantages of our proposal with respect to adiabatic spin-flip techniques are highlighted. Analytic expressions for the achievable addressing resolution and efficiency are derived and compared to numerical simulations for Rb-87 atoms in state-of-the-art optical lattices.

Daniel Viscor; Juan Luis Rubio; Gerhard Birkl; Jordi Mompart; Verònica Ahufinger

2013-01-08T23:59:59.000Z

7

Emittance Adapter for a Diffraction Limited Synchrotron Radiation Source  

Science Conference Proceedings (OSTI)

We investigate the possibility of reaching very small horizontal and vertical emittances inside an undulator in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid in a dedicated insertion line in the storage ring. The insertion leaves the ring parameters and its optical properties unaffected. This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source. The lattice derivation and design is described.

Chao, Alexander Wu; /SLAC; Raimondi, Pantaleo; /Frascati

2012-03-01T23:59:59.000Z

8

Laboratory E131 - Chemical Physics Sample Preparation ...  

Science Conference Proceedings (OSTI)

A115 | A127 | B147 | E131 | E132 | E133 | E134 | E135 | E136 | E137 | E138. Laboratory E131 - Chemical Physics Sample Preparation Laboratory. ...

2013-09-05T23:59:59.000Z

9

The SSRL Biotechnology Sample Preparation Laboratory is available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation Laboratory User Agreement, C. PattyL. Hammon, 111411 SSRL Sample Preparation Laboratories User Access Agreement November 2011 Welcome to the SSRL sample preparation...

10

Microfluidic DNA sample preparation method and device  

DOE Patents (OSTI)

Manipulation of DNA molecules in solution has become an essential aspect of genetic analyses used for biomedical assays, the identification of hazardous bacterial agents, and in decoding the human genome. Currently, most of the steps involved in preparing a DNA sample for analysis are performed manually and are time, labor, and equipment intensive. These steps include extraction of the DNA from spores or cells, separation of the DNA from other particles and molecules in the solution (e.g. dust, smoke, cell/spore debris, and proteins), and separation of the DNA itself into strands of specific lengths. Dielectrophoresis (DEP), a phenomenon whereby polarizable particles move in response to a gradient in electric field, can be used to manipulate and separate DNA in an automated fashion, considerably reducing the time and expense involved in DNA analyses, as well as allowing for the miniaturization of DNA analysis instruments. These applications include direct transport of DNA, trapping of DNA to allow for its separation from other particles or molecules in the solution, and the separation of DNA into strands of varying lengths.

Krulevitch, Peter A. (Pleasanton, CA); Miles, Robin R. (Danville, CA); Wang, Xiao-Bo (San Diego, CA); Mariella, Raymond P. (Danville, CA); Gascoyne, Peter R. C. (Bellaire, TX); Balch, Joseph W. (Livermore, CA)

2002-01-01T23:59:59.000Z

11

Plasmonic Nanolasers Without Cavity, Threshold and Diffraction Limit using Stopped Light  

E-Print Network (OSTI)

We present a plasmonic waveguide where light pulses are stopped at well-accessed complex-frequency zero-group-velocity points. Introducing gain at such points results in cavity-free, "thresholdless" nanolasers beating the diffraction limit via a novel, stopped-light mode-locking mechanism.

Tsakmakidis, Kosmas L; Pickering, Tim W; Hess, Ortwin

2013-01-01T23:59:59.000Z

12

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

13

At-wavelength interferometry of high-NA diffraction-limited EUV optics  

SciTech Connect

Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

2003-08-01T23:59:59.000Z

14

Apparatus for preparing a sample for mass spectrometry  

DOE Patents (OSTI)

Disclosed is an apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

15

An experimental apparatus for diffraction-limites soft x-ray nanofocusing  

Science Conference Proceedings (OSTI)

Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

2011-10-21T23:59:59.000Z

16

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents (OSTI)

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2006-07-25T23:59:59.000Z

17

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents (OSTI)

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2009-03-17T23:59:59.000Z

18

TCLP Preparation and Analysis of K East Basin Composite Sludge Samples  

Science Conference Proceedings (OSTI)

This report contains results from TCLP preparation and analysis of K East Basin floor and canister composite sludge samples. Analyses were performed in the Radiochemical Processing Laboratory (PNNL, 325 Building).

Silvers, Kurt L.

2000-08-15T23:59:59.000Z

19

Investigation of stimulated raman scattering using short-pulse diffraction limited laser beam near the instability threshold  

SciTech Connect

Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and> 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using particle-in-cell codes to validate our understanding quantitatively. Experiments have been conducted at the Trident laser facility and the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) to investigate stimulated Raman scattering near the threshold of the instability using 527 nm and 1059 nm laser light respectively with 1.5-3.0 ps pulses. In both experiments, the interaction beam was focused into a pre-ionized He gas-jet plasma. Measurements of the reflectivity as a function of intensity and k{lambda}{sub D} were completed at the Trident laser facility. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Work is currently underway comparing the results of the experiments with simulations using the VPIC [K. J. Bowers, et at., Phys. Plasmas, 15 055703 (2008)] particle-in-cell code. Details of the experimental results are presented in this manuscript.

Kline, John L [Los Alamos National Laboratory; Montgomery, David S [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Rose, Harvey A [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B J [Los Alamos National Laboratory; Johnson, R P [Los Alamos National Laboratory; Shimada, T [Los Alamos National Laboratory; Bowers, K [Los Alamos National Laboratory; Rousseaux, C [CEA; Tassin, V [CEA; Baton, S D [FRANCE; Amiranoff, F [FRANCE; Hardin, R A [WEST VIRGINIA UNIV

2008-01-01T23:59:59.000Z

20

Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength  

Science Conference Proceedings (OSTI)

Glass welding by ultrashort laser pulses allows joining without the need of an absorber or a preheating and postheating process. However, cracks generated during the welding process substantially impair the joining strength of the welding seams. In this paper a sample preparation method is described that prevents the formation of cracks. The measured joining strength of samples prepared by this method is substantially higher than previously reported values.

Cvecek, K.; Miyamoto, I.; Strauss, J.; Wolf, M.; Frick, T.; Schmidt, M.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TCLP Preparation and Analysis of K East Basin Composite Sludge Samples  

Science Conference Proceedings (OSTI)

Sludge samples from the Hanford K East Basin were analyzed by the Toxicity Characterization Leaching Procedure (TCLP) to assist in the appropriate Resource Conservation and Recovery Act (RCIL4) designation of this material. Sludge samples were collected by Fluor Hanford, Inc. using the consolidated sludge sampling system (system that allows collection of a single sample from multiple sample locations). These samples were shipped to the Postirradiation Testing Laboratory (PTL, 327 Building) and then transferred to the Pacific Northwest National Laboratory (PNNL) Radiochemical Processing Laboratory (RPL, 325 Building) for recovery and testing. Two sludge composites were prepared, using the consolidated sludge samples, to represent K East canister sludge (sample KC Can Comp) and K East floor sludge (sample KC Floor Comp). Each composite was extracted in duplicate and analyzed in duplicate following pre-approved(a) TCLP extraction and analyses procedures. In addition, these samples and duplicates were analyzed for total RCRA metals (via acid digestion preparation). The work was conducted in accordance with the requirements of the Hanford Analytical Quality Assurance Requirements Document (HASQARD). A PNNL Quality Assurance Program compliant with J HASQARD was implemented for this effort. The results from the TCLP analyses showed that all RCRA metal concentrations were less than the TCLP limits for both the canister and floor composite samples and their respective duplicates.

KL Silvers; JJ Wagner; RT Steele

2000-08-15T23:59:59.000Z

22

Method and apparatus for the preparation of liquid samples for determination of boron  

DOE Patents (OSTI)

A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

Siemer, Darryl D. (Idaho Falls, ID)

1986-01-01T23:59:59.000Z

23

Status report on the collection and preparation of coal samples for the Ames Laboratory Coal Library  

SciTech Connect

In comparing and evaluating experimental results on coal generated in different laboratories, or even within the same laboratory, it is necessary to begin the work on samples which are reproducibly equivalent. Also, there must be a sufficient store of the material for ongoing investigations. Thus, the problem is difficult because of the heterogeneity of coal, both at the large bulk level and at the microscopic sample level. This affects the capability to assess the significance of discrepancies in experimental results among laboratories, even if the experimental conditions are carefully controlled. In collecting coal samples from a mine or a preparation plant, considerations must be made to assure a representative bulk sampling and to reduce the material into suitable working samples which accurately and reproducibly reflect the composition of the bulk sample. At the collection site, changes in the coal occur immediately upon exposure to air, resulting in marked deterioration of caking properties, solubility, tar yield, heating value, and other properties. This necessitates that measures be followed to preserve the samples in ''inert'' environments as much as possible. Thus, at each point the collection, transportation, preparation, storage, and preservation of the samples must be rigorously controlled and reproducibly implemented. Such precautions are emphasized in descriptions of the Penn State and the Exxon coal collections. This interim report provides information on an approach to establish a coal library at the Ames Laboratory. The coals serve as a collection of well-characterized materials for both the laboratory's own staff and, eventually, for other interested investigators. This report documents our efforts to date and includes the criteria for coal selection, the procedure for coal sampling, and the techniques utilized in the prevention of changes in the coals throughout the period prior to utilization. 8 refs., 2 figs., 6 tabs.

Biggs, D.L.; Birlingmair, D.H.; Fisher, R.W.; Greer, R.T.; Kaelin, R.A.; Markuszewski, R.; Smith, B.F.; Squires, T.G.; Venier, C.G.; Wheelock, T.D.

1985-01-01T23:59:59.000Z

24

Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy  

Science Conference Proceedings (OSTI)

In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon registered seat, and Kalrez registered O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastian C. [Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801 (United States)

2006-03-15T23:59:59.000Z

25

EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING  

Science Conference Proceedings (OSTI)

Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was issued that recommended that the mixed acid method be replaced by the Cs{sub 2}CO{sub 3} method for the measurement of magnesium (Mg), sodium (Na), and zirconium (Zr) with additional testing of the method by DWPF Laboratory being needed before further implementation of the Cs{sub 2}CO{sub 3} method at that laboratory. While the SME acceptability testing of the Isolok does not address any of the open issues remaining after the publication of the recommendation for the replacement of the mixed acid method by the Cs{sub 2}CO{sub 3} method (since those issues are to be addressed by the DWPF Laboratory), the Cs{sub 2}CO{sub 3} testing associated with the Isolok testing does provide additional insight into the performance of the method as conducted by SRNL. The performance is to be investigated by looking to the composition measurement data generated by the samples of a standard glass, the Analytical Reference Glass - 1 (ARG-1), that were prepared by the Cs{sub 2}CO{sub 3} method and included in the SME acceptability testing of the Isolok. The measurements of these samples were presented as part of the study results, but no statistical analysis of these measurements was conducted as part of those results. It is the purpose of this report to provide that analysis, which was supported using JMP Version 7.0.2.

Edwards, T.; Hera, K.; Coleman, C.

2011-12-05T23:59:59.000Z

26

Enhancing the science return of Mars missions via sample preparation, robotic surface exploration and in orbit fuel production  

E-Print Network (OSTI)

The future of Mars exploration is challenging from multiple points of view. To enhance their science return, future surface probes will most likely be equipped with complex Sample Preparation And Transfer (SPAT) facilities. ...

Lamamy, Julien-Alexandre, 1978-

2004-01-01T23:59:59.000Z

27

Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy  

Science Conference Proceedings (OSTI)

Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, we report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.

Takayama, Yuki; Nakasako, Masayoshi [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522 (Japan); RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148 (Japan)

2012-05-15T23:59:59.000Z

28

Prepared  

Office of Legacy Management (LM)

Prepared Prepared by Oak Ridge Associated Universities Prepared for Division of Remedial Action Projects U.S. Department of Energy COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTYM NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK B.P. ROCCO Radiological Site Assessment Program Manpower Education, Research, and Training Division FINAL REPORT May 1983 B.P. Rocco FINAL REPORT Prepared for A.M. pitt T.J. Sowell C.F. Weaver T.S. Yoo Project Staff Prepared by J.D. Berger R.D. Condra R.C. Gosslee J.A. Mattina OFF-SITE PROPERTY M NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK CO~WREHENSIVE RADIOLOGICAL SURVEY Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program May 1983 -- til - This

29

SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB7 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated.

Pareizs, J.; Hay, M.

2011-02-22T23:59:59.000Z

30

IPUMS-international statistical disclosure controls: 159 census microdata samples in dissemination, 100+ in preparation  

Science Conference Proceedings (OSTI)

In the last decade, a revolution has occurred in access to census microdata for social and behavioral research. More than 325 million person records (55 countries, 159 samples) representing two-thirds of the world's population are now readily available ... Keywords: IPUMS-international, census microdata samples, data dissemination, data privacy

Robert McCaa; Steven Ruggles; Matt Sobek

2010-09-01T23:59:59.000Z

31

Development of the Dried Spot Sample Preparation Methodology and Applications to XRMF Analysis  

Science Conference Proceedings (OSTI)

The dried spot method has significant potential for trace elemental analysis using x-ray fluorescence. Small sample size coupled with spatially resolved excitation offers increased sensitivity for aqueous solutions. The primary limitation in applying this method to routine analyses is that much of the method development and fundamental aspects have not been investigated. We have studied the effects of a number of parameters on the quantitative capabilities of the dried spot method. These include thin-film substrates, drying methods, and solution composition. The small sample size offers opportunities for the analysis of a wide array of sample types including highly radioactive specimens.

Colletti, Lisa P.; Havrilla, George J.

1997-12-31T23:59:59.000Z

32

Universal nucleic acids sample preparation method for cells, spores and their mixture  

DOE Patents (OSTI)

The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

Bavykin, Sergei (Darien, IL)

2011-01-18T23:59:59.000Z

33

SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Five (SB5) for processing in the Defense Waste Processing Facility (DWPF). Part of this SB5 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40 to complete the formation of SB5. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB4. The radionuclide concentrations were measured or estimated in the Tank 51 SB5 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry taken on March 21, 2008. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under direction of the Liquid Waste Organization it was then modified by five washes, six decants, an addition of Pu/Be from Canyon Tank 16.4, and an addition of NaNO2. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Ta Determining the radionuclide concentrations in this Tank 51 SB5 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2008-0010. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task 2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task 5) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB5 will be taken and transferred to SRNL for measurement of these radionuclides. Data presented in this report represents the measured or estimated radionuclide concentrations obtained from several standard and special analytical methods performed by Analytical Development (AD) personnel within SRNL. The method for I-129 measurement in sludge is described in detail. Most of these methods were performed on solutions resulting from the dissolutions of the slurry samples. Concentrations are given for twenty-nine radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated. Results also indicate that 98% of the Tc-99 and 92% of the I-129 that could have been in this sludge batch have been removed by chemical processing steps in the SRS Canyons or Tank Farm.

Bannochie, C; Ned Bibler, N; David Diprete, D

2008-07-28T23:59:59.000Z

34

Extraction Chromatographic Methods in the Sample Preparation Sequence for Thermal Ionization Mass Spectrometric Analysis of Plutonium Isotopes  

Science Conference Proceedings (OSTI)

A sample preparation sequence for actinide isotopic analysis by TIMS is described that includes column-based extraction chromatography as the first separation step, followed by anion exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA-resin and DGA-resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple isotopic spikes through the separation sequence. Pu recoveries were 87% and 86% for TEVA- and DGA-resins separations respectively. The Pu recoveries from 400 {mu}L anion-exchange column separations were 89% and 93% for trial sequences incorporating TEVA and DGA-resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency, for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73 {+-} 0.77% (2-sigma) for the DGA-resin trials and 2.67 {+-} 0.54% for the TEVA-resin trials, compared to 3.41% and 2.37% (average 2.89%) for two spikes in the experimental set. These compare with an average measurement efficiency of 2.78 {+-} 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.

Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Douglas, Matthew; Haney, Morgan M.; Peterson, Steve L.; Maiti, Tapas C.; Aardahl, Christopher L.

2011-10-17T23:59:59.000Z

35

UTILIZING STATISTICS TO DETERMINE HOW MUCH SAMPLING AND ANALYSISIS WARRANTED TO SUPPORT SAVANNAH RIVER SITEHIGH LEVEL WASTE SLUDGE BATCH PREPARATION  

SciTech Connect

Accelerated cleanup initiatives at the SRS include expediting radioactive sludge processing. Sludge is the highest risk component of waste since it contains the highest concentrations of long-lived radionuclides. The sludge is staged into ''batches'' that are then the feed material to the Defense Waste Processing Facility (DWPF) which vitrifies the waste into a safe form for permanent disposal. The preparation of each batch includes sampling and analysis of the slurried material. The results of the characterization are used as the bases for batch blending and processing decisions. Uncertainty is inherent in the information used for planning. There is uncertainty in the quantity of sludge contained in a tank, the waste composition, and the waste physical properties. The goal of this analysis is to develop the basis for the number of physical samples that should be taken from the slurried waste tank and the number of replicates of laboratory measurements that should be performed in order to achieve a specified uncertainty level. Recommendations for sampling and analysis strategies are made based on the results of the analysis.

Hamm, B

2007-05-17T23:59:59.000Z

36

Recovery of semi-volatile organic compounds during sample preparation: Compilation for characterization of airborne particulate matter  

DOE Green Energy (OSTI)

Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide volatility and polarity range. To meet these challenges, solutions of n-alkanes (nC{sub 12} to nC{sub 40}) and polycyclic aromatic hydrocarbons PAHs (naphthalene to benzo[ghi]perylene) were reduced in volume from a solvent mixture (equal volumes of hexane, dichloromethane and methanol), to examine recovery after reduction in volume. When the extract solution volume reached 0.5 mL the solvent was entirely methanol, and the recovery averaged 60% for n-alkanes nC{sub 12} to nC{sub 25} and PAHs from naphthalene to chrysene. Recovery of higher MW compounds decreased with MW, because of their insolubility in methanol. When the walls of the flasks were washed with 1 mL of equal parts hexane and dichloromethane (to reconstruct the original solvent composition), the recovery of nC{sub 18} and higher MW compounds increased dramatically, up to 100% for nC{sub 22}-nC{sub 32} and then slowly decreasing with MW due to insolubility. To examine recovery during extraction of the components of the High Capacity Integrated Gas and Particle Sampler, the same standards were used to spike its denuders and filters. For XAD-4 coated denuders and filters, normalized recovery was > 95% after two extractions. Recovery from spiked quartz filters matched the recovery from the coated surfaces for alkanes nC{sub 18} and larger, and for fluoranthene and larger PAHs. Lower MW compounds evaporated from the quartz filter with the spiking solvent. This careful approach allowed quantification of organics by correcting for volatility- and solubility-related sample preparation losses. This method is illustrated for an ambient sample collected with this sampler during the Texas Air Quality Study 2000.

Swartz, Erick; Stockburger, Leonard; Gundel, Lara

2002-05-01T23:59:59.000Z

37

Sample M&V Plan from the Texas Workshop: Preparing and Evaluating Measurement and Verification Plans for Energy Performance Contracts in Texas  

E-Print Network (OSTI)

This document contains a sample M&V plan that has been prepared in accordance with the Texas Guidelines for Measurement and Verification for Energy Performance Contracts. This sample M&V plan was extracted from the March 1999 workshop, entitled: "Preparing and Evaluating Measurement and Verification Plans for Energy Performance Contracts in Texas", Sponsored by the Texas was developed by the Texas State Energy Coordinating Council, and the General Services Commission, State Energy Conservation Office. The M&V plan represents an actual Performance Contract that was approved by the TECC/SECO. This document is a public domain document that is intended to serve as an example document of an M&V plan. Certain manufacturer's trade names are mentioned in this document for the purpose of describing the types of equipment used to measure energy use. Such reference does not constitute an endorsement or recommendation of such equipment, and is provided for informational purposes only.

Haberl, J. S.

1999-01-01T23:59:59.000Z

38

Chemical Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Inventory Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL LCLS Building - Any - 120 131 999 Room - Any - 109 113 209 257 Storage Area Storage Category Apply Title Facility Building Room Storage Area Storage Category Available to All Qty. Size Units Responsible Person 1,3-cyclohexadiene SSRL 131 209 CI L No 1 25 milliliters (ml) Tsu-Chien Weng 1,4- dioxane SSRL 120 257 CB1 L Yes 1 1 liters (l) Cynthia Patty 1,8-Octanedithiol SSRL 131 209 CA3 L No 1 5 grams (g) Schmidt 1-Chloronapthalene SSRL 131 209 CA3 L No 1 100 grams (g) Schmidt 1-Propanol LCLS 999 109 B1 L Yes 1 4 liters (l) Lisa Hammon

39

Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Inventory Equipment Resources Title Equipment Type Facility Laboratory Building Room Accumet Basic AB15 pH meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Agate...

40

Materials Science at the Diffraction Limit - A Review on Synchrotron ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Infrared spectroscopy is a well established and widely utilized technique in the scientific community ranging from physics to biology. In the last ...

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measurement of the separation between atoms beyond diffraction limit  

E-Print Network (OSTI)

Precision measurement of small separations between two atoms or molecules has been of interest since the early days of science. Here, we discuss a scheme which yields spatial information on a system of two identical atoms placed in a standing wave laser field. The information is extracted from the collective resonance fluorescence spectrum, relying entirely on far-field imaging techniques. Both the interatomic separation and the positions of the two particles can be measured with fractional-wavelength precision over a wide range of distances from bout lambda/550 to lambda/2.

Jun-Tao Chang; Joerg Evers; Marlan O. Scully; M. Suhail Zubairy

2005-08-01T23:59:59.000Z

42

Lucky exposures: diffraction limited astronomical imaging through the atmosphere  

E-Print Network (OSTI)

also like to thank Ian for many relaxing evenings in The Castle, Neil, Andrew, Tim, Stian, Sarah R, Sarah B, Karen, Hannah, Dave, Dan, Lisa, and Andy for many enjoyable parties, Steve, Wendy and Haley for many fun trips to London, and Paula and Andy... for always giving me somewhere pleasant to stay and doing my proof-reading. I would like to acknowledge the support of a PPARC fellowship. This work is based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly...

Tubbs, Robert Nigel

2003-11-25T23:59:59.000Z

43

Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991  

SciTech Connect

The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

1992-03-01T23:59:59.000Z

44

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

45

LCLS Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

solutions for uniformity,reliability and environmentally safe operations. SANYO designed refrigeration for precise and stable biologics storage. Fridge temperature range: 2C to...

46

Sample preparation system for microfluidic applications  

DOE Patents (OSTI)

An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.

Mosier, Bruce P. (San Francisco, CA); Crocker, Robert W. (Fremont, CA); Patel, Kamlesh D. (Dublin, CA); Harnett, Cindy K. (Livermore, CA)

2007-05-08T23:59:59.000Z

47

Geoscience Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

8 x 50mL conical (with 15mL adapters), and 48 x 2mL tubes. A 4 x 750mL swinging-bucket rotor is also available with adapters for 15mL and 50mL conical tubes. Test Tube Rotator...

48

BCM 2 Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

(Cold Room) Refrigerated Fisher Marathon 21KBr centrifuge (0-13,300 rpm dependent on rotor). Sanyo VIP Series MDF-U73VC Temperature Control Sanyo VIP Series -86C ultra low...

49

Stanford Synchrotron Radiation Lightsource: Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

solvents, acids, bases, buffers, and other common reagents. See the "Chemicals We Stock for Users" section to see the full list of chemicals that we keep on hand for users....

50

Stanford Synchrotron Radiation Lightsource: Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplies Available For Check Out Agate Mortar & Pestle Sets Buchi V-700 Vacuum Pump & condenser Campden Instruments Vibrating Manual Tissue Cutter HA 752 Diamond Scribes & Glass...

51

Preparing Your  

NLE Websites -- All DOE Office Websites (Extended Search)

of third party vendors, enter "international shipping and shopping carts" or similar search terms into an Internet search engine. 52 Preparing Your Business for Global...

52

Specimen Preparation  

Science Conference Proceedings (OSTI)

Table 1   Standard preparation conditions for structural ceramics (e.g., Si 3 N 4 , AlN, SiC and Al 2 O 3 ), semiautomatic

53

Target preparations and thickness measurements  

SciTech Connect

A wide variety of isotope target preparative methods have been used, including rolling of metals, vapor deposition, electrodeposition, chemical vapor deposition, and sputtering, to obtain thin and thick films of most elements or compounds of elements in the Periodic Table. Most thin films prepared for use in self-supported form as well as those deposited on substrates require thickness measurement (atom count and distribution) and/or thickness uniformity determination before being used in nuclear research. Preparative methods are described together with thickness and uniformity determination procedures applicable to samples being prepared (in situ) and to completed samples. Only nondestructive methods are considered applicable to target samples prepared by the ORNL Solid State Division, Isotope Research Materials Laboratory. Thickness or areal density measurements of sufficient sophistication to yield errors of less than +-1 percent have been achieved with regularity. A statistical analysis procedure is applied which avoids error caused by balance zero-point drift in direct weight measurement methods. (auth)

Adair, H.L.; Kobisk, E.H.

1975-01-01T23:59:59.000Z

54

Sampling – Soil  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as absorbents.

55

Prepared Remarks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prepared Prepared Remarks of Brian Forshaw Connecticut Municipal Electric Energy Cooperative At U.S. DOE Workshop on Transmission Congestion Hartford, Connecticut July 9,2008 The Connecticut Municipal Electric Energy Cooperative was created by the publicly-owned electric systems in the State of Connecticut to enable the municipal systems to provide electric service to their customers at the lowest reasonable cost. Currently, CMEEC provides full requirements wholesale electric service to the State's eight public power systems as well as the Mohegan Tribal Utility Authority. As Director of Energy Markets, I am responsible for strategic planning activities and analysis of the impacts that wholesale markets will have on the municipal electric utilities. My responsibilities also include representing CMEEC in the ISO-NE stakeholder process, including the ISO-NE technical committees.

56

Anthrax Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthrax Anthrax Sampling and Decontamination: Technology Trade-Offs Phillip N. Price, Kristina Hamachi, Jennifer McWilliams, and Michael D. Sohn Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley CA 94720 September 12, 2008 This work was supported by the Office of Science, Office of High Energy Physics, Homeland Security under the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. Contents 1 Executive Summary 3 1.1 How much sampling is needed to decide if a building is safe? . . . . . . . 3 1.1.1 Sampling Nomogram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 How many characterization samples should be taken? . . . . . . . . . . . 7 1.3 What decontamination method should be used? . . . . . . . . . . . . . . . 7 1.4 Post-decontamination sampling . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 What are rules of thumb for cost and effort? . . . . . . . . . . . .

57

Sampling box  

DOE Patents (OSTI)

An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

2000-01-01T23:59:59.000Z

58

Prepared by:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government

Thermoelectric Plant Technologies; Phil Dipietro; Kristin Gerdes; Christopher Nichols

2008-01-01T23:59:59.000Z

59

Prepared by:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Beluga Coal Gasification Feasibility Study

Brent Sheets; Robert Chaney

2006-01-01T23:59:59.000Z

60

Prepared for  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This effort is based on the continuation of work initiated under a collaborative “National Laboratory-University-industrial Three-party Program ” namely:

R. W. Goles; G. A. Whyatt; R. A. Merrill; D. K. Seiler; C. J. Freeman; D. A. Lamar; G. B. Josephson; R. W. Goles; G. A. Whyatt; R. A. Merrill; D. K. Seiler; C. J. Freeman; D. A. Lamar; G. B. Josephson

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Prepared by  

E-Print Network (OSTI)

over additional byproduct material. This new byproduct material now also includes naturally occurring materials, such as discrete sources of Radium-226, and accelerator-produced radioactive materials (NARM). This revision of NUREG-1556, Vol. 13, adds guidance needed to license commercial radiopharmacies as a result of the regulatory changes made by the EPAct and the NARM rule, “Requirements for Expanded Definition of Byproduct Material.” This guidance document contains information that is intended to assist applicants for commercial radiopharmacy licenses in preparing their license applications. In particular, it describes the type of information needed to complete NRC Form 313, “Application for Materials License. ” This document both describes the methods acceptable to NRC license reviewers in implementing the regulations and the techniques used by the reviewers in evaluating the application to determine if the proposed activities are acceptable for licensing purposes. Paperwork Reduction Act Statement

Commercial Radiopharmacy Licenses; D. E. White; J. F. Katanic; D. B. Howe

2007-01-01T23:59:59.000Z

62

Prepared by:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

Philip Kerrigan; In Paper; Philip Kerrigan

2012-01-01T23:59:59.000Z

63

RW Prepared  

Office of Legacy Management (LM)

r tz r tz s /r;1 RW Prepared by Oak Ridge Associated Un iversities Prepared for Division of Remedial Action Projects U.S. Department of Energy C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y B N I A G A R A F A L L S S T O R A G E S I T E L E W I S T O N , N E W Y O R K J . D . B E R G E R R a d i o l o g i c a l S i t e A s s e s s m e n t p r o g r a m Manpower Education, Research, and Training Division FINAL REPORT M a y 1 9 8 4 COMPREEENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY B NIAGARA FAI"LS STORAGE SITE LE"I{ISTON, NE}I YoRK u. s. F o r m e r l y U t i l i z e d P r e p a r e d f o r Department of EnergY as Dart of the S i t e s - - R e m e d i a l A c t i o n P r o g r a u J . D . B e r g e r P r o j e c t J. Burden* R . D . C o n d r a J . S . E p l e r * P . l { . F r a m e l,l . O. Eelton R . C . G o s s l e e S t a f f t { . L . S n i t h * T . J . S o w e l l ' L . B . T a u s * C. F . Weaver B . S . Z a c h a r e k R a d i o l o g i c a l Manpower Educati-on, Oak Ridge O a k R

64

Prepared for  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored.

D. M. Bachovchin; R. A. Newby; Alafaya Trail; Charles Alsup

2004-01-01T23:59:59.000Z

65

Prepared by  

E-Print Network (OSTI)

adjust their physical inventory of source or special nuclear material (SNM) to document and report such activities. The reports are submitted using U.S. Department of Energy (DOE)/NRC Form 741. Licensees may need to provide additional information on some imports or exports of source or SNM. The additional information is reported using DOE/NRC Form 740M. This NUREG contains instructions for preparing these forms. Paperwork Reduction Act Statement The information collections contained in this NUREG are covered by DOE/NRC Forms 741 and 740M, which the Office of Management and Budget (OMB) approved under approval numbers 3150-0003 and 3150-0057. Public Protection Notification If a means used to impose an information collection does not display a currently valid OMB control number, the NRC may not conduct or sponsor, and a person is not required to respond to, the information collection. iii NUREG/BR-0006, Rev. 7NUREG/BR-0006, Rev. 7 iv CONTENTS

C. Graves

2009-01-01T23:59:59.000Z

66

Prepared by:  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Cover images: Upper left: offshore wind turbine, source: Large-Scale Offshore Wind Power in the United States,

F. Alexander (lanl; M. Anitescu (anl; D. Brown (lbnl; S. Mehrotra (northwestern; A. Pinar (snl; K. Willcox (mit

2011-01-01T23:59:59.000Z

67

Prepared for:  

E-Print Network (OSTI)

Important Disclaimer: The sole purpose of this document and associated services performed by CSIRO is to provide scientific knowledge to the South Australian Government. Work has been carried out in accordance with the scope of services identified in the agreement dated 22 October 2003, between South Australian Government through the EPA (‘the Client’) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). This document provides a review of environmental impacts of the in-situ acid leach uranium mining process. The material presented in this document has been derived from information supplied to CSIRO by the Client and from consultation with stakeholders and research conducted by CSIRO and other agencies and consultants. The passage of time, manifestation of latent conditions or impact of future events may require further exploration and re-evaluation of the findings, observations, conclusions, and recommendations expressed in this document. This document has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in conjunction with the provisions of the agreement between CSIRO and the Client. CSIRO accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this document by any third party.

Graham Taylor; Vic Farrington; Peter Woods; Robert Ring; Robert Molloy; Graham Taylor; Vic Farrington; Peter Woods; Robert Ring; Robert Molloy; Mr Peter Dolan; Adelaide Sa

2004-01-01T23:59:59.000Z

68

Prepared by  

E-Print Network (OSTI)

This report does not contain any information that is proprietary to Westinghouse Electric Company. The U.S. Nuclear Regulatory Commission (NRC) has also prepared a proprietary version of this report for internal distribution. In order to conform to the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, as set forth in Title 10, Section 2.790, of the Code of Federal Regulations (10 CFR 2.790), the proprietary information in the proprietary version of this document is contained within brackets and, where the proprietary information has been deleted in the non-proprietary version, only the brackets remain (the information within the brackets in the proprietary version having been deleted). The justification for claiming the information as proprietary is indicated in both versions by means of lower case letters (a) through (f), located as a superscript immediately following the brackets enclosing each bracketed item of proprietary information, or in the margin opposite such information. These lower case letters refer to the types of information Westinghouse customarily holds in confidence, as identified in Sections (4)(ii)(a) through (4)(ii)(f) of the affidavit accompanying the transmittal of these documents pursuant to 10 CFR 2.790(b)(1).

K. B. Welter; S. M. Bajorek; Jose Reyes; Brian Woods; John Groome; John Hopson; Eric Young; John Denoma; Kent Abel

2005-01-01T23:59:59.000Z

69

Prepared for:  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report presents and discusses results from the project “Fate of Mercury in Synthetic Gypsum Used for Wallboard Production, ” performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has

Jessica Sanderson; Gary M. Blythe; Mandi Richardson; Charles Miller

2008-01-01T23:59:59.000Z

70

Prepared By:  

E-Print Network (OSTI)

Team (VSCPT) since the last publication in 2004. Much has happened in Vermont schools, and in schools throughout the country, to warrant the production of a second edition of the Crisis Guide. School leaders and emergency responders have learned a great deal from planning, simulating and responding to real-life school emergencies over the past four years. The Crisis Team has incorporated this new learning within the updated Crisis Guide. The Crisis Guide contains new incident response forms for severe weather, infectious disease, power outages and other hazards that schools need to address in their safety plans. It includes information and an appendix full of useful assessments, ideas and references that the Crisis Team believes will make school response plans more focused, easier to implement and effective. The guidelines are meant to bring school leaders and emergency responders together to plan for school emergencies. In reviewing the past four years, one fact is obvious, school emergencies will happen. The question is, will your school and community be prepared to minimize property damage, reduce injuries and hopefully save lives. This work is too important to ignore. The Vermont School Crisis Planning Team’s work was crucial prior to and following the school shooting in Essex Town. Understanding that “It Can Happen Here”, school and community

unknown authors

2008-01-01T23:59:59.000Z

71

Prepared for:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, nor any of its contractors, subcontractors, nor their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any other agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. ARC-2007-D2540-032-04 In Situ Remediation and Stabilization Technologies for Mercury in Clay Soils The present study includes innovative in situ remediation technologies for the treatment and/or stabilization of mercury contaminated soils. It presents four green alternatives for the treatment

Elsa Cabrejo (doe Fellow; Doe Em; Oak Ridge Office

2010-01-01T23:59:59.000Z

72

Double patterning HSQ processes of zone plates for 10 nm diffraction limited performance  

E-Print Network (OSTI)

This work was supported by the Director, Office of Science,Office of Basic Energy Sciences, of the U.S. Department of

Chao, Weilun

2009-01-01T23:59:59.000Z

73

WSDOT Test Method T 127 Preparation of Leachate Sample for Testing Toxicity of HECP Effluents 1. Scope This test method outlines the procedure for collecting leachate from a HECP sample. 2. References 2.1 EPA-821-R-02-012 Methods for Measuring Acute Toxic  

E-Print Network (OSTI)

3.1 Lay cheesecloth over clean topsoil 3.2 Apply the HECP to the cheesecloth at the following coverage: 3.2.1 HECP Long-Term or Moderate-Term Mulch 3,500 lbs per acre in two lifts with no more than 2000 # per acre in any one lift. 3.2.2 HECP Short-Term Mulch 2000 # per acre minimum, or manufacturer’s recommended rate may be used. 3.3 Allow material to cure for 48 hours 3.4 Pull cheesecloth up with mat of HECP, brush off any soil 3.5 Cut HECP into squares and provide 1.02 pounds of HECP to the laboratory. 4. Preparation of the Leachate (done by the laboratory) 4.1 Allow hydromulch product to soak in water for one hour 4.2 Remove hydromulch sheet from water 4.3 Filter water through a 60 micron filter – water may be pre-filtered through a 35 mesh and then a 120 mesh before using the 230 mesh/63 micron filter. Note: Leachate not immediately used for testing should be stored at 4 ° C in the dark until

unknown authors

2012-01-01T23:59:59.000Z

74

Biology Chemistry & Material Science Laboratory 2 | Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including...

75

Biology Chemistry & Material Science Laboratory 1 | Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray...

76

NMR Sample Policy Version: 20 Jul 2006  

E-Print Network (OSTI)

NMR Sample Policy Version: 20 Jul 2006 Task: NMR Sample Preparation Equipment Used: Centrifuge, pH meter, NMR spectrometers, fumehood, fridges, freezers, tube cleaner Location: Rooms G14, G16, G23 and G24 in the Henry Wellcome Building for Biomolecular NMR Spectroscopy, University of Birmingham Hazards

Birmingham, University of

77

LANSCE | Lujan Center | Chemical & Sample Prep  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical & Sample Preparation Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Monika Hartl | hartl@lanl.gov | 505.665.2375 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Glove box - He atmosphere High-purity water Diamond anvils Rotating anode generators (reflectometry, residual stress, powder diffraction) Zeiss microscope (with fluorescence abilities) Tube and box furnaces Ultrasonic bath ZAP-cell (for in situ diffraction at high P) Infrared spectrometer Brewster angle microscope

78

Internal Audit Preparation Worksheet  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Internal Audit Preparation Job Aid 11_0304 Page 1 of 5 2 Internal Audit Preparation Job Aid 11_0304 Page 1 of 5 EOTA - Business Form Document Title: Internal Audit Preparation Job Aid Document Number: F-012 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-007, Internal Audit Process Notify of Changes: Internal Auditors Referenced Document(s): F-011 Internal Audit Report F-012 Internal Audit Preparation Job Aid 11_0304 Page 2 of 5 Revision History: Rev. Description of Change A Initial Release 11_0304 Change title from Worksheet to Job Aid and changed revision from alpha to numeric for consistency. F-012 Internal Audit Preparation Job Aid 11_0304 Page 3 of 5 Internal Audit Preparation Worksheet F-012 Internal Audit Preparation Job Aid 11_0304 Page 4 of 5

79

Report Sample 5  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prepared for: Prepared by: Prepared for: Prepared by: U.S. Department of Energy AECOM Minneapolis Project Number 60140143 June 2010 Environment Final Environmental Assessment and Notice of Wetland Involvement Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi i BlueFire DOE Final EA 6-4-10.docx Contents Executive Summary ........................................................................................................................................... 1 Acronyms, Abbreviations, and Terms ............................................................................................................ 3 1.0 Introduction ............................................................................................................................................. 1-1

80

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Acceptance sampling methods for sample results verification  

SciTech Connect

This report proposes a statistical sampling method for use during the sample results verification portion of the validation of data packages. In particular, this method was derived specifically for the validation of data packages for metals target analyte analysis performed under United States Environmental Protection Agency Contract Laboratory Program protocols, where sample results verification can be quite time consuming. The purpose of such a statistical method is to provide options in addition to the ``all or nothing`` options that currently exist for sample results verification. The proposed method allows the amount of data validated during the sample results verification process to be based on a balance between risks and the cost of inspection.

Jesse, C.A.

1993-06-01T23:59:59.000Z

82

Aerosol preparation of intact lipoproteins  

DOE Patents (OSTI)

A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

Benner, W. Henry (Danville, CA); Krauss, Ronald M (Berkeley, CA); Blanche, Patricia J (Berkeley, CA)

2012-01-17T23:59:59.000Z

83

An Iterative Rejection Sampling Method  

E-Print Network (OSTI)

In the note we consider an iterative generalisation of the rejection sampling method. In high energy physics, this sampling is frequently used for event generation, i.e. preparation of phase space points distributed according to a matrix element squared $|M|^2$ for a scattering process. In many realistic cases $|M|^2$ is a complicated multi-dimensional function, so, the standard von Neumann procedure has quite low efficiency, even if an error reducing technique, like VEGAS, is applied. As a result of that, many of the $|M|^2$ calculations go to ``waste''. The considered iterative modification of the procedure can extract more ``unweighted'' events, i.e. distributed according to $|M|^2$. In several simple examples we show practical benefits of the technique and obtain more events than the standard von Neumann method, without any extra calculations of $|M|^2$.

A. Sherstnev

2008-07-17T23:59:59.000Z

84

Fusion Science to Prepare  

NLE Websites -- All DOE Office Websites (Extended Search)

DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The...

85

Safe Frozen Turkey Preparation  

NLE Websites -- All DOE Office Websites (Extended Search)

to the dog. 4. Save time and dirty dishes, just prepare the meal. A. True why wash so many dishes? B. False wash the cutting board frequently in hot soapy water; same...

86

PREPARATION OF URANIUM MONOSULFIDE  

DOE Patents (OSTI)

A process is given for preparing uranium monosulfide from uranium tetrafluoride dissolved in molten alkali metal chloride. A hydrogen-hydrogen sulfide gas mixture passed through the solution precipitates uranium monosulfide. (AEC)

Yoshioka, K.

1964-01-28T23:59:59.000Z

87

Paper Preparation Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

735E Validation of the Window Model of the Modelica Buildings Library Thierry Stephane Nouidui, Michael Wetter, and Wangda Zuo July 2012 DISCLAIMER This document was prepared as an...

88

PROCEDURE FOR PREPARING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROCEDURE FOR PREPARING PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) Revision 1 November 1, 2007 Records Management Division, IM-23 PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) 1. If the records have not yet been inventoried, see "Procedure for Conducting a Records Inventory." An inventory must be completed prior to preparing the RIDS. 2. The Records Inventory and Disposition Schedules (RIDS) should be reviewed and updated at least annually on DOE F 1324.10 and DOE F 1324.9. The RIDS covers all record, administrative and programmatic, as well as non- record material. The RIDS must include: a. Complete and detailed information identifying the organization (s) responsible for the records.

89

September 2004 Water Sampling  

Office of Legacy Management (LM)

Sampling at the Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

90

Sample Desorption/Ionization From Mesoporous Silica  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Desorption/Ionization From Mesoporous Silica Sample Desorption/Ionization From Mesoporous Silica Sample Desorption/Ionization From Mesoporous Silica Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Available for thumbnail of Feynman Center (505) 665-9090 Email Sample Desorption/Ionization From Mesoporous Silica Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin

91

Rain sampling device  

DOE Patents (OSTI)

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

1991-05-14T23:59:59.000Z

92

Guide to preparing SAND Reports and other communication products.  

SciTech Connect

This guide describes the R&A process, Common Look and Feel requirements, and preparation and publishing procedures for communication products at Sandia National Laboratories. Samples of forms and examples of published communications products are provided.

2009-02-01T23:59:59.000Z

93

Guide to Preparing SAND Reports  

E-Print Network (OSTI)

The Guide to Preparing SAND Reports contains guidelines for producing SAND Reports and other information releases. Its guidelines reflect DOE regulations and Sandia policy. The Guide includes in Section 1, policies for protecting and reproducing official information at Sandia, SAND number information, and Review & Approval procedures; in Section 2, basic writing instructions, which are illustrated in an annotated sample report; in Section 3, an explanation of the format, layout, and graphics of SAND Reports and a table that details the markings and legends needed for report covers and title pages; in Section 4, the procedures for reproducing and distributing SAND Reports; and in Section 5, information on presentations and conference papers, journal articles, book chapters, and brochures. The appendixes contain sections on Sandia's preferred style, usage, and grammar; equations; report references; and trademarks and copyrights. 4 May 1998 Intentionally Left Blank May 1998 5 Conten...

Tamara Locke Editor; Tamara K. Locke

1998-01-01T23:59:59.000Z

94

Quality Reference Samples  

Science Conference Proceedings (OSTI)

Peer-reviewed fats and oils related performance-based control samples for lab quality assurance and quality control. Quality Reference Samples Certified Reference Materials (CRM) aocs certified Certified Reference Materials chemists CRM fat fats lab labo

95

September 2004 Water Sampling  

Office of Legacy Management (LM)

information documented on the field data sheets? Yes 18. Was the presence or absence of ice in the cooler documented at every sample location? NA Sample chilling was not required....

96

September 2004 Water Sampling  

Office of Legacy Management (LM)

3 3 Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map .............................5 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9

97

September 2004 Water Sampling  

Office of Legacy Management (LM)

Old and New Rifle, Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle, Colorado, Processing Site ..........................................................6 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9

98

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map ..............................................................7 Data Assessment Summary ..............................................................................................................9 Water Sampling Field Activities Verification Checklist ...........................................................11

99

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

and October 2013 and October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site ................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

100

September 2004 Water Sampling  

Office of Legacy Management (LM)

Riverton, Wyoming, Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9 Laboratory Performance Assessment ........................................................................................11

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sampling community structure  

Science Conference Proceedings (OSTI)

We propose a novel method, based on concepts from expander graphs, to sample communities in networks. We show that our sampling method, unlike previous techniques, produces subgraphs representative of community structure in the original network. These ... Keywords: clustering, community detection, complex networks, graphs, sampling, social networks

Arun S. Maiya; Tanya Y. Berger-Wolf

2010-04-01T23:59:59.000Z

102

Preparation of vinyl acetate  

DOE Patents (OSTI)

This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

Tustin, Gerald Charles (Kingsport, TN); Zoeller, Joseph Robert (Kingsport, TN); Depew, Leslie Sharon (Kingsport, TN)

1998-01-01T23:59:59.000Z

103

Method for preparing superconductors  

DOE Patents (OSTI)

A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

Dahlgren, Shelley D. (Richland, WA)

1976-01-01T23:59:59.000Z

104

Preparation of uranium nitride  

DOE Patents (OSTI)

A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

Potter, Ralph A. (Lynchburg, VA); Tennery, Victor J. (Upper Arlington, OH)

1976-01-01T23:59:59.000Z

105

Preparation of vinyl acetate  

DOE Patents (OSTI)

This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

1998-03-24T23:59:59.000Z

106

Process for preparing radiopharmaceuticals  

DOE Patents (OSTI)

A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

Barak, Morton (Walnut Creek, CA); Winchell, Harry S. (Lafayette, CA)

1977-01-04T23:59:59.000Z

107

Sampling diffusive transition paths  

SciTech Connect

We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

F. Miller III, Thomas; Predescu, Cristian

2006-10-12T23:59:59.000Z

108

Internal Audit Preparation Worksheet  

NLE Websites -- All DOE Office Websites (Extended Search)

5 ILT Course Support Checklist 10_0630 Page 1 of 4 5 ILT Course Support Checklist 10_0630 Page 1 of 4 EOTA - Business Form Document Title: ILT/Exercise Initial Preparation Checklist Document Number: ISDF-015 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: EOTA Employees Referenced Document(s): ITTP-012 Graphic Design Support Process, ISDF-018 Course Roster ISDF-008 ILT Student Feedback Survey ISDF-015 ILT Course Support Checklist 10_0630 Page 2 of 4 Revision History: Rev. Description of Change A Initial Release 10_0630 Modified to accompany TPP ISDF-015 ILT Course Support Checklist 10_0630 Page 3 of 4 ILT/Exercise Initial Preparation Checklist Anticipated

109

September 2004 Water Sampling  

Office of Legacy Management (LM)

Green River, Utah, Disposal Site Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9 Laboratory Performance Assessment ........................................................................................11 Sampling Quality Control Assessment ......................................................................................18

110

Preparing for the Unexpected  

E-Print Network (OSTI)

We can reduce the risk of injury or death from disasters by becoming informed and being prepared for them. This booklet explains how to make a family disaster plan, how to compile a disaster supplies kit, where to find help, and how to get involved in community efforts for disaster preparedness. It also includes special sections on children, food safety, pets, septic systems, and farms and ranches.

Harris, Janie; Norman, Lisa; Lesikar, Bruce J.; Smith, David

2007-03-26T23:59:59.000Z

111

TORIS Data Preparation Guidelines  

SciTech Connect

The objective of this manual is to present guidelines and procedures for the preparation of new data for the Tertiary Oil Recovery Information System (TORIS) data base. TORIS is an analytical system currently maintained by the Department of Energy's (DOE) Bartlesville Project Office. It uses an extensive field- and reservoir-level data base to evaluate the technical and economic recovery potential of specific crude oil reservoirs.

Guinn, H.; Remson, D.

1999-03-11T23:59:59.000Z

112

PREPARATION OF PLUTONIUM HALIDES  

DOE Patents (OSTI)

A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

Davidson, N.R.; Katz, J.J.

1958-11-01T23:59:59.000Z

113

PREPARATION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

1959-10-01T23:59:59.000Z

114

Beacon Project - Unpredictable Sampling  

Science Conference Proceedings (OSTI)

... or undetected tampering), with the random number generator used for sampling can lead to erroneous estimates of the percentage of faulty parts. ...

2013-07-25T23:59:59.000Z

115

FANS - Sample Change  

Science Conference Proceedings (OSTI)

... result of neutrons with incident energies higher than ... between the sample position and the detector bank. ... 60 to 300 seconds per energy point and ...

116

September 2004 Water Sampling  

Office of Legacy Management (LM)

field procedures? Yes List any Program Directives or other documents, SOPs, instructions. Work Order Letter dated May 1, 2013. Program Directive SHL 2013 01. 2. Were the sampling...

117

FANS - Sample Change  

Science Conference Proceedings (OSTI)

... This is achieved by placing a cadmium shield between the sample position and the detector bank. In order to place the ...

118

Sampling system and method  

DOE Patents (OSTI)

The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

2013-04-16T23:59:59.000Z

119

2003 CBECS Sample Design  

U.S. Energy Information Administration (EIA) Indexed Site

Technical Information > Sample Design Technical Information > Sample Design How the Survey Was Conducted 2003 Commercial Buildings Energy Consumption Survey: Sample Design Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted quadrennially by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings. The survey is based upon a sample of commercial buildings selected according to the sample design requirements described below. A “building,” as opposed to an “establishment,” is the basic unit of analysis for the CBECS because the building is the energy-consuming unit. The 2003 CBECS was the eighth survey conducted since 1979

120

Biological sample collector  

DOE Patents (OSTI)

A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

Murphy, Gloria A. (French Camp, CA)

2010-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sample push out fixture  

DOE Patents (OSTI)

This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

Biernat, John L.

2000-02-22T23:59:59.000Z

122

Sample Changes and Issues  

U.S. Energy Information Administration (EIA) Indexed Site

Sample and Model Issues Sample and Model Issues Summary Our comprehensive review of the EIA 914 has confirmed that discrepancies can arise between estimates for December of one year and January of the next. These are most evident for Texas estimates between December 2008 and January 2009. Reports now available from HPDI show that production for all the companies we sampled in both 2008 and 2009 rose by about 60 million cubic feet per day (MMcf/d) in January and that total production in Texas rose by a similar amount. Our estimate was a decrease of 360 MMcf/d. Why the difference? Computationally, EIA-914 estimates depend on two factors: * Reports from the companies in the survey sample * An expansion factor to estimate total production from the sample's reported

123

Microsoft Word - JWS Sample.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 SAMPLE ONLY REV2_02/10/05 SAMPLE ONLY Joint Work Statement For CRADA No. Sample BETWEEN U. S. Department of Energy Naval Petroleum Reserve No. 3 Rocky Mountain Oilfield Testing Center AND Partner Name Project Name 1. Purpose 2. Scope A. TASKS: B. FINAL REPORT: At the end of the project, in accordance with Article XII of the CRADA, RMOTC and the Participant will jointly prepare a final report. 3. Personnel A. RMOTC will provide the following personnel: B. Partner will provide the following personnel: Page 2 of 7 SAMPLE ONLY REV2_02/10/05 4. Equipment A. RMOTC will provide the following equipment: B. Partner will provide the following equipment: 5. Materials A. RMOTC will provide the following materials: B. Partner will provide the following materials:

124

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

Dahlgran, J.R.

1999-08-17T23:59:59.000Z

125

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

126

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation are described using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R.

1997-12-01T23:59:59.000Z

127

Paper Preparation Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

5E 5E MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS Author(s), Mangesh Basarkar, James O'Donnell, Philip Haves, Kevin Settlemyre and Tobias Maile Environmental Energy and Technologies Division July 2012 To be presented at the SimBuild 2012 IBPSA Conference DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes

128

forEnvironmentalManagementofMilitaryLands Guide to Sampling Soil  

E-Print Network (OSTI)

forEnvironmentalManagementofMilitaryLands Guide to Sampling Soil Compaction Using Hand-Held Soil Fort Collins, CO 80523-1490 January 2004 #12;#12;1 Guide to Sampling Soil Compaction Using Hand-Held Soil Penetrometers1 Prepared by Dave Jones and Matt Kunze Center for Environmental Management

129

September 2004 Water Sampling  

Office of Legacy Management (LM)

was not identified at many groundwater locations. 18. Was the presence or absence of ice in the cooler documented at every sample location? Yes 19. Were water levels measured...

130

Computer Science Sample Occupations  

E-Print Network (OSTI)

Computer Science Sample Occupations COMPUTER OPERATIONS Computer Hardware/ Software Engineer Computer Operator Database Manager/ Administrator Data Entry Operator Operations Manager DESIGN & MANUFACTURING, ENGINEERING Coder CAD Computer Applications Engineers Computer Research Scientist Computer

Ronquist, Fredrik

131

SAMPLING AND ANALYSIS PROTOCOLS  

SciTech Connect

Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

Jannik, T; P Fledderman, P

2007-02-09T23:59:59.000Z

132

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

133

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

134

Analytical Data Report for Sediment Samples Collected From 200 BP 5 OU, C7514 (299-E28-30) L-Well  

Science Conference Proceedings (OSTI)

This an analytical data report for samples received from BP-5 L Well. This report is being prepared for CHPRC.

Lindberg, Michael J.

2010-06-18T23:59:59.000Z

135

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

136

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

137

Fluid sampling system  

DOE Patents (OSTI)

This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, E.D.

1993-12-31T23:59:59.000Z

138

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

139

Viscous sludge sample collector  

DOE Patents (OSTI)

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A. (Richland, WA)

1983-01-01T23:59:59.000Z

140

ANNULAR IMPACTOR SAMPLING DEVICE  

DOE Patents (OSTI)

A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

Tait, G.W.C.

1959-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sample storage/disposal study  

SciTech Connect

Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

Valenzuela, B.D.

1994-09-29T23:59:59.000Z

142

REMOTE REFURBISHMENT OF THE METALLOGRAPHY PREPARATION BOX AT THE INL  

SciTech Connect

One of the most utilized hot cell capabilities at the Idaho National Laboratory is referred to as the containment box. This is where all destructive examination samples are prepared for analysis. This one window box is contained within the much larger Hot Fuels Examination Facility which consists of a 21x10x8 meter hot cell with an inert argon atmosphere. The refurbishment of this box entailed removing of all sample preparation equipment and support systems, as well as the design and installation of new preparation equipment. The new equipment consists of low and high speed saws, grinding and polishing equipment, water recirculation systems, and sample storage units. This paper includes the details of this refurbishment.

Adam B. Robinson; R. Paul Lind

2010-09-01T23:59:59.000Z

143

Waste Minimization Plan Prepared by  

E-Print Network (OSTI)

Waste Minimization Plan Prepared by: Environmental Health and Safety Department Revised February 2012 #12;Waste Minimization Plan Table of Contents Policy Statement........................................................... 3 Centralized Waste Management Program

144

ITOUGH2 sample problems  

DOE Green Energy (OSTI)

This report contains a collection of ITOUGH2 sample problems. It complements the ITOUGH2 User`s Guide [Finsterle, 1997a], and the ITOUGH2 Command Reference [Finsterle, 1997b]. ITOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media [Preuss, 1987, 1991a]. The report ITOUGH2 User`s Guide [Finsterle, 1997a] describes the inverse modeling framework and provides the theoretical background. The report ITOUGH2 Command Reference [Finsterle, 1997b] contains the syntax of all ITOUGH2 commands. This report describes a variety of sample problems solved by ITOUGH2. Table 1.1 contains a short description of the seven sample problems discussed in this report. The TOUGH2 equation-of-state (EOS) module that needs to be linked to ITOUGH2 is also indicated. Each sample problem focuses on a few selected issues shown in Table 1.2. ITOUGH2 input features and the usage of program options are described. Furthermore, interpretations of selected inverse modeling results are given. Problem 1 is a multipart tutorial, describing basic ITOUGH2 input files for the main ITOUGH2 application modes; no interpretation of results is given. Problem 2 focuses on non-uniqueness, residual analysis, and correlation structure. Problem 3 illustrates a variety of parameter and observation types, and describes parameter selection strategies. Problem 4 compares the performance of minimization algorithms and discusses model identification. Problem 5 explains how to set up a combined inversion of steady-state and transient data. Problem 6 provides a detailed residual and error analysis. Finally, Problem 7 illustrates how the estimation of model-related parameters may help compensate for errors in that model.

Finsterle, S.

1997-11-01T23:59:59.000Z

145

Mechanochemical Preparation of Phosphonium Salts and ...  

Researchers at Iowa State University and Ames Laboratory have developed a unique, solvent-free mechanochemical preparation method to prepare ...

146

NID Copper Sample Analysis  

SciTech Connect

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-09-12T23:59:59.000Z

147

Ammonia Results Review for Retained Gas Sampling  

SciTech Connect

This report was prepared as part of a task supporting the deployment of the retained gas sampler (RGS) system in Flammable Gas Watch List Tanks. The emphasis of this report is on presenting supplemental information about the ammonia measurements resulting from retained gas sampling of Tanks 241-AW-101, A-101, AN-105, AN-104, AN-103, U-103, S-106, BY-101, BY-109, SX-106, AX-101, S-102, S-111, U-109, and SY-101. This information provides a better understanding of the accuracy of past RGS ammonia measurements, which will assist in determining flammable and toxicological hazards.

Mahoney, Lenna A.

2000-09-20T23:59:59.000Z

148

NID Copper Sample Analysis  

Science Conference Proceedings (OSTI)

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-02-01T23:59:59.000Z

149

UMTRA water sampling and analysis plan, Lakeview, Oregon  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide background, guidance, and justification for water sampling activities for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) processing and disposal sites. This water sampling and analysis plan will form the basis for groundwater sampling and analysis work orders (WSAWO) to be implemented during 1993. Monitoring at the former Lakeview processing site is for characterization purposes and in preparation for the risk assessment, scheduled for the fall of 1993. Compliance monitoring was conducted at the disposal site. Details of the sampling plan are discussed in Section 5.0.

Not Available

1993-09-29T23:59:59.000Z

150

Fluid sampling apparatus and method  

DOE Patents (OSTI)

Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

Yeamans, David R. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

151

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

152

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

153

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

154

Lead Auditor - Auditor Preparation Checklist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Auditor - Auditor Preparation Checklist Lead Auditor - Auditor Preparation Checklist |Number|Item|Status | ||Staff the Audit || ||Auditor Qualifications|| ||Audit Notification & Audit Plan Issued|| ||Auditor access issues resolved|| ||Audit team facilities|| ||Auditor audit areas / elements assigned|| ||Check lists Prepared Issued || ||Audited Org Docs to team QPP Work plans etc|| ||Past Audits to team || ||PC availability for Auditors|| ||Audit forms to auditors People Interviewed Documents reviewed Entrance Meeting Attendance Exit Meeting Attendance, Issue Development Sheet[1] Form 11 Form 21|| ||Audit protocols, conduct of auditors|| ||Entrance meeting slides|| ||Exit meeting slide outline|| ||Report Shell to Team|| ----------------------- [1] Use of this will be explained in the second article of the series

155

Properties of Saltstone Prepared Containing H-Canyon Waste  

Science Conference Proceedings (OSTI)

Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

Cozzi, A

2005-04-05T23:59:59.000Z

156

J9: Preparation of Oriented by High Magnetic Field BNBT  

Science Conference Proceedings (OSTI)

A18: Effect of Local Alendronate Delivery on In Vivo Osteogenesis From PCL ... A7: On-the-fly System Design for High Precision/Ultra Fast/Wide Area Fabrication .... C19: Dissolution Behavior of Cu Under Bump Metallization in Ball Grid Array ... High Volume and Fast Turnaround Automated Inline TEM Sample Preparation.

157

Sample holder with optical features  

DOE Patents (OSTI)

A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

2013-07-30T23:59:59.000Z

158

Document Preparation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document Preparation Document Preparation Document Preparation Selected documents on the topic of NEPA Document Preparation. October 29, 2013 Directory of Potential Stakeholders for DOE Actions under NEPA DOE Offices are encouraged to be inclusive in providing potentially interested parties with opportunities to review NEPA documents. This Directory of Potential Stakeholders for DOE Actions under NEPA is primarily intended to supplement lists that Departmental Offices compile for individual projects or facilities. It complements the EIS Distribution Guidance. The Office of NEPA Policy and Compliance updates this Directory annually in July and may issue revisions throughout the year as new information becomes available. September 7, 2012 OMB and CEQ Joint Memorandum on Environmental Collaboration and Conflict

159

Preparation for Facility Operations RM  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this Standard Review Plan (SRP) on Preparation for Facility Operations is to provide consistency guidance to evaluate the effectiveness of the final project closure of major...

160

Preparation of Internationalized Strings ("stringprep")  

Science Conference Proceedings (OSTI)

This document describes a framework for preparing Unicode text strings in order to increase the likelihood that string input and string comparison work in ways that make sense for typical users throughout the world. The stringprep protocol is useful ...

P. Hoffman; M. Blanchet

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method for preparation of polysilanes  

DOE Patents (OSTI)

High molecular weight polysilanes are prepared using highly non-chain-transferring solvents. Certain alloys of sodium can also be used to advantage with such solvents. The high molecular weights are achievable even in the commercially preferred "normal" addition procedure.

Zeigler, John M. (2208 Lester Dr., NE, Albuquerque, NM 87112)

1991-01-01T23:59:59.000Z

162

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

163

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

164

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

165

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

5.4.1 5.4.1 Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

166

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

167

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

168

Sampling streaming data with replacement  

Science Conference Proceedings (OSTI)

Simple random sampling is a widely accepted basis for estimation from a population. When data come as a stream, the total population size continuously grows and only one pass through the data is possible. Reservoir sampling is a method of maintaining ... Keywords: Data stream mining, Random sampling with replacement, Reservoir sampling

Byung-Hoon Park; George Ostrouchov; Nagiza F. Samatova

2007-10-01T23:59:59.000Z

169

Hanford Sampling Quality Management Plan (HSQMP)  

Science Conference Proceedings (OSTI)

This document provides a management tool for evaluating and designing the appropriate elements of a field sampling program. This document provides discussion of the elements of a program and is to be used as a guidance document during the preparation of project and/or function specific documentation. This document does not specify how a sampling program shall be organized. The HSQMP is to be used as a companion document to the Hanford Analytical Services Quality Assurance Plan (HASQAP) DOE/RL-94-55. The generation of this document was enhanced by conducting baseline evaluations of current sampling organizations. Valuable input was received from members of field and Quality Assurance organizations. The HSQMP is expected to be a living document. Revisions will be made as regulations and or Hanford Site conditions warrant changes in the best management practices. Appendices included are: summary of the sampling and analysis work flow process, a user`s guide to the Data Quality Objective process, and a self-assessment checklist.

Hyatt, J.E.

1995-04-28T23:59:59.000Z

170

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

171

GUM Analysis for TIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2  

Science Conference Proceedings (OSTI)

In May 2007, one set of three samples from NBL were addressed to Steve Petersen for TIMS analysis, and included BEP0 samples numbered 27008, 30986, and 50846. All cores were trimmed by tooling, and lightly cleaned by CO2 pellet blasting. Small discs were cut from the second set of samples for SIMS analysis, with the remainder of each used for TIMS preparation.

Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.

2009-01-01T23:59:59.000Z

172

NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

Not Available

2010-12-01T23:59:59.000Z

173

Sampling Distribution of the Time between Effectively Independent Samples  

Science Conference Proceedings (OSTI)

The sampling distribution of the estimate of the “time between effectively independent samples,” T0, is investigated using Monte-Carlo techniques. It is found to be asymptotically unbiased and normally distributed. Agreement between empirical ...

Daniel Wilks

1987-03-01T23:59:59.000Z

174

DOE Prepares Programmatic Environmental Impact Statement for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home DOE Prepares Programmatic Environmental Impact Statement for the Uranium Leasing Program DOE Prepares Programmatic Environmental Impact Statement for the...

175

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

P. , "Investigations on hydraulic cement from spent oilCO, April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROMUniversity of California. HYDRAULIC CEMENT PREPARATION FROM

Mehta, P.K.

2013-01-01T23:59:59.000Z

176

Preparation of Hydroxyapatite by Microwave Heating  

Science Conference Proceedings (OSTI)

HAP powders were successfully prepared in a 2.45 GHz - 900W multimode home model microwave oven. The HAP powder was prepared by microwave heating ...

177

Prepare The Nation For Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepare The Nation For Change Print E-mail What Is Adaptation and Mitigation? Adaptation An adjustment in natural and/or human systems to a new or changing environment that exploits beneficial opportunities and moderates negative impacts. Mitigation An intervention to reduce the sources or enhance the sinks of greenhouse gases and other climate warming agents. This intervention could include approaches devised to: reduce emissions of greenhouse gases to the atmosphere to enhance their removal from the atmosphere through storage in geological formations, soils, biomass, or the ocean How do we prepare for global change? Global change is affecting many aspects of society, livelihoods, and the environment. Across the United States and around the world, people are making decisions to effectively minimize (mitigate) and prepare for (adapt) global change.

178

Sampling Characteristics of Satellite Orbits  

Science Conference Proceedings (OSTI)

The irregular space-time sampling of any finite region by an orbiting satellite raises difficult questions as to which frequencies and wavenumbers can be determined and which will alias into others. Conventional sampling theorems must be extended ...

Carl Wunsch

1989-12-01T23:59:59.000Z

179

Flux Measurement with Conditional Sampling  

Science Conference Proceedings (OSTI)

A method is proposed to measure scalar fluxes using conditional sampling. Only the mean concentrations of updraft and downdraft samples, the standard deviation of the vertical velocity, and a coefficient of proportionality, b, need to be known. ...

Joost A. Businger; Steven P. Oncley

1990-04-01T23:59:59.000Z

180

Sampling Errors in Seasonal Forecasting  

Science Conference Proceedings (OSTI)

The limited numbers of start dates and ensemble sizes in seasonal forecasts lead to sampling errors in predictions. Defining the magnitude of these sampling errors would be useful for end users as well as informing decisions on resource ...

Stephen Cusack; Alberto Arribas

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Guidebook for preparing players' handbooks  

SciTech Connect

This Addendum to the Guidebook for Preparing Players' Handbooks contains several documents that can be inserted into handbooks for future test exercises. Descriptions of these documents are provided in Section 4 of the Guidebook. While the documents are general enough to be included in handbooks with little or no editing, it is recommended the handbook preparers review the documents to determine whether the language is appropriate for a specific future exercise. Some of the documents refer to specific sections or tab numbers which may be inappropriate if future handbooks are organized differently from past handbooks.

Not Available

1989-09-01T23:59:59.000Z

182

Sampling – Soil - Energy Innovation Portal  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as asbestos.

183

Preparation  

Science Conference Proceedings (OSTI)

Table 1   Coefficients of thermal expansion for mold materials.../K 10 â??6 /°F Aluminum 22.5 12.5 Steel 12.1 6.7 Sand/polyvinyl alcohol 12.2 6.8 Sand/sodium silicate 11.5 6.4 Ceramic 12.1â??12.6 6.7â??7.0 Glass prepreg 11.7â??13.1 6.5â??7.3 Graphite prepreg 3.6 2.0 Invar 1.4â??5.2 0.8â??2.9 Monolithic graphite 0.2â??1.8 0.1â??1.0...

184

2009 coal preparation buyer's guide  

Science Conference Proceedings (OSTI)

The guide contains brief descriptions and contact details of 926 US companies supplying coal preparation equipment who exhibited at the 26th annual Coal Prep exhibition and conference, 28-30 April - May 2009, in Lexington, KY, USA. An index of categories of equipment available from the manufacturers is included.

NONE

2009-04-15T23:59:59.000Z

185

Process for preparing fluorine-18  

DOE Patents (OSTI)

An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.

Winchell, Harry S. (Lafayette, CA); Wells, Dale K. (Martinez, CA); Lamb, James F. (Albany, CA); Beaudry, Samuel B. (Walnut Creek, CA)

1976-09-21T23:59:59.000Z

186

Photochemical preparation of plutonium pentafluoride  

SciTech Connect

The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

187

PREPARATION OF HALIDES OF PLUTONIUM  

DOE Patents (OSTI)

A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

Garner, C.S.; Johns, I.B.

1958-09-01T23:59:59.000Z

188

Preparation of asymmetric porous materials  

SciTech Connect

A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

Coker, Eric N. (Albuquerque, NM)

2012-08-07T23:59:59.000Z

189

Preparation of gas selective membranes  

DOE Patents (OSTI)

Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

1988-06-14T23:59:59.000Z

190

PROCESS OF PREPARING URANIUM CARBIDE  

DOE Patents (OSTI)

A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

Miller, W.E.; Stethers, H.L.; Johnson, T.R.

1964-03-24T23:59:59.000Z

191

Soil Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling Soil Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Sampling Details Activities (10) Areas (9) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems Dictionary.png Soil Sampling: Soil sampling is a method that can be used for exploration of geothermal resources that lack obvious surface manifestations. Soils that are above or adjacent to a "hidden" hydrothermal system will have a unique chemistry that can be indicative of a hydrothermal system at depth and a zone of

192

Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › SNS › Sample Environment Home › Instruments › SNS › Sample Environment Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to SNS to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR and SNS instruments. It will be available in the near future for SNS sample

193

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

194

Fuels Preparation Department monthly report, November 1962  

SciTech Connect

This document details activities of the Fuels Preparation Department during the month of November 1962.

1962-12-07T23:59:59.000Z

195

TA Orientation 2007 Activity #3 Lab Preparation  

E-Print Network (OSTI)

TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 1 Preparation for Teaching a Lab, based on the papers of these 6 students. #12;TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 2 #12;TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 3 Warm-up Questions

Minnesota, University of

196

TA Orientation 2006 Activity #3 Lab Preparation  

E-Print Network (OSTI)

TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 1 Preparation for Teaching a Lab, based on the papers of these 6 students. #12;TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 2 #12;TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 3 Warm-up Questions

Minnesota, University of

197

Csaba Horvath and preparative liquid chromatography  

SciTech Connect

Few chromatographers have been interested in furthering preparative liquid chromatography. The pioneers, Tswett, Kuhn and Lederer, A.J.P. Martin, Tiselius, isolated fractions but as an intermediate step in the analysis of their samples. The progress in electronics and sensors, and in their miniaturization has lead to the paradoxical situation that the analysts never see the transient pure fractions that their detector quantitates. Yet, over the last 25 years, preparative liquid chromatography has become an important industrial process for the separation, the extraction, and/or the purification of many pharmaceuticals or pharmaceutical intermediates, including pure enantiomers, purified peptides and proteins, compounds that are manufactured at the relatively large industrial scale of a few kilograms to several hundred tons per year. This development that has strongly affected the modern pharmaceutical industry is mainly due to the pioneering work of Csaba Horvath. His work in preparative HPLC was critical at both the practical and the theoretical levels. He was the first scientist in modern times to pay serious attention to the relationships between the curvature of the equilibrium isotherms, the competitive nature of nonlinear isotherms, and the chromatographic band profiles of complex mixtures. The thermodynamics of multi-component phase equilibria and mass transfer kinetics in chromatography attracted his interest and were the focus of ground-breaking contributions. He investigated displacement chromatography, an old method invented by Tiselius that Csaba was first to implement in HPLC. This choice was explained by the essential characteristic of displacement chromatography, in that it delivers fractions that can be far more concentrated than the feed. Remarkably, once the basics of nonlinear chromatography had been mastered in his group, most of the applications that were studied by his coworkers dealt with peptides of various sizes and with proteins. Thus, all the applications of preparative HPLC in the biotechnologies derive directly from Csaba's work. Although displacement did not pan out as a general method, the reasons are related more to practical constraints of the production of pharmaceuticals and to the long period of cheap energy that might be ending now. This report reviews Csaba's work in nonlinear chromatography.

Guiochon, Georges A [ORNL

2005-07-01T23:59:59.000Z

198

Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer  

DOE Patents (OSTI)

This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

Chastgner, P.

1991-05-08T23:59:59.000Z

199

Preparation and Analysis of Biomass Lignins  

Science Conference Proceedings (OSTI)

Lignin, comprised primarily of three randomly polymerized phenylpropenyl monomers, is, arguably, the second most common organic molecule on earth. In current biorefinery applications, lignin is burned, usually in concentrated pulping or hydrolysis liquor, as a source of process steam and both internal and exported electricity. The aromatic content of lignin makes it a potentially attractive feedstock for highly-valued aromatic chemicals, polymers, and carbon products (graphite, activated carbon, and carbon fiber). Revenue from production of lignin-based chemicals could play a major role in biorefinery profitability if cost-effective methods for lignin separation and purification can be developed. This article presents descriptions of methods for assessing and purifying biorefinery lignins so that they can be evaluated for use as feedstocks for production of chemical products. Areas covered are: 1) initial evaluations of as-received lignin samples (visual, microscopic, separable organics), 2) analysis of common contaminants (bulk and filterable ash and particulate contaminants in liquid and dry lignin samples), 3) preparation of lignins for experimental use as chemical feedstocks (prefiltration, filtration using bench-scale chemical apparatus and larger scale bag filters, one-step lignin precipitation, two-step carbohydrate and lignin precipitation, desalting of dry powdered or precipitated lignin, and lyophilization). These methods have been used successfully at bench-scale to produce the 1 50 kg amounts of wood and grass lignins typically required for bench-scale assessment as chemical feedstocks

Compere, A L [ORNL; Griffith, William {Bill} L [ORNL

2009-01-01T23:59:59.000Z

200

Sample page | Open Energy Information  

Open Energy Info (EERE)

Sample page Sample page Jump to: navigation, search This page has been rated 13[1][2] on the scale of awesomness. This page is awesome! The above text is generated by the SampleTemplate. Try editing it and changing the level of awesomeness to see the template react. Hint: It says something different depending on whether or not the page is at least 5 awesome. This page is related to the following topics[3][4]: References Sample pages Help pages Additional Info Name Sample page Awesomeness 13 Topics (raw) References; Sample pages; Help pages; References ↑ Francis C. Monastero. 2002. An overview of industry-military cooperation in the development of power operations at the Coso geothermal field in southern California. GRC Bulletin. . ↑ EPRI. 12/12/2012. Assessment and Mapping of the Riverine

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Acceptance sampling using judgmental and randomly selected samples  

SciTech Connect

We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

2010-09-01T23:59:59.000Z

202

Sample  

Science Conference Proceedings (OSTI)

... deficits by gouging California energy consumers, must ... to state of the art information technology. ... Industry and organization specific knowledge is ...

2010-03-22T23:59:59.000Z

203

Sample State and Local Ballots  

Science Conference Proceedings (OSTI)

Sample State and Local Ballots. ... We thank the election officials who have contributed to this effort. State, County/Municipality, Ballot, Election, Date, ...

2010-10-05T23:59:59.000Z

204

IWTU Process Sample Analysis Report  

SciTech Connect

CH2M-WG Idaho (CWI) requested that Battelle Energy Alliance (BEA) analyze various samples collected during June – August 2012 at the Integrated Waste Treatment Facility (IWTU). Samples of IWTU process materials were collected from various locations in the process. None of these samples were radioactive. These samples were collected and analyzed to provide more understanding of the compositions of various materials in the process during the time of the process shutdown that occurred on June 16, 2012, while the IWTU was in the process of nonradioactive startup.

Nick Soelberg

2013-04-01T23:59:59.000Z

205

Homeowner Soil Sample Information Form  

E-Print Network (OSTI)

Homeowners should submit this form with their soil samples when requesting a soil test from the Texas A&M Soil Testing Laboratory.

Provin, Tony

2007-04-11T23:59:59.000Z

206

HAP sampling at Tidd PFBC  

SciTech Connect

The objective of this project was to sample process streams of the Tidd PFBC plant and to characterize the HAPs associated with those various process streams. The data are comparable to HAP data collected by DOE and EPRI studies at conventional coal-fired utility plants. Twelve sampling locations throughout Tidd PFBC plant were selected to characterize the HAPs in the plant cycle. Sampling was conducted at the input and output of the combustor, before and after the hot gas clean-up (HGCU) and before and after the electrostatic precipitator (ESP). Seven solid process streams were sampled including coal and sorbent to the PFBC unit and ash from the PFBC bed and ash collection devices. Service water which is mixed with the coal to make coal paste was the only liquid process stream sampled. The four gas stream samples collected were the inlets and outlets of the HGCU and ESP. Lists are presented for field sampling requirements for gas streams; coal sorbent, and service water; and ash samples. Lists of elements and compounds (inorganic, organic, and radioactive) are also included. The samples have been collected and are being analyzed.

Mudd, M.J.; Dal Porto, P.A.

1994-10-01T23:59:59.000Z

207

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO)

1998-01-01T23:59:59.000Z

208

PREPARATION OF REFRACTORY OXIDE CRYSTALS  

DOE Patents (OSTI)

A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

1962-11-13T23:59:59.000Z

209

Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer  

DOE Patents (OSTI)

A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.

Burtis, Carl A. (Oak Ridge, TN); Johnson, Wayne F. (Loudon, TN); Walker, William A. (Knoxville, TN)

1988-01-01T23:59:59.000Z

210

Method for preparing ceramic composite  

DOE Patents (OSTI)

A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

Alexander, Kathleen B. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN); Becher, Paul F. (Oak Ridge, TN); Waters, Shirley B. (Knoxville, TN)

1996-01-01T23:59:59.000Z

211

Field Sampling | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

212

Elemental analysis of slurry samples with laser induced breakdown spectroscopy  

Science Conference Proceedings (OSTI)

Direct analysis of wet slurry samples with laser induced breakdown spectroscopy (LIBS) is challenging due to problems of sedimentation, splashing, and surface turbulence. Also, water can quench the laser plasma and suppress the LIBS signal, resulting in poor sensitivity. The effect of water on LIBS spectra from slurries was investigated. As the water content decreased, the LIBS signal was enhanced and the standard deviation was reduced. To improve LIBS slurry analysis, dried slurry samples prepared by applying slurry on PVC coated slides were evaluated. Univariate and multivariate calibration was performed on the LIBS spectra of the dried slurry samples for elemental analysis of Mg, Si, and Fe. Calibration results show that the dried slurry samples give a good correlation between spectral intensity and elemental concentration.

Eseller, Kemal E.; Tripathi, Markandey M.; Yueh, Fang-Yu; Singh, Jagdish P.

2010-05-01T23:59:59.000Z

213

Prepared for: REGION C WATER PLANNING GROUP Prepared by:  

E-Print Network (OSTI)

This model water conservation plan was prepared by Freese and Nichols, Alan Plummer Associates, and Chiang, Patel, and Yerby for the Region C Water Planning Group. It is intended as a template for manufacturers within Region C as they develop their own water conservation plans. Manufacturers should customize the details to match their unique situation. The model plan was prepared pursuant to Texas Commission on Environmental Quality rules. The rules do not require a drought contingency plan for manufacturers. The other Region C model water conservation plans (for municipal, steam electric power, and irrigation users) include example text for a fictional water user that can be edited to match a real-life situation. However, there are a large number of manufacturers in Region C with widely varying processes and water uses, and it is difficult to generate example text that is applicable to most manufacturers. This template provides a plan structure and instructions for the type of content that belongs in each section. The water conservation plans for the City of Fort Worth 1, the City of Dallas 2, New Mexico Office of the State Engineer (Guide for Commercial, Institutional, and Industrial Users) 3 were used

Brian K. Mcdonald; Alan Plummer Associates; Thomas C. Gooch; Stephanie W. Griffin; Alan Plummer Associates

2005-01-01T23:59:59.000Z

214

Sample Performance Characterization Report Template  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2000 October 2000 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR01 Electric Vehicle Technical Center Prepared by: Ricardo Solares Juan C. Argueta Charles J. Kim (EMF Tests) Brian Thorson (EMF Tests) Southern California Edison October 31, 2000 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the use of any information, product, process or procedure discussed in this report, including

215

Method for preparing radiopharmaceutical complexes  

DOE Patents (OSTI)

A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

Jones, Alun G. (Newton Centre, MA); Davison, Alan (Needham, MA); Abrams, Michael J. (Westchester, PA)

1989-05-02T23:59:59.000Z

216

Preparation of Nanostructured Materials Having Improved Ductility  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. June 20, 2013 Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. Available for thumbnail of Feynman Center for Innovation (505) 665-9090 Email Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an

217

Dynamic Demand Input Preparation for Planning Applications  

E-Print Network (OSTI)

model to the ground truth Table 3-2 summarizes the Meanground truth and in preparing the seed dynamic OD table inground truth and the one in preparing seed dynamic OD tables

Jintanakul, Klayut

2009-01-01T23:59:59.000Z

218

Method of surface preparation of niobium  

DOE Patents (OSTI)

The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

Srinivasan-Rao, Triveni (Shoreham, NY); Schill, John F. (Ridge, NY)

2003-01-01T23:59:59.000Z

219

Using enzymes to prepare biobased surfactants  

Science Conference Proceedings (OSTI)

Enzyme-catalyzed syntheses possess many intriguing advantages as green-manufacturing approaches to prepare biobased surfactants. Using enzymes to prepare biobased surfactants Inform Magazine Edible Applications Food Structure and Functionality Nutritio

220

Gas sampling in the DST  

SciTech Connect

Characterization of the rock-fluid interactions in the DST will play an important role in understanding the performance of waste package materials and radionuclide transport through the altered zone of a repository. Consequently, the chemistry of fluids and gases originating in the pore space of the rock and the changing compositions observed with time and temperature will be targeted for study in the chemistry boreholes of the DST. The chemical holes have been lined with SEAMIST (Science Engineering Associate Membrane In situ Sampling Technology) liners that allow gas and fluid from the pore spaces of the rock walls to be sampled on-site periodically. The concentrations of certain chemical species in the gases and fluids sampled at those locations will then be analyzed back in the laboratory. The baseline sampling of the rock-pore gases (prior to heater turn- on) is described.

DeLoach, L.; Chairappa, M.; Martinelli, R.; Glassley, B.

1998-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

BWR Fuel Deposit Sample Evaluation  

Science Conference Proceedings (OSTI)

River Bend Nuclear Power Station, a boiling water reactor (BWR) plant, experienced fuel defects during Cycle 11. The failed fuel pins were identified during the subsequent refueling outage. To assist analysis of the fuel failure root cause, crud flake deposit samples were collected for analyses. Results on the morphology and distribution of chemical elements in four tenacious crud flakes that are associated with the fuel failures are reported in EPRI report 1009733, BWR Fuel Deposit Sample Evaluation–Riv...

2005-11-29T23:59:59.000Z

222

Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling  

DOE Green Energy (OSTI)

This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

Kerr, Kent

2004-12-17T23:59:59.000Z

223

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

1995-01-01T23:59:59.000Z

224

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

Bhattacharya, R.

1998-08-04T23:59:59.000Z

225

Preparation of hydrophobic organic aeorgels  

DOE Patents (OSTI)

Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

Baumann, Theodore F. (Tracy, CA); Satcher, Jr., Joe H. (Patterson, CA); Gash, Alexander E. (Livermore, CA)

2007-11-06T23:59:59.000Z

226

Duplex sampling apparatus and method  

DOE Patents (OSTI)

An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved In the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

Brown, P.E.; Lloyd, R.

1991-01-30T23:59:59.000Z

227

Improved sample size determination for attributes and variables sampling  

Science Conference Proceedings (OSTI)

Earlier INMM papers have addressed the attributes/variables problem and, under conservative/limiting approximations, have reported analytical solutions for the attributes and variables sample sizes. Through computer simulation of this problem, we have calculated attributes and variables sample sizes as a function of falsification, measurement uncertainties, and required detection probability without using approximations. Using realistic assumptions for uncertainty parameters of measurement, the simulation results support the conclusions: (1) previously used conservative approximations can be expensive because they lead to larger sample sizes than needed; and (2) the optimal verification strategy, as well as the falsification strategy, are highly dependent on the underlying uncertainty parameters of the measurement instruments. 1 ref., 3 figs.

Stirpe, D.; Picard, R.R.

1985-01-01T23:59:59.000Z

228

Preparation of Carbon Nanotube-Composite  

E-Print Network (OSTI)

A composite is made up of two distinct materials and the resulted properties are different from the individual precursors. Composite combines a huge or bulkier element called matrix and reinforcement called filler or fiber. Fiber is added in the matrix to increase the stiffness of the matrix and enhance or alter its physical properties. Since silk has high levels of toughness, strength and multifunctional nature, we decided to use bombyx mori as a matrix. Because of the superior mechanical properties, i.e., high tensile moduli, and strength of carbon nanotube, we chose carbon nanotube as a reinforcement fiber to enhance the mechanical properties of resulting composite. The main issue encountered while preparing composite was to fully disperse individual nanotubes in the matrices, because nanotubes tend to form clusters and bundles. Hence, we used ionic liquids to dissolve the cocoon, and processed homogenization of FCNT with silk by sonication, stirring. For testing, different weight percentages of functionalized carbon nanotube were used as a filler to make the silk composite, and nanoindentation and tensile tester tested the samples. The composite of various concentrations did not show the expected result of increasing mechanical properties with decreased carbon nanotube concentration. Hence, it was concluded that a different method to functionalize carbon nanotube should be implemented.

Sharma, Sundeep

2011-05-01T23:59:59.000Z

229

Second workshop on sampling geothermal effluents  

DOE Green Energy (OSTI)

Fourteen papers were represented by abstracts only and are listed by title. Separate abstracts were prepared for seventeen. (MHR)

Gilmore, D.B.

1978-06-01T23:59:59.000Z

230

Molecular epidemiology biomarkers-Sample collection and processing considerations  

SciTech Connect

Biomarker studies require processing and storage of numerous biological samples with the goals of obtaining a large amount of information and minimizing future research costs. An efficient study design includes provisions for processing of the original samples, such as cryopreservation, DNA isolation, and preparation of specimens for exposure assessment. Use of standard, two-dimensional and nanobarcodes and customized electronic databases assure efficient management of large sample collections and tracking results of data analyses. Standard operating procedures and quality control plans help to protect sample quality and to assure validity of the biomarker data. Specific state, federal and international regulations are in place regarding research with human samples, governing areas including custody, safety of handling, and transport of human samples. Appropriate informed consent must be obtained from the study subjects prior to sample collection and confidentiality of results maintained. Finally, examples of three biorepositories of different scale (European Cancer Study, National Cancer Institute and School of Public Health Biorepository, University of California, Berkeley) are used to illustrate challenges faced by investigators and the ways to overcome them. New software and biorepository technologies are being developed by many companies that will help to bring biological banking to a new level required by molecular epidemiology of the 21st century.

Holland, Nina T. [Environmental Health Sciences, School of Public Health, University of California, 317 Warren Hall, Berkeley 94720-7360 (United States)]. E-mail: ninah@berkeley.edu; Pfleger, Laura [Environmental Health Sciences, School of Public Health, University of California, 317 Warren Hall, Berkeley 94720-7360 (United States); Berger, Eileen [Input Automation Inc., Sonoma Mountain Road, Glen Ellen, CA 95442 (United States); Ho, Alan [Environmental Health Sciences, School of Public Health, University of California, 317 Warren Hall, Berkeley 94720-7360 (United States); Bastaki, Maria [Environmental Health Sciences, School of Public Health, University of California, 317 Warren Hall, Berkeley 94720-7360 (United States)

2005-08-07T23:59:59.000Z

231

Preparation of biliquid foam compositions  

DOE Green Energy (OSTI)

Technology developed by the late Dr. Felix Sebba of the VPI Chemical Engineering Department by which an oil phase can be broken up into small droplets and encapsulated in a continuous water phase led to research on the possible merits of a fuel prepared by this procedure. The resulting mixture is called a polyaphron. Part 1 of this report describes the testing of polyaphronated gasoline in an automobile engine. Nitrogen oxides (NO{sub x}) emissions, total hydrocarbon (HC) emissions, and exhaust temperature were determined for various load and RPM combinations. Difficulties with viscosity and separation of the water phase have prevented complete testing at road load conditions. Rather than continue with engine testing, some bench tests of polyaphrons were performed to see the effect of various filtering processes on fuel stability as well as measuring viscosity and density. These results are reported in Part 2 of this paper. 6 figs., 4 tabs.

Jaasma, D.R.; Osucha, D.C.; Scheuren, J.

1990-12-12T23:59:59.000Z

232

PREPARATION OF REFRACTORY OXIDE MICROSPHERE  

DOE Patents (OSTI)

A method is described of preparing thorium oxide in the form of fused spherical particles about 1 to 2 microns in diameter. A combustible organic solution of thorium nitrate containing additive metal values is dispersed into a reflected, oxygen-fed flame at a temperature above the melting point of the resulting oxide. The metal additive is aluminum at a proportion such as to provide 1 to 10 weight per cent aluminum oxide in the product, silicon at the same proportion, or beryllium at a proportion of 12 to 25 weight per cent beryllium oxide in the product. A minor proportion of uranium values may also be provided in the solution. The metal additive lowers the oxide melting point and allows fusion and sphere formation in conventional equipment. The product particles are suitable for use in thorium oxide slurries for nuclear reactors. (AEC)

Haws, C.C. Jr.

1963-09-24T23:59:59.000Z

233

Definition: Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Jump to: navigation, search Dictionary.png Surface Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a...

234

Definition: Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Jump to: navigation, search Dictionary.png Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or...

235

Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations  

Science Conference Proceedings (OSTI)

Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

2013-01-01T23:59:59.000Z

236

An Iterative Rejection Sampling Method.  

E-Print Network (OSTI)

ar X iv :0 80 7. 28 23 v1 [ he p- ph ] 17 Ju l 2 00 8 Preprint typeset in JHEP style - HYPER VERSION Cavendish-HEP-08/10 An Iterative Rejection Sampling Method A. Sherstnev Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue... , Cambridge, CB3 0HE, UK and Scobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University, Moscow, Russia, 119992 (on leave) Abstract: In the note we consider an iterative generalisation of the rejection sampling method. In high energy physics...

Sherstnev, A

237

RAPID DETERMINATION OF RA-226 IN ENVIRONMENTAL SAMPLES  

SciTech Connect

A new rapid method for the determination of {sup 226}Ra in environmental samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for emergency response or routine sample analyses. The need for rapid analyses in the event of a Radiological Dispersive Device or Improvised Nuclear Device event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. {sup 226}Ra (T1/2 = 1,620 years) is one of the most toxic of the long-lived alpha-emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The new method to determine {sup 226}Ra in environmental samples utilizes a rapid sodium hydroxide fusion method for solid samples, calcium carbonate precipitation to preconcentrate Ra, and rapid column separation steps to remove interferences. The column separation process uses cation exchange resin to remove large amounts of calcium, Sr Resin to remove barium and Ln Resin as a final purification step to remove {sup 225}Ac and potential interferences. The purified {sup 226}Ra sample test sources are prepared using barium sulfate microprecipitation in the presence of isopropanol for counting by alpha spectrometry. The method showed good chemical recoveries and effective removal of interferences. The determination of {sup 226}Ra in environmental samples can be performed in less than 16 h for vegetation, concrete, brick, soil, and air filter samples with excellent quality for emergency or routine analyses. The sample preparation work takes less than 6 h. {sup 225}Ra (T1/2 = 14.9 day) tracer is used and the {sup 225}Ra progeny {sup 217}At is used to determine chemical yield via alpha spectrometry. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory radium particles are effectively digested. The preconcentration and column separation steps can also be applied to aqueous samples with good results.

Maxwell, S.

2012-01-03T23:59:59.000Z

238

Electrochemical Behavior and Li Diffusion Study of LiCoO? Thin Film Electrodes Prepared by PLD  

E-Print Network (OSTI)

Preferred c-axis oriented LiCoO? thin films were prepared on the SiO?/Si (SOS) substrates by pulsed laser deposition (PLD). Thin film electrodes without carbon and binder are ideal samples to study the electrochemical ...

Xia, H.

239

Liquid phase methanol process development unit: installation, operation, and support studies. Topical report. Experimental catalyst preparation program  

DOE Green Energy (OSTI)

This report details the preparation of 29 catalyst samples under DOE contract No. DE-AC22-81PC30019. These were selected for gas phase activity testing from a total of 70 prepared. Based on activity results, three compositions were selected for further slurry phase testing in the Chem Systems, Inc. (CSI) laboratories. 11 references, 5 figures, 7 tables.

Not Available

1984-01-01T23:59:59.000Z

240

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

Science Conference Proceedings (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

State Awards for Energy Emergency Preparation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards for Energy Emergency Preparation State Awards for Energy Emergency Preparation List of States receiving awards from the Energy Emergency Preparation project under the...

242

Local Awards for Energy Emergency Preparation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Awards for Energy Emergency Preparation Local Awards for Energy Emergency Preparation List of local awards for energy emergency preparation, including city, state,...

243

CTBTO Contractor Laboratory Test Sample Production Report  

SciTech Connect

In October 2012 scientists from both Idaho National Laboratory (INL) and the CTBTO contact laboratory at Seibersdorf, Austria designed a system and capability test to determine if the INL could produce and deliver a short lived radio xenon standard in time for the standard to be measured at the CTBTO contact laboratory at Seibersdorf, Austria. The test included sample standard transportation duration and potential country entrance delays at customs. On October 23, 2012 scientists at the Idaho National Laboratory (INL) prepared and shipped a Seibersdorf contract laboratory supplied cylinder. The canister contained 1.0 scc of gas that consisted of 70% xenon and 30% nitrogen by volume. The t0 was October 24, 2012, 1200 ZULU. The xenon content was 0.70 +/ 0.01 scc at 0 degrees C. The 133mXe content was 4200 +/ 155 dpm per scc of stable xenon on t0 (1 sigma uncertainty). The 133Xe content was 19000 +/ 800 dpm per scc of stable xenon on t0 (1 sigma uncertainty).

Bob Hague; Tracy Houghton; Nick Mann; Matt Watrous

2013-08-01T23:59:59.000Z

244

Model-Based Sampling, Inference and Imputation  

Reports and Publications (EIA)

Picking a sample through some randomization mechanism, such as random sampling withingroups (stratified random sampling), or, say, sampling every fifth item (systematic randomsampling), may be familiar to a lot of people.

Information Center

2012-03-13T23:59:59.000Z

245

Model-Based Sampling, Inference and Imputation  

Reports and Publications (EIA)

Picking a sample through some randomization mechanism, such as random sampling withingroups (stratified random sampling), or, say, sampling every fifth item (systematic randomsampling), may be familiar to a lot of people.

Neal Davis

2013-09-18T23:59:59.000Z

246

RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES  

SciTech Connect

A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of {sup 210}Po.

Maxwell, S.

2013-05-22T23:59:59.000Z

247

A comparison of the nutrition of home-prepared and commercial diets for dogs  

E-Print Network (OSTI)

The objective of this study was to compare the nutrition of home-prepared and commercial diets in dogs. In order to do this, weighed food records, laboratory analysis of food samples, and serum analyses were completed. The home-prepared diets were compared to commercial pet foods and to recommendations set by AAFCO (the American Association of Feed Control Officials). Compared to AAFCO recommendations, it was found that both the home-prepared and commercial diets were energy dense, being high in kcal/g. Compared to commercial diets and AAFCO recommendations, the home-prepared diets were low in calcium and phosphorus, and Ca:P ratio. They were also low in the minerals potassium, copper, and zinc and the fat soluble vitamins A, D, and E. However, dietary essential fatty acid content was adequate. Home-prepared diets had higher saturated fat and lower polyunsaturated fat than samples of American commercial dog foods. Serum phospholipids of dogs on home-prepared diets were lower in 18:2n-6 and 20:4n-6 than dogs on American commercial diets. The dogs fed home-prepared diets had normal serum vitamin A, parathyroid hormone, chemistries and complete blood counts. There were significant differences between puppies and adults for many serum analytes, although most were within normal ranges.

Streiff, Erin Leigh

2001-01-01T23:59:59.000Z

248

PREPARING FOR A SUCCESSFUL EVMS CERTIFICATION  

Science Conference Proceedings (OSTI)

The client, a government agency, requires its contractor to obtain an Earned Value Management System (EVMS) certification that meets the intent of ANSI/EIA-748-B, Earned Value Management Systems. The contractor has extensive experience with certification preparation, having completed two certifications within two years. Information from a previous EVMS certification and internal system surveillances are used to prepare for client-based EVMS certifications and bi-annual surveillances. The contractor also sent members of its group to assist other companies preparing for surveillances and certifications to perform 'Black Hat Reviews.' This paper is a lessons learned on preparing a team for EVMS certification. The information is also applicable for surveillances, since the contractor prepares its team for the surveillance in the same manner as the initial certification. Some of the areas covered include required documents, tracing the data through the systems, Control Account Manager (CAM) preparation, and system verification.

CROWE SL; BASCHE AD

2011-02-09T23:59:59.000Z

249

Analysis Of The Tank 6F Final Characterization Samples-2012  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

2012-09-27T23:59:59.000Z

250

ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

2012-06-28T23:59:59.000Z

251

Analysis of the Tank 6F Final Characterization Samples-2012  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

2013-01-31T23:59:59.000Z

252

Cavity state preparation using adiabatic transfer  

E-Print Network (OSTI)

We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage or STIRAP. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another, and also to prepare non-trivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an EPR state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrodinger cat states. The theoretical considerations are supported by numerical simulations.

Jonas Larson; Erika Andersson

2005-03-14T23:59:59.000Z

253

Fuels Preparation Department monthly report, October 1960  

SciTech Connect

This report describes the operation of the fuels preparation department for the month of October, 1960. Manufacturing, process development, employee relations, financial operations, and plant improvements are discussed.

1960-11-07T23:59:59.000Z

254

Recommendations for the Preparation of Environmental Assessments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Environmental Impact Statements Second Edition This second edition of the "Green Book" was issued by DOE to assist preparers and reviewers of NEPA documents, with the goal...

255

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

256

Catalysis on the Nanoscale: Preparation, Characterization and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis on the Nanoscale: Preparation, Characterization and Reactivity of Metal-Based Nanostructures The purpose of this program is to explore and manipulate the size, morphology...

257

ORISE: Preparing Nations to Fight Nuclear Smuggling  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepares Nations to Fight Nuclear Smuggling With the knowledge needed to incorporate radiological materials in an explosive device now widely available and unsecured stockpiles...

258

Preparation and Characterization of Microfibrous Entrapped Solid ...  

Science Conference Proceedings (OSTI)

Presentation Title, Preparation and Characterization of Microfibrous Entrapped Solid Adsorbents for Desulfurization of Liquid Fuels. Author(s), David L. Cocke, ...

259

Submitted Work & Work in Preparation - CECM  

E-Print Network (OSTI)

May 23, 2001 ... Submitted Work & Work in Preparation. I. G. Lisle and G. J. Reid, Symmetry Classification Using Invariant Moving Frames, to be submitted.

260

Argonne CNM: Preparing for Your Visit  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparing for Your Visit to the Center for Nanoscale Materials Welcome to Argonne National Laboratory and the Center for Nanoscale Materials (CNM). This guide provides important...

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Techniques for multivariate sample design  

SciTech Connect

In this report we consider sampling methods applicable to the multi-product Annual Fuel Oil and Kerosene Sales Report (Form EIA-821) Survey. For years prior to 1989, the purpose of the survey was to produce state-level estimates of total sales volumes for each of five target variables: residential No. 2 distillate, other retail No. 2 distillate, wholesale No. 2 distillate, retail residual, and wholesale residual. For the year 1989, the other retail No. 2 distillate and wholesale No. 2 distillate variables were replaced by a new variable defined to be the maximum of the two. The strata for this variable were crossed with the strata for the residential No. 2 distillate variable, resulting in a single stratified No. 2 distillate variable. Estimation for 1989 focused on the single No. 2 distillate variable and the two residual variables. Sampling accuracy requirements for each product were specified in terms of the coefficients of variation (CVs) for the various estimates based on data taken from recent surveys. The target population for the Form EIA-821 survey includes companies that deliver or sell fuel oil or kerosene to end-users. The Petroleum Product Sales Identification Survey (Form EIA-863) data base and numerous state and commercial lists provide the basis of the sampling frame, which is updated as new data become available. In addition, company/state-level volumes for distillates fuel oil, residual fuel oil, and motor gasoline are added to aid the design and selection process. 30 refs., 50 figs., 10 tabs.

Williamson, M.A.

1990-04-01T23:59:59.000Z

262

Tank 241-BY-104 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-104 using the vapor sampling system (VSS) on June 24, 1994 by WHC Sampling and Mobile Laboratories. Air from the tank BY-104 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

263

Preparations Finalized for the 2013 National Environmental Justice...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preparations Finalized for the 2013 National Environmental Justice Conference & Training Program Preparations Finalized for the 2013 National Environmental Justice Conference &...

264

ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

2012-01-20T23:59:59.000Z

265

Analysis Of The Tank 5F Final Characterization Samples-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

2012-09-27T23:59:59.000Z

266

ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

2012-08-03T23:59:59.000Z

267

Are You Prepared for the Job Search?  

E-Print Network (OSTI)

Are You Prepared for the Job Search? This checklist will help you to identify where you are in preparing for your job search. Your answers to the following questions may yield some important clues closely before proceeding with your job search. Job Readiness What you know about resumes, employment

Kulp, Mark

268

Tritioacetylating reagents and processes for preparation thereof  

DOE Patents (OSTI)

Novel acetylating and tritioacetylating reagents suitable for preparation of nonlabelled and radiolabelled organic compounds. N-acetoxynaphthalimide, N-tritioacetoxyphthalimide, N-tritioacetoxysuccinimide, N-tritioacetoxynaphthalimide and processes of their preparation. The invention also concerns synthesis of nonlabelled acetylated and tritioacetylated organic compounds from precursors containing a free --NH.sub.2, --SH or --OH group.

Saljoughian, Manoucher (Moraga, CA); Morimoto, Hiromi (El Cerrito, CA); Williams, Philip G. (Oakland, CA); Than, Chit (Lafayette, CA)

2000-01-01T23:59:59.000Z

269

Magnetometry with entangled atomic samples  

E-Print Network (OSTI)

We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting statistics. For polarized light and polarized atoms, a description of the non-classical components of the collective spin angular momentum for the atoms and the collective Stokes vectors of the light-field in terms of effective gaussian position and momentum variables is practically exact. The gaussian formalism describes the dynamics of the system very effectively and accounts explicitly for the back-action on the atoms due to measurement and for the estimate of the magnetic field. Multi-component magnetic fields are estimated by the measurement of suitably chosen atomic observables and precision and efficiency is gained by dividing the atomic gas in two or more samples which are entangled by the dispersive atom-light interaction.

Vivi Petersen; Lars Bojer Madsen; Klaus Molmer

2004-09-28T23:59:59.000Z

270

Model-Based Sampling and Inference  

U.S. Energy Information Administration (EIA) Indexed Site

Model-Based Sampling, Inference and Imputation Model-Based Sampling, Inference and Imputation James R. Knaub, Jr., Energy Information Administration, EI-53.1 James.Knaub@eia.doe.gov Key Words: Survey statistics, Randomization, Conditionality, Random sampling, Cutoff sampling Abstract: Picking a sample through some randomization mechanism, such as random sampling within groups (stratified random sampling), or, say, sampling every fifth item (systematic random sampling), may be familiar to a lot of people. These are design-based samples. Estimates of means and totals for an entire population may be inferred from such a sample, along with estimation of the amount of error that might be expected. However, inference based on a sample and its (modeled) relationship to other data may be less familiar. If there is enough

271

Definition: Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Jump to: navigation, search Dictionary.png Gas Flux Sampling Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares...

272

X-ray analysis of samples from LH84-2  

SciTech Connect

Each of these samples was analyzed using automated, scanning x-ray diffractometry. The blue vanadium surface was run in the as-received condition, while a new method of sample preparation was used for the scale. This new method involved (1) grinding the sample in a conventional fashion, (2) mixing the sample with collodion to form a castable slurry, (3) pouring and spreading the mixture on a taut, clean sheet of plastic film, and (4) then covering the resultant sample with a second plastic film layer to form a sandwich-type assembly. Only a few milligrams of sample are needed for this procedure, and the resultant data is much more accurate than that obtained by the previously-used Debye-Scherrer technique. The phase analysis for this sample finds vanadium as the major constituent and minor constituents of V{sub 2}C and a surface contaminant, PuO{sub 2}.

Wallace, P.L.; Del Giudice, D.F.

1982-08-04T23:59:59.000Z

273

Licensing Guide and Sample License  

NLE Websites -- All DOE Office Websites (Extended Search)

TEI:HNOL06Y TRANSFER WORKIN6 6ROUP TEI:HNOL06Y TRANSFER WORKIN6 6ROUP Lic:en!iing Guide and Sample Lic:en!ie ·~ ICan.u City Plan I OFermilab ~OAK ~RIDGE Nuioul~.

274

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

275

Definition: Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Groundwater Sampling Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater...

276

Definition: Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

search Dictionary.png Surface Gas Sampling Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system....

277

Water Sampling (Healy, 1970) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Healy, 1970) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location...

278

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation,...

279

Grid Points (GridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (GridSampleSet). ... Name. Grid Points (GridSampleSet) — Evaluate data on a rectangular grid of points. Synopsis. ...

2013-08-23T23:59:59.000Z

280

Grid Points (StatGridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (StatGridSampleSet). ... Name. Grid Points (StatGridSampleSet) — Evaluate data on a rectangular grid of points. ...

2013-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

282

Category:SamplePages | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:SamplePages Jump to: navigation, search This category uses the form SampleForm. Note the pluralization. Category names...

283

Fundamentals of preparative and nonlinear chromatography  

Science Conference Proceedings (OSTI)

The second edition of Fundamentals of Preparative and Nonlinear Chromatography is devoted to the fundamentals of a new process of purification or extraction of chemicals or proteins widely used in the pharmaceutical industry and in preparative chromatography. This process permits the preparation of extremely pure compounds satisfying the requests of the US Food and Drug Administration. The book describes the fundamentals of thermodynamics, mass transfer kinetics, and flow through porous media that are relevant to chromatography. It presents the models used in chromatography and their solutions, discusses the applications made, describes the different processes used, their numerous applications, and the methods of optimization of the experimental conditions of this process.

Guiochon, Georges A [ORNL; Felinger, Attila [ORNL; Katti, Anita [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Shirazi, Dean G [unknown

2006-02-01T23:59:59.000Z

284

Category:Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Sampling page? For detailed information on Field Sampling as exploration techniques, click here. Category:Field Sampling Add.png Add a new Field Sampling Technique Subcategories This category has the following 2 subcategories, out of 2 total. G [×] Gas Sampling‎ 3 pages W [×] Water Sampling‎ 2 pages Pages in category "Field Sampling" The following 4 pages are in this category, out of 4 total. G Gas Sampling R Rock Sampling S Soil Sampling W Water Sampling Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Sampling&oldid=689818" Category: Field Techniques

285

Method for the concentration and separation of actinides from biological and environmental samples  

DOE Patents (OSTI)

A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

Horwitz, E.P.; Dietz, M.L.

1989-05-30T23:59:59.000Z

286

Method for the concentration and separation of actinides from biological and environmental samples  

DOE Patents (OSTI)

A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting.

Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Tucson, AZ)

1989-01-01T23:59:59.000Z

287

Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings  

SciTech Connect

Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-09-01T23:59:59.000Z

288

Alkylidenediquinocyclopropanes and Diarylcyclopropenes and method for preparation  

DOE Patents (OSTI)

Alkylidenediquinocyclopropanes and diarylcyclopropenes and the preparation of the former by oxidation of the latter and which are characterized by low energy electronic absorption, pronounced dichroism and characteristic specular reflectance.

West, Robert C. (Madison, WI); Beyer, Douglas E. (Midland, MI); Komatsu, Koichi (Kyoto, JP)

1979-01-01T23:59:59.000Z

289

Numerically Efficient Parallel Algorithms Prepared for the  

E-Print Network (OSTI)

Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico Institute of Mining agency thereof. #12;Final Report for Task One Project: Application of High Performance Computing

290

Electrphoretic Sample Excitation Light Assembly.  

DOE Patents (OSTI)

An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

Li, Qingbo (State College, PA); Liu, Changsheng (State College, PA)

2002-04-02T23:59:59.000Z

291

PREPARATION OF URANIUM(IV) NITRATE SOLUTIONS  

SciTech Connect

A procedure was developed for the preparation of uranium(IV) nitrate solutions in dilute nitric acid. Zinc metal was used as a reducing agent for uranium(VI) in dilute sulfuric acid. The uranium(IV) was precipitated as the hydrated oxide and dissolved in nitric acid. Uranium(IV) nitrate solutions were prepared at a maximum concentration of 100 g/l. The uranium(VI) content was less than 2% of the uranium(IV). (auth)

Ondrejcin, R.S.

1961-07-01T23:59:59.000Z

292

Process for the preparation of organoclays  

DOE Patents (OSTI)

A method for preparing organoclays from smectites for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a substantially monomolecular layer of a water soluble polymer is applied to the surfaces of the clay. A surfactant is also applied to the clay to modify the surface hydrophilic/hydrophobic balance of the clay, and the organoclay is separated out for subsequent use.

Chaiko, David J. (Naperville, IL)

2003-01-01T23:59:59.000Z

293

Multi-class blue noise sampling  

Science Conference Proceedings (OSTI)

Sampling is a core process for a variety of graphics applications. Among existing sampling methods, blue noise sampling remains popular thanks to its spatial uniformity and absence of aliasing artifacts. However, research so far has been mainly focused ... Keywords: blue noise, dart throwing, multi-class, poisson hard/soft disk, relaxation, sampling

Li-Yi Wei

2010-07-01T23:59:59.000Z

294

Anthrax Sampling and Decontamination: Technology Trade-Offs  

Science Conference Proceedings (OSTI)

The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

2008-09-12T23:59:59.000Z

295

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

296

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

297

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

298

NIST_1A 1024 sample_count -i 57202424 sample_n_bytes -i ...  

Science Conference Proceedings (OSTI)

NIST_1A 1024 sample_count -i 57202424 sample_n_bytes -i 2 channel_count -i 1 sample_byte_format -s2 01 sample_rate -i 16000 ...

2004-03-08T23:59:59.000Z

299

Sample introduction apparatus for a flow cytometer  

DOE Patents (OSTI)

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1998-01-01T23:59:59.000Z

300

Sample introduction system for a flow cytometer  

SciTech Connect

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sample introduction system for a flow cytometer  

DOE Patents (OSTI)

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Engh, G. van den

1997-02-11T23:59:59.000Z

302

Sample introduction apparatus for a flow cytometer  

DOE Patents (OSTI)

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Van den Engh, G.

1998-03-10T23:59:59.000Z

303

Definition: Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Sampling Jump to: navigation, search Dictionary.png Rock Sampling Systematic rock sampling can be used to characterize a geothermal reservoir. The physical and chemical properties of rock samples provide important information for determining whether a power generation or heat utilization facility can be developed. Some general rock properties can be measured by visual inspection, but detailed properties require laboratory techniques. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core hole". A variety of core samplers exist to sample

304

Method and apparatus for data sampling  

DOE Patents (OSTI)

A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

Odell, D.M.C.

1994-04-19T23:59:59.000Z

305

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

Lau, L.K.; Alper, N.I.

1994-11-22T23:59:59.000Z

306

HYDRAULIC CONDUCTIVITY OF SALTSTONE FORMULATED USING 1Q11, 2Q11 AND 3Q11 TANK 50 SLURRY SAMPLES  

SciTech Connect

As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).

Reigel, M.; Nichols, R.

2012-06-27T23:59:59.000Z

307

ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS  

SciTech Connect

The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

NELSEN LA

2009-01-30T23:59:59.000Z

308

Regional Programme for LAC - Support for the preparation of National...  

Open Energy Info (EERE)

preparation of National Climate Change Strategy Jump to: navigation, search Name UNDP-Argentina Regional Programme for LAC - Support for the preparation of National Climate Change...

309

Preparation of Biomass Char for Ironmaking and Its Reactivity  

Science Conference Proceedings (OSTI)

Laboratorial preparation of biomass char, suitable for industrial application, is carried out and proper preparation conditions of biochar are presented. And then  ...

310

President Issues Executive Order Aimed at Preparing for the Impacts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Issues Executive Order Aimed at Preparing for the Impacts of Climate Change; Tribal Leaders to Serve on Task Force President Issues Executive Order Aimed at Preparing for...

311

EIS-0447: Notice of Intent to Prepare an Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Prepare an Environmental Impact Statement and Conduct Public Scoping Meetings Champlain Hudson Power Express Transmission Line Project, New York Notice of Intent To Prepare an...

312

EA-1236: Preparation for Transfer of Ownership of Naval Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3,...

313

EIS-0229: Notice of Intent to Prepare an Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0229: Notice of Intent to Prepare an Environmental Impact Statement Surplus Plutonium Disposition The Department of Energy (DOE) announces its intent to prepare an...

314

Savannah River Site: Plutonium Preparation Project (PuPP) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site: Plutonium Preparation Project (PuPP) at Savannah River Site Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River Site Full Document and Summary...

315

Final Guidance on Improving the Process for Preparing Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act Final Guidance on Improving the Process for Preparing...

316

PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...  

NLE Websites -- All DOE Office Websites (Extended Search)

PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) This document lists the procedures for...

317

Executive Order -- Preparing the United States for the Impacts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Executive Order -- Preparing the United States for the Impacts of Climate Change Executive Order -- Preparing the United States for the Impacts of Climate Change...

318

EIS-0444: Notice of Intent to Prepare an Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement EIS-0444: Notice of Intent to Prepare an Environmental Impact Statement Texas Clean Energy Project, Ector County, Texas Notice of Intent to Prepare an Environmental...

319

Preparation Of Dna-Containing Extract For Pcr Amplification  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation Of Dna-Containing Extract For Pcr Amplification Preparation Of Dna-Containing Extract For Pcr Amplification The method may provide a DNA-containing extract sufficiently...

320

Preparation and purification of ionic liquids and precursors  

DOE Patents (OSTI)

Substantially pure ionic liquids and ionic liquid precursors were prepared. The substantially pure ionic liquid precursors were used to prepare substantially pure ionic liquids.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ)

2010-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chemical Characterization of an Envelope A Sample from Hanford Tank 241-AN-103  

Science Conference Proceedings (OSTI)

A whole tank composite sample from Hanford waste tank 241-AN-103 was received at the Savannah River Technology Center (SRTC) and chemically characterized. Prior to characterization the sample was diluted to {approximately}5 M sodium concentration. The filtered supernatant liquid, the total dried solids of the diluted sample, and the washed insoluble solids obtained from filtration of the diluted sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results where more than one method of determination was employed and for species present in low concentrations. A direct comparison to previous analyses of material from tank 241-AN-103 was not possible due to unavailability of data for diluted samples of tank 241-AN-103 whole tank composites. However, the analytical data for other types of samples from 241-AN-103 we re mathematically diluted and compare reasonably with the current results. Although the segments of the core samples used to prepare the sample received at SRTC were combined in an attempt to produce a whole tank composite, determination of how well the results of the current analysis represent the actual composition of the Hanford waste tank 241-AN-103 remains problematic due to the small sample size and the large size of the non-homogenized waste tank.

Hay, M.S.

2000-08-23T23:59:59.000Z

322

DOE-EA-1184 Date Prepared:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

184 184 Date Prepared: Prepared by: Environmental Assessment for the Trunsfer of the DPRodd T~uct to the County of Los AIumos Los Alamos, New Mexico Final Document January 23,1997 US Department of Energy Los Alamos Area Office DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process, or service by trade name, trademark, manufac-

323

Definition: Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Field Sampling Field Sampling Jump to: navigation, search Dictionary.png Field Sampling Systematic field sampling is critical for reliable characterize a geothermal resource. Some of the physical and chemical properties of rock samples can be estimated by visual inspection, but accurate determination of these properties requires detailed laboratory analysis. Surface or subsurface fluid sampling is also routinely performed to characterize the chemical, thermal, or hydrological properties of a hydrothermal system. Combinations of these sampling techniques have traditionally been used to obtain important information used to determine whether or not a viable power generation or heat utilization facility can be developed at a prospect. Soil sampling is a less commonly used method for exploration of

324

Climate Monitoring from Space: Asynoptic Sampling Considerations  

Science Conference Proceedings (OSTI)

Monitoring climate variability from space is considered from the standpoint of satellite sampling. Asynoptic sampling leads to well-defined limits in spatial and temporal resolution which are violated by behavior involving sufficiently small ...

Murry L. Salby

1989-09-01T23:59:59.000Z

325

Metropolis photon sampling with optional user guidance  

Science Conference Proceedings (OSTI)

We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths ...

Shaohua Fan; Stephen Chenney; Yu-chi Lai

2005-06-01T23:59:59.000Z

326

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

327

Sample Returns Missions in the Coming Decade  

Science Conference Proceedings (OSTI)

In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly ...

Desai Prasun N.; Mitcheltree Robert A.; Cheatwood F. McNeil

2000-10-01T23:59:59.000Z

328

Tenant data request: Sample letter | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

government resources Tenant data request: Sample letter Use this sample letter to request energy data from your tenants. This is helpful for instances where you want whole-building...

329

Surface preparation and coupling in plastic scintillator dosimetry  

SciTech Connect

One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity.

Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec City, Quebec, G1K7P4 (Canada) and Departement de Radio-Oncologie, Hotel Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec, G1R2J6 (Canada); Departement de physique, de genie physique et d' optique, Universite Laval, Quebec City, Quebec, G1K7P4 (Canada) and Department de Radio-Oncologie, Hotel Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec, G1R2J6 (Canada) and Department of Radiation Physics, Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department de physique, de genie physique et d' optique, Universite Laval, Quebec City, Quebec, G1K7P4 (Canada) and Department de Radio-Oncologie, Hotel Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec, G1R2J6 (Canada); Department of Radiation Physics, Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department de physique, de genie physique et d' optique, Universite Laval, Quebec City, Quebec, G1K7P4 (Canada) and Department de Radio-Oncologie, Hotel Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec, G1R2J6 (Canada)

2006-09-15T23:59:59.000Z

330

Sample holder for x-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with x-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, V.L.

1991-12-31T23:59:59.000Z

331

Aerosol Sampling from a Unmanned Aerial Vehicle  

Disclosure Number 201202873 Technology Summary ... The present invention enhances the ability to collect such samples, and enables collection of ...

332

Integrated titer plate-injector head for microdrop array preparation, storage and transfer  

DOE Patents (OSTI)

An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.

Swierkowski, Stefan P. (Livermore, CA)

2000-01-01T23:59:59.000Z

333

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

334

Method of preparing meso-haloalkylporphyrins  

DOE Patents (OSTI)

Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solid catalyst. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solic catalyst.

Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

1998-01-01T23:59:59.000Z

335

Secretary Directs FPO to Prepare Strategic Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2004 Volume 1, Number 2 January 2004 Volume 1, Number 2 In This Issue * Executive Order Update * $1 Million for Manhattan Project Preservation * 2004 DOE Cultural Resources Forum * ES&H Cultural Resources Update * FPO Site Visits * Oak Ridge Historic Preservation Update * Featured Site: Pantex * Save America's Treasures * Manhattan Project Interactive Website * Goucher College: HP Education Opportunity * Atomic Testing Museum Moves Forward Secretary Directs FPO to Prepare Strategic Plan On December 2, 2003, Secretary of Energy Spencer Abraham directed DOE's Federal Preservation Officer, Chief Historian F. G. Gosling, to prepare a strategic plan for the Department's history and historic preservation/cultural resource management programs. The Secretary (right) gave Gosling 90

336

Process for preparing active oxide powders  

DOE Patents (OSTI)

An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

Berard, Michael F. (Ames, IA); Hunter, Jr., Orville (Ames, IA); Shiers, Loren E. (Ames, IA); Dole, Stephen L. (Burnt Hills, NY); Scheidecker, Ralph W. (Ames, IA)

1979-02-20T23:59:59.000Z

337

Boiling Water Reactor Sampling Summary: 2012 Update  

Science Conference Proceedings (OSTI)

This report documents boiling water reactor (BWR) sampling practices for key reactor water and feedwater parameters. It includes information on analysis methods, sampling frequencies, and compliance with the recommended sampling frequencies in BWRVIP-190: BWR Vessels and Internals Project, BWR Water Chemistry Guidelines – 2008 Revision (EPRI report 1016579).

2013-03-28T23:59:59.000Z

338

On random sampling auctions for digital goods  

Science Conference Proceedings (OSTI)

In the context of auctions for digital goods, an interesting Random Sampling Optimal Price auction (RSOP) has been proposed by Goldberg, Hartline and Wright; this leads to a truthful mechanism. Since random sampling is a popular approach for auctions ... Keywords: auction, mechanism design, random sampling

Saeed Alaei; Azarakhsh Malekian; Aravind Srinivasan

2009-07-01T23:59:59.000Z

339

Preparation and magnetic properties of barium hexaferrite nanorods  

SciTech Connect

The barium hexaferrite nanorods were successfully prepared by sol-gel technique combined with polymethylmethacrylate as template. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} with different shape were investigated with X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometry. The results show that diameters and lengths of magnetic nanorods are about 60 nm and 300 nm, respectively. The coercivity of rod-shaped BaFe{sub 12}O{sub 19} is increased to 5350 Oe, in comparison with 4800 Oe with plate-shape. The formation mechanism of BaFe{sub 12}O{sub 19} nanorods and reasons resulting in high coercivity are discussed.

Mu Guohong [State Key Laboratory of MMCs, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)], E-mail: ghmu@sjtu.edu.cn; Pan Xifeng; Chen Na; Gan Keke; Gu Mingyuan [State Key Laboratory of MMCs, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

2008-06-03T23:59:59.000Z

340

Blacksville No. 2 Coal Preparation Plant final report  

Science Conference Proceedings (OSTI)

This report discusses an investigation of the effects of washing on the concentrations of selected metals and non-metals in coal. The investigation concerned the Blacksville No. 2 coal preparation plant of CONSOL Inc. Samples of four solids and three water streams were collected at the plant with the assistance of CONSOL. The solids were the raw coal, the product coal, and both coarse and fine grades of refuse. The water streams analyzed were input water (a mixture of makeup water and recycled thickener overflow), output water (thickener overflow), and water from the thickener underflow. The contaminants determined in these materials were 16 trace metals, 5 major metals, and four non-metals.

NONE

1995-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Characterization Data Package for Containerized Sludge Samples Collected from Engineered Container SCS-CON-210  

SciTech Connect

This data package contains the K Basin sludge characterization results obtained by Pacific Northwest National Laboratory during processing and analysis of four sludge core samples collected from Engineered Container SCS-CON-210 in 2010 as requested by CH2M Hill Plateau Remediation Company. Sample processing requirements, analytes of interest, detection limits, and quality control sample requirements are defined in the KBC-33786, Rev. 2. The core processing scope included reconstitution of a sludge core sample distributed among four to six 4-L polypropylene bottles into a single container. The reconstituted core sample was then mixed and subsampled to support a variety of characterization activities. Additional core sludge subsamples were combined to prepare a container composite. The container composite was fractionated by wet sieving through a 2,000 micron mesh and a 500-micron mesh sieve. Each sieve fraction was sampled to support a suite of analyses. The core composite analysis scope included density determination, radioisotope analysis, and metals analysis, including the Waste Isolation Pilot Plant Hazardous Waste Facility Permit metals (with the exception of mercury). The container composite analysis included most of the core composite analysis scope plus particle size distribution, particle density, rheology, and crystalline phase identification. A summary of the received samples, core sample reconstitution and subsampling activities, container composite preparation and subsampling activities, physical properties, and analytical results are presented. Supporting data and documentation are provided in the appendices. There were no cases of sample or data loss and all of the available samples and data are reported as required by the Quality Assurance Project Plan/Sampling and Analysis Plan.

Fountain, Matthew S.; Fiskum, Sandra K.; Baldwin, David L.; Daniel, Richard C.; Bos, Stanley J.; Burns, Carolyn A.; Carlson, Clark D.; Coffey, Deborah S.; Delegard, Calvin H.; Edwards, Matthew K.; Greenwood, Lawrence R.; Neiner, Doinita; Oliver, Brian M.; Pool, Karl N.; Schmidt, Andrew J.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.; Soderquist, Chuck Z.; Thompson, Christopher J.; Trang-Le, Truc LT; Urie, Michael W.

2013-09-10T23:59:59.000Z

342

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES  

Science Conference Proceedings (OSTI)

A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

Maxwell, S.; Culligan, B.; Noyes, G.

2009-11-09T23:59:59.000Z

343

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

344

Rotary Mode Core Sample System availability improvement  

SciTech Connect

The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

1995-02-28T23:59:59.000Z

345

Test Preparation Options Free Test Prep Websites  

E-Print Network (OSTI)

Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

Stowell, Michael

346

THE PREPARATION OF RHENIUM FROM IODO COMPOUNDS  

SciTech Connect

Potassium hexaiodorhenate (IV) decomposes in vacuo at 500 maiinly to potassium iodide, rhenium and iodine. At 700 potassium iodide sublimes off to leave an iodinefree product, but analyses showed retention of potassium. This cannot be ascribed to the retention of alkali as in the hydrogen reduction of potassium perrhenate, and it indicates that an unsolvated potassium rhenide is stable at high temperatures. Ammonium hexaiodorhenate (IV) prepared quaatitatively from rhenium heptoxide decomposes quantitatively to rhenium at 700 in vacuo. A compound approximating to rhenium tri-iodide was prepared by evaporating the eluate, obtained by passing potassium hexachlororhenate in hydrochloric acid through a cation exchange column, to dryness with hydriodic acid. This iodide also decomposed to rhenium in vacuo. We have confirmed and extended the observations thai rhenium iodides cannot be prepared by direct combination alone or in complexing and non-complexing solvents for iodine. The hexaiodorhenates can be prepared quantitatively from the corresponding chlorides. It has been shown that the series K/sub 2/ReCl/sub 6/, K/sub 2/ReBrI/sub 6/ can be interconvented in either direction with the appropriate halogen acids but with greater difficulty to the left. The hexachloro salt is converted to potassium perrhenate and bifiuoride with hydrofluoric acid and not to the hexafluoro salt. The last resembles the hexaffluoro iridate and not osmate or platinate. (auth)

Woolf, A.A.

1958-10-01T23:59:59.000Z

347

Process of preparing tritiated porous silicon  

DOE Patents (OSTI)

A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

Tam, Shiu-Wing (Downers Grove, IL)

1997-01-01T23:59:59.000Z

348

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA July, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for July, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

349

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA June, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for June, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

350

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA May, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for May, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

351

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA May, 2006 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for May, 2006 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

352

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA June, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for June, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

353

Data Update for Paxton, MA Prepared for  

E-Print Network (OSTI)

Data Update for Paxton, MA July, 2005 Prepared for Massachusetts Technology Collaborative, 75 North Drive, Westborough, MA 01581 By Kai Wu Monthly Data Summary for July, 2005 This update summarizes the monthly data results for the Paxton MA monitoring site at 42-18-11.6 N, 71-53-50.9 W per the WSG84

Massachusetts at Amherst, University of

354

Data Preparation for Data Mining Using SAS  

Science Conference Proceedings (OSTI)

Are you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes ... Keywords: Data Mining, Data Warehousing, Database Management

Mamdouh Refaat

2006-09-01T23:59:59.000Z

355

Preparing for Decommissioning: The Oyster Creek Experience  

Science Conference Proceedings (OSTI)

This report chronicles the process of preparing GPU Nuclear's Oyster Creek Nuclear Generating Station for early retirement and decommissioning. The Oyster Creek experience has great relevance to the nuclear industry, as future decommissioning projects will benefit from the comprehensive preplanning work performed there.

2000-06-06T23:59:59.000Z

356

Photocatalytic methods for preparation of electrocatalyst materials  

SciTech Connect

The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).

Nwoga, Tochi Tudor; Kawahara, Kazuo; Li, Wen; Song, Yujiang; Shelnutt, John A; Miller, James E; Medforth, Craig John; Ueno, Yukiyoshi; Kawamura, Tetsuo

2013-12-17T23:59:59.000Z

357

Photocatalytic methods for preparation of electrocatalyst materials  

SciTech Connect

The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

2013-09-24T23:59:59.000Z

358

Preparation of III-V semiconductor nanocrystals  

DOE Patents (OSTI)

Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

Alivisatos, A. Paul (Berkeley, CA); Olshavsky, Michael A. (Brunswick, OH)

1996-01-01T23:59:59.000Z

359

State Agency Land Leases Prepared for the  

E-Print Network (OSTI)

State Agency Land Leases Prepared for the U.S. Department of Energy Office of Electricity Delivery as an account of work sponsored by an agency of the United States Government. Neither the United States, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions

360

State Agency Land Leases Prepared for the  

E-Print Network (OSTI)

State Agency Land Leases Prepared for the U.S. Department of Energy Office of Electricity Delivery of the United States Government. Neither the United States Government nor any agency thereof, nor any or any agency thereof. The views and opinions of authors expressed herein do not necessarily state

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Preparation of a semiconductor thin film  

SciTech Connect

A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

1998-01-01T23:59:59.000Z

362

Tank 241-BY-110 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

363

Tank 241-BY-108 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

364

Zn-Al layered double hydroxide prepared at different molar ratios: Preparation, characterization, optical and dielectric properties  

Science Conference Proceedings (OSTI)

The co-precipitation method was used to prepare Zn-Al-NO{sub 3}-LDH at different Zn{sup 2+}/Al{sup 3+} molar ratios (2, 3, 4, 5 and 6) and pH value of 7.5. The structure, textural, composition and morphological properties were investigated using powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and scanning electron microscope (SEM), respectively. The crystallinity of LDH samples were found to improve as molar ratio decreased which is attributed to the distortion of the hydroxide layers networks of the LDH crystal by the larger difference in ionic radii of Zn{sup 2+} and Al{sup 3+}. The optical band gap energy of LDH samples were evaluated using absorbance data from UV-Vis-NIR Diffuse reflectance spectroscopy. Band gaps were affected by the variation of the Zn{sup 2+}/Al{sup 3+} molar ratio is due to the formation of the low crystalline phases (ZnO and ZnAl{sub 2}O{sub 4}). The water molecules and anionic NO{sub 3}{sup -} in the LDH interlayer were responsible for the generation of the dielectric response. This response can be described by an anomalous low frequency dispersion using the second type of Universal Power Law. The dominance of ZnO dipoles and charge carriers (NO{sub 3}{sup -} ions) in the dielectric relaxation increases with the increasing molar ratio. - Graphical abstract: (a) Schematic diagram of Zn-Al- NO{sub 3}-LDH shows the LDH structure, (b) Kubelka-Munk transformed reflectance spectra and c. The dielectric constant versus frequency of Zn-Al- NO{sub 3}-LDH samples. Highlights: Black-Right-Pointing-Pointer Zn-Al-NO{sub 3}-LDH was prepared at different Zn{sup 2+}/Al{sup 3+} molar ratios (2, 3, 4, 5 and 6). Black-Right-Pointing-Pointer The crystallinity of LDH phase decreased with increase of Zn{sup 2+}/Al{sup 3+} molar ratio. Black-Right-Pointing-Pointer The optical band gaps of LDH samples have been measured. Black-Right-Pointing-Pointer Dielectric response of LDH can be described by anomalous low frequency dispersion.

Ahmed, Abdullah Ahmed Ali [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Talib, Zainal Abidin, E-mail: zainalat@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zobir bin Hussein, Mohd [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

2012-07-15T23:59:59.000Z

365

Process for the preparation of an energetic nitrate ester  

SciTech Connect

A process for the preparation of an energetic nitrate ester compound and related intermediates is provided.

Chavez, David E; Naud, Darren L; Hiskey, Michael A

2013-12-17T23:59:59.000Z

366

Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.  

Science Conference Proceedings (OSTI)

Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

Marek, Laura F.

2011-06-17T23:59:59.000Z

367

Buildings characterization sampling plan, Weldon Spring Site  

SciTech Connect

The purpose of the Buildings Sampling Plan is to provide a systematic approach to characterizing radiological, asbestos and chemical contamination in and around the buildings and structures at the Weldon Spring Chemical Plant Site (WSCPS). This sampling plan reviews historical information; identifies data needs; and outlines sampling procedures, quality assurance, data documentation and reporting requirements for the buildings and equipment characterization at the Weldon Spring Site (WSS). The scope of this plan is limited to the buildings, structures, and equipment from the previous operation of the WSCPS. The Buildings Sampling Plan is divided into nine sections: introduction, background, data needs and sampling plan objectives, sampling rationale and procedure, sample analysis, quality assurance, data documentation, reporting requirements, and references. The data needs, sampling rationale and procedures and sample analysis sections of this work plan are subdivided into radiological, asbestos and chemical sections. Because different sampling techniques and analyses will be required for radiological, asbestos and chemical contamination, separate subsections are used. The investigations for each contaminant will be conducted independently. Similar historical and descriptive information is repeated in the subsections, but the perspective and information vary slightly. 24 refs., 5 figs., 14 tabs.

Not Available

1988-08-01T23:59:59.000Z

368

Air sampling in the workplace. Final report  

Science Conference Proceedings (OSTI)

This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R. [Pacific Northwest Lab., Richland, WA (United States); Wiblin, C.M. [Advanced Systems Technology, Inc., Atlanta, GA (United States); McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1993-09-01T23:59:59.000Z

369

ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.

Poirier, M.; Fink, S.

2011-03-07T23:59:59.000Z

370

APS Radioactive Sample Safety Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Sample Safety Review Committee Radioactive Sample Safety Review Committee March 6, 2012 1. Purpose The APS Safety Radioactive Sample Safety Review Committee (RSSRC) advises the AES Division Director on the radioactive samples to be used at the APS and the adequacy of controls in place for the duration of their use. The RSSRC reviews the radioactive material samples proposed to be run at the APS to ensure that they fall within established safety envelopes of the APS. 2. Membership The RSSRC members are appointed by the AES Division Director. The current members of the RSRC are: B. Glagola AES - Chair S. Davey AES G. Pile AES L. Soderholm CHM J. Vacca RSO W. VanWingeren AES M. Beno XSD E. Alp XSD M. Rivers PUC 3. Method The AES User Safety Coordinator will notify the RSSRC of any samples

371

SNS Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › SNS › Sample Environment Home › Instruments › SNS › Sample Environment SNS Sample Environment SNS Sample Environment Operations Group SNS Sample Environment Operations Group from left to right: (left to right): Bekki Mills, Mark Loguillo, Saad Elorfi, Randy Sexton, Leland Robbins, Matt Rucker, Cory Fletcher, Todd Sherline, Hans-Jochen Lauter, Ken Kroll The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to SNS to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research

372

Sample Environment Equipment Categories - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › Sample Environment Home › Instruments › Sample Environment Sample Environment: Categories of Equipment All Ancillary Equipment Auto Changer Closed Cycle Refrigerators Closed Cycle Refrigerators - Bottom Loading Closed Cycle Refrigerators - Top Loading Furnaces Gas Handling Gas Panel High Pressure Systems Liquid Helium Cryostats Magnet Systems Other Special Environments Sample Cell Sample Stick Ultra Low Temperature Devices Sample Environment: by Beam Line All BL-11A-POWGEN BL-11B-MANDI BL-12-TOPAZ BL-13-Fundamental Neutron Physics Beam Line BL-14A-BL-14A BL-14B-HYSPEC BL-15-Neutron Spin Echo (NSE) BL-16B-VISION BL-17-SEQUOIA BL-18-ARCS BL-1A-TOF-USANS BL-1B-NOMAD BL-2-BASIS BL-3-SNAP BL-4A-Magnetism Reflectometer BL-4B-Liquids Reflectometer BL-5-Cold Neutron Chopper Spectrometer (CNCS) BL-6-EQ-SANS

373

HFIR Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Sample Environment HFIR Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to HFIR to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The online Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR instruments. Contact HFIR Team Leader Chris Redmon Resources Sample Environment Equipment Database

374

100 Area Columbia River sediment sampling  

SciTech Connect

Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-08T23:59:59.000Z

375

Systematic Sampling of Scanning Lidar Swaths  

E-Print Network (OSTI)

Proof of concept lidar research has, to date, examined wall-to-wall models of forest ecosystems. While these studies have been important for verifying lidars efficacy for forest surveys, complete coverage is likely not the most cost effective means of using lidar as auxiliary data for operational surveys; sampling of some sort being the better alternative. This study examines the effectiveness of sampling with high point-density scanning lidar data and shows that systematic sampling is a better alternative to simple random sampling. It examines the bias and mean squared error of various estimators, and concludes that a linear-trend-based and especially an autocorrelation-assisted variance estimator perform better than the commonly used simple random sampling based-estimator when sampling is systematic.

Marcell, Wesley Tyler

2009-12-01T23:59:59.000Z

376

Techniques for geothermal liquid sampling and analysis  

DOE Green Energy (OSTI)

A methodology has been developed that is particularly suited to liquid-dominated resources and adaptable to a variety of situations. It is intended to be a base methodology upon which variations can be made to meet specific needs or situations. The approach consists of recording flow conditions at the time of sampling, a specific insertable probe sampling system, a sample stabilization procedure, commercially available laboratory instruments, and data quality check procedures.

Kindle, C.H.; Woodruff, E.M.

1981-07-01T23:59:59.000Z

377

Sample ENERGY STAR performance documents | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Verify and document your savings Sample ENERGY STAR performance documents Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

378

Category:Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

379

Samples of Soil from Arco, Idaho  

SciTech Connect

Samples from a single drilling made at Arco, Idaho were submitted to determine the adsorptive capacity of soil at Arco, Idaho for radioactive elements.

Stewart, G. D.

1949-11-22T23:59:59.000Z

380

Sample Forms | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Sample Forms Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Investigation of formaldehyde and acetaldehyde sampling rate...  

NLE Websites -- All DOE Office Websites (Extended Search)

formaldehyde and acetaldehyde sampling rate and ozone interference for passive deployment of Waters Sep-Pak XPoSure samplers Title Investigation of formaldehyde and acetaldehyde...

382

Current Projects: Rapid Sampling Tools - Vulnerability Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications include counter-terrorism, emergency response teams, drug and environmental raids, and waste management. For more information visit Rapid Sampling from Sealed...

383

Category:Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

384

Automated Surface Sampling Probe for Mass Spectrometry  

Dr. Gary Van Berkel and colleagues have developed a liquid microjunction surface sampling probe (LMJ?SSP). The LMJ?SSP provides mass spectrometry with ...

385

Method and apparatus for sampling atmospheric mercury  

DOE Patents (OSTI)

A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

Trujillo, Patricio E. (Santa Fe, NM); Campbell, Evan E. (Los Alamos, NM); Eutsler, Bernard C. (Los Alamos, NM)

1976-01-20T23:59:59.000Z

386

High order Parzen windows and randomized sampling.  

E-Print Network (OSTI)

???In the thesis, high order Parzen windows are studied for understanding some algorithms in learning theory and randomized sampling in multivariate approximation. Our ideas are… (more)

Zhou, Xiangjun (???)

2009-01-01T23:59:59.000Z

387

Sample Forms | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sample Forms | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

388

Guidance Concerning Applicable Sampling Plan for Certification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling Plan for Certification of Consumer Product The Energy Policy and Conservation Act of 1975, as amended, authorizes the Department of Energy to enforce compliance...

389

Improved Gas Sampling Device - Available Technologies - PNNL  

Summary. This is an improved device for gas sampling and analysis in which the design of the device includes features for maximizing the surface area ...

390

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

391

ORISE: Preparing Nations to Fight Nuclear Smuggling  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepares Nations to Fight Nuclear Smuggling Prepares Nations to Fight Nuclear Smuggling With the knowledge needed to incorporate radiological materials in an explosive device now widely available and unsecured stockpiles still a reality, nuclear smuggling remains a global security threat. Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal circulation and could be used to kill tens or hundreds of thousands of people. ORISE has extended its national security expertise to assist government leaders and law enforcement in many countries as they unite in efforts to apprehend and prosecute nuclear materials smugglers. ORISE is working with the U.S. Department of State's Preventing Nuclear Smuggling Program (PNSP) to prevent nuclear smuggling abroad and in conjunction with the U.S. Department of Homeland Security and other

392

Prepare comprehensive implementation plan | Open Energy Information  

Open Energy Info (EERE)

Prepare comprehensive implementation plan Prepare comprehensive implementation plan Jump to: navigation, search Stage 4 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

393

LANSCE | Lujan Center | Biology Preparation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology Preparation Laboratory Biology Preparation Laboratory The Lujan Center Biolab offers a variety of capabilities. 1) Biodeuteration Lab (BDL) We run a protein expression lab for perdeuteration of user proteins. We offer full perdeuteration (~99%) using our algal-based media for bacterial growth. We also have M9 minimal media made in D2O for expression of up to ~85% perdeuteration. Users can use our lab in person or mail-in a plasmid for us to express for them. We also have standard protein expression equipment: centrifuge for harvesting cells, sonicator for cell lysis, SDS-PAGE equipment etc. 2) Protein Purification and Crystallization Lab (PPCL) We also operate our PPCL for users of the PCS - we have 2 Akta/GE purifiers (the Akta Prime and Akta Purifier) and numerous chromatography

394

NETL: Guide for Preparation of Cost Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

and Business Opportunities and Business Opportunities Guide for Preparation of Cost Proposals The following guide is to be used in the preparation of the offeror's cost proposal. It provides general instructions as well as the format, exhibits and content that is required to be included in the submission. In addition, the exhibits include examples of both cost elements and indirect rate data that are in typical proposals. Please note that these are provided as a guide only. Do not attempt to conform your proposal to match the exact elements and accounts in the examples. Both the cost elements and indirect rate data in your proposal should be able to be traced to and supported by your accounting system. Any questions should be directed to the contact person noted in the instructions.

395

Preparation of fullerene/glass composites  

DOE Patents (OSTI)

Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

Mattes, Benjamin R. (Santa Fe, NM); McBranch, Duncan W. (Santa Fe, NM); Robinson, Jeanne M. (Los Alamos, NM); Koskelo, Aaron C. (Los Alamos, NM); Love, Steven P. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

396

Novel hard compositions and methods of preparation  

DOE Patents (OSTI)

Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.

Sheinberg, H.

1981-02-03T23:59:59.000Z

397

Tank 241-BY-106 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-106 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-106 using the vapor sampling system (VSS) on July 8, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-106 headspace was withdrawn via a heated sampling probe mounted in riser 10B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

398

Tank 241-BY-105 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

399

Tank 241-C-112 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank C-112 is a single-shell tank which received first-cycle decontamination waste from B Plant and was later used as a settling tank. Samples were collected from Tank C-112 using the vapor sampling system (VSS) on August 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 28 C. Air from the Tank C-112 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 4, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

400

Process for preparing a liquid fuel composition  

SciTech Connect

A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

Singerman, Gary M. (Monroeville, PA)

1982-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE  

DOE Patents (OSTI)

S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

Davidson, N.R.; Hyde, E.K.

1958-11-11T23:59:59.000Z

402

Process for preparing improved silvered glass mirrors  

DOE Patents (OSTI)

Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

Buckwalter, C.Q. Jr.

1980-01-28T23:59:59.000Z

403

PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES  

DOE Patents (OSTI)

This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

Levey, R.P. Jr.; Smith, A.E.

1963-04-30T23:59:59.000Z

404

Method for preparing porous metal hydride compacts  

DOE Patents (OSTI)

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

1980-01-21T23:59:59.000Z

405

PREPARATION OF ACTINIDE-ALUMINUM ALLOYS  

DOE Patents (OSTI)

BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

Moore, R.H.

1962-09-01T23:59:59.000Z

406

Method of preparing silicon from sodium fluosilicate  

DOE Patents (OSTI)

A process for preparing high purity silicon metal from Na.sub.2 SiF.sub.6 (sodium fluosilicate). The sodium fluosilicate is heated to decomposition temperature to form NaF, which retains most of the impurities, and gaseous SiF.sub.4. The SiF.sub.4 is then reduced by the bomb reduction method using a reductant having a low packing density.

Schmidt, Frederick A. (Ames, IA); Rehbein, David (Ames, IA); Chiotti, Premo (Ames, IA)

1984-01-01T23:59:59.000Z

407

Disc valve for sampling erosive process streams  

DOE Patents (OSTI)

This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

1984-08-16T23:59:59.000Z

408

Efficient maximal poisson-disk sampling  

Science Conference Proceedings (OSTI)

We solve the problem of generating a uniform Poisson-disk sampling that is both maximal and unbiased over bounded non-convex domains. To our knowledge this is the first provably correct algorithm with time and space dependent only on the ... Keywords: Poisson disk, blue noise, linear complexity, maximal, provable convergence, sampling

Mohamed S. Ebeida; Andrew A. Davidson; Anjul Patney; Patrick M. Knupp; Scott A. Mitchell; John D. Owens

2011-08-01T23:59:59.000Z

409

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES  

SciTech Connect

A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

Maxwell, S.; Noyes, G.; Culligan, B.

2010-02-03T23:59:59.000Z

410

Transuranic waste characterization sampling and analysis methods manual. Revision 1  

DOE Green Energy (OSTI)

This Methods Manual provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) and the WIPP Waste Analysis Plan. This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP and the WIPP Waste Analysis Plan. The procedures in this Methods Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site-specific procedures. With some analytical methods, such as Gas Chromatography/Mass Spectrometry, the Methods Manual procedures may be used directly. With other methods, such as nondestructive characterization, the Methods Manual provides guidance rather than a step-by-step procedure. Sites must meet all of the specified quality control requirements of the applicable procedure. Each DOE site must document the details of the procedures it will use and demonstrate the efficacy of such procedures to the Manager, National TRU Program Waste Characterization, during Waste Characterization and Certification audits.

Suermann, J.F.

1996-04-01T23:59:59.000Z

411

Inspection/Sampling Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection/Sampling Schedule Inspection/Sampling Schedule Inspection/Sampling Schedule Site Inspection and Water Sampling Schedules Note: The following schedules are subject to change without prior notice and will be updated periodically. Site Name Inspection Date Sampling Week Ambrosia Lake, NM, Disposal Site August 18, 2014 November 20, 2013 Bluewater, NM, Disposal Site August 18, 2014 November 20, 2013 January 28, 2014 May 12, 2014 Boiling Nuclear Superheater (BONUS), PR, Decommissioned Reactor Site Next event 2017 Burrell, PA, Disposal Site December 9, 2013 November 20, 2013 Canonsburg, PA, Disposal Site December 9, 2013 November 19, 2013 Durango, CO, Disposal Site May 19, 2014 June 2, 2014 Durango, CO, Processing Site N/A June 2, 2014 September 1, 2014 Edgemont, SD, Disposal Site June 23, 2014 N/A

412

Radioactive Samples / Materials at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radioactive Samples / Materials at the APS Using Radioactive Samples / Materials at the APS The use of radioactive samples requires additional information for review and approval. All proposed experiments involving radioactive samples will be reviewed by the APS Radioactive Sample Safety Review Committee (RSSRC). The review will be on a graded basis. Hence, the experimenters are strongly advised to send in the experiment proposal in detail at least 2 months before the expected scheduled date of the experiment. Previously approved containment, isotopes and weights can be submitted as late as 2 weeks in advance. If your ESAF was submitted less than seven (7) days in advance of its scheduled start date you may be delayed to allow time for a safety review. The following guidelines are to be followed for all experiments with

413

New Sampling Methods for Airborne Microorganisms  

NLE Websites -- All DOE Office Websites (Extended Search)

New Sampling Methods for Airborne Microorganisms New Sampling Methods for Airborne Microorganisms Speaker(s): Klaus Willeke Date: February 27, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: David Faulkner Klaus Willeke and his international team of engineers, physicists, microbiologists, industrial hygienists and environmental scientists have worked for about 15 years on the development of new methods for sampling airborne microorganisms. The following topics will be highlighted: long-term bioaerosol sampling into liquid by swirling air motion ("Biosampler"); personal aerosol sampling with low wind sensitivity and highfilter deposit uniformity ("Button Aerosol Sampler"); collection of microorganisms by electrostatic means; source testing as a predictor for microorganism release from surfaces; particle concentrating from large air

414

Solar Deployment System (SolarDS) Model: Documentation and Sample Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 September 2009 The Solar Deployment System (SolarDS) Model: Documentation and Sample Results Paul Denholm, Easan Drury, and Robert Margolis National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45832 September 2009 The Solar Deployment System (SolarDS) Model: Documentation and Sample Results Paul Denholm, Easan Drury, and Robert Margolis Prepared under Task No. PVD9.1210 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

415

Sample Environment at SNAP | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Environment at SNAP Sample Environment at SNAP Sample Mass Calculator Bulk Modulus (GPa) Density (g/cm3) Volume (mm3) Sample Mass Needed (mg) Custom Values NaCl 24.4 2.17 87.1 171.888 MnO 148.0 5.37 87.1 354.256 V 160.0 6.00 87.1 388.104 CoO 180.0 6.44 87.1 402.766 Bi 31.0 9.78 87.1 767.770 Sample Geometry Click below for illustration of sample shapes for use in the Paris-Edinburgh press Volume (mm3) Double-toroid, encapsulated 16.8 Double-toroid, non-encapsulated 31.1 Single-toroid, encapsulated 55.5 Single-toroid, non-encapsulated 87.1 Graphite furnace 68.1 If you see NaN in the "Sample Mass Needed (mg)" field, then one of your entries probably contains non-numeric data or is not a valid number, for example, entering 3.9.0 (double decimal points)

416

Automated collection and processing of environmental samples  

DOE Patents (OSTI)

For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.

Troyer, Gary L. (Richland, WA); McNeece, Susan G. (Richland, WA); Brayton, Darryl D. (Richland, WA); Panesar, Amardip K. (Kennewick, WA)

1997-01-01T23:59:59.000Z

417

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

418

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

419

Gas sampling system for a mass spectrometer  

DOE Patents (OSTI)

The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

Taylor, Charles E; Ladner, Edward P

2003-12-30T23:59:59.000Z

420

Spectroscopic diagnostics for bacteria in biologic sample  

DOE Patents (OSTI)

A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

El-Sayed, Mostafa A. (Atlanta, GA); El-Sayed, Ivan H. (Somerville, MA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tank 241-C-111 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank C-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Results presented here represent the best available data on the headspace constituents of Tank C-111. Almost all of the data in this report was obtained from samples collected on September 13, 1994.Data from 2 other sets of samples, collected on August 10, 1993 and June 20, 1994, are in generally good agreement with the more recent data. The tank headspace temperature was determined to be 27 C. Air from the Tank C-111 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 6, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks provided by the laboratories. Tank C-111 is a single shell tank which received first-cycle decontamination waste from B Plant and was later used as a settling tank.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

422

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network (OSTI)

PNNL-20121 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Hanford Site-20121 Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2011 LE Bisping National Laboratory Richland, Washington 99352 #12;iii Summary Environmental surveillance of the Hanford

423

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network (OSTI)

PNNL-22900 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Solar Powered Radioactive Air Monitoring Stations JM Barnett TL Gervais LE Bisping October 2013 #12;#12;PNNL for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air

424

PAPER PREPARATION GUIDE AND SUBMISSION INSTRUCTIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

564E 564E Modeling and simulation of HVAC Results in EnergyPlus Mangesh Basarkar, Xiufeng Pang, Liping Wang, Philip Haves, Tianzhen Hong November 2011 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

425

Hydrocarbon synthesis catalyst and method of preparation  

DOE Patents (OSTI)

A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

1983-08-02T23:59:59.000Z

426

PAPER PREPARATION GUIDE AND SUBMISSION INSTRUCTIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

6E 6E SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION Author(s), James O'Donnell, Richard See, Cody Rose, Tobias Maile, Vladimir Bazjanac and Philip Haves Environmental Energy and Technologies Division July 2012 Presented at the SimBuild 2011 IBPSA Conference DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes

427

Guide for Preparation of Contract Cost Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY NATIONAL ENERGY TECHNOLOGY LABORATORY 3610 Collins Ferry Road 626 Cochrans Mill Road P.O. Box 880 P.O. Box 10940, Morgantown, WV 26507-0880 Pittsburgh, PA 15236-0940 This guide is available on the Department of Energy, National Energy Technology Laboratory web site at: http://www.netl.doe.gov/business/index.html TABLE OF CONTENTS GENERAL INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rounding Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Format and Content of the Cost Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cost Proposal Preparation Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .

428

PAPER PREPARATION GUIDE AND SUBMISSION INSTRUCTIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

461E 461E Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer Wangda Zuo University of Miami Andrew McNeil Lawrence Berkeley National Laboratory Michael Wetter Lawrence Berkeley National Laboratory Eleanor S. Lee Lawrence Berkeley National Laboratory Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division April 2013 Published in Journal of Building Performance Simulation DOI: 10.1080/19401493.2013.795193 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the

429

Process for preparing silicon carbide foam  

DOE Patents (OSTI)

A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.

Whinnery, LeRoy Louis (Livermore, CA); Nichols, Monte Carl (Livermore, CA); Wheeler, David Roger (Albuquerque, NM); Loy, Douglas Anson (Albuquerque, NM)

1997-01-01T23:59:59.000Z

430

Process for preparing silicon carbide foam  

DOE Patents (OSTI)

A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.

Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.

1997-09-16T23:59:59.000Z

431

Preparation of reactive beta-dicalcium silicate  

DOE Patents (OSTI)

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

1982-01-01T23:59:59.000Z

432

Preparation of reactive beta-dicalcium silicate  

DOE Patents (OSTI)

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, M.S.; Chen, J.M.; Yang, R.T.

1980-02-28T23:59:59.000Z

433

METHOD OF PREPARING COATED REFRACTORY WARE  

DOE Patents (OSTI)

A method is presented for preparing a dense, refractory coating on a vessel adapted to the handling of molten metals such as uranium and plutonium. According to the invention, the inner surface of a heat stable container formed of a refractory metal of either niobium, molybdenum, tantalum, or tungsten is coated with molten thorium within 10 minutes so as to present alloying with the refractory metal and then exposed to a reactive atmosphere of nitrogen at a temperature of about 1750 deg for 30 minutes to form a refractory thorium nitride coating.

Perlman, M.L.; Lipkin, D.; Weissman, S.I.

1959-07-21T23:59:59.000Z

434

Preparation of thorium-uranium gel spheres  

SciTech Connect

Ceramic oxide spheres with diameters of 15 to 1500 ..mu..m are being evaluated for fabrication of power reactor fuel rods. (Th,U)O/sub 2/ spheres can be prepared by internal or external chemical gelation of nitrate solutions or oxide sols. Two established external gelation techniques were tested but proved to be unsatisfactory for the intended application. Established internal gelation techniques for UO/sub 2/ spheres were applied with minor modifications to make 75% ThO/sub 2/-25% UO/sub 2/ spheres that sinter to diameters of 200 to 1400 ..mu..m (99% T.D.).

Spence, R.D.; Haas, P.A.

1980-01-01T23:59:59.000Z

435

Conductive ceramic composition and method of preparation  

DOE Patents (OSTI)

This report describes the fabrication of a ceramic anode formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

Smith, J.L.; Kucera, E.H.

1989-05-26T23:59:59.000Z

436

Method for preparing high purity vanadium  

DOE Patents (OSTI)

A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

Schmidt, F.; Carlson, O.N.

1984-05-16T23:59:59.000Z

437

Conductive ceramic composition and method of preparation  

DOE Patents (OSTI)

A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

Smith, J.L.; Kucera, E.H.

1991-04-16T23:59:59.000Z

438

Conductive ceramic composition and method of preparation  

DOE Patents (OSTI)

A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

1991-01-01T23:59:59.000Z

439

Improved method for preparing rare earth sesquichalcogenides  

DOE Patents (OSTI)

An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

1982-04-14T23:59:59.000Z

440

Method for preparing high purity vanadium  

DOE Patents (OSTI)

A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

Schmidt, Frederick (Ames, IA); Carlson, O. Norman (Ames, IA)

1986-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting  

SciTech Connect

Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Héry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

2012-04-30T23:59:59.000Z

442

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic...

443

Preparation and characterization of aerogels derived from Al...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and characterization of aerogels derived from Al(OH)3 and CrO3 Title Preparation and characterization of aerogels derived from Al(OH)3 and CrO3 Publication Type Journal...

444

Comments from Nevada to Notice of Inquiry Concerning Preparation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Nevada to Notice of Inquiry Concerning Preparation of a Report to Congress on the Price-Anderson Act Comments from Nevada to Notice of Inquiry Concerning Preparation of a...

445

Appendix A. Notice of Inquiry: Preparation of Report to Congress...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997) Appendix A. Notice of Inquiry: Preparation of Report...

446

Appendix A. Notice of Inquiry: Preparation of Report to Congress...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997) Appendix A. Notice of Inquiry: Preparation of...

447

Deputy Secretary Poneman's Remarks as Prepared for Delivery at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as Prepared for Delivery at the American Chamber of Commerce in Korea Deputy Secretary Poneman's Remarks as Prepared for Delivery at the American Chamber of Commerce in Korea June...

448

HEART SMART NUTRITION Prepare Food Right--Ensure It's Light  

E-Print Network (OSTI)

Lesson 4 HEART SMART NUTRITION Prepare Food Right--Ensure It's Light To prepare foods lower in fat Heart Smart? True or False ______ 1. A cholesterol- free product is also fat-free. True or False

449

Definition: Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gas Sampling Jump to: navigation, search Dictionary.png Gas Sampling Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system. Various methods are applied to obtain samples used for determination of the composition of gases present in soils or hydrothermal discharges. The flux of volatile gases emitted from a hydrothermal system can also be determined by measuring the flow of gases at specific locations and comparing it to average background emissions. Anomalously high gas flux can provide an indication of hydrothermal activity at depth that is otherwise not apparent. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

450

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

451

Sampling Errors in Rawinsonde-Array Budgets  

Science Conference Proceedings (OSTI)

Rawinsonde data used for sounding-array budget computations have random errors, both instrumental errors and errors of representativeness (here called sampling errors). The latter are associated with the fact that radiosondes do not measure large-...

Brian E. Mapes; Paul E. Ciesielski; Richard H. Johnson

2003-11-01T23:59:59.000Z

452

Doppler Radar Sampling Limitations in Convective Storms  

Science Conference Proceedings (OSTI)

Vertical air motion data from a T-28 aircraft were filtered and sampled to simulate Doppler radar measurements. The results suggest that multiple Doppler radar analyses are subject to potentially large spatial aliasing errors in deep convection ...

R. E. Carbone; M. J. Carpenter; C. D. Burghart

1985-09-01T23:59:59.000Z

453

Boson Sampling on a Photonic Chip  

E-Print Network (OSTI)

While universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We construct a quantum boson sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmark our QBSM with three and four photons and analyze sources of sampling inaccuracy. Our studies pave the way to larger devices that could offer the first definitive quantum-enhanced computation.

Justin B. Spring; Benjamin J. Metcalf; Peter C. Humphreys; W. Steven Kolthammer; Xian-Min Jin; Marco Barbieri; Animesh Datta; Nicholas Thomas-Peter; Nathan K. Langford; Dmytro Kundys; James C. Gates; Brian J. Smith; Peter G. R. Smith; Ian A. Walmsley

2012-12-11T23:59:59.000Z

454

LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)  

E-Print Network (OSTI)

1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

McNeill, John A.

455

Surface sampling concentration and reaction probe  

DOE Patents (OSTI)

A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

Van Berkel, Gary J; Elnaggar, Mariam S

2013-07-16T23:59:59.000Z

456

Form:SampleForm | Open Energy Information  

Open Energy Info (EERE)

SampleForm Jump to: navigation, search Input the name of a Test Page below. If the resource already exists, you will be able to edit its information. AddEdit a Test Page The text...

457

Efficiently detecting webpage updates using samples  

Science Conference Proceedings (OSTI)

Due to resource constraints, Web archiving systems and search engines usually have difficulties keeping the local repository completely synchronized with the Web. To address this problem, sampling-based techniques periodically poll a subset of webpages ...

Qingzhao Tan; Ziming Zhuang; Prasenjit Mitra; C. Lee Giles

2007-07-01T23:59:59.000Z

458

Sample Exchange Evaluation (SEE) Report - Phase II  

SciTech Connect

This report describes the results from Phase II of the Sample Exchange Evaluation (SEE) Program, a joint effort to compare analytical laboratory performance on samples from the Hanford Site`s high-level waste tanks. In Phase II, the program has been expanded to include inorganic constituents in addition to radionuclides. Results from Phase II that exceeded 20% relative percent difference criteria are identified.

Winters, W.I.

1994-09-28T23:59:59.000Z

459

JILA Expansion: Preparing the Next Generation of Physicists  

Science Conference Proceedings (OSTI)

JILA Expansion: Preparing the Next Generation of Physicists (+$13 million). ... could lead to dramatically more efficient electrical power transmission. ...

2010-10-05T23:59:59.000Z

460

Microstructure of Titanium Alloy Prepared by Selective Laser Melting ...  

Science Conference Proceedings (OSTI)

Symposium, Solidification in Additive Manufacturing. Presentation Title, Microstructure of Titanium Alloy Prepared by Selective Laser Melting in Vacuum.

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Formulation and method for preparing gels comprising hydrous ...  

Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient ... Building Energy ... Solar Thermal;

462

Preparation of High Purity Silicon by Electrolysis-Vacuum Distillation  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon: Production and Recyling. Presentation Title, Preparation of ...

463

On sampling fractions and electron shower shapes  

SciTech Connect

We study the usage of various definitions of sampling fractions in understanding electron shower shapes in a sampling multilayer electromagnetic calorimeter. We show that the sampling fractions obtained by the conventional definition (I) of (average observed energy in layer)/(average deposited energy in layer) will not give the best energy resolution for the calorimeter. The reason for this is shown to be the presence of layer by layer correlations in an electromagnetic shower. The best resolution is obtained by minimizing the deviation from the total input energy using a least squares algorithm. The 'sampling fractions' obtained by this method (II) are shown to give the best resolution for overall energy. We further show that the method (II) sampling fractions are obtained by summing the columns of a non-local {lambda} tensor that incorporates the correlations. We establish that the sampling fractions (II) cannot be used to predict the layer by layer energies and that one needs to employ the full {lambda} tensor for this purpose. This effect is again a result of the correlations.

Peryshkin, Alexander; Raja, Rajendran; /Fermilab

2011-12-01T23:59:59.000Z

464

Mineralogic and compositional studies of barite samples  

Science Conference Proceedings (OSTI)

Three barite samples of different provenance were studied using several characterization methods. The samples were initially examined as grain mounts by X-ray diffraction (XRD) to determine bulk mineralogy and grain sizes. Only barite (BaSO4) was observed in XRD patterns. Elemental abundance mapping by electron microprobe and x-ray microprobe were used to determine whether discrete phases contributed to the trace-metal composition of the bulk sediments. The samples included minute, broadly dispersed grains of lead sulfide, and an unidentified Pb phase that did not include sulfur or phosphorus. Hg was found within a subset of the Pb sulfide grains, along with Cu. A Sr sulfide was observed. Fe was present in all samples, as an oxide and a sulfide. The Fe sulfides were much less abundant in two of the samples. Cu was also observed as a sulfide without associated Pb. Finally, Cr was observed as sub-?m oxide particles and as a chromium oxide component of Fe-rich, >10 ?m lithic fragments. The detected trace metals in the barite samples were components of very minor discrete mineral phases within the more abundant barite grains. Abundant inclusions of Fe oxides, sulfides, and quartz were also observed.

McKinley, James P.

2006-10-01T23:59:59.000Z

465

ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING  

SciTech Connect

Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

Poirier, M.; Fink, S.

2010-02-02T23:59:59.000Z

466

Experimental and Sampling Design for the INL-2 Sample Collection Operational Test  

SciTech Connect

This report describes the experimental and sampling design developed to assess sampling approaches and methods for detecting contamination in a building and clearing the building for use after decontamination. An Idaho National Laboratory (INL) building will be contaminated with BG (Bacillus globigii, renamed Bacillus atrophaeus), a simulant for Bacillus anthracis (BA). The contamination, sampling, decontamination, and re-sampling will occur per the experimental and sampling design. This INL-2 Sample Collection Operational Test is being planned by the Validated Sampling Plan Working Group (VSPWG). The primary objectives are: 1) Evaluate judgmental and probabilistic sampling for characterization as well as probabilistic and combined (judgment and probabilistic) sampling approaches for clearance, 2) Conduct these evaluations for gradient contamination (from low or moderate down to absent or undetectable) for different initial concentrations of the contaminant, 3) Explore judgment composite sampling approaches to reduce sample numbers, 4) Collect baseline data to serve as an indication of the actual levels of contamination in the tests. A combined judgmental and random (CJR) approach uses Bayesian methodology to combine judgmental and probabilistic samples to make clearance statements of the form "X% confidence that at least Y% of an area does not contain detectable contamination” (X%/Y% clearance statements). The INL-2 experimental design has five test events, which 1) vary the floor of the INL building on which the contaminant will be released, 2) provide for varying the amount of contaminant released to obtain desired concentration gradients, and 3) investigate overt as well as covert release of contaminants. Desirable contaminant gradients would have moderate to low concentrations of contaminant in rooms near the release point, with concentrations down to zero in other rooms. Such gradients would provide a range of contamination levels to challenge the sampling, sample extraction, and analytical methods to be used in the INL-2 study. For each of the five test events, the specified floor of the INL building will be contaminated with BG using a point-release device located in the room specified in the experimental design. Then quality control (QC), reference material coupon (RMC), judgmental, and probabilistic samples will be collected according to the sampling plan for each test event. Judgmental samples will be selected based on professional judgment and prior information. Probabilistic samples were selected with a random aspect and in sufficient numbers to provide desired confidence for detecting contamination or clearing uncontaminated (or decontaminated) areas. Following sample collection for a given test event, the INL building will be decontaminated. For possibly contaminated areas, the numbers of probabilistic samples were chosen to provide 95% confidence of detecting contaminated areas of specified sizes. For rooms that may be uncontaminated following a contamination event, or for whole floors after decontamination, the numbers of judgmental and probabilistic samples were chosen using the CJR approach. The numbers of samples were chosen to support making X%/Y% clearance statements with X = 95% or 99% and Y = 96% or 97%. The experimental and sampling design also provides for making X%/Y% clearance statements using only probabilistic samples. For each test event, the numbers of characterization and clearance samples were selected within limits based on operational considerations while still maintaining high confidence for detection and clearance aspects. The sampling design for all five test events contains 2085 samples, with 1142 after contamination and 943 after decontamination. These numbers include QC, RMC, judgmental, and probabilistic samples. The experimental and sampling design specified in this report provides a good statistical foundation for achieving the objectives of the INL-2 study.

Piepel, Gregory F.; Amidan, Brett G.; Matzke, Brett D.

2009-02-16T23:59:59.000Z

467

Atmospheric CO2 From Flask Air Samples at 10 Sites in the SIO Air Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Flask Air Samples, SIO Network Flask Air Samples, SIO Network Atmospheric CO2 From Flask Air Samples at 10 Sites in the SIO Air Sampling Network Scripps Institution of Oceanography Monitoring Sites Scripps Institution of Oceanography Monitoring Sites Mauna Loa, Hawaii Mauna Loa weekly average CO2 concentrations derived from continuous air samples Barrow, Alaska American Samoa South Pole Daily average CO2 concentrations derived from continuous air samples Alert, NWT, Canada Cape Kumukahi Christmas Island Baring Head Kermadec Island La Jolla Pier La Jolla Pier weekly average CO2 concentrations derived from continuous air samples PDF Documentation available as Atmospheric Carbon Dioxide Concentrations at 10 Locations Spanning Latitudes 82°N to 90°S, (NDP-001a) For information on calibration and some additional literature, go to

468

Surveillance Guide - MAS 10.3 Seasonal Preparation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEASONAL PREPARATION SEASONAL PREPARATION 1.0 Objective The objective of this surveillance is to verify that the contractor is implementing appropriate measures to protect equipment and systems from damage due to the effects of cold weather. The Facility Representative evaluates systems necessary for the protection of the public and workers to determine if they have been adequately prepared for cold weather. The Facility Representative also examines other preparations for cold weather to ensure that materials are properly stored, permanent and auxiliary heating systems are functional, and other appropriate preparations have been completed. During the surveillance, the Facility Representative ensures that applicable DOE requirements have been implemented.

469

Practical reporting times for environmental samples  

Science Conference Proceedings (OSTI)

Preanalytical holding times for environmental samples are specified because chemical and physical characteristics may change between sampling and chemical analysis. For example, the Federal Register prescribes a preanalytical holding time of 14 days for volatile organic compounds in soil stored at 4{degrees}C. The American Society for Testing Materials (ASTM) uses a more technical definition that the preanalytical holding time is the day when the analyte concentration for an environmental sample falls below the lower 99% confidence interval on the analyte concentration at day zero. This study reviews various holding time definitions and suggest a new preanalytical holding time approach using acceptable error rates for measuring an environmental analyte. This practical reporting time (PRT) approach has been applied to nineteen volatile organic compounds and four explosives in three environmental soil samples. A PRT nomograph of error rates has been developed to estimate the consequences of missing a preanalytical holding time. This nomograph can be applied to a large class of analytes with concentrations that decay linearly or exponentially with time regardless of sample matrices and storage conditions.

Bayne, C.K.; Schmoyer, D.D.; Jenkins, R.A.

1993-02-01T23:59:59.000Z

470

POWGEN Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Environment Sample Environment PAC Helium fill station for cans. PAC PAC stands for Powgen Automatic Changer. This is the second generation sample changer that was developed for POWGEN. The changer has a carousal that holds a maximum of 24 sample-filled vanadium cans and collects data in a temperature range of 10 to 300 K. The cool down temperature from room temperature to 10 K is 45 minutes. However, samples can be changed at 10 K, which takes about 20 minutes. PAC cans The OD (outer diameter) for the V part is 6.3, 7.86 and 9.42 mm The ID (inner diameter) for these to be 5.9, 7.46 and 9.02mm ILL Furnace ILL can ILL can for high temp The traditional ILL furnace built with vanadium heating elements is available for high-temperature measurements from room temperature to 1100°C. Cooling to 200°C takes 3-4 hours from highest temperature, and

471

Amchitka Island, Alaska, special sampling project 1997  

Science Conference Proceedings (OSTI)

This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

U.S. Department of Energy, Nevada Operations Office

2000-06-28T23:59:59.000Z

472

Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes  

DOE Patents (OSTI)

Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.

Hammond, P.R.

1983-12-29T23:59:59.000Z

473

Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes  

SciTech Connect

Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.

Hammond, Peter R. (Livermore, CA)

1986-01-01T23:59:59.000Z

474

Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films  

DOE Patents (OSTI)

A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

1999-01-01T23:59:59.000Z

475

Rapid Method for Ra-226 and Ra-228 in Water Samples  

Science Conference Proceedings (OSTI)

The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Ra-226 (1620 year half-life) is one of the most toxic of the long-lived alpha emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of radium-226 and radium-228 in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare Ra-226 and Ra-228 for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both Ra-226 and Ra-228 (via Ac-228) for assay. This method uses MnO{sub 2} Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate Ra-226 and Ra-228 rapidly from water samples, along with Ba-133 tracer. DGA Resin{reg_sign} (Eichrom) and Ln-Resin{reg_sign} (Eichrom) are employed in tandem to prepare Ra-226 for assay by alpha spectrometry and to determine Ra-228 via the measurement of Ac-228 by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain Ac-228 on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The Ac-228 is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

Maxwell, Sherrod, L. III

2006-02-10T23:59:59.000Z

476

Guide to preparing SAND reports and other communication products.  

SciTech Connect

This guide describes the R&A process, Common Look and Feel requirements, and preparation and publishing procedures for communication products at Sandia National Laboratories. Samples of forms and examples of published communications products are provided. This guide takes advantage of the wealth of material now available on the Web as a resource. Therefore, it is best viewed as an electronic document. If some of the illustrations are too small to view comfortably, you can enlarge them on the screen as needed. The format of this document is considerably different than that usually expected of a SAND Report. It was selected to permit the large number of illustrations and examples to be placed closer to the text that references them. In the case of forms, covers, and other items that are included as examples, a link to the Web is provided so that you can access the items and download them for use. This guide details the processes for producing a variety of communication products at Sandia National Laboratories. Figure I-1 shows the general publication development process. Because extensive supplemental material is available from Sandia on the internal web or from external sources (Table I-1), the guide has been shortened to make it easy to find information that you need.

Not Available

2011-09-01T23:59:59.000Z

477

Sample Project Execution Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sample Project Execution Plan Sample Project Execution Plan Sample Project Execution Plan The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects. The plan serves as the main communication vehicle to ensure that everyone is aware and knowledgeable of project objectives and how they will be accomplished. The plan is the primary agreement between Headquarters and the federal project director and a preliminary plan should be developed and approved at Critical Decision-1. Project objectives are derived from the mission needs statement, and an integrated project team assists in development of the PEP. The plan is a living document and should be updated to describe current and future processes and procedures, such as integrating safety

478

Definition: Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Soil Gas Sampling Jump to: navigation, search Dictionary.png Soil Gas Sampling Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases in the near-surface environment. Identification of high concentrations of hydrothermal gas species may indicates the presence of enhanced permeability (faults) and high temperature hydrothermal activity at depth. Soil gas data may also be used to study other important aspects of the geothermal system, such as distinguishing between magmatic and amagmatic sources of heat. The technique may also be used for ongoing monitoring of the geothermal system during resource development and production.

479

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

480

Template:SampleTemplate | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:SampleTemplate Jump to: navigation, search This is the SampleTemplate template. It is designed for use by Sample Pages. To define a test page, please use this form. Parameters Awesomeness - The numeric level of awesomeness that your test page will achieve. Topics - Topics this page discusses. (semicolon delimited) Note: References for the above parameters are generated automatically by the ReferenceForValue template and can be seen using the ShowRefFieldsButton. Dependencies Template:Cite Template:ReferenceForValue Widget:ShowRefFieldsButton Usage It should be invoked using the corresponding form.

Note: This page contains sample records for the topic "diffraction-limited sample preparation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Method of preparing composite superconducting wire  

DOE Patents (OSTI)

An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

Verhoeven, John D. (Ames, IA); Gibson, Edwin D. (Ames, IA); Finnemore, Douglas K. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Owen, Charles V. (Ames, IA)

1985-08-06T23:59:59.000Z

482

Improved method of preparing composite superconducting wire  

DOE Patents (OSTI)

An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

1979-10-17T23:59:59.000Z

483

Improved method of preparing composite superconducting wire  

DOE Patents (OSTI)

An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin is described. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

1981-04-24T23:59:59.000Z