National Library of Energy BETA

Sample records for differential scanning calorimetry

  1. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    SciTech Connect (OSTI)

    Dan, Kaustabh Roy, Madhusudan Datta, Alokmay

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  2. Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry

    SciTech Connect (OSTI)

    Vollet, D. R.; Donatti, D. A.; Ibanez Ruiz, A.; Gatto, F. R. [Departamento de Fisica, Unesp-Univerisdade Estadual Paulista, IGCE, P.O. Box 178 CEP 13500-970 Rio Claro, SP (Brazil)

    2006-07-01

    Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 deg. C/min from -120 deg. C up to 30 deg. C. Aerogels were obtained by CO{sub 2} supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 deg. C up to practically 0 deg. C, was associated to the melting of ice nanocrystals with a crystal size distribution with 'pore' diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 deg. C, was attributed to the melting of macroscopic crystals. The DSC incremental 'nanopore' volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20{+-}0.01 in a characteristic length scale below {xi}=7.9{+-}0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental ''pore'' volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

  3. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    SciTech Connect (OSTI)

    Post, Ekkehard; Henderson, Jack B.

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  4. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect (OSTI)

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  5. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  6. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  7. Micron-Scale Differential Scanning Calorimeter on a Chip

    DOE Patents [OSTI]

    Cavicchi, Richard E; Poirier, Gregory Ernest; Suehle, John S; Gaitan, Michael; Tea, Nim H

    1998-06-30

    A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.

  8. Method for HEPA filter leak scanning with differentiating aerosol detector

    SciTech Connect (OSTI)

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O.

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  9. SCAN+

    SciTech Connect (OSTI)

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  10. SCAN+

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  11. SCAN+

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemorethe positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.less

  12. Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calorimetry Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  13. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOE Patents [OSTI]

    Kazmerski, Lawrence L.

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  14. CALORIMETRY OF TRU WASTE MATERIALS

    SciTech Connect (OSTI)

    C. RUDY; ET AL

    2000-08-01

    Calorimetry has been used for accountability measurements of nuclear material in the US. Its high accuracy, insensitivity to matrix effects, and measurement traceability to National Institute of Standards and Technology have made it the primary accountability assay technique for plutonium (Pu) and tritium in the Department of Energy complex. A measurement of Pu isotopic composition by gamma-ray spectroscopy is required to transform the calorimeter measurement into grams Pu. The favorable calorimetry attributes allow it to be used for verification measurements, for production of secondary standards, for bias correction of other faster nondestructive (NDA) methods, or to resolve anomalous measurement results. Presented in this paper are (1) a brief overview of calorimeter advantages and disadvantages, (2) a description of projected large volume calorimeters suitable for waste measurements, and (3) a new technique, direct measurement of transuranic TRU waste alpha-decay activity through calorimetry alone.

  15. Scanned Copy

    Office of Environmental Management (EM)

    Scanned Copy

  16. Dijet mass resolution and compensating calorimetry

    SciTech Connect (OSTI)

    Green, D.

    1991-05-01

    The calorimetry for SSC detectors has as its role the detection of the basic particles of the Standard Model. Those germane to calorimetry are quarks, photons, electrons, and gluons. Note that all the hadronic entities appear in the calorimetry as jets. The detection of single hadrons belongs to a past era when quark molecules'' were the focus of intense study. Thus, the goal of calorimetry at the SSC must be the study of jets. In particular, one must understand what defines the limits of accuracy of the jets. If there are intrinsic physical processes which limit the precision of jet measurements, then calorimetry which is more accurate is unnecessary if not wasteful. 5 refs., 5 figs.

  17. Calorimetry exchange program. Annual report, 1988

    SciTech Connect (OSTI)

    Lyons, J.E.

    1988-12-31

    The goals of the Calorimetry Sample Program are: 1. Discuss measurement differences, 2. Review and improve analytical measurements and methods, 3. Discuss new measurement capabilities, 4. Provide data to DOE on measurement capabilities to evaluate shipper- receiver differences, 5. Provide characterized or standard materials as necessary for exchange participants, 6. Provide a measurement control program for plutonium analysis. A sample of PuO{sub 2} powder is available at each participating site for NDA measurement, including either or both calorimetry and high-resolution gamma-ray spectroscopy, the elements which are typically combined to provide a calorimetric assay of plutonium. The facilities measure the sample as frequently and to the level of precision which they desire, and then submit the data to the Exchange for analysis. Statistical tests are used to evaluate the data and to determine if there are significant differences from accepted values for the exchange or from data previously reported by that facility. Data included in this report is a compilation of all exchange data received in 1988. Since a large number of data points were recorded, a change was made to the analysis method to account for the uncertainty in the accepted values.

  18. Bipolar monolithic preamplifiers for SSC silicon calorimetry

    SciTech Connect (OSTI)

    Britton, C.L. Jr.; Todd, R.A.; Bauer, M.L. ); Kennedy, E.J. . Dept. of Electrical and Computer Engineering Oak Ridge National Lab., TN ); Bugg, W.M. . Dept. of Physics)

    1990-01-01

    This paper describes preamplifiers designed specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). Eight different preamplifiers designed for detector capacitances ranging from 20 pF to 500 pF and operating temperatures from 25{degree}C to {minus}20{degree}C are discussed. The preamplifiers were fabricated with two different high-frequency processes (one with the VTC, Inc. VJ900 process, seven with the Harris Semiconductor VHF Process). The different topologies and their features are discussed in addition to the design methodologies employed. The results for noise, power consumption, speed, and radiation damage effects as well as data for post-damage annealing are presented for the VTC process preamplifier. Simulations for the VHF Process circuits are presented. This work was funded through SSC Generic Detector funding, SSC Detector Subsystem funding, and the Oak Ridge National Laboratory (ORNL) Detector Center.

  19. Development of GEM-Based Digital Hadron Calorimetry Using the...

    Office of Scientific and Technical Information (OSTI)

    Conference: Development of GEM-Based Digital Hadron Calorimetry Using the SLAC KPiX Chip Citation Details In-Document Search Title: Development of GEM-Based Digital Hadron...

  20. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect (OSTI)

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  1. Fast sampling calorimetry with solid argon ionization chambers

    SciTech Connect (OSTI)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-12-31

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed.

  2. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    SciTech Connect (OSTI)

    Perk, T; Bradshaw, T; Muzahir, S; Jeraj, R; Meyer, E

    2014-06-15

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to train eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate

  3. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  4. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect (OSTI)

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  5. NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT

    SciTech Connect (OSTI)

    Andrew Stroud, Lee Sawyer

    2012-08-31

    We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

  6. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  7. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect (OSTI)

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  8. Adiabatic calorimetry (RSST and VSP) tests with sodium acetate

    SciTech Connect (OSTI)

    Kirch, N.W.

    1993-09-01

    As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.

  9. Annual meeting of the Calorimetry Exchange Program: minutes--April 24-25, 1991

    SciTech Connect (OSTI)

    1991-12-31

    On April 24-25, 1991, people from seven DOE organizations participated in the annual meeting of the Calorimetry Exchange Program. The meeting featured a review of the statistical analysis of the calorimetry and gamma-ray data submitted to the exchange program during 1990. The meeting also enabled the group to review progress of five projects concerning a tritium exchange program, reprogramming of the database, a catalogue of measurement techniques, additional samples, and recharacterization of the current sample. There were presentations on recent advances in calorimetry and gamma-ray measurements.

  10. Free motion scanning system

    DOE Patents [OSTI]

    Sword, Charles K.

    2000-01-01

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  11. Final Technical Report ?¢???? CMS FAST OPTICAL CALORIMETRY

    SciTech Connect (OSTI)

    David R Winn

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  12. Comparison of calorimetry and destructive analytical measurement techniques for excess plutonium powders

    SciTech Connect (OSTI)

    Welsh, T.L.

    1996-03-15

    In Dec. 1994, IAEA safeguards were initiated on inventory of Pu- bearing materials, originating from the US nuclear weapons complex, at vault 3 of DOE`s Plutonium Finishing Plant at Hanford. Because of the diversity and heterogeneity of the Pu, plant operators have increasingly used calorimetry for accountability measurements. During the recent commencement of IAEA safeguards at vault 3, destructive (electrochemical titration) methods were used to determine Pu concentrations in subsamples of inventory items with widely ranging chemical purities. The Pu concentrations in the subsamples were determined and contribution of heterogeneity to total variability was identified. Measurement results, gathered by PFP and IAEA laboratories, showed total measurement variability for calorimetry to be comparable with or lower than those of sampling and chemical analyses.

  13. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  14. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fixed elevation) 3. Sector scan (for cloud tracking) 4. Staring mode 3D-Cloud Products Case Study - Marine Stratocumulus 75 o Horizontal Wind Height In-cloud horizontal wind and...

  15. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  16. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  17. Scanning computed confocal imager

    DOE Patents [OSTI]

    George, John S. (Los Alamos, NM)

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  18. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  19. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  20. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect (OSTI)

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  1. Only critical information was scanned

    Office of Legacy Management (LM)

    Only critical information was scanned. Entire document is available upon request - Click here to email a

  2. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, W.C.; Blau, P.J.

    1994-11-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  3. Fly-scan ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  4. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  5. HEAT OF HYDRATION OF SALTSTONE MIXES-MEASUREMENT BY ISOTHERMAL CALORIMETRY

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T

    2007-07-02

    This report provides initial results on the measurement of heat of hydration of Saltstone mixes using isothermal calorimetry. The results were obtained using a recently purchased TAM Air Model 3116 Isothermal Conduction Calorimeter. Heat of hydration is an important property of Saltstone mixes. Greater amounts of heat will increase the temperature of the curing mix in the vaults and limit the processing rate. The heat of hydration also reflects the extent of the hydraulic reactions that turn the fluid mixture into a ''stone like'' solid and consequently impacts performance properties such as permeability. Determining which factors control these reactions, as monitored by the heat of hydration, is an important goal of the variability study. Experiments with mixes of portland cement in water demonstrated that the heats measured by this technique over a seven day period match very well with the literature values of (1) seven day heats of hydration using the standard test method for heat of hydration of hydraulic cement, ASTM C 186-05 and (2) heats of hydration measured using isothermal calorimetry. The heats of hydration of portland cement or blast furnace slag in a Modular Caustic Side Solvent Extraction Unit (MCU) simulant revealed that if the cure temperature is maintained at 25 C, the amount of heat released over a seven day period is roughly 62% less than the heat released by portland cement in water. Furthermore, both the blast furnace slag and the portland cement were found to be equivalent in heat production over the seven day period in MCU. This equivalency is due to the activation of the slag by the greater than 1 Molar free hydroxide ion concentration in the simulant. Results using premix (a blend of 10% cement, 45% blast furnace slag, and 45% fly ash) in MCU, Deliquification, Dissolution and Adjustment (DDA) and Salt Waste Processing Facility (SWPF) simulants reveal that the fly ash had not significantly reacted (undergone hydration reactions) after seven

  6. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... energy dispersive spectroscopy, x-ray and micro-x-ray diffraction, permeametry, thermogravimetric analysis, differential scanning calorimetry, and infrared and raman spectroscopy. ...

  7. Scanning Probe Microscopy with Spectroscopic Molecular Recognition - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Scanning Probe Microscopy with Spectroscopic Molecular Recognition Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed an innovative imaging method that possesses the imaging capability of scanning near-field ultrasound holography and the chemical specificity of reverse photoacoustic spectroscopy. This imaging method can achieve chemical differentiation with nanometer resolution. DescriptionAtomic force

  8. Thermal stability study of LiAsF[sub 6] electrolytes using accelerating rate calorimetry

    SciTech Connect (OSTI)

    Gee, M.A.; Laman, F.C. )

    1993-04-01

    Binary and ternary electrolytes containing solvent mixtures of cyclic esters and cyclic ethers and lithium hexafluoroarsenate (LiAsF[sub 6]) as the electrolyte salt have been popular for some time for use in secondary lithium batteries because of their good conductivity and lithium cycling efficiency. The main concern regarding safety of lithium batteries is the initiation of self-heating when the cell is under abusive conditions which in the extreme case can lead to a thermal runaway. There are a number of processes contributing to the self-heating; such as reactions between the electrolyte and electrode materials and thermal decomposition of the electrolyte. Heating resulting from chemical reactions and thermal decompositions can also involve reaction products. Accelerating rate calorimetry is a simple technique which allows the study of self-heating, in particular the thermal decomposition of the electrolyte. In the work reported her, the effect of the addition of a cyclic ether to an electrolyte consisting of LiAsF[sub 6] salt dissolved in a mixture of cyclic esters and the replacement of LiAsF[sub 6] by lithium triflate salt (LiCF[sub 3]SO[sub 3]) on the thermal stability of the electrolyte, were determined. To establish the effect of at least one abusive condition such as battery overcharge, the thermal stabilities of the oxidized forms of two electrolytes containing LiAsF[sub 6] electrolyte salt and cyclic ester/ether solvent mixtures were also measured.

  9. A Universal Method for Fishing Target Proteins from Mixtures of Biomolecules using Isothermal Titration Calorimetry

    SciTech Connect (OSTI)

    Zhou, X.; Sun, Q; Kini, R; Sivaraman, J

    2008-01-01

    The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstrate a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.

  10. DIFFERENTIAL ANALYZER

    DOE Patents [OSTI]

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  11. LANL Robotic Vessel Scanning

    SciTech Connect (OSTI)

    Webber, Nels W.

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  12. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    SciTech Connect (OSTI)

    Cavan, Alicia; Meyer, Juergen

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  13. THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS

    SciTech Connect (OSTI)

    Lacki, Brian C.; Thompson, Todd A.; Quataert, Eliot

    2010-07-01

    The far-infrared (FIR) and radio luminosities of star-forming galaxies are linearly correlated over a very wide range in star formation rate, from normal spirals like the Milky Way to the most intense starbursts. Using one-zone models of cosmic ray (CR) injection, cooling, and escape in star-forming galaxies, we attempt to reproduce the observed FIR-radio correlation (FRC) over its entire span. The normalization and linearity of the FRC, together with constraints on the CR population in the Milky Way, have strong implications for the CR and magnetic energy densities in star-forming galaxies. We show that for consistency with the FRC, {approx}2% of the kinetic energy from supernova explosions must go into high-energy primary CR electrons and that {approx}10%-20% must go into high-energy primary CR protons. Secondary electrons and positrons are likely comparable to or dominate primary electrons in dense starburst galaxies. We discuss the implications of our models for the magnetic field strengths of starbursts, the detectability of starbursts by Fermi, and CR feedback. Overall, our models indicate that both CR protons and electrons escape from low surface density galaxies, but lose most of their energy before escaping dense starbursts. The FRC is caused by a combination of the efficient cooling of CR electrons (calorimetry) in starbursts and a conspiracy of several factors. For lower surface density galaxies, the decreasing radio emission caused by CR escape is balanced by the decreasing FIR emission caused by the low effective UV dust opacity. In starbursts, bremsstrahlung, ionization, and inverse Compton cooling decrease the radio emission, but they are countered by secondary electrons/positrons and the dependence of synchrotron frequency on energy, both of which increase the radio emission. Our conclusions hold for a broad range of variations in our fiducial model, such as those including winds, different magnetic field strengths, and different diffusive escape

  14. Continuous scanning mode for ptychography

    SciTech Connect (OSTI)

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  15. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan...

    Office of Scientific and Technical Information (OSTI)

    Cross-Wind RHI Scan Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan Authors: Dan Nelson ; Joseph ...

  16. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-07

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine powermoreperformance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.less

  17. Transverse section radionuclide scanning system

    DOE Patents [OSTI]

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  18. Scanning probe microscopy competency development

    SciTech Connect (OSTI)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  19. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  20. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  1. Scanning tunneling microscope nanoetching method

    DOE Patents [OSTI]

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  2. Considerations on the design of front-end electronics for silicon calorimetry for the SSC (Superconducting Super Collider)

    SciTech Connect (OSTI)

    Wintenberg, A.L.; Bauer, M.L.; Britton, C.L. Jr.; Kennedy, E.J.; Todd, R.A. ); Berridge, S.C.; Bugg, W.M. )

    1990-01-01

    Some considerations are described for the design of a silicon-based sampling calorimetry detector for the Superconducting Super Collider (SSC). The use of silicon as the detection medium allows fast, accurate, and fine-grained energy measurements -- but for optimal performance, the front-end electronics must be matched to the detector characteristics and have the speed required by the high SSC interaction rates. The relation between the signal-to-noise ratio of the calorimeter electronics and the charge collection time, the preamplifier power dissipation, detector capacitance and leakage, charge gain, and signal shaping and sampling was studied. The electrostatic transformer connection was analyzed and found to be unusable for a tightly arranged calorimeter because of stray capacitance effects. The method of deconvolutional sampling was developed as a means for pileup correction following synchronous sampling and analog storage. 3 refs., 6 figs.

  3. NREL: Measurements and Characterization - Scanning Probe Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Probe Microscopy Photo of NREL researcher using scanning probe microscope. Capability of use with ultra-high vacuum makes NREL Scanning Probe Microscopy particularly valuable for certain applications. Scanning probe microscopy (SPM) provides surface images at up to atomic scale and other valuable high-resolution data. SPM encompasses a group of techniques that use very sharp tips that scan extremely closely (several nm) to or in contact with the material being analyzed. The interaction

  4. Status report on an engineering design study of hermetic liquid argon calorimetry for the SSC (Superconducting Super Collider)

    SciTech Connect (OSTI)

    Adams, T.; Davis, M.; DiGiacomo, N.J.; Easom, B.; Gordon, H.; Hupp, J.; Killian, K.; Kroon, P.; Lajczok, M.; Marx, M. . Astronautics Group; Brookhaven National Lab., Upton, NY; Martin Marietta Aerospace, Denver, CO . Astronautics Group; Brookhaven National Lab., Upton, NY; Martin Marietta Aerospace, Denver, CO . Astronautics Group; State Un

    1989-01-01

    There is general recognition that engineering issues are critical to the viability of liquid argon calorimetry (LAC) at the Superconducting Super Collider (SSC). We have undertaken to quantitatively address these issues and, if possible, perform a preliminary design of a proof of principle'' LAC for SSC. To establish LAC as viable at SSC, we must demonstrate that the physics performance of the device is acceptable, despite the presence of dead material due to vessels and support structure. Our approach involves the construction, by a team of physicists and engineers, of one three dimensional model of the LAC system, built as a hierarchy of components and structures, from which we directly perform interferences checks, mechanical, thermal and magnetic analyses, particle tracking, hermeticity evaluation, physics simulation and assembly. This study, begun in February 1989 as part of the SSC generic detector R and D program, was immediately preceded by a workshop at which engineering details of existing and planned LAC systems were thoroughly examined. We describe below the status of our work, beginning with short descriptions of the tools used, the study requirements and LAC configuration baseline. We then detail the LAC design as it presently stands, including assembly considerations, and conclude with a quantitative assessment of the LAC hermeticity. 19 refs., 12 figs.

  5. The Film Scanning and Reanalysis Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Film Scanning National Security Science Latest Issue:July 2015 past issues All Issues submit The Film Scanning and Reanalysis Project Scientists on a search-and-rescue...

  6. Three-dimensional scanning confocal laser microscope

    DOE Patents [OSTI]

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  7. NREL: Measurements and Characterization - Scanning Defect Mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoluminescence Spectroscopy Minority-Carrier Lifetime Spectroscopy Fourier-Transform Infrared & Raman Spectroscopy Spectroscopic Ellipsometry Capacitance Techniques Scanning ...

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  9. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Joseph Hardin; Dan Nelson; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Joseph Hardin; Dan Nelson; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  11. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  12. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  13. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  14. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  15. Calorimetry Network Program

    Energy Science and Technology Software Center (OSTI)

    1998-01-30

    This is a Windows NT based program to run the SRTC designed calorimeters. The network version can communicate near real time data and final data values over the network. This version, due to network specifics, can function in a stand-alone operation also.

  16. Secondary Emission Calorimetry

    SciTech Connect (OSTI)

    Winn, David Roberts

    2015-03-24

    This report describes R&D on a new type of calorimeter using secondary emission to measure the energy of radiation, particularly high energy particles.

  17. Flashback: Rapid scanning for radiological threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flashback: Rapid scanning for radiological threats Flashback: Rapid scanning for radiological threats The ability to identify distinct material density enables the Multi-Mode Passive Detection System (MMPDS)to quickly detect unshielded to heavily shielded nuclear threats, as well as gamma rays, with near-zero false alarms. November 1, 2015 Decision Science Decision Science Decision Sciences' Multi-Mode Passive Detection System: Rapid scanning forradiological threats Click on headline to go to

  18. NREL: Measurements and Characterization - Scanning Electron Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Researcher using field-emission scanning electron microscope. Field emission scanning electron microscope (FE-SEM) JEOL 6320F. This FE-SEM equipped with a cold field-emission source and in-lens detectors is designed for ultra-high resolution at low accelerating voltage. Compositional mapping by energy-dispersive microscopy and Electron Backscattered Diffraction are available. In basic scanning electron microscopy (SEM), a beam of highly energetic (0.1-50 keV) electrons is

  19. Nanomaterials Analysis using a Scanning Electron Microscope ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanomaterials Analysis using a Scanning Electron Microscope Technology available for licensing: Steradian X-ray detection system increases the detection capability of SEMs during...

  20. Scanned_Agreement.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement.pdf ScannedAgreement.pdf (625.33 KB) More Documents & Publications MOEDoftheItalianRepublic.PDF InternationalAgreementsJanuary2001December2004.pdf Implementing ...

  1. ScanArc ASA | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: ScanArc ASA Place: Hoyanger, Norway Product: Norway-based firm that provides advice on and develops processes and applications of plasma energy....

  2. H2Scan LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: H2Scan LLC Place: Valencia, California Zip: 91355 Sector: Hydro, Hydrogen Product: Hydrogen specific sensing systems, uniquely able to detect hydrogen against...

  3. Scanning tunneling microscope assembly, reactor, and system

    DOE Patents [OSTI]

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  4. ARM: X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which can vary in elevation range and azimuth Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; ...

  5. Automatic Differentiation Package

    Energy Science and Technology Software Center (OSTI)

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  6. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : NSA Scanning Radar IOP ... Low-level mixed-phase clouds, frequently present over the North Slope of Alaska (NSA) ...

  7. Scanning fluorescent microthermal imaging apparatus and method

    DOE Patents [OSTI]

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  8. Scanning fluorescent microthermal imaging apparatus and method

    DOE Patents [OSTI]

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  9. A Case Study in Proton Pencil-Beam Scanning Delivery

    SciTech Connect (OSTI)

    Kooy, Hanne M.; Clasie, Benjamin M.; Lu, H.-M.; Madden, Thomas M.; Bentefour, Hassan; Depauw, Nicolas M.S.; Adams, Judy A.; Trofimov, Alexei V.; Demaret, Denis; Delaney, Thomas F.; Flanz, Jacob B.

    2010-02-01

    Purpose: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. Methods and Materials: Our first deployment of PBS uses 'broad' pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm{sup 2}. Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. Results: We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. Discussion: The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.

  10. Scanning and storage of electrophoretic records

    DOE Patents [OSTI]

    McKean, Ronald A.; Stiegman, Jeff

    1990-01-01

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  11. ARM - Campaign Instrument - scan-irt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsscan-irt Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Scanning IRT (SCAN-IRT) Instrument Categories Radiometric Campaigns Cloudiness Inter-Comparison IOP [ Download Data ] Southern Great Plains, 2003.02.21 - 2003.04.21 Cloudiness Inter-Comparison IOP [ Download Data ] Southern Great Plains, 2003.02.21 - 2003.04.21 Primary Measurements Taken The following measurements are those considered scientifically

  12. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  13. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  14. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    SciTech Connect (OSTI)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-15

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ∼18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  15. TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument...

    Office of Scientific and Technical Information (OSTI)

    TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument Handbook Citation Details In-Document Search Title: TSI Model 3936 Scanning Mobility Particle Spectrometer ...

  16. ARM: X-SAPR Surveillance scan (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-SAPR Surveillance scan X-SAPR Surveillance scan Authors: Widener, Kevin ; Nelson, Dan ; Bharadwaj, Nitin ; Lindenmaier, Iosif 1 ; Collis, Scott + Show Author ...

  17. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  18. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  19. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  20. Differential comparator cirucit

    DOE Patents [OSTI]

    Hickling, Ronald M.

    1996-01-01

    A differential comparator circuit for an Analog-to-Digital Converter (ADC) or other application includes a plurality of differential comparators and a plurality of offset voltage generators. Each comparator includes first and second differentially connected transistor pairs having equal and opposite voltage offsets. First and second offset control transistors are connected in series with the transistor pairs respectively. The offset voltage generators generate offset voltages corresponding to reference voltages which are compared with a differential input voltage by the comparators. Each offset voltage is applied to the offset control transistors of at least one comparator to set the overall voltage offset of the comparator to a value corresponding to the respective reference voltage. The number of offset voltage generators required in an ADC application can be reduced by a factor of approximately two by applying the offset voltage from each offset voltage generator to two comparators with opposite logical sense such that positive and negative offset voltages are produced by each offset voltage generator.

  1. Macroscopic model of scanning force microscope

    DOE Patents [OSTI]

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  2. Laser scanning system for object monitoring

    DOE Patents [OSTI]

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  3. High-speed massively parallel scanning

    DOE Patents [OSTI]

    Decker, Derek E.

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  4. CS-Studio Scan System Parallelization

    SciTech Connect (OSTI)

    Kasemir, Kay; Pearson, Matthew R

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  5. NREL: Measurements and Characterization - Transmission/Scanning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electron Microscopy Transmission/Scanning Transmission Electron Microscopy In transmission electron microscopy (TEM), a thin sample, typically less than 200 nm, is bombarded by a highly focused beam of single-energy electrons. The beam has enough energy for the electrons to be transmitted through the sample, and the transmitted or scattered electron signal is greatly magnified by a series of electromagnetic lenses. The magnified signal may be observed by electron diffraction,

  6. Rapid Scan AERI Observations: Benefits and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Scan AERI Observations: Benefits and Analysis W. F. Feltz, D. D. Turner, R. O. Knuteson, and R. G. Dedecker Space Science and Engineering Center Cooperative Institute of Mesoscale Meteorological Studies University of Wisconsin-Madison Madison, Wisconsin D. D. Turner Pacific Northwest National Laboratory Richland, Washington Introduction The U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program has funded the development of the atmospheric emitted radiance

  7. Circular zig-zag scan video format

    DOE Patents [OSTI]

    Peterson, C. Glen; Simmons, Charles M.

    1992-01-01

    A circular, ziz-zag scan for use with vidicon tubes. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal.

  8. Scanning magnetoresistance microscopy of atom chips

    SciTech Connect (OSTI)

    Volk, M.; Whitlock, S.; Wolff, C. H.; Hall, B. V.; Sidorov, A. I.

    2008-02-15

    Surface based geometries of microfabricated wires or patterned magnetic films can be used to magnetically trap and manipulate ultracold neutral atoms or Bose-Einstein condensates. We investigate the magnetic properties of such atom chips using a scanning magnetoresistive (MR) microscope with high spatial resolution and high field sensitivity. By comparing MR scans of a permanent magnetic atom chip to field profiles obtained using ultracold atoms, we show that MR sensors are ideally suited to observe small variations of the magnetic field caused by imperfections in the wires or magnetic materials which ultimately lead to fragmentation of ultracold atom clouds. Measurements are also provided for the magnetic field produced by a thin current-carrying wire with small geometric modulations along the edge. Comparisons of our measurements with a full numeric calculation of the current flow in the wire and the subsequent magnetic field show excellent agreement. Our results highlight the use of scanning MR microscopy as a convenient and powerful technique for precisely characterizing the magnetic fields produced near the surface of atom chips.

  9. Differential homogeneous immunosensor device

    DOE Patents [OSTI]

    Malmros, Mark K.; Gulbinski, III, Julian

    1990-04-10

    There is provided a novel method of testing for the presence of an analyte in a fluid suspected of containing the same. In this method, in the presence of the analyte, a substance capable of modifying certain characteristics of the substrate is bound to the substrate and the change in these qualities is measured. While the method may be modified for carrying out quantitative differential analyses, it eliminates the need for washing analyte from the substrate which is characteristic of prior art methods.

  10. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    DOE Patents [OSTI]

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  11. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  12. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  13. Differential transimpedance amplifier circuit for correlated differential amplification

    DOE Patents [OSTI]

    Gresham, Christopher A.; Denton, M. Bonner; Sperline, Roger P.

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  14. Circular zig-zag scan video format

    DOE Patents [OSTI]

    Peterson, C.G.; Simmons, C.M.

    1992-06-09

    A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

  15. Copy of Bound Original For Scanning

    Office of Legacy Management (LM)

    Copy of Bound Original For Scanning Document # 1\1\ i g -b DOE/El/-0005/6 Formerly Utilized IVIEWAEC Site! Remedial Action Progrhn, F@diilogical Survey of the Seaway Industrial Par Tonawanda, New Yor May 197 Final Repel Prepared f U.S. Department of Enerc Assistant Secretary for Environme Division of Environmental Control Technolo Washington, D.C. 205, uric Contract No. W-7405-ENG- - - - Available from: ' : -. National Technical Information Service (NTIS) U.S. Department of Comnerce 5285 Port

  16. Differential homogeneous immunosensor device

    DOE Patents [OSTI]

    Malmros, M.K.; Gulbinski, J. III.

    1990-04-10

    There is provided a novel method of testing for the presence of an analyte in a fluid suspected of containing the same. In this method, in the presence of the analyte, a substance capable of modifying certain characteristics of the substrate is bound to the substrate and the change in these qualities is measured. While the method may be modified for carrying out quantitative differential analyses, it eliminates the need for washing the analyte from the substrate which is characteristic of prior art methods. 12 figs.

  17. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOE Patents [OSTI]

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  18. V-119: IBM Security AppScan Enterprise Multiple Vulnerabilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: IBM Security AppScan Enterprise Multiple Vulnerabilities V-119: IBM Security AppScan Enterprise Multiple Vulnerabilities March 26, 2013 - 12:56am Addthis PROBLEM: IBM Security...

  19. REC ScanWafer AS | Open Energy Information

    Open Energy Info (EERE)

    ScanWafer AS Jump to: navigation, search Name: REC ScanWafer AS Place: Hovik, Norway Zip: 1323 Product: Norwegian manufacturer of multicrystalline wafers. Coordinates: 58.002571,...

  20. Scanning systems for particle cancer therapy

    DOE Patents [OSTI]

    Trbojevic, Dejan

    2015-08-04

    A particle beam to treat malignant tissue is delivered to a patient by a gantry. The gantry includes a plurality of small magnets sequentially arranged along a beam tube to transfer the particle beam with strong focusing and a small dispersion function, whereby a beam size is very small, allowing for the small magnet size. Magnets arranged along the beam tube uses combined function magnets where the magnetic field is a combination of a bending dipole field with a focusing or defocusing quadrupole field. A triplet set of combined function magnets defines the beam size at the patient. A scanning system of magnets arranged along the beam tube after the bending system delivers the particle beam in a direction normal to the patient, to minimize healthy skin and tissue exposure to the particle beam.

  1. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, John T.; Fehlau, Paul E.; France, Stephen W.

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  2. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    A nondestructive method for uniquely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  3. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  4. DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR

    DOE Patents [OSTI]

    Test, L.D.

    1958-11-11

    Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

  5. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex; Kalinin, Sergei V; Jesse, Stephen

    2015-01-01

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  6. Complete information acquisition in scanning probe microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-13

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer ismore » severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.« less

  7. System and method for compressive scanning electron microscopy

    DOE Patents [OSTI]

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  8. On-the-fly scans for X-ray ptychography

    SciTech Connect (OSTI)

    Pelz, Philipp M.; Guizar-Sicairos, Manuel; Johnson, Ian; Holler, Mirko; Menzel, Andreas; Thibault, Pierre

    2014-12-22

    With the increasing importance of nanotechnology, the need for reliable real-time imaging of mesoscopic objects with nanometer resolution is rising. For X-ray ptychography, a scanning microscopy technique that provides nanometric resolution on extended fields of view, and the settling time of the scanning system is one of the bottlenecks for fast imaging. Here, we demonstrate that ptychographic on-the-fly scans, i.e., collecting diffraction patterns while the sample is scanned with constant velocity, can be modelled as a state mixture of the probing radiation and allow for reliable image recovery. Characteristics of the probe modes are discussed for various scan parameters, and the application to significantly reducing the scanning time is considered.

  9. Results from Vernier scans during the RHIC 2008 PP Run

    SciTech Connect (OSTI)

    Drees,A.; D Ottavio, T.

    2009-05-04

    Using the vernier scan or Van der Meer scan technique, where one beam is swept stepwise across the other while measuring the collision rate as a function of beam displacement, the transverse beam profiles, the luminosity and the effective cross section of the detector in question can be measured. This report briefly recalls the vernier scan method and presents results from the 100 GeV 2008 RHIC polarized proton (pp) run.

  10. ARM: AOS: Scanning-Mobility Particle Sizer; temperature and RH...

    Office of Scientific and Technical Information (OSTI)

    AOS: Scanning-Mobility Particle Sizer; temperature and RH output Authors: Derek Hageman ; Bill Behrens ; Janek Uin ; Robert Bullard ; Cynthia Salwen ; Cynthia Salwen ; Annette ...

  11. Deployment of ARM Aerial Facility (AAF) Scanning Mobility Particle...

    Office of Scientific and Technical Information (OSTI)

    Mobility Particle Sizer Field Campaign Report Citation Details In-Document Search Title: Deployment of ARM Aerial Facility (AAF) Scanning Mobility Particle Sizer Field ...

  12. Demonstration of scan path optimization in proton therapy

    SciTech Connect (OSTI)

    Kang, Joanne H.; Wilkens, Jan J.; Oelfke, Uwe

    2007-09-15

    A three-dimensional (3D) intensity modulated proton therapy treatment plan to be delivered by magnetic scanning may comprise thousands of discrete beam positions. This research presents the minimization of the total scan path length by application of a fast simulated annealing (FSA) optimization algorithm. Treatment plans for clinical prostate and head and neck cases were sequenced for continuous raster scanning in two ways, and the resulting scan path lengths were compared: (1) A simple back-and-forth, top-to-bottom (zigzag) succession, and (2) an optimized path produced as a solution of the FSA algorithm. Using a first approximation of the scanning dynamics, the delivery times for the scan sequences before and after path optimization were calculated for comparison. In these clinical examples, the FSA optimization shortened the total scan path length for the 3D target volumes by approximately 13%-56%. The number of extraneous spilled particles was correspondingly reduced by about 13%-54% due to the more efficient scanning maps that eliminated multiple crossings through regions of zero fluence. The relative decrease in delivery time due to path length minimization was estimated to be less than 1%, due to both a high scanning speed and time requirements that could not be altered by optimization (e.g., time required to change the beam energy). In a preliminary consideration of application to rescanning techniques, the decrease in delivery time was estimated to be 4%-20%.

  13. Multi-level scanning method for defect inspection

    DOE Patents [OSTI]

    Bokor, Jeffrey; Jeong, Seongtae

    2002-01-01

    A method for performing scanned defect inspection of a collection of contiguous areas using a specified false-alarm-rate and capture-rate within an inspection system that has characteristic seek times between inspection locations. The multi-stage method involves setting an increased false-alarm-rate for a first stage of scanning, wherein subsequent stages of scanning inspect only the detected areas of probable defects at lowered values for the false-alarm-rate. For scanning inspection operations wherein the seek time and area uncertainty is favorable, the method can substantially increase inspection throughput.

  14. Production of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloy

    SciTech Connect (OSTI)

    Goegebakan, Musa; Soguksu, Ali Kemal; Uzun, Orhan; Dogan, Ali

    2007-04-23

    The mechanical alloying technique has been used to produce shape memory Cu83Al13Ni4 alloy. The structure and thermal properties were examined by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The morphology of the surface suggests the presence of martensite.

  15. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  16. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  17. ProxiScan?: A Novel Camera for Imaging Prostate Cancer

    ScienceCinema (OSTI)

    Ralph James

    2010-01-08

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  18. ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    W-SACR) Corner Reflector Raster Scan Title: ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector ...

  19. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Authors: Dan Nelson ; ...

  20. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  1. CX-005490: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermal Analysis of Radioactive Materials by Thermagravimetric Analysis, Differential Scanning Calorimetry, and Differential Thermal AnalysisCX(s) Applied: B3.6Date: 03/01/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  2. Heuristic optimization of the scanning path of particle therapy beams

    SciTech Connect (OSTI)

    Pardo, J.; Donetti, M.; Bourhaleb, F.; Ansarinejad, A.; Attili, A.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Givehchi, N.; La Rosa, A.; Marchetto, F.; Monaco, V.; Pecka, A.; Peroni, C.; Russo, G.; Sacchi, R.

    2009-06-15

    Quasidiscrete scanning is a delivery strategy for proton and ion beam therapy in which the beam is turned off when a slice is finished and a new energy must be set but not during the scanning between consecutive spots. Different scanning paths lead to different dose distributions due to the contribution of the unintended transit dose between spots. In this work an algorithm to optimize the scanning path for quasidiscrete scanned beams is presented. The classical simulated annealing algorithm is used. It is a heuristic algorithm frequently used in combinatorial optimization problems, which allows us to obtain nearly optimal solutions in acceptable running times. A study focused on the best choice of operational parameters on which the algorithm performance depends is presented. The convergence properties of the algorithm have been further improved by using the next-neighbor algorithm to generate the starting paths. Scanning paths for two clinical treatments have been optimized. The optimized paths are found to be shorter than the back-and-forth, top-to-bottom (zigzag) paths generally provided by the treatment planning systems. The gamma method has been applied to quantify the improvement achieved on the dose distribution. Results show a reduction of the transit dose when the optimized paths are used. The benefit is clear especially when the fluence per spot is low, as in the case of repainting. The minimization of the transit dose can potentially allow the use of higher beam intensities, thus decreasing the treatment time. The algorithm implemented for this work can optimize efficiently the scanning path of quasidiscrete scanned particle beams. Optimized scanning paths decrease the transit dose and lead to better dose distributions.

  3. ARM - Field Campaign - Deployment of AAF Scanning Mobility Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SMPS was operated with a cloud condensation nuclei (CCN) counter. Aerosol particles were first classified by the differential mobility analyzer inside the SMPS, the classified ...

  4. Open Source Scanning Probe Microscopy Control Software package GXSM

    SciTech Connect (OSTI)

    Zahl, P.; Wagner, T.; Moller, R.; Klust, A.

    2010-05-01

    GXSM is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected to an instrument, it is operating many different flavors of SPM, e.g., scanning tunneling microscopy and atomic force microscopy or, in general, two-dimensional multichannel data acquisition instruments. The GXSM core can handle different data types, e.g., integer and floating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor subsystem runs the feedback loop, generates the scanning signals, and acquires the data during SPM measurements. The programmable GXSM vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy or tip formation. The GXSM software is released under the GNU general public license and can be obtained via the internet.

  5. Advance in bottle scanning could enhance airport security and benefit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    passengers Advance in bottle scanning could enhance airport security Advance in bottle scanning could enhance airport security and benefit passengers Los Alamos scientists have advanced a Magnetic Resonance Imaging technology that may provide a breakthrough for screening liquids at airport security. November 25, 2013 MagRay engineer Larry Schultz puts a bottle of surrogate material that mimics home made explosives into the MagRay bottle scanner. MagRay engineer Larry Schultz puts a bottle of

  6. A large scanning radiometer for characterizing fenestration systems

    SciTech Connect (OSTI)

    Papamichael, K.; Klems, J.; Selkowitz, S.

    1987-11-01

    A large scanning radiometer for measuring the bidirectional transmittance and reflectance of fenestration systems and components is described. Examples of measured data obtained for simple non-specular samples using the radiometer are presented. A method of obtaining the overall bidirectional properties of systems by calculation from scanning radiometer measurements of components is suggested. Advantages and limitations of the method are discussed. The method appears promising.

  7. LINEAR SCANNING METHOD BASED ON THE SAFT COARRAY

    SciTech Connect (OSTI)

    Martin, C. J.; Martinez-Graullera, O.; Romero, D.; Ullate, L. G.; Higuti, R. T.

    2010-02-22

    This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples.

  8. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect (OSTI)

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  9. Scanning Transmission Electron Microscopy Investigations of Complex Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of Chemistry, University of South Carolina High-Angle-Annular-Dark-Field/Scanning Transmission Electron Microscopy (HAADF/STEM) is a technique uniquely suited for detailed studies of the structure and composition of complex oxides. The HAADF detector collects electrons

  10. Scanning measurement of Seebeck coefficient of a heated sample

    DOE Patents [OSTI]

    Snyder, G. Jeffrey; Iwanaga, Shiho

    2016-04-19

    A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.

  11. CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots Simulations Run at NERSC Show How Seismic Waves Travel Through Mantle September 2, 2015 Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 NERSC PI: Barbara Romanowicz Lead Institution: University of California, Berkeley Project Title: Imaging and Calibration of Mantle Structure at Global and Regional Scales Using Full-Waveform Seismic Tomography NERSC Resources Used:

  12. LandScan 2003 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  13. LandScan 2004 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  14. LandScan 2000 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2001-12-31

    The LandScan data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  15. LandScan 2002 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2003-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  16. LandScan 2006 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2006-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  17. LandScan 2005 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2006-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  18. LandScan 2009 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2009-07-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  19. LandScan 2007 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2008-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  20. LandScan 2011 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2012-11-19

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  1. LandScan 2010 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2010-07-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  2. LandScan 2008 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2009-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  3. Linearization of scan velocity of resonant vibrating-mirror beam deflectors

    DOE Patents [OSTI]

    Yeung, E.S.; Chen, S.L.

    1991-01-15

    A means and method for producing linearization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linearization is accomplished by considering sets of criteria for different scanning applications. 6 figures.

  4. Linearization of scan velocity of resonant vibrating-mirror beam deflectors

    DOE Patents [OSTI]

    Yeung, Edward S.; Chen, Shun-Le

    1991-01-15

    A means and method for producing linerization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linerization is accomplished by considering sets of criteria for different scanning applications.

  5. SU-E-T-133: Dosimetric Impact of Scan Orientation Relative to Target Motion During Spot Scanning Proton Therapy

    SciTech Connect (OSTI)

    Stoker, J; Summers, P; Li, X; Gomez, D; Sahoo, N; Zhu, X; Gillin, M

    2014-06-01

    Purpose: This study seeks to evaluate the dosimetric effects of intra-fraction motion during spot scanning proton beam therapy as a function of beam-scan orientation and target motion amplitude. Method: Multiple 4DCT scans were collected of a dynamic anthropomorphic phantom mimicking respiration amplitudes of 0 (static), 0.5, 1.0, and 1.5 cm. A spot-scanning treatment plan was developed on the maximum intensity projection image set, using an inverse-planning approach. Dynamic phantom motion was continuous throughout treatment plan delivery.The target nodule was designed to accommodate film and thermoluminescent dosimeters (TLD). Film and TLDs were uniquely labeled by location within the target. The phantom was localized on the treatment table using the clinically available orthogonal kV on-board imaging device. Film inserts provided data for dose uniformity; TLDs provided a 3% precision estimate of absolute dose. An inhouse script was developed to modify the delivery order of the beam spots, to orient the scanning direction parallel or perpendicular to target motion.TLD detector characterization and analysis was performed by the Imaging and Radiation Oncology Core group (IROC)-Houston. Film inserts, exhibiting a spatial resolution of 1mm, were analyzed to determine dose homogeneity within the radiation target. Results: Parallel scanning and target motions exhibited reduced target dose heterogeneity, relative to perpendicular scanning orientation. The average percent deviation in absolute dose for the motion deliveries relative to the static delivery was 4.9±1.1% for parallel scanning, and 11.7±3.5% (p<<0.05) for perpendicularly oriented scanning. Individual delivery dose deviations were not necessarily correlated to amplitude of motion for either scan orientation. Conclusions: Results demonstrate a quantifiable difference in dose heterogeneity as a function of scan orientation, more so than target amplitude. Comparison to the analyzed planar dose of a single

  6. Ordinary Differential Equation System Solver

    Energy Science and Technology Software Center (OSTI)

    1992-03-05

    LSODE is a package of subroutines for the numerical solution of the initial value problem for systems of first order ordinary differential equations. The package is suitable for either stiff or nonstiff systems. For stiff systems the Jacobian matrix may be treated in either full or banded form. LSODE can also be used when the Jacobian can be approximated by a band matrix.

  7. Lessons learned on the presentation of scan data

    SciTech Connect (OSTI)

    King, David A.; Vitkus, Tim

    2015-11-01

    Technicians performed a radiological survey of a surplus metal tank to support disposition planning at an Oak Ridge, Tennessee site. The survey included radiation scans to identify contamination and, if identified, define the boundary and magnitude of contamination. Fixed-point 1-minute measurements were also collected at randomly selected locations for comparison against the site's free release limit of 5,000 disintegrations per minute per 100 cm² (dpm/100 cm²) (0.83 Bq/cm²). Scan data were recorded using a data logger as a means to document surveyor observation - logged data captured at 1-second intervals and converted to counts per minute (cpm) by the data logger software were presented in the project report. Both the qualitative scan data (in cpm) and the quantitative direct measurement (in dpm/100 cm²) were reported for completeness, so stakeholders had all available information to support disposition decisions. However, a new stakeholder - introduced to the project at the reporting phase of work - used the instrument efficiency and background data to convert the scan data from cpm to dpm/100 cm², then compared the converted results to the site limit. Many of the converted values exceeded 5,000 dpm/100 cm². This resulted in delays in tank disposition and additional project costs which could have been avoided if the proper use and interpretation of scan data, and implications of radon progeny buildup on oxidized metal surfaces, had been better communicated.

  8. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  9. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOE Patents [OSTI]

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  11. Scanning optical microscope with long working distance objective

    DOE Patents [OSTI]

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  12. Graphitization of polymer surfaces by scanning ion irradiation

    SciTech Connect (OSTI)

    Koval, Yuri [Department of Physics, Universitt Erlangen-Nrnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2014-10-20

    Graphitization of polymer surfaces was performed by low-energy Ar{sup +} and He{sup +} ion irradiation. A method of scanning irradiation was implemented. It was found that by scanning ion irradiation, a significantly higher electrical conductivity in the graphitized layers can be achieved in comparison with a conventional broad-beam irradiation. The enhancement of the conductance becomes more pronounced for narrower and better collimated ion beams. In order to analyze these results in more detail, the temperature dependence of conductance of the irradiated samples was investigated. The results of measurements are discussed in terms of weak localization corrections to conductance in disordered metals. The observed effects can be explained by enlargement of graphitic patches, which was achieved with the scanning ion irradiation method.

  13. ARM: X-SAPR Range Height Indicator scan (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results ARM: X-SAPR Range Height Indicator scan Title: ARM: X-SAPR Range Height Indicator scan X-SAPR Range Height Indicator scan Authors: Widener, Kevin ; ...

  14. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook Citation Details In-Document Search Title: C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook The C-band scanning ...

  15. Differential Optical Synthetic Aperture Radar

    DOE Patents [OSTI]

    Stappaerts, Eddy A. (San Ramon, CA)

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  16. MULTIPLE DIFFERENTIAL ROTARY MECHANICAL DRIVE

    DOE Patents [OSTI]

    Smits, R.G.

    1964-01-28

    This patent relates to a mechanism suitable for such applications as driving two spaced-apart spools which carry a roll film strip under conditions where the film movement must be rapidly started, stopped, and reversed while maintaining a constant tension on the film. The basic drive is provided by a variable speed, reversible rnotor coupled to both spools through a first differential mechanism and driving both spools in the same direction. A second motor, providing a constant torque, is connected to the two spools through a second differential mechanism and is coupled to impart torque to one spool in a first direction anid to the other spool in the reverse direction thus applying a constant tension to the film passing over the two spools irrespective of the speed or direction of rotation thereof. (AEC)

  17. ARM - PI Product - Kinematic and Hydrometer Data Products from Scanning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radars during MC3E ProductsKinematic and Hydrometer Data Products from Scanning Radars during MC3E Citation DOI: 10.5439/1241493 [ What is this? ] ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Kinematic and Hydrometer Data Products from Scanning Radars during MC3E [ research data - ASR funded ] Recently the Radar Meteorology Group at Colorado State University has completed major case studies of

  18. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect (OSTI)

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  19. System Provides Clear Brain Scans of Awake, Unrestrained Mice | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab System Provides Clear Brain Scans of Awake, Unrestrained Mice System Provides Clear Brain Scans of Awake, Unrestrained Mice dynamic imaging of mice Three markers attached to the head of a mouse enable the AwakeSPECT system to obtain detailed, functional images of the brain of a conscious mouse as it moves around. NEWPORT NEWS, Va., April 9 - Setting a mouse free to roam might alarm most people, but not so for nuclear imaging researchers from the U.S. Department of Energy's Thomas

  20. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Authors: Dan Nelson ; ...

  1. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moir fringe imaging

    SciTech Connect (OSTI)

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Kondo, Yukihito

    2014-10-15

    Scanning moir fringe (SMF) imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi{sub 2} source and drain. Nanometer-scale SMFs were formed with a scanning grating size of d{sub s} at integer multiples of the Si crystal lattice spacing d{sub l} (d{sub s} ? nd{sub l}, n = 2, 3, 4, 5). The moir fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  2. Partial growth plate closure: apex view on bone scan

    SciTech Connect (OSTI)

    Howman-Giles, R.; Trochei, M.; Yeates, K.; Middleton, R.; Barrett, I.; Scougall, J.; Whiteway, D.

    1985-01-01

    A new technique of using /sup 99m/Tc bone scan to assess partial closure of the growth plate is described. The site and degree of osseous fusion can be obtained by using the apex view. The technique has the potential of assessing serially the growth of a plate before and after surgery.

  3. Band excitation method applicable to scanning probe microscopy

    SciTech Connect (OSTI)

    Jesse, Stephen; Kalinin, Sergei V.

    2015-08-04

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  4. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  5. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect (OSTI)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  6. Scanning Transmission X-ray Microscope Control Program

    Energy Science and Technology Software Center (OSTI)

    2005-08-05

    User Interface and control software or C++ to run on specifically equipped computer running Windows Operating Systems. Program performs specific control functions required to operate Interferometer controlled scanning transmission X-ray microscopes at ALS beamlines 532 and 11.0.2. Graphical user interface facilitates control, display images and spectra.

  7. Numerical Differentiation of Noisy, Nonsmooth Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chartrand, Rick

    2011-01-01

    We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.

  8. Lessons learned on the presentation of scan data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, David A.; Vitkus, Tim

    2015-11-01

    Technicians performed a radiological survey of a surplus metal tank to support disposition planning at an Oak Ridge, Tennessee site. The survey included radiation scans to identify contamination and, if identified, define the boundary and magnitude of contamination. Fixed-point 1-minute measurements were also collected at randomly selected locations for comparison against the site's free release limit of 5,000 disintegrations per minute per 100 cm² (dpm/100 cm²) (0.83 Bq/cm²). Scan data were recorded using a data logger as a means to document surveyor observation - logged data captured at 1-second intervals and converted to counts per minute (cpm) by the datamore » logger software were presented in the project report. Both the qualitative scan data (in cpm) and the quantitative direct measurement (in dpm/100 cm²) were reported for completeness, so stakeholders had all available information to support disposition decisions. However, a new stakeholder - introduced to the project at the reporting phase of work - used the instrument efficiency and background data to convert the scan data from cpm to dpm/100 cm², then compared the converted results to the site limit. Many of the converted values exceeded 5,000 dpm/100 cm². This resulted in delays in tank disposition and additional project costs which could have been avoided if the proper use and interpretation of scan data, and implications of radon progeny buildup on oxidized metal surfaces, had been better communicated.« less

  9. Nonferromagnetic linear variable differential transformer

    DOE Patents [OSTI]

    Ellis, James F.; Walstrom, Peter L.

    1977-06-14

    A nonferromagnetic linear variable differential transformer for accurately measuring mechanical displacements in the presence of high magnetic fields is provided. The device utilizes a movable primary coil inside a fixed secondary coil that consists of two series-opposed windings. Operation is such that the secondary output voltage is maintained in phase (depending on polarity) with the primary voltage. The transducer is well-suited to long cable runs and is useful for measuring small displacements in the presence of high or alternating magnetic fields.

  10. Measurement of Semiconductor Surface Potential using the Scanning Electron Microscope

    SciTech Connect (OSTI)

    Heath, J. T.; Jiang, C. S.; Al-Jassim, M. M.

    2012-02-15

    We calibrate the secondary electron signal from a standard scanning electron microscope to voltage, yielding an image of the surface or near-surface potential. Data on both atomically abrupt heterojunction GaInP/GaAs and diffused homojunction Si solar cell devices clearly show the expected variation in potential with position and applied bias, giving depletion widths and locating metallurgical junctions to an accuracy better than 10 nm. In some images, distortion near the p-n junction is observed, seemingly consistent with the effects of lateral electric fields (patch fields). Reducing the tube bias removes this distortion. This approach results in rapid and straightforward collection of near-surface potential data using a standard scanning electron microscope.

  11. Influence of mechanical noise inside a scanning electron microscope

    SciTech Connect (OSTI)

    Gaudenzi de Faria, Marcelo; Haddab, Yassine Le Gorrec, Yann; Lutz, Philippe

    2015-04-15

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  12. Synchronized monochromator and insertion device energy scans at SLS

    SciTech Connect (OSTI)

    Krempasky, J.; Flechsig, U.; Korhonen, T.; Zimoch, D.; Quitmann, Ch.; Nolting, F.

    2010-06-23

    Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network and allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.

  13. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  14. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-24

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocityazimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates somemoreof the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.less

  15. A fast map-making preconditioner for regular scanning patterns

    SciTech Connect (OSTI)

    Nss, Sigurd K.; Louis, Thibaut E-mail: thibaut.louis@astro.ox.ac.uk

    2014-08-01

    High-resolution Maximum Likelihood map-making of the Cosmic Microwave Background is usually performed using Conjugate Gradients with a preconditioner that ignores noise correlations. We here present a new preconditioner that approximates the map noise covariance as circulant, and show that this results in a speedup of up to 400% for a realistic scanning pattern from the Atacama Cosmology Telescope. The improvement is especially large for polarized maps.

  16. Scanning Tunneling Microscope Data Acquistion and Control System

    Energy Science and Technology Software Center (OSTI)

    1995-02-01

    SHOESCAN is a PC based code that acquires and displays data for Scanning Tunneling Microscopes (STM). SHOESCAN interfaces with the STM through external electronic feedback and raster control circuits that are controlled by I/O boards on the PC bus. Data is displayed on a separate color monitor that is interfaced to the PC through an additional frame-grabber board. SHOESCAN can acquire a wide range of surface topographic information as well as surface electronic structure information.

  17. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect (OSTI)

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  18. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  19. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  20. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    SciTech Connect (OSTI)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  1. OPM Reservist Differential Briefing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservist Differential Briefing OPM Reservist Differential Briefing Uniformed Services Employment and Reemployment Rights Act Career, Seniority, Pay, and Benefits information OPM Reservist Differential Briefing (33.54 KB) Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications OPM Briefing on Uniformed Services Employment and Reemployment Rights Act Training National Service Activation Checklist The Reemployment

  2. Time differentiated nuclear resonance spectroscopy coupled with...

    Office of Scientific and Technical Information (OSTI)

    heating in diamond anvil cells Citation Details In-Document Search Title: Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil ...

  3. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  4. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  5. A scanning Kelvin probe analysis of aluminum and aluminum alloys

    SciTech Connect (OSTI)

    Hansen, D.C.; Grecsek, G.E.; Roberts, R.O.

    1999-07-01

    A scanning Kelvin probe was used to determine a correlation between work function measurements in air and corrosion potential measurements in solution of pure metals. Test panels of AA2024-T3 treated with various surface preparations and primer/coatings were also analyzed using this technique. Filiform corrosion was observed on a scribed panel that had been exposed to a humid environment, whereas on a non-scribed and non-exposed test panel, holidays in the coating were observed and clearly defined. Work function (wf) analysis yielded more noble values for areas within the scribe mark and more active values were observed for areas adjacent to the scribe mark where delamination of the coating and filiform corrosion was observed. The tips of corrosion filaments were found to be anodic in relation to the body of the filament, with areas of activity extending away from the filaments themselves. Measurements made on an aircraft access panel resulted in the detection of a potential gradient within the repair area. These results indicate that the scanning Kelvin probe is a useful non-destructive technique for the detection of delamination and disbanding of coatings, coating anomalies and corrosion susceptibility of coatings on aluminum aircraft alloys.

  6. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect (OSTI)

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  7. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; Cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIBSEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIBSEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  8. G-2 and CMS Fast Optical Calorimetry

    SciTech Connect (OSTI)

    Winn, David R

    2012-08-07

    Final report on CMS funding for the construction, tests and installation of the Forward Hadron Calorimeter.

  9. Dry calorimetry at the Savannah River Site

    SciTech Connect (OSTI)

    ReFalo, L.A.

    1992-01-01

    Heat flow calorimeters are used at the Savannah River Site to assay radioactive sources by measuring the emitted thermal power. The radioactive source is placed in a constant temperature environment and its thermal output is measured by non-destructive assay techniques. The isotopic mass is computed from the measured power through known watts/gram constants for each of the isotopes. The Equipment Engineering Section of the Savannah River Laboratory has developed calorimetric techniques which provide major improvements over other calorimeters. Improvements are in the areas of greater precision, reduced maintenance, and thermal control without using water. The elimination of water reduces criticality concerns during assay of fissionable materials and reduces health concerns during assay of tritium. Equipment Engineering Section has developed two basic dry calorimeter designs. The designs are identical in concept; however, they differ to accommodate different power levels. Each design has been tested demonstrating proof of concept. The current designs are for low wattage samples, .1 to 10 watts, and high wattage samples, 40 to 140 watts.

  10. Dry calorimetry at the Savannah River Site

    SciTech Connect (OSTI)

    ReFalo, L.A.

    1992-04-01

    Heat flow calorimeters are used at the Savannah River Site to assay radioactive sources by measuring the emitted thermal power. The radioactive source is placed in a constant temperature environment and its thermal output is measured by non-destructive assay techniques. The isotopic mass is computed from the measured power through known watts/gram constants for each of the isotopes. The Equipment Engineering Section of the Savannah River Laboratory has developed calorimetric techniques which provide major improvements over other calorimeters. Improvements are in the areas of greater precision, reduced maintenance, and thermal control without using water. The elimination of water reduces criticality concerns during assay of fissionable materials and reduces health concerns during assay of tritium. Equipment Engineering Section has developed two basic dry calorimeter designs. The designs are identical in concept; however, they differ to accommodate different power levels. Each design has been tested demonstrating proof of concept. The current designs are for low wattage samples, .1 to 10 watts, and high wattage samples, 40 to 140 watts.

  11. Calorimetry of low mass Pu239 items

    SciTech Connect (OSTI)

    Cremers, Teresa L; Sampson, Thomas E

    2010-01-01

    Calorimetric assay has the reputation of providing the highest precision and accuracy of all nondestructive assay measurements. Unfortunately, non-destructive assay practitioners and measurement consumers often extend, inappropriately, the high precision and accuracy of calorimetric assay to very low mass items. One purpose of this document is to present more realistic expectations for the random uncertainties associated with calorimetric assay for weapons grade plutonium items with masses of 200 grams or less.

  12. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook...

    Office of Scientific and Technical Information (OSTI)

    X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook Citation Details In-Document Search Title: X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook ...

  13. SU-E-T-594: Preliminary Active Scanning Results of KHIMA

    SciTech Connect (OSTI)

    Kim, C; Yang, T; Chang, S; Kim, H; Lee, H; Kim, J; Jang, H; Han, G; Park, D; Hwang, W; Kim, G

    2014-06-01

    Purpose: To verify the design criteria on heavy ion beam irradiation, developing a proto type active scanning system was purposed. The active scanning system consists of scanning magnet, power supplies, beam monitors, energy modulation system, and irradiation control system. Methods: Each components of the active scanning system was designed for carbon beam first. For the fast ramping a laminated yoke was purposed. To measure incoming dose and profile, a plate and strip type of ion chambers were designed. Also, ridge filter and range shifter was manufactured. And, the scanning system was modified to adopt 45 MeV of proton beam because of the absence of carbon ion beam in Korea. The system was installed in a beam line at MC-50, KIRAMS. Also, the irradiation control system and planning software was provided. Results: The scanning experiment was performed by drawing KHIMA logo on GaF film. The logo was scanned by 237 scanning points through time normalized intensity modulation. Also, a grid points scanning was performed to measure the scanning resolution and intensity resolution. Conclusion: A prototype active scanning system was successfully designed and manufactured. Also, an initial experiment to print out a drawing on GaF film through the scanning system was completed. More experiments would be required to specify the system performance.

  14. Target motion tracking with a scanned particle beam

    SciTech Connect (OSTI)

    Bert, Christoph; Saito, Nami; Schmidt, Alexander; Chaudhri, Naved; Schardt, Dieter; Rietzel, Eike

    2007-12-15

    Treatment of moving targets with scanned particle beams results in local over- and under-dosage due to interplay of beam and target motion. To mitigate the impact of respiratory motion, a motion tracking system has been developed and integrated in the therapy control system at Gesellschaft fuer Schwerionenforschung. The system adapts pencil beam positions as well as the beam energy according to target motion to irradiate the planned position. Motion compensation performance of the tracking system was assessed by measurements with radiographic films and a 3D array of 24 ionization chambers. Measurements were performed for stationary detectors and moving detectors using the tracking system. Film measurements showed comparable homogeneity inside the target area. Relative differences of 3D dose distributions within the target volume were 1{+-}2% with a maximum of 4%. Dose gradients and dose to surrounding areas were in good agreement. The motion tracking system successfully preserved dose distributions delivered to moving targets and maintained target conformity.

  15. Charged particle beam scanning using deformed high gradient insulator

    DOE Patents [OSTI]

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  16. Multicomponent wavefield characterization with a novel scanning laser interferometer

    SciTech Connect (OSTI)

    Blum, Thomas E.; Wijk, Kasper van; Pouet, Bruno; Wartelle, Alexis

    2010-07-15

    The in-plane component of the wavefield provides valuable information about media properties from seismology to nondestructive testing. A new compact scanning laser ultrasonic interferometer collects light scattered away from the angle of incidence to provide the absolute ultrasonic displacement for both the out-of-plane and an in-plane components. This new system is tested by measuring the radial and vertical polarization of a Rayleigh wave in an aluminum half-space. The estimated amplitude ratio of the horizontal and vertical displacement agrees well with the theoretical value. The phase difference exhibits a small bias between the two components due to a slightly different frequency response between the two processing channels of the prototype electronic circuitry.

  17. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect (OSTI)

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  18. Atmospheric measurements using a scanning, solar-blind Raman Lidar

    SciTech Connect (OSTI)

    Eichinger, W.E.; Cooper, D.I.; Holtkamp, D.B.; Karl, R.R. Jr.; Quick, C.R.; Tiee, J.J.

    1991-01-01

    The study of the water cycle by Lidar has many applications. Because micro-scale structures can be identified by their water content, the technique offers new opportunities to visualize and study the phenomena. There are applications to many practical problems in agricultural and water management as well as at waste storage sites. Conventional point sensors are limited and are inappropriate for use in complex terrain or varied vegetation and cannot be extrapolated over even modest ranges. To this end, techniques must be developed to measure the variables associated with evapotranspirative processes over large areas and varied surface conditions. A scanning water-Raman Lidar is an ideal tool for this task in that it can measure the water vapor concentration rapidly with high spatial resolution without influencing the measurements by the presence of the sensor. 3 refs., 5 figs., 1 tab.

  19. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ievlev, Anton; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2015-01-01

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less

  20. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    SciTech Connect (OSTI)

    Ievlev, Anton; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2015-01-01

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction of the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.

  1. Rubber

    SciTech Connect (OSTI)

    Krishen, A.

    1987-01-01

    This review covers methods for identification, characterization, and determination of rubber and materials in rubber. Techniques discussed include: nuclear magnetic resonance; Fourier transform infrared spectroscopy; UV spectroscopy; differential scanning calorimetry; thermogravimetric analysis; thermomechanical analysis; gel permeation chromatography; size exclusion chromatography; gas chromatography; mass spectrometry; pyrolysis; extraction; scanning selectron microscopy; polarization microscopy; x-ray fluorescence; x-ray scattering; angular light scattering; acoustic scattering; and vapor pressure osmometry.

  2. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-23

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. In this paper, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature andmore » does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. Finally, however, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.« less

  3. Nukbone promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    SciTech Connect (OSTI)

    Rodrguez-Fuentes, Nayeli; Rodrguez-Hernndez, Ana G.; Enrquez-Jimnez, Juana; Alcntara-Quintana, Luz E.; Fuentes-Mera, Lizeth; Pia-Barba, Mara C.; Zepeda-Rodrguez, Armando; and others

    2013-05-10

    Highlights: Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  4. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    SciTech Connect (OSTI)

    Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp [Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science 1001-1, Kishioka-cho, Suzuka 510-0293 (Japan); Notohara, Daisuke; Sakai, Takihito [R and D Department, Medical Systems Division, Shimadzu Corporation 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 (Japan)

    2014-11-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of ?100, ?50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance

  5. Superconductive microstrip exhibiting negative differential resistivity

    DOE Patents [OSTI]

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  6. Low-voltage differentially-signaled modulators

    SciTech Connect (OSTI)

    Zortman, William A.; Lentine, Anthony L.; Hsia, Alexander H.; Watts, Michael R.

    2015-09-08

    Photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes at least one modulator section and differential drive circuitry. The at least one modulator section includes a P-type layer and an N-type layer forming a PN junction in the modulator section. The differential drive circuitry is electrically coupled to the P-type layer and the N-type layer of the at least one modulator section.

  7. Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook

    SciTech Connect (OSTI)

    Collins, D

    2010-06-18

    The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

  8. Differential Impact of [beta] and [gamma] Residue Preorganization...

    Office of Scientific and Technical Information (OSTI)

    Differential Impact of beta and gamma Residue Preorganization on alphabetagamma-Peptide Helix Stability in Water Citation Details In-Document Search Title: Differential ...

  9. ARM: AOS Humidified Tandem Differential Mobility Analyzer (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS Humidified Tandem Differential Mobility Analyzer AOS Humidified Tandem Differential Mobility Analyzer Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Alice ...

  10. The differential algebra based multiple level fast multipole...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The differential algebra based multiple level fast multipole algorithm ... Title: The differential algebra based multiple level fast multipole algorithm for 3D space ...

  11. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Tracking Living Cells as They Differentiate in Real Time Print Thursday, 27 September 2012 00:00 Protein phosphorylation ...

  12. Future of the Beam Energy Scan program at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of themore » QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.« less

  13. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V. [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  14. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  15. Scanning Synchronization of Colliding Bunches for MEIC Project

    SciTech Connect (OSTI)

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Y. D.; Kazakevich, G. M.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP). A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.

  16. Dual energy scanning beam laminographic x-radiography

    DOE Patents [OSTI]

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  17. Dual energy scanning beam laminographic x-radiography

    DOE Patents [OSTI]

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  18. Future of the Beam Energy Scan program at RHIC

    SciTech Connect (OSTI)

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  19. Troglitazone induces differentiation in Trypanosoma brucei

    SciTech Connect (OSTI)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael . E-mail: michael.duszenko@uni-tuebingen.de

    2007-05-15

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor {gamma}. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator.

  20. Growth plate closure: Apex view on bone scan

    SciTech Connect (OSTI)

    Giles, P.H.; Trochei, M.; Yeates, K.

    1984-01-01

    Angular deformities of the extremities in children following premature closure of the growth plate are well known. The deformities depend on the position of an osseus bridge which forms between the epiphysis and metaphysis. Several surgical procedures including resection of the osseus bridge have been described, however, delineation of the site of fusion is difficult to define. The commonest site of growth plate arrest is the distal femoral or proximal tibial growth plate. A new technique using the bone scan has been developed which accurately defines the area and position of these osseus bridges. Two hours after injection of technetium 99m methylene diphosphonate apex views of the affected distal femoral growth plate were performed. The knee was flexed into its smallest angle. Using a pinhole collimator the gamma camera was angled to face the affected growth plate end on. The image was collected onto computer and analysed by: (I) regions of interest over segments of the growth plate to calculate the relative area of total growth plate affected: (II) generating histograms: (III) thresholding or performing isocontours to accentuate abnormal areas. The growth plate is normally uniformly increased when compared to the normal shaft of the bone. Fusion across the plate appears as an area of diminished uptake. The apex view gives a unique functional map of the growth plate such that abnormal areas are displayed, and the site, size and position of osseus fusion obtained. The technique has the potential for determining the metabolic activity of the growth plate before and after surgery. Serial studies will allow assessment of regneration of the plate and reformation of new osseus bridges.

  1. Results of mobile gamma scanning activities in St. Louis, Missouri

    SciTech Connect (OSTI)

    Rodriguez, R E; Witt, D A; Cottrell, W D; Carrier, R F

    1991-06-01

    From 1942 through approximately 1966, the Mallinckrodt Chemical Works operated four plants in St. Louis, Missouri, for the Manhattan Engineer District and the Atomic Energy Commission. A variety of production processes using uranium- and radium-bearing ore materials were performed at the plants. It is the policy of the DOE to verify that radiological conditions at such sites or facilities comply with current DOE guidelines. Guidelines for release and use of such sites have become more stringent as research has provided more information since previous cleanups. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established as part of that effort to confirm the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development. Under the FUSRAP program, the Mallinckrodt properties have been previously investigated to determine the extent of on-site radiological contamination. At the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a survey in May 1990, of public roadways and suspected haul routes between the Mallinckrodt plant and storage sites in St. Louis to ensure that no residual radioactive materials were conveyed off-site. A mobile gamma scanning van with an on-board computer system was used to identify possible anomalies. Suspect areas are those displaying measurements deviating from gamma exposure rates identified as typical for radiologically unenhanced areas in the vicinity of the areas of interest. The instrumentation highlighted three anomaly locations each of which measured less than 1m{sup 2} in size. None of the slightly elevated radiation levels originated from material associated with former AEC-related processing operations in the area. The anomalies resulted from elevated concentrations of radionuclides present in phosphate fertilizers, increased thorium in road-base gravel, and emanations from the radioactive storage site near the Latty Avenue airport. 9 refs., 3 figs.

  2. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect (OSTI)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  3. Use of Bone Scan During Initial Prostate Cancer Workup, Downstream Procedures, and Associated Medicare Costs

    SciTech Connect (OSTI)

    Falchook, Aaron D.; Salloum, Ramzi G.; Hendrix, Laura H.; Chen, Ronald C.

    2014-06-01

    Purpose: For patients with a high likelihood of having metastatic disease (high-risk prostate cancer), bone scan is the standard, guideline-recommended test to look for bony metastasis. We quantified the use of bone scans and downstream procedures, along with associated costs, in patients with high-risk prostate cancer, and their use in low- and intermediate-risk patients for whom these tests are not recommended. Methods and Materials: Patients in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database diagnosed with prostate cancer from 2004 to 2007 were included. Prostate specific antigen (PSA), Gleason score, and clinical T stage were used to define D'Amico risk categories. We report use of bone scans from the date of diagnosis to the earlier of treatment or 6 months. In patients who underwent bone scans, we report use of bone-specific x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) scans, and bone biopsy within 3 months after bone scan. Costs were estimated using 2012 Medicare reimbursement rates. Results: In all, 31% and 48% of patients with apparent low- and intermediate-risk prostate cancer underwent a bone scan; of these patients, 21% underwent subsequent x-rays, 7% CT, and 3% MRI scans. Bone biopsies were uncommon. Overall, <1% of low- and intermediate-risk patients were found to have metastatic disease. The annual estimated Medicare cost for bone scans and downstream procedures was $11,300,000 for low- and intermediate-risk patients. For patients with apparent high-risk disease, only 62% received a bone scan, of whom 14% were found to have metastasis. Conclusions: There is overuse of bone scans in patients with low- and intermediate-risk prostate cancers, which is unlikely to yield clinically actionable information and results in a potential Medicare waste. However, there is underuse of bone scans in high-risk patients for whom metastasis is likely.

  4. Focused ion beam and scanning electron microscopy for 3D materials...

    Office of Scientific and Technical Information (OSTI)

    microscopy for 3D materials characterization. Citation Details In-Document Search Title: Focused ion beam and scanning electron microscopy for 3D materials characterization. ...

  5. ARM: Ka-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    Ka-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  6. ARM: X-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  7. Remote control of a scanning electron microscope aperture and gun alignment

    DOE Patents [OSTI]

    Cramer, Charles E.; Campchero, Robert J.

    2003-10-07

    This invention relates to a remote control system which through gear motors coupled to the scanning electron microscope (SEM) manual control knobs readily permits remote adjustments as necessary.

  8. Passive millimeter wave differential interference contrast polarimetry

    DOE Patents [OSTI]

    Bernacki, Bruce E; Kelly, James F; Sheen, David M; Tedeschi, Jonathan R; Hall, Thomas E; Hatchell, Brian K; Valdez, Patrick; McMakin, Douglas L

    2014-04-29

    Differential polarization imaging systems include an axicon configured to provide a displacement of ray bundles associated with different image patches. The displaced ray bundles are directed to antenna horns and orthomode transducers so as to provide outputs correspond to orthogonal linear states of polarization (SOPs). The outputs are directed to a differential radiometer so that Stokes parameter differences between image patches can be obtained. The ray bundle displacements can be selected to correspond to a mechanical spacing of antenna horns. In some examples, ray bundle displacement corresponds to a displacement less than the diffraction limit.

  9. A taxonomy of automatic differentiation tools

    SciTech Connect (OSTI)

    Juedes, D.W. . Dept. of Computer Science)

    1991-01-01

    Many of the current automatic differentiation (AD) tools have similar characteristics. Unfortunately, the similarities between these various AD tools often cannot be easily ascertained by reading the corresponding documentation. To clarify this situation, a taxonomy of AD tools is presented. The taxonomy places AD tools into the Elemental, Extensional, Integral, Operational, and Symbolic classes. This taxonomy is used to classify twenty-nine AD tools. Each tool is examined individually with respect to the mode of differentiation used and the degree of derivatives computed. A list detailing the availability of the surveyed AD tools is provided in the Appendix. 54 refs., 3 figs., 1 tab.

  10. Rail-to-rail differential input amplification stage with main and surrogate differential pairs

    DOE Patents [OSTI]

    Britton, Jr., Charles Lanier; Smith, Stephen Fulton

    2007-03-06

    An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.

  11. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect (OSTI)

    Ross, P. W., Tran, V., Chau, R.

    2012-04-30

    We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ?1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

  12. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (OSTI)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmoreon operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.less

  13. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (OSTI)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore » on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  14. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect (OSTI)

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  15. Note: Long-range scanning tunneling microscope for the study of nanostructures on insulating substrates

    SciTech Connect (OSTI)

    Molina-Mendoza, Aday J.; Rodrigo, Jos G.; Rubio-Bollinger, Gabino; Island, Joshua; Burzuri, Enrique; Zant, Herre S. J. van der; Agrat, Nicols; Condensed Matter Physics Center and Instituto Universitario de Ciencia de Materiales Nicols Cabrera, Universidad Autnoma de Madrid, Campus de Cantoblanco, E-28049 Madrid; Instituto Madrileo de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid

    2014-02-15

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  16. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOE Patents [OSTI]

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  17. High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500

    SciTech Connect (OSTI)

    Shvartsburg, Alexandre A.; Seim, Thomas A.; Danielson, William F.; Norheim, Randolph V.; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.

    2013-01-20

    As the resolution of analytical methods improve, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~ 400 - 500 is achievable using He/N2 or H2/N2 gas mixtures.

  18. Low-Dose Spiral CT Scans for Early Lung Cancer Detection

    Broader source: Energy.gov [DOE]

    Low-dose spiral computed tomography (CT) scanning is a noninvasive medical imaging test that has been used for the early detection of lung cancer for over 16 years (Sone et al. 1998; Henschke et.al. 1999).

  19. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  20. Calorimetric study of the palladium hydride and deuteride systems. Preliminary report

    SciTech Connect (OSTI)

    Wagner, J.E.

    1985-08-12

    Pressure differential scanning calorimetry was applied to a study of the hydrogenation of palladium metal. The effects of hydrogen and deuterium absorption by palladium metal, the effects of isotope exchanges, and hydrogen and deuterium pressure changes which affect the stoichiometry of PdH/sub x/ and PdD/sub x/ are presented in some detail by this experimental technique. It is emphasized that a pressure differential scanning calorimeter is a quick and convenient experimental means for assessing hydrogen absorption properties of hydrogen storage materials. 13 refs., 4 figs., 1 tab.

  1. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  2. Quantitative Microstructural Imaging by Scanning Laue X-ray Micro- and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanodiffraction Quantitative Microstructural Imaging by Scanning Laue X-ray Micro- and Nanodiffraction Quantitative Microstructural Imaging by Scanning Laue X-ray Micro- and Nanodiffraction Print Monday, 20 June 2016 09:26 Synchrotron Laue x-ray microdiffraction turns 20 this year. The June 2016 issue of MRS Bulletin is dedicated to synchrotron radiation research in materials science and features a review article on the current capabilities, latest technical developments, and emerging

  3. LandScan 2014 High-Resolution Global Population Data Set

    SciTech Connect (OSTI)

    2015-01-01

    The LandScan data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  4. Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron and Scanning Probe Microscopies Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Electron and Scanning Probe Microscopies Print Text Size: A A A FeedbackShare Page This research area supports basic research in condensed matter physics and materials physics using

  5. LandScan 2001 High-Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2002-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  6. Differential white cell count by centrifugal microfluidics.

    SciTech Connect (OSTI)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  7. AUTOMATIC DIFFERENTIATION OF AN EULERIAN HYDROCODE

    SciTech Connect (OSTI)

    R. HENNINGER; A. CARLE; P. MAUDLIN

    2000-11-01

    Automatic differentiation (AD) is applied to a two-dimensional Eulerian hydrodynamics computer code (hydrocode) to provide gradients that will be used for design optimization and uncertainty analysis. We examine AD in both the forward and adjoint (reverse) mode using Automatic Differentiation of Fortran (ADIFOR, version 3.0). Setup time, accuracy, and run times are described for three problems. The test set consists of a one-dimensional shock-propagation problem, a two-dimensional metal-jet-formation problem and a two-dimensional shell-collapse problem. Setup time for ADIFOR was approximately one month starting from a simplified, fixed-dimension version of the original code. ADIFOR produced accurate (as compared to finite difference) gradients in both modes for all of the problems. These test problems had 17 independent variables. We find that the forward mode is up to 39% slower and the adjoint mode is at least 11% faster than finding the gradient by means of finite differences. Problems of real interest will certainly have more independent variables. The adjoint mode is thus favored since the computational time increases only slightly for additional independent variables.

  8. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    SciTech Connect (OSTI)

    Toftegaard, Jakob Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  9. Low-dose computed tomography image restoration using previous normal-dose scan

    SciTech Connect (OSTI)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-10-15

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  10. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-06

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  11. System and method for chromatography and electrophoresis using circular optical scanning

    DOE Patents [OSTI]

    Balch, Joseph W.; Brewer, Laurence R.; Davidson, James C.; Kimbrough, Joseph R.

    2001-01-01

    A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.

  12. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    SciTech Connect (OSTI)

    Schaake, Eva E.; Rossi, Maddalena M.G.; Buikhuisen, Wieneke A.; Burgers, Jacobus A.; Smit, Adrianus A.J.; Belderbos, José S.A.; Sonke, Jan-Jakob

    2014-11-15

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancer during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a

  13. Partial Differential Algebraic Sensitivity Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-05-15

    PDASAC solves stiff, nonlinear initial-boundary-value in a timelike dimension t and a space dimension x. Plane, circular cylindrical or spherical boundaries can be handled. Mixed-order systems of partial differential and algebraic equations can be analyzed with members of order or 0 or 1 in t, 0,1 or 2 in x. Parametric sensitivities of the calculated states are compted simultaneously on request, via the Jacobian of the state equations. Initial and boundary conditions are efficiently reconciled.more » Local error control (in the max-norm or the 2-norm) is provided for the state vector and can include the parametric sensitivites if desired.« less

  14. Stirling cycle simulation without differential coefficients

    SciTech Connect (OSTI)

    Organ, A.J.

    1995-12-31

    With a simple transformation, the gas processes in the Stirling machine are described for all time and location in an algebraic equation free of differential coefficients of the unknowns. Local instantaneous heat transfer and friction are represented in function of local instantaneous Reynolds number, N{sub re}. The method avoids problems of numerical discretization, stability, convergence, artificial dispersion and diffusion. The paper presents the algebra of the transformation. Specimen solutions cover the temperature field of the gas circuit (exchangers and regenerator) over a representative cycle. When programmed for workstation the core code occupies some 2 dozen lines, and processing calls for seconds of CPU time. Availability of the solution means that intimate details of the gas processes are susceptible to examination using the most basic of computing facilities.

  15. Stackable differential mobility analyzer for aerosol measurement

    DOE Patents [OSTI]

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  16. Sensor for detecting and differentiating chemical analytes

    DOE Patents [OSTI]

    Yi, Dechang; Senesac, Lawrence R.; Thundat, Thomas G.

    2011-07-05

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  17. Scanned Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  18. Scanned Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  19. Scanned Document

    Office of Legacy Management (LM)

    EPA-402-R-04-006 Environmental Protection Indoor Air November 2004 Agency Washington, DC 20460 Annual Water Sampling and Analysis, Calendar Year 2004: SHOAL Test Site Area FAULTLESS Test Site Area RULISON Test Site Area RIO BLANCO Test Site Area GASBUGGY Test Site Area GNOME Test Site Area Annual Water Sampling and Analysis, Calendar Year 2004 SHOAL Test Site Area FAULTLESS Test Site Area RULISON Test Site Area RIO BLANCO Test Site Area GASBUGGY Test Site Area GNOME Test Site Area Max G. Davis

  20. Scanned Document

    Office of Environmental Management (EM)

  1. Scanned Document

    Office of Environmental Management (EM)

  2. Scanned Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Narrows Dam - Power Section Intake Trash Racks Location: Steel trash racks located at the ... documenting the condition of the rusted trash racks and adjacent corroded steel guides. ...

  3. Scanned Document

    National Nuclear Security Administration (NNSA)

  4. The LandScan Global Population Distribution Project: Current State of the Art and Prospective Innovation

    SciTech Connect (OSTI)

    Rose, Amy N; Bright, Eddie A

    2014-01-01

    Advances in remote sensing, dasymetric mapping techniques, and the ever-increasing availability of spatial datasets have enhanced global human population distribution databases. These datasets demonstrate an enormous improvement over the conventional use of choropleth maps to represent population distribution and are vital for analysis and planning purposes including humanitarian response, disease mapping, risk analysis, and evacuation modeling. Dasymetric mapping techniques have been employed to address spatial mismatch, but also to develop finer resolution population distributions in areas of the world where subnational census data are coarse or non-existent. One such implementation is the LandScan Global model which provides a 30 arc-second global population distribution based on ancillary datasets such as land cover, slope, proximity to roads, and settlement locations. This work will review the current state of the LandScan model, future innovations aimed at increasing spatial and demographic resolution, and situate LandScan within the landscape of other global population distribution datasets.

  5. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    SciTech Connect (OSTI)

    de Jonge, Niels

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  6. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    SciTech Connect (OSTI)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  7. Microgamma Scan System for analyzing radial isotopic profiles of irradiated transmutation fuels

    SciTech Connect (OSTI)

    Bruce A. Hilton; Christopher A. McGrath

    2008-05-01

    The U. S. Global Nuclear Energy Partnership / Advanced Fuel Cycle Initiative (GNEP/AFCI) is developing metallic transmutation alloys as a fuel form to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. The AFCI program has irradiated and examined eleven metallic alloy transmutation fuel specimens to evaluate the feasibility of actinide transmutation in advanced sodium-cooled fast reactors and thermal reactor implementation. Initial results of postirradiation examinations indicated the irradiation performance of the actinide-bearing compositions is similar to uranium-plutonium-zirconium ternary metallic alloy fuels (U-xPu-10Zr). Further studies to characterize radial burnup profile, constituent migration, and fuel cladding chemical interaction (FCCI) are in progress. A microgamma scan system is being developed to analyze the radial distribution of fission products, such as Cs-137, Cs-134, Ru-106, and Zr-95, in irradiated fuel cross-sections. The microgamma scan system consists of a set of indexed sample collimator blocks and a sample holder, which interfaces with the INL Analytical Laboratory Hot Cell (ALHC) Gamma Scan System high purity germanium detector, multichannel analyzer, and removable collimators. The microgamma scan results will be used to evaluate radial burnup profile, cesium migration to the sodium bond and constituent migration within the fuel. These data will further clarify the comparative irradiation performance of actinide-bearing metallic transmutation fuel forms and uranium-plutonium-zirconium alloys. Preliminary measurements of the microgamma scan system will be discussed. A simplified model of the microgamma scan system was developed in MCNP and used to investigate the system performance and to interpret data from the scoping studies. Recommendations for improving the MCGS analyses are discussed.

  8. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Tracking Living Cells as They Differentiate in Real Time Print Thursday, 27 September 2012 00:00 Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible

  9. An Overview of the SGP Tandem Differential Mobility Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Overview of the SGP Tandem Differential Mobility Analyzer Collins, Don Texas A&M University Spencer, Chance Texas A&M University Category: Instruments A differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system was integrated into the Aerosol Observing System (AOS) trailer at the SGP site in September, 2005. This instrument is used to continuously characterize the size-resolved concentration, hygroscopicity, and volatility of submicron particles. These

  10. New Approaches to Differential Mobility Analysis for Airborne Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approaches to Differential Mobility Analysis for Airborne Measurements Rick Flagan Chemical Engineering and Environmental Science and Engineering California Institute of Technology Pasadena, CA 91125 Support: NSF, ONR, Davidow Foundation Differential Mobility Analysis Air Sample Aerosol Charger/Neutralizer (Atmospheric Pressure Chemical Ionization) Sheath Air Q sh ~ 10 Q a Volumetric flow rate Q s Exhaust Q ex =Q sh Differential Mobility Analyzer DMA (Aerodynamic Analog of Sector Mass

  11. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK

    SciTech Connect (OSTI)

    Haan, A. M. J. den Wijts, G. H. C. J.; Galli, F.; Oosterkamp, T. H.; Usenko, O.; Baarle, G. J. C. van; Zalm, D. J. van der

    2014-03-15

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures.

  12. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    SciTech Connect (OSTI)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed.

  13. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect (OSTI)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  14. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  15. A protocol for EBT3 radiochromic film dosimetry using reflection scanning

    SciTech Connect (OSTI)

    Papaconstadopoulos, Pavlos Hegyi, Gyorgy; Seuntjens, Jan; Devic, Slobodan

    2014-12-15

    Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.5–0.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modes and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 0–2 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green

  16. Inspired Designs Help Kids Get Through Medical Scans | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inspired Designs Help Kids Get Through Medical Scans Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Inspired Designs Help Kids Get Through Medical Scans Global Design Team 2015.09.23 September is Childhood Cancer Awareness Month and we are publishing a series of blog posts to share stories about GE's work related to

  17. ScanningTunneling Luminescence of Grain Boundaries in Cu(In,Ga)Se2

    SciTech Connect (OSTI)

    Romero, M. J.; Jiang, C.-S.; Al-Jassim, M. M.; Noufi, R.

    2005-01-01

    At the Laboratory, photon emission in semiconductors has been mapped in the nanoscale using scanning tunneling microscopy (STM). In this Solar Program Review Meeting, we report on the latest results obtained in Cu(In,Ga)Se2 (CIGS) thin films by this adapted STM. Scanning tunneling luminescence (STL) spectroscopy suggests that photons are emitted near the surface of CIGS. STL is excited either by (1) diffusion of tunneling electrons and subsequent recombination with available holes in CIGS or (2) impact ionization by hot electrons. Which process becomes predominant depends on the voltage applied to the STM tip. Photon mapping shows electronically active, extended defects near the surface of CIGS thin films.

  18. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation ... cells, enabling them to follow cellular chemical changes in real time, without bias. ...

  19. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins...

  20. Differential pressure sensing system for airfoils usable in turbine engines

    DOE Patents [OSTI]

    Yang, Wen-Ching; Stampahar, Maria E.

    2005-09-13

    A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.

  1. Nitrogen control of chloroplast differentiation. Final report

    SciTech Connect (OSTI)

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  2. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    SciTech Connect (OSTI)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency)1/2 relation. The experimental validation is performed on three samples (SiO2, CaF2 and Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.

  3. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency)1/2 relation. The experimental validation is performed on three samples (SiO2, CaF2 and Ge), which havemore » a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  4. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1999-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  5. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1999-03-09

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  6. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1998-04-28

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  7. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1998-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  8. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    DOE Patents [OSTI]

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  9. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    SciTech Connect (OSTI)

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; Marshall, Matthew S. J.; Van Aert, Sandra; Browning, Nigel D.; Castell, Martin R.; Nellist, Peter D.

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.

  10. MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation

    SciTech Connect (OSTI)

    Meyer, Arnd

    2010-02-10

    A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.

  11. X-ray optics for scanning fluorescence microscopy and other applications

    SciTech Connect (OSTI)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 {mu}m, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu K{alpha}. At higher energies such as Ag K{alpha}, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection.

  12. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    SciTech Connect (OSTI)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed

    2015-03-31

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  13. LandScan 2012 High Resolution Global Population DataSet

    Energy Science and Technology Software Center (OSTI)

    2013-09-17

    The LandScan data set is a worldwide population database compiled on a 30"x20" latitude/longitude grid. Census counts at sub-national level were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets.

  14. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; Marshall, Matthew S. J.; Van Aert, Sandra; Browning, Nigel D.; Castell, Martin R.; Nellist, Peter D.

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less

  15. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    SciTech Connect (OSTI)

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  16. A GAMMA RAY SCANNING APPROACH TO QUANTIFY SPENT FUEL CASK RADIONUCLIDE CONTENTS

    SciTech Connect (OSTI)

    Branney, S.

    2011-07-01

    The International Atomic Energy Agency (IAEA) has outlined a need to develop methods of allowing re-verification of LWR spent fuel stored in dry storage casks without the need of a reference baseline measurement. Some scanning methods have been developed, but improvements can be made to readily provide required data for spent fuel cask verification. The scanning process should be conditioned to both confirm the contents and detect any changes due to container/contents degradation or unauthorized removal or tampering. Savannah River National Laboratory and The University of Tennessee are exploring a new method of engineering a high efficiency, cost effective detection system, capable of meeting the above defined requirements in a variety of environmental situations. An array of NaI(Tl) detectors, arranged to form a 'line scan' along with a matching array of 'honeycomb' collimators provide a precisely defined field of view with minimal degradation of intrinsic detection efficiency and with significant scatter rejection. Scanning methods are adapted to net optimum detection efficiency of the combined system. In this work, and with differing detectors, a series of experimental demonstrations are performed that map system spatial performance and counting capability before actual spent fuel cask scans are performed. The data are evaluated to demonstrate the prompt ability to identify missing fuel rods or other content abnormalities. To also record and assess cask tampering, the cask is externally examined utilizing FTIR hyper spectral and other imaging/sensing approaches. This provides dated records and indications of external abnormalities (surface deposits, smears, contaminants, corrosion) attributable to normal degradation or to tampering. This paper will describe the actual gathering of data in both an experimental climate and from an actual spent fuel dry storage cask, and how an evaluation may be performed by an IAEA facility inspector attempting to draw an

  17. Liquid-crystal alignment on a-C:H films by nitrogen plasma beam scanning

    SciTech Connect (OSTI)

    Wu, K.Y.; Chen, C.-H.; Yeh, C.-M.; Hwang, J.; Liu, P.-C.; Lee, C.-Y.; Chen, C.-W.; Wei, H.K.; Kou, C.S.; Lee, C.-D.

    2005-10-15

    A plasma beam scanning treatment has been developed to modify the surface of the hydrogenated amorphous carbon (a-C:H) film on the indium tin oxide glass. The plasma beam scanning treatment makes the a-C:H film an excellent layer for liquid-crystal alignment. The qualities of a-C:H films were characterized by using atomic force microscope, micro-Raman spectroscopy, and field-emission scanning electron microscope. The ultrathin a-C:H films were deposited at 50% CH{sub 4}/(H{sub 2}+CH{sub 4}) gas ratio, 100 W radio-frequency power, and a gas pressure of 10 mtorr for 15 min by capacitive-coupled plasma chemical-vapor deposition method. The twist nematic cells were filled with liquid crystal (ZLI-2293) on the a-C:H film treated with different nitrogen plasma beam scanning time. The grooving mechanism is considered not responsible for the liquid-crystal (LC) alignment. Raman spectra suggest that a bond-breaking process of aromatic rings occurs in the a-C:H film. The O{sub 1s}, C{sub 1s}, and N{sub 1s} core-level spectra support that the nitrogen plasma beam scanning treatment induces a bond-breaking process of aromatic rings to create available carbon dangling bonds for the formation of C-O bonds. The newly formed C-O bonds are 'directional', which favor the LC alignment on the a-C:H film.

  18. Stochastic differential equations and numerical simulation for pedestrians

    SciTech Connect (OSTI)

    Garrison, J.C.

    1993-07-27

    The mathematical foundation of the Ito interpretation of stochastic ordinary and partial differential equations is briefly explained. This provides the basis for a review of simple difference approximations to stochastic differential equations. An example arising in the theory of optical switching is discussed.

  19. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Patents [OSTI]

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  20. U-007: IBM Rational AppScan Import/Load Function Flaws Let Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in IBM Rational AppScan. A remote user can cause arbitrary code to be executed on the target user's system.

  1. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect (OSTI)

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  2. Reversible differentiation of myofibroblasts by MyoD

    SciTech Connect (OSTI)

    Hecker, Louise; Jagirdar, Rajesh; Jin, Toni; Thannickal, Victor J.

    2011-08-01

    Myofibroblasts participate in tissue repair processes in diverse mammalian organ systems. The deactivation of myofibroblasts is critical for termination of the reparative response and restoration of tissue structure and function. The current paradigm on normal tissue repair is the apoptotic clearance of terminally differentiated myofibroblasts; while, the accumulation of activated myofibroblasts is associated with progressive human fibrotic disorders. The capacity of myofibroblasts to undergo de-differentiation as a potential mechanism for myofibroblast deactivation has not been examined. In this report, we have uncovered a role for MyoD in the induction of myofibroblast differentiation by transforming growth factor-{beta}1 (TGF-{beta}1). Myofibroblasts demonstrate the capacity for de-differentiation and proliferation by modulation of endogenous levels of MyoD. We propose a model of reciprocal signaling between TGF-{beta}1/ALK5/MyoD and mitogen(s)/ERK-MAPK/CDKs that regulate myofibroblast differentiation and de-differentiation, respectively. Our studies provide the first evidence for MyoD in controlling myofibroblast activation and deactivation. Restricted capacity for de-differentiation of myofibroblasts may underlie the progressive nature of recalcitrant human fibrotic disorders.

  3. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-11-13

    The C-band scanning ARM precipitation radar (C-SAPR) is a scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 350-kW magnetron transmitter, this puts 125 kW of transmitted power for each polarization. The receiver for the C-SAPR is a National Center for Atmospheric Research (NCAR) -developed Hi-Q system operating in a coherent-on-receive mode. The ARM Climate Research Facility operates two C-SAPRs; one of them is deployed near the Southern Great Plains (SGP) Central Facility near the triangular array of X-SAPRs, and the second C-SAPR is deployed at ARM’s Tropical Western Pacific (TWP) site on Manus Island in Papua New Guinea.

  4. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    SciTech Connect (OSTI)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  5. Automatic tool alignment in a backscatter X-ray scanning system

    DOE Patents [OSTI]

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  6. Automatic tool alignment in a backscatter x-ray scanning system

    DOE Patents [OSTI]

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  7. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    SciTech Connect (OSTI)

    Poswal, A. K. Agrawal, A. Yadav, A. K. Nayak, C. Basu, S. Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.; Kane, S. R.; Garg, C. K.

    2014-04-24

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  8. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    SciTech Connect (OSTI)

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.; and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  9. Differential geometry on Hopf algebras and quantum groups

    SciTech Connect (OSTI)

    Watts, P.

    1994-12-15

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined.

  10. A Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect (OSTI)

    Qiang, Ji; Mitchell, Chad

    2014-06-24

    Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.

  11. Note: Fabrication and characterization of molybdenum tips for scanning tunneling microscopy and spectroscopy

    SciTech Connect (OSTI)

    Carrozzo, P.; Tumino, F.; Facibeni, A.; Passoni, M.; Casari, C. S.; Li Bassi, A.

    2015-01-15

    We present a method for the preparation of bulk molybdenum tips for Scanning Tunneling Microscopy and Spectroscopy and we assess their potential in performing high resolution imaging and local spectroscopy by measurements on different single crystal surfaces in UHV, namely, Au(111), Si(111)-7 × 7, and titanium oxide 2D ordered nanostructures supported on Au(111). The fabrication method is versatile and can be extended to other metals, e.g., cobalt.

  12. Design and calibration of a scanning tunneling microscope for large machined surfaces

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.

  13. Estimation of organ and effective dose due to Compton backscatter security scans

    SciTech Connect (OSTI)

    Hoppe, Michael E.; Schmidt, Taly Gilat

    2012-06-15

    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 {mu}R at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation's boundaries. The energy deposited in the phantoms' respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms' total effective doses were below the established 0.25 {mu}Sv standard, with an estimated maximum total effective dose of 0.07 {mu}Sv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 {mu}Gy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 {mu}R at 30 cm.

  14. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    SciTech Connect (OSTI)

    Sato, Chikara; Manaka, Sachie; Nakane, Daisuke; Nishiyama, Hidetoshi; Suga, Mitsuo; Nishizaka, Takayuki; Miyata, Makoto; Maruyama, Yuusuke

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  15. A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria

    SciTech Connect (OSTI)

    Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R.; Gillow, J.B.; Francis, A.J.

    1995-03-01

    A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

  16. Tomographic gamma scanning of uranium-contaminated waste at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D.J.; Betts, S.E.; Prettyman, T.H.; Rael, C.D.

    1998-12-31

    A tomographic gamma-ray scanning (TGS) instrument was deployed at Rocky Flats Environmental Technology Site (RFETS) to assist with the deactivation of Building 886. Many 208-L drums containing waste contaminated with highly enriched uranium were measured in order to certify these sites for shipment and disposal. This project marks a successful cooperation between RFETS and Los Alamos National Laboratory and is the first major field experience using TGS technology to assay uranium.

  17. Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general

  18. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  19. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen L.; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the HS-RHI SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  20. Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes

    SciTech Connect (OSTI)

    Boucherit, M.; Soltani, A.; Rousseau, M.; Deresmes, D.; Berthe, M.; Durand, C.; De Jaeger, J.-C.

    2011-10-31

    AlN/GaN double-barrier resonant tunnelling diodes were grown by molecular beam epitaxy on GaN/sapphire template and processed into mesa diameters from 2 {mu}m to 4 {mu}m. The current-voltage characteristics were carried out in direct current operation and under-high vacuum. A sharp negative differential resistance (NDR) was detected in the forward bias at 120 K. The NDR was observed for the mesa size of 2 {mu}m at 4 V with a peak-to-valley current ratio of 3.5. The measurement conditions were chosen to make NDR reproducible more than 50 times and apparent in both scan voltage directions after electrical treatment.

  1. Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF{sub 2}

    SciTech Connect (OSTI)

    Dominguez, O.; Torres-Castillo, A.; Flores-Velez, L.M.; Torres, R.

    2010-04-15

    In this work, the sintering process of Portland cement was studied by combining thermomechanical analysis (TMA) and differential thermal analysis (DTA), together with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal analysis results employing both techniques indicted that phase transformations appeared at lower temperatures when CaF{sub 2} was incorporated in the raw materials. Besides, it was observed at high temperature that in some phase transformations TMA conducts to better resolution compared with the DTA measurements. Furthermore, mechanical properties and X-ray diffraction patterns corroborate the TMA and DTA results, corroborating that the final amount of alite (Ca{sub 3}SiO{sub 5}) is higher when a certain amount of CaF{sub 2} was present during the clinkerization process.

  2. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  3. Multienergy CT acquisition and reconstruction with a stepped tube potential scan

    SciTech Connect (OSTI)

    Shen, Le; Xing, Yuxiang

    2015-01-15

    Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT can be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed Seg

  4. Novel methods of measuring single scan dose profiles and cumulative dose in CT

    SciTech Connect (OSTI)

    Nakonechny, K.D.; Fallone, B.G.; Rathee, S.

    2005-01-01

    Computed tomography dose index (CTDI) is a conventional indicator of the patient dose in CT studies. It is measured as the integration of the longitudinal single scan dose profile (SSDP) by using a 100-mm-long pencil ionization chamber and a single axial scan. However, the assumption that most of the SSDP is contained within the chamber length may not be valid even for thin slices. We have measured the SSDPs for several slice widths on two CT scanners using a PTW diamond detector placed in a 300 mmx200 mmx300 mm water-equivalent plastic phantom. One SSDP was also measured using lithium fluoride (LiF) TLDs and an IC-10 small volume ion chamber, verifying the general shape of the SSDP measured using the diamond detector. Standard cylindrical PMMA CT phantoms (140 mm length) were also used to qualitatively study the effects of phantom shape, length, and composition on the measured SSDP. The SSDPs measured with the diamond detector in the water-equivalent phantom were numerically integrated to calculate the relative accumulated dose D{sub L}(0){sub calc} at the center of various scan lengths L. D{sub L}(0){sub calc} reached an equilibrium value for L>300 mm, suggesting the need for phantoms longer than standard CT dose phantoms. We have also measured the absolute accumulated dose using an IC-10 small volume ion chamber, D{sub L}(0){sub SV}, at three points in the phantom cross section for several beamwidths and scan lengths. For one CT system, these measurements were made in both axial and helical scanning modes. The absolute CTDI{sub 100}, measured with a 102 mm active length pencil chamber, were within 4% of D{sub L}(0){sub SV} measured with the small volume ion chamber for L{approx_equal}100 mm suggesting that nonpencil chambers can be successfully used for CT dosimetry. For nominal beam widths ranging from 3 to 20 mm and for L{approx_equal}250 mm, D{sub L}(0){sub SV} values at the center of the water-equivalent phantom's elliptic cross section were approximately 25

  5. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  6. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  7. Differential form of the Skornyakov-Ter-Martirosyan Equations

    SciTech Connect (OSTI)

    Pen'kov, F. M.; Sandhas, W.

    2005-12-15

    The Skornyakov-Ter-Martirosyan three-boson integral equations in momentum space are transformed into differential equations. This allows us to take into account quite directly the Danilov condition providing self-adjointness of the underlying three-body Hamiltonian with zero-range pair interactions. For the helium trimer the numerical solutions of the resulting differential equations are compared with those of the Faddeev-type AGS equations.

  8. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  9. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  10. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  11. Pipeline integrity design for differential settlement in discontinuous permafrost areas

    SciTech Connect (OSTI)

    Zhou, Z.J.; Boivin, R.P.; Glover, A.G.; Kormann, P.J.

    1996-12-31

    The NOVA Gas Transmission Ltd. (NGTL) gas pipeline system is expanding northwards as the producers search for and find new gas reserves. This growth has taken the system into the discontinuous permafrost zone, and also into new design problems. One such problem is the structural integrity of a pipeline subjected to the settlement differentials that occur between frozen and unfrozen soils. Adequate integrity design for differential settlement is required by design codes, such as CSA Z662, but the procedures and criteria must be established by the pipeline designers. This paper presents the methodology of pipeline integrity design for differential settlements used on a number of pipeline projects in Northwest Alberta. Outlined in the paper are the procedures, rationales and models used to: (a) locate discontinuous permafrost; (b) quantify the potential differential settlement; (c) predict pipeline stresses and strains; (d) establish strain limits; and (e) determine the pipe wall thickness to withstand those potential differential settlements. Several design options are available and are briefly discussed. For the projects mentioned, the heavy wall pipe option was identified as a cost effective design for medium to large differential settlements.

  12. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect (OSTI)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish; Minniti, Ronaldo; Parry, Marie I.; Skopec, Marlene

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  13. Differentiation of surface and bulk conductivities in topological insulator via four-probe spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.; Li, An -Ping; Durand, Corentin; Hus, Saban M.; Ma, Chuanxu; Hu, Yang; Cao, Helin; Miotkowski, Ireneusz

    2016-03-08

    Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allowsmore » quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.« less

  14. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  15. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    SciTech Connect (OSTI)

    Sadeghian, Hamed E-mail: h.sadeghianmarnani@tudelft.nl; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  16. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    SciTech Connect (OSTI)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-23

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10??m or smaller defects on a moving target at 20?m/s within a scan width of 25?mm at a scan rate of 90.9?MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  17. Beam characteristics in two different proton uniform scanning systems: A side-by-side comparison

    SciTech Connect (OSTI)

    Nichiporov, Dmitri; Hsi Wen; Farr, Jonathan

    2012-05-15

    Purpose: To compare clinically relevant dosimetric characteristics of proton therapy fields produced by two uniform scanning systems that have a number of similar hardware components but employ different techniques of beam spreading. Methods: This work compares two technologically distinct systems implementing a method of uniform scanning and layer stacking that has been developed independently at Indiana University (IU) and by Ion Beam Applications, S. A. (IBA). Clinically relevant dosimetric characteristics of fields produced by these systems are studied, such as beam range control, peak-to-entrance ratio (PER), lateral penumbra, field flatness, effective source position, precision of dose delivery at different gantry angles, etc. Results: Under comparable conditions, both systems controlled beam range with an accuracy of 0.5 mm and a precision of 0.1 mm. Compared to IBA, the IU system produced pristine peaks with a slightly higher PER (3.23 and 3.45, respectively) and smaller, symmetrical, lateral in-air penumbra of 1 mm compared to about 1.9/2.4 mm in the inplane/crossplane (IP/CP) directions for IBA. Large field flatness results in the IP/CP directions were similar: 3.0/2.4% for IU and 2.9/2.4% for IBA. The IU system featured a longer virtual source-to-isocenter position, which was the same for the IP and CP directions (237 cm), as opposed to 212/192 cm (IP/CP) for IBA. Dose delivery precision at different gantry angles was higher in the IBA system (0.5%) than in the IU system (1%). Conclusions: Each of the two uniform scanning systems considered in this work shows some attractive performance characteristics while having other features that can be further improved. Overall, radiation field characteristics of both systems meet their clinical specifications and show comparable results. Most of the differences observed between the two systems are clinically insignificant.

  18. Test beam studies of silicon timing for use in calorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Apresyan, A.; Bolla, G.; Bornheim, A.; Kim, H.; Los, S.; Pena, C.; Ramberg, E.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-04-12

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 X 1034 cm–2 s–1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL-LHC and future collider experiments whichmore » face very high radiation environments. In this article, we present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. Lastly, we show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.« less

  19. Calorimetry Triggering in ATLAS (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    U. Montreal U. SLAC CERN Michigan State U. Chile U., Catolica City Coll., N.Y. Oxford U. La Plata U. McGill U. Mainz U., Inst. Phys. Hamburg U. DESY DESY, Zeuthen...

  20. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect (OSTI)

    Meyer, Matthew W.

    2013-03-14

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  1. Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations

    SciTech Connect (OSTI)

    Crandall, Dustin; Bromhal, Grant; McIntyre, Dustin

    2010-01-01

    Combining CT imaging of geomaterials with computational fluid dynamics provides substantial benefits to researchers. With simulations, geometric parameters can be varied in systematic ways that are not possible in the lab. This paper details the conversion of micro-CT images of a physical fracture in Berea sandstone to several tractable finite volume meshes. By computationally varying the level of detail captured from the scans we produced several realistic fracture geometries with different degrees of wall-roughness and various geometric properties. Simulations were performed and it was noted that increasing roughness increased the resistance to fluid flow. Also, as the distance between walls was increased the mean aperture approached the effective aperture.

  2. Charge ordering in stoichiometric FeTe: Scanning tunneling microscopy and spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wei; Yin, Wei -Guo; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qi -Kun; Chen, Xi

    2016-01-04

    In this study, we use scanning tunneling microscopy and spectroscopy to reveal a unique stripy charge order in a parent phase of iron-based superconductors in stoichiometric FeTe epitaxy films. The charge order has unusually the same—usually half—period as the spin order. We also found highly anisotropic electron band dispersions being large and little along the ferromagnetic (crystallographic b) and antiferromagnetic (a) directions, respectively. Our data suggest that the microscopic mechanism is likely of the Stoner type driven by interatomic Coulomb repulsion Vij, and that Vij and charge fluctuations, so far much neglected, are important to the understanding of iron-based superconductors.

  3. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect (OSTI)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  4. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    SciTech Connect (OSTI)

    Giordanengo, S.; Marchetto, F.; Garella, M. A.; Donetti, M.; Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R.; Ciocca, M.; Mirandola, A.

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  5. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect (OSTI)

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  6. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    SciTech Connect (OSTI)

    Zelenogorskii, V V; Andrianov, A V; Gacheva, E I; Gelikonov, G V; Mironov, S Yu; Potemkin, A K; Khazanov, E A; Krasilnikov, M; Stephan, F; Mart'yanov, M A; Syresin, E M

    2014-01-31

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s{sup -1} and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 ?s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained. The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector. (laser applications and other topics in quantum electronics)

  7. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; et al

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  8. Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

    SciTech Connect (OSTI)

    Benzerara, K.; Tyliszczak, T.; Brown, G.E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2007-01-03

    Scanning Transmission X-ray Microscopy (STXM) and Transmission Electron Microscopy (TEM) were combined to characterize various samples of geomicrobiological interest down to the nanometer scale. An approach based on energy-filtered imaging was used to examine microbe-mineral interactions and the resulting biominerals, as well as biosignatures in simplified laboratory samples. This approach was then applied to natural samples, including natural biofilms entombed in calcium carbonate precipitates and bioweathered silicates and facilitated location of bacterial cells and provided unique insights about their biogeochemical interactions with minerals at the 30-40 nm scale.

  9. Bi-Sr-Ca-Cu-O surface studied by means of scanning tunnelling microscope

    SciTech Connect (OSTI)

    Witek, A.; Dabkowski, A.; Rauluszkiewicz, J.

    1989-03-10

    Surface topography of the high-T/sub c/ superconductor BiSrCaCu/sub 2/O/sub x/ has been investigated by means of scanning tunnelling microscope. The measurements were performed on the natural surface of ceramics material in air at room temperature. It can be deduced from the surface images, that bulk orthorhombic crystal structure extends to the surface. The surface seems to be uniform metallic in character and not drastically contaminated. Regular steps observed on the surface correspond to the dimension of the unit cell in z direction or its multiples.

  10. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOE Patents [OSTI]

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  11. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect (OSTI)

    Eliseev, E. A.; Morozovska, A. N.; Ievlev, Anton; Balke, Nina; Maksymovych, Petro; Tselev, Alexander; Kalinin, Sergei V

    2014-01-01

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  12. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    SciTech Connect (OSTI)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R.

    2015-03-15

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  13. Study of redshifted H I from the epoch of reionization with drift scan

    SciTech Connect (OSTI)

    Paul, Sourabh; Sethi, Shiv K.; Subrahmanyan, Ravi; Shankar, N. Udaya; Dwarakanath, K. S.; Deshpande, Avinash A.; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank; Gaensler, Bryan M.; Cappallo, Roger J.; Corey, Brian E.; Goeke, Robert F.; Emrich, David; Greenhill, Lincoln J.; Kasper, Justin C.; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Johnston-Hollitt, Melanie; Kaplan, David L. E-mail: sethi@rri.res.in; and others

    2014-09-20

    Detection of the epoch of reionization (EoR) in the redshifted 21 cm line is a challenging task. Here, we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability compared to the case where a single patch of sky is tracked. We demonstrate that the correlation time between measured visibilities could extend up to 1-2 hr for an interferometer array such as the Murchison Widefield Array, which has a wide primary beam. We estimate the EoR power based on a cross-correlation of visibilities over time and show that the drift scan strategy is capable of detecting the EoR signal with a signal to noise that is comparable/better compared to the tracking case. We also estimate the visibility correlation for a set of bright point sources and argue that the statistical inhomogeneity of bright point sources might allow their separation from the EoR signal.

  14. Novel scanning electron microscope bulge test technique integrated with loading function

    SciTech Connect (OSTI)

    Li, Chuanwei; Xie, Huimin E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moir method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.

  15. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J.

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The objects complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous fly-scan mode for ptychographic data collection in whichmorethe sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.less

  16. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques -Philippe

    2015-04-25

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less

  17. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect (OSTI)

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  18. Measurement of the differential pressure of liquid metals

    DOE Patents [OSTI]

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  19. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect (OSTI)

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  20. Effects of scan rate on the corrosion behavior SS 304 stainless steel in the nanofluid measured by Tafel polarization methods

    SciTech Connect (OSTI)

    Prajitno, Djoko Hadi

    2015-09-30

    The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO{sub 2}. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO{sub 2} nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO{sub 2} nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relatively unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy.

  1. ARM - Field Campaign - ISDAC / RISCAM - Humidified Tandem Differential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobility Analyzer (HTDMA) / RISCAM - Humidified Tandem Differential Mobility Analyzer (HTDMA) ARM Data Discovery Browse Data Related Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) 2008.04.01, Ghan, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ISDAC / RISCAM - Humidified Tandem Differential Mobility Analyzer (HTDMA) 2008.04.01 - 2008.06.30 Lead Scientist : Don Collins For data sets, see below. Abstract In

  2. D-Cycle - 4-Differential -Stroke Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-Cycle - 4-Differential -Stroke Cycle D-Cycle - 4-Differential -Stroke Cycle The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines deer09_conti.pdf (104.32 KB) More Documents & Publications Improving Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing Propulsion and Reducing Cost Two-Stroke Engines: New Frontier in Engine Efficiency Building America Technology

  3. Conversion of a Micro-CT Scanned Rock Fracture Into a Useful Model

    SciTech Connect (OSTI)

    Crandall, Dustin; Bromhal, Grant; Smith, Duane

    2009-01-01

    Within geologic reservoirs the flow of fluids through fractures is often orders of magnitude greater than through the surrounding, low-permeability rock. Because of the number and size of fractures in geological fields, reservoir-scale discrete-fracture simulators often model fluid motion through fractures as flow through narrow, parallel plates. In reality fractures within rock are narrow openings between two rough rock surfaces. In order to model the geometry of an actual fracture in rock, a ~9 cm by 2.5 cm fracture within Berea sandstone was created and the aperture distribution was obtained with micro-Computed Tomography (CT) scans by Karpyn et al. [1]. The original scans had a volume-pixel (voxel) resolution of 27 by 27 by 32 microns. This data was up-scaled to voxels with 120 microns to a side to facilitate data transfer and for practicality of use. Using three separate reconstruction techniques, six different fracture meshes were created from this up-scaled data set, each with slightly different final geometries. Flow through each of these fracture meshes was evaluated using the finite-volume simulator FLUENT. While certain features of the fracture meshes, such as the shape of the fracture aperture distributions and overall volume of the void, remained similar between the different geometric reconstructions, the flow in different models was observed to vary dramatically. Rough fracture walls induced more tortuous flow paths and a higher resistance to flow. Natural fractures do vary in-situ, due to sidewall dissolution and mineral precipitation, smoothing and coarsening fracture walls respectively. Thus for our study the range of fracture properties was actually beneficial, allowing us to describe the flow through a range of fracture types. A compromise between capturing the geometric details within a domain of interest and a tractable computational mesh must always be addressed when flow through a physical geometry is modeled. The fine level of detail that

  4. SU-E-T-322: The Evaluation of the Gafchromic EBT3 Film in Low Dose 6 MV X-Ray Beams with Different Scanning Modes

    SciTech Connect (OSTI)

    Lee, H; Sung, J; Yoon, M; Kim, D; Chung, W

    2014-06-01

    Purpose: We have evaluated the response of the Gafchromic EBT3 film in low dose for 6 MV x-ray beams with two scanning modes, the reflection scanning mode and the transmission scanning mode. Methods: We irradiated the Gafcromic EBT3 film using a 60 degree enhanced dynamic wedge (EDW) with 6 MV x-ray beams from Clinac iX Linear accelerator (Varian Medical Systems, Palo Alto, CA). The irradiated Gafchromic EBT3 film was scanned with different scanning modes, the reflection scanning mode and the transmission scanning mode. The scanned Gafchromic EBT3 film was analyzed with MATLAB. Results: When 7.2 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was 0.54 cGy with reflection scanning mode and was 0.88 cGy with transmission scanning mode. When 24 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was similar to the case of 7.2 cGy irradiation showing 0.51 cGy of uncertainty with reflection scanning mode and 0.87 cGy of uncertainty with transmission scanning mode. The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation. Conclusion: The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation.

  5. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    SciTech Connect (OSTI)

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; Steed, Chad A; Yang, Sang Mo; Tselev, Alexander; Jesse, Stephen; Biegalski, Michael D; Shipman, Galen M; Symons, Christopher T; Borisevich, Albina Y; Archibald, Richard K; Kalinin, Sergei

    2015-01-01

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.

  6. 4D Emittance Measurements Using Multiple Wire and Waist Scan Methods in the ATF Extraction Line

    SciTech Connect (OSTI)

    Rimbault, C.; Bambade, P.; Brossard, J.; Alabau, M.; Kuroda, S.; Scarfe, A.; Woodley, M.; /SLAC

    2011-11-02

    Emittance measurements performed in the diagnostic section of the Accelerator Test Facility (ATF) extraction line since 1998 led to vertical emittances three times larger than the expected ones, with a strong dependence on intensity. An experimental program is pursued to investigate potential sources of emittance growth and find possible remedies. This requires efficient and reliable emittance measurement techniques. In the past, several phase-space reconstruction methods developed at SLAC and KEK have been used to estimate the vertical emittance, based on multiple location beam size measurements and dedicated quadrupole scans. These methods have been shown to be very sensitive to measurement errors and other fluctuations in the beam conditions. In this context new emittance measurements have been performed revisiting these methods and newly developed ones with a systematic approach to compare and characterise their performance in the ATF extraction line.

  7. A simple scanning spectrometer based on a stretchable elastomeric reflective grating

    SciTech Connect (OSTI)

    Ghisleri, C.; Milani, P., E-mail: paolo.milani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); WISE srl, Piazza Duse 2, 20122 Milano (Italy); Potenza, M. A. C.; Bellacicca, A. [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2014-02-10

    We report a scanning optical spectrometer based on the use of a stretchable elastomeric reflective grating. The grating is obtained by supersonic cluster beam implantation of silver nanoparticles on polydimethylsiloxane previously grooved by molding to create a replica of a commercial digital versatile disk grating. The use of a stretchable grating allows the spectrometer spanning the whole optical wavelength range by solely extending the diffraction element by more than 100% of its original dimensions. The stretchable reflective optical grating shows excellent performances and stability upon thousands of stretching cycles. The use of this elastomeric element makes the optical layout and the mechanics of the spectrometer extremely simple and advantageous for those applications where spectral resolution is not a major requirement. As a proof of principle, we present the absorption spectrum of Rhodamine B in solution obtained by our spectrometer and compared to commercial instruments.

  8. Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique

    SciTech Connect (OSTI)

    Shimada, T.; Kurnit, N.A.; Sheik-Bahae, M.

    1996-04-01

    Measurements of the nonlinear index of a number of optical materials of interest for the National Ignition Facility have been performed at 1,064 nm and 355 nm by a modified version of the ``top-hat`` technique and the results compared with the more standard gaussian-beam Z-scan technique. The top-hat technique has the advantages of higher sensitivity and smaller uncertainties introduced by beam-quality considerations. The authors have made what they feel to be an additional improvement by placing the defining aperture for the top hat at the front focal plane of the lens that focuses the beam into the sample and then reimaging the input aperture with a second lens onto a ccd camera. Reimaging eliminates diffraction fringes and provides a stationary image even for a wedged sample; recording the entire image permits minimization of spurious effects such as varying interference fringes.

  9. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOE Patents [OSTI]

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  10. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    SciTech Connect (OSTI)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  11. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect (OSTI)

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  12. Evidence for Nodal Superconductivity in LaFePO from Scanning SQUID Susceptometry

    SciTech Connect (OSTI)

    Hicks, Clifford W.; Lippman, Thomas M.; Huber, Martin E.; Analytis, James G.; Chu, Jiun-Haw; Erickson, Ann S.; Fisher, Ian R.; Moler, Kathryn A.; /Stanford U., Geballe Lab. /SLAC

    2009-04-13

    We measure changes in the penetration depth {lambda} of the T{sub c} {approx} 6 K superconductor LaFePO. In the process scanning SQUID susceptometry is demonstrated as a technique for accurately measuring local temperature-dependent changes in {lambda}, making it ideal for studying early or difficult-to-grow materials. {lambda} of LaFePO is found to vary linearly with temperature from 0.36 to {approx} 2 K, with a slope of 143 {+-} 15 {angstrom}/K, suggesting line nodes in the superconducting order parameter. The linear dependence up to {approx} T{sub c}/3 is similar to the cuprate superconductors, indicating well-developed nodes.

  13. Scanning tunneling spectroscopy of a magnetic atom on graphene in the Kondo regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Huai -Bin; Sun, Qing -feng; Xie, X. C.

    2009-06-23

    In this study, the Kondo effect in the system consisting of a magnetic adatom on the graphene is studied. By using the non-equilibrium Green function method with the slave-boson mean field approximation, the local density of state (LDOS) and the conductance are calculated. For a doped graphene, the Kondo phase is present at all time. Surprisingly, two kinds of Kondo regimes are revealed. But for the undoped graphene, the Kondo phase only exists if the adatom’s energy level is beyond a critical value. The conductance is similar to the LDOS, thus, the Kondo peak in the LDOS can be observedmore » with the scanning tunneling spectroscopy. In addition, in the presence of a direct coupling between the STM tip and the graphene, the conductance may be dramatically enhanced, depending on the coupling site.« less

  14. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    SciTech Connect (OSTI)

    Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

  15. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    SciTech Connect (OSTI)

    Dunaevskiy, Mikhail; Dontsov, Anton; Monakhov, Andrei; Alekseev, Prokhor; Titkov, Alexander; Baranov, Alexei; Girard, Paul; Arinero, Richard; Teissier, Roland

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the light absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.

  16. Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Cullen, David A; Koestner, Roland; Kukreja, Ratan; Minko, Sergiy; Trotsenko, Oleksandr; Tokarev, Alexander V; Guetaz, Laure; Meyer III, Harry M; Parish, Chad M; More, Karren Leslie

    2014-01-01

    Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposure and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.

  17. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  18. Bias in segmented gamma scans arising from size differences between calibration standards and assay samples

    SciTech Connect (OSTI)

    Sampson, T.E. )

    1991-01-01

    Recent advances in segmented gamma scanning have emphasized software corrections for gamma-ray self-adsorption in particulates or lumps of special nuclear material in the sample. another feature of this software is an attenuation correction factor formalism that explicitly accounts for differences in sample container size and composition between the calibration standards and the individual items being measured. Software without this container-size correction produces biases when the unknowns are not packaged in the same containers as the calibration standards. This new software allows the use of different size and composition containers for standards and unknowns, as enormous savings considering the expense of multiple calibration standard sets otherwise needed. This paper presents calculations of the bias resulting from not using this new formalism. These calculations may be used to estimate bias corrections for segmented gamma scanners that do not incorporate these advanced concepts.

  19. Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor

    SciTech Connect (OSTI)

    Wijnheijmer, A. P.; Koenraad, P. M.; Marti, X.; Holy, V.; Cukr, M.; Novak, V.; Jungwirth, T.

    2012-03-12

    We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Neel temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets.

  20. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    SciTech Connect (OSTI)

    Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.; Bekar, Kursat B.

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  1. Measurements of Wind and Turbulence Profiles with Scanning Doppler Lidar for Wind Energy Applications

    SciTech Connect (OSTI)

    Frehlich, R.; Kelley, N.

    2008-03-01

    High-quality profiles of mean and turbulent statistics of the wind field upstream of a wind farm can be produced using a scanning Doppler lidar. Careful corrections for the spatial filtering of the wind field by the lidar pulse produce turbulence estimates equivalent to point sensors but with the added advantage of a larger sampling volume to increase the statistical accuracy of the estimates. For a well-designed lidar system, this permits accurate estimates of the key turbulent statistics over various subdomains and with sufficiently short observation times to monitor rapid changes in conditions. These features may be ideally suited for optimal operation of wind farms and also for improved resource assessment of potential sites.

  2. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOE Patents [OSTI]

    DiMambro, Joseph; Roach, Dennis P.; Rackow, Kirk A.; Nelson, Ciji L.; Dasch, Cameron J.; Moore, David G.

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  3. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOE Patents [OSTI]

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  4. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    SciTech Connect (OSTI)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V.; Ulrich, Stefan

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 /h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  5. Spectroscopic, scanning laser OBIC, and I-V/QE characterizations of browned EVA solar cells

    SciTech Connect (OSTI)

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    1996-05-01

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emission peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.

  6. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    SciTech Connect (OSTI)

    WESTSIK, G.A.

    2001-06-06

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a container, particularly for low to medium density (0-2.5 g/cc) container matrices. The SGSAS system provides a full gamma characterization of the container content. This document is an edited version of the Rocky Flats TMU Report for the Can Scan Segment Gamma Scanners, which are in use for the plutonium residues projects at the Rocky Flats plant. The can scan segmented gamma scanners at Rocky Flats are the same design as the PFP SGSAS system and use the same software (with the exception of the plutonium isotopics software). Therefore, all performance characteristics are expected to be similar. Modifications in this document reflect minor differences in the system configuration, container packaging, calibration technique, etc. These results are supported by the Quality Assurance Objective (QAO) counts, safeguards test data, calibration data, etc. for the PFP SGSAS system. Other parts of the TMU analysis utilize various modeling techniques such as Monte Carlo N

  7. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  8. Manifold gasket accommodating differential movement of fuel cell stack

    SciTech Connect (OSTI)

    Kelley, Dana A.; Farooque, Mohammad

    2007-11-13

    A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.

  9. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5(in Chinese)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; Du, G.; Yang, X.; Yang, H.; Gu, G.; -H, Wen H.

    2015-05-05

    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. Accordingmore » to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are

  10. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    SciTech Connect (OSTI)

    Fukuda, Shingo; Uchihashi, Takayuki; Ando, Toshio

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanners fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the ?{sub 3}?{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ?7 frames/s.

  11. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    SciTech Connect (OSTI)

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-15

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ∼1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20 000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150 000 Th.

  12. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    SciTech Connect (OSTI)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future.

  13. Characterization of gaseous species in scanning atmospheric rf plasma with transmission infrared spectroscopy

    SciTech Connect (OSTI)

    Kim, Seong H.; Kim, Jeong Hoon; Kang, Bang-Kwon

    2008-01-15

    A scanning atmospheric radio-frequency (rf) plasma was analyzed with transmission infrared (IR) spectroscopy. The IR analyses were made for the plasmas used for hydrophobic coating deposition and superhydrophobic coating deposition processes. Since the rf plasma was generated in a small open space with a high gas flow rate in ambient air, the density of gas-phase molecules was very high and the plasma-generated reactive species seemed to undergo various reactions in the gas phase. So, the transmission IR spectra of the scanning atmospheric rf plasma were dominated by gas-phase reaction products, rather than plasma-generated intermediate species. In the CH{sub 4}/He plasma used for hydrophobic coating deposition, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, and a small amount of C{sub 2}H{sub 4} as well as CO were detected in transmission IR. The intensities of these peaks increased as the rf power increased. The CO formation is due to the activation of oxygen and water in the air. In the CF{sub 4}/H{sub 2}/He plasma used for deposition of superhydrophobic coatings, C{sub 2}F{sub 6}, CF{sub 3}H, COF{sub 2}, and HF were mainly detected. When the H{sub 2}/CF{sub 4} ratio was {approx}0.5, the consumption of CF{sub 4} was the highest. As the H{sub 2}/CF{sub 4} ratio increased higher, the C{sub 2}F{sub 6} production was suppressed while the CF{sub 3}H peak grew and the formation of CH{sub 4} were detected. In both CH{sub 4}/He and CF{sub 4}/H{sub 2}/He plasma systems, the undissociated feed gas molecules seem to be highly excited vibrationally and rotationally. The information on plasma-generated reactive species and their reactions was deduced from the distribution of these gas-phase reaction products.

  14. Effects of minimum monitor unit threshold on spot scanning proton plan quality

    SciTech Connect (OSTI)

    Howard, Michelle Beltran, Chris; Mayo, Charles S.; Herman, Michael G.

    2014-09-15

    Purpose: To investigate the influence of the minimum monitor unit (MU) on the quality of clinical treatment plans for scanned proton therapy. Methods: Delivery system characteristics limit the minimum number of protons that can be delivered per spot, resulting in a min-MU limit. Plan quality can be impacted by the min-MU limit. Two sites were used to investigate the impact of min-MU on treatment plans: pediatric brain tumor at a depth of 5–10 cm; a head and neck tumor at a depth of 1–20 cm. Three-field, intensity modulated spot scanning proton plans were created for each site with the following parameter variations: min-MU limit range of 0.0000–0.0060; and spot spacing range of 2–8 mm. Comparisons were based on target homogeneity and normal tissue sparing. For the pediatric brain, two versions of the treatment planning system were also compared to judge the effects of the min-MU limit based on when it is accounted for in the optimization process (Eclipse v.10 and v.13, Varian Medical Systems, Palo Alto, CA). Results: The increase of the min-MU limit with a fixed spot spacing decreases plan quality both in homogeneous target coverage and in the avoidance of critical structures. Both head and neck and pediatric brain plans show a 20% increase in relative dose for the hot spot in the CTV and 10% increase in key critical structures when comparing min-MU limits of 0.0000 and 0.0060 with a fixed spot spacing of 4 mm. The DVHs of CTVs show min-MU limits of 0.0000 and 0.0010 produce similar plan quality and quality decreases as the min-MU limit increases beyond 0.0020. As spot spacing approaches 8 mm, degradation in plan quality is observed when no min-MU limit is imposed. Conclusions: Given a fixed spot spacing of ≤4 mm, plan quality decreases as min-MU increased beyond 0.0020. The effect of min-MU needs to be taken into consideration while planning proton therapy treatments.

  15. Controlled differential pressure system for an enhanced fluid blending apparatus

    SciTech Connect (OSTI)

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  16. Local random potentials of high differentiability to model the Landscape

    SciTech Connect (OSTI)

    Battefeld, T.; Modi, C.

    2015-03-09

    We generate random functions locally via a novel generalization of Dyson Brownian motion, such that the functions are in a desired differentiability class C{sup k}, while ensuring that the Hessian is a member of the Gaussian orthogonal ensemble (other ensembles might be chosen if desired). Potentials in such higher differentiability classes (k≥2) are required/desirable to model string theoretical landscapes, for instance to compute cosmological perturbations (e.g., k=2 for the power-spectrum) or to search for minima (e.g., suitable de Sitter vacua for our universe). Since potentials are created locally, numerical studies become feasible even if the dimension of field space is large (D∼100). In addition to the theoretical prescription, we provide some numerical examples to highlight properties of such potentials; concrete cosmological applications will be discussed in companion publications.

  17. Adaptive array technique for differential-phase reflectometry in QUEST

    SciTech Connect (OSTI)

    Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  18. Numerical solution of three-dimensional magnetic differential equations

    SciTech Connect (OSTI)

    Reiman, A.H.; Greenside, H.S.

    1987-02-01

    A computer code is described that solves differential equations of the form B . del f = h for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new algorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch-Schlueter currents for a stellarator.

  19. System for measuring multiphase flow using multiple pressure differentials

    DOE Patents [OSTI]

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  20. Differentiable but exact formulation of density-functional theory

    SciTech Connect (OSTI)

    Kvaal, Simen Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M.; School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

    2014-05-14

    The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ({sup ε}E, {sup ε}F) that converge to (E, F) pointwise everywhere as ε → 0{sup +}, and such that {sup ε}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ε}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ε}E, {sup ε}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ε}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.

  1. Using Algorithmic Differentiation to Increase Sensitivity of Piezoelectric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transducers with Respect to Material Parameters | Argonne Leadership Computing Facility Using Algorithmic Differentiation to Increase Sensitivity of Piezoelectric Transducers with Respect to Material Parameters Event Sponsor: Mathematics and Computer Science Division LANS Seminar Start Date: Aug 24 2016 - 3:00pm Building/Room: Building 240/Room 1404-1405 Location: Argonne National Laboratory Speaker(s): Benjamin Jurgelucks Speaker(s) Title: University of Paderborn Event Website:

  2. DIFFERENTIAL GROUP-VELOCITY DETECTION OF FLUID PATHS

    SciTech Connect (OSTI)

    Leland Timothy Long

    2005-12-20

    For nearly 50 years, surface waves that propagate through near-surface soils have been utilized in engineering for the determination of the small-strain dynamic properties of soils. These techniques, although useful, have not been sufficiently precise to use in detecting the subtle changes in soil properties that accompany short-term changes in fluid content. The differential techniques developed in this research now make it possible to monitor small changes (less than 3 cm) in the water level of shallow soil aquifers. Using inversion techniques and tomography, differential seismic techniques could track the water level distribution in aquifers with water being pumped in or out. Differential surface wave analysis could lead to new ways to monitor reservoir levels and verify hydrologic models. Field data obtained during this investigation have measured changes in surface-wave phase and group velocity before and after major rain events, and have detected subtle changes associated with pumping water into an aquifer and pumping water out of an aquifer. This research has established analysis techniques for observing these changes. These techniques combine time domain measurements to isolate surface wave arrivals with frequency domain techniques to determine the effects as a function of frequency. Understanding the differences in response as a function of wave frequency facilitates the inversion of this data for soil velocity structure. These techniques have also quantified many aspects of data acquisition and analysis that are important for significant results. These include tight control on the character of the source and proper placement of the geophones. One important application is the possibility that surface waves could be used to monitor and/or track fluid movement during clean-up operations, verifying that the fluid reached all affected areas. Extending this to a larger scale could facilitate monitoring of water resources in basins without having to drill many

  3. An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Boundary Conditions --- Inventor(s) Hantao Ji, Adam Cohen, Phil Efthimion and Eric Edlund | Princeton Plasma Physics Lab An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and Optimized Boundary Conditions --- Inventor(s) Hantao Ji, Adam Cohen, Phil Efthimion and Eric Edlund This invention discloses a concept for an advanced centrifugal contactor which can be used for (1) mixing of two or more component fluid substances to produce a uniform mixture or enhance the

  4. Higher order matrix differential equations with singular coefficient matrices

    SciTech Connect (OSTI)

    Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.

    2015-03-10

    In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.

  5. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    SciTech Connect (OSTI)

    Wang, L. Laurent, J.; Brémond, G.; Chauveau, J. M.; Sallet, V.; Jomard, F.

    2015-11-09

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. As an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.

  6. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  7. Nonlinear optical properties of bulk cuprous oxide using single beam Z-scan at 790?nm

    SciTech Connect (OSTI)

    Serna, J.; Rueda, E.; Garca, H.

    2014-11-10

    The two-photon absorption (TPA) coefficient ? and the nonlinear index of refraction n{sub 2} for bulk cuprous oxide (Cu{sub 2}O) direct gap semiconductor single crystal have been measured by using a balance-detection Z-scan single beam technique, with an excellent signal to noise ratio. Both coefficients were measured at 790?nm using a 65 fs laser pulse at a repetition rate of 90.9?MHz, generated by a Ti:Sapphire laser oscillator. The experimental values for ? were explained by using a model that includes allowed-allowed, forbidden-allowed, and forbidden-forbidden transitions. It was found that the forbidden-forbidden transition is the dominant mechanism, which is consistent with the band structure of Cu{sub 2}O. The low value for ? found in bulk, as compared with respect to thin film, is explained in terms of the structural change in thin films that result in opposite parities of the conduction and valence band. The n{sub 2} is also theoretically calculated by using the TPA dispersion curve and the Kramers-Kronig relations for nonlinear optics.

  8. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    SciTech Connect (OSTI)

    Wong, Sze-Shun Season

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n {+-} 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  9. Interpretation of the MEG-MUSIC scan in biomagnetic source localization

    SciTech Connect (OSTI)

    Mosher, J.C.; Lewis, P.S.; Leahy, R.M.

    1993-09-01

    MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak at unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.

  10. Scanning electron microscopy and x-ray photoelectron spectroscopy evaluation of MHD channel electrodes

    SciTech Connect (OSTI)

    Martello, D.V.; Baltrus, J.P.; Diehl, J.R.; Makovsky, L.E.

    1994-12-31

    Anode elements from the coal-fired Magnetohydrodynamic (MHD) channel at the Component Development and Integration Facility (CDIF) in Butte, Montana have been selected for study of the effects of localized phase morphology and chemistry on anode degradation. The platinum/tungsten/copper anode elements from the 1A{sub 4} channel were examined with scanning electron microscopy and X-ray photoelectron spectroscopy following testing in the MHD channel, and the results compared to those for unexposed anodes. Evidence suggests that the surface of the tungsten anode is chemically attacked by a potassium-rich slag to form a fine-grained crystalline reaction product layer that is covered by a fused, glassy slag during channel operation. Examination of a mechanically separated, partially delaminated platinum cap and polished cross-sections of anode segments showed evidence of chemical attack along the braze used to join the two caps. Interface porosity may provide a path for slag penetration and diffusion of corrosive gases and liquids during channel operation, leading to delamination. The microstructure of the brazed joint cross-sections were similar, independent of exposure severity in the MHD channel. The primary mechanism of tungsten degradation appears to be grain exfoliation due to severe grain boundary attack.

  11. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    DOE Patents [OSTI]

    Crewe, Albert V. (Dune Acres, IN)

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  12. Applications of scanning electron microscopy to the study of mineral matter in peat

    SciTech Connect (OSTI)

    Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.

    1983-01-01

    Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.

  13. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; Steed, Chad A; Yang, Sang Mo; Tselev, Alexander; Jesse, Stephen; Biegalski, Michael D; Shipman, Galen M; Symons, Christopher T; et al

    2015-01-01

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less

  14. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; Tretiak, Sergei; Taylor, Antoinette J.; Balatsky, Alexander V.

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides andmore » the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.« less

  15. Scanning Tranmission X-ray Microscopic Analysis of Purifed Melanosomes of the Mouse Iris

    SciTech Connect (OSTI)

    Anderson,M.; Haraszti, T.; Peterson, G.; Wirick, S.; Jacobsen, C.; John, S.; Grunze, M.

    2006-01-01

    Melanosomes are specialized intracellular membrane bound organelles that produce and store melanin pigment. The composition of melanin and distribution of melanosomes determine the color of many mammalian tissues, including the hair, skin, and iris. However, the presence of melanosomes within a tissue carries potentially detrimental risks related to the cytotoxic indole-quinone intermediates produced during melanin synthesis. In order to study melanosomal molecules, including melanin and melanin-related intermediates, we have refined methods allowing spectromicroscopic analysis of purified melanosomes using scanning transmission X-ray microscopy. Here, we present for the first time absorption data for melanosomes at the carbon absorption edge ranging from 284 to 290 eV. High-resolution images of melanosomes at discrete energies demonstrate that fully melanized mature melanosomes are internally non-homogeneous, suggesting the presence of an organized internal sub-structure. Spectra of purified melanosomes are complex, partially described by a predominating absorption band at 288.4 eV with additional contributions from several minor bands. Differences in these spectra were detectable between samples from two strains of inbred mice known to harbor genetically determined melanosomal differences, DBA/2J and C57BL/6J, and are likely to represent signatures arising from biologically relevant and tractable phenomena.

  16. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    SciTech Connect (OSTI)

    Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.

    2009-09-01

    Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.

  17. Imaging of the surface resistance of an SRF cavity by low-temperature laser scanning microscopy

    SciTech Connect (OSTI)

    G. Ciovati, S.M. Anlage, A.V. Gurevich

    2013-06-01

    Temperature mapping of the outer surface of a superconducting radio-frequency cavity is a technique that is often used to identify lossy areas on the cavity surface. In this contribution, we present 2-D images of the superconducting state surface resistance R{sub s} of the inner surface of a superconducting radio-frequency (SRF) cavity obtained by low-temperature laser scanning microscopy. This technique, which is applied for the first time to study lossy regions in an operating SRF cavity, allows identifying 'hotspots' with about one order of magnitude better spatial resolution ( ~2 mm) than by thermometry. The R{sub s}-resolution is of the order of 1 {micro}{Ohm} at 3.3 GHz. Surface resistance maps with different laser power and optical images of the cavity surface are discussed in this contribution. It is also shown that the thermal gradient on the niobium surface created by the laser beam can move some of the hotspots, which are identified as locations of trapped bundle of fluxoids. The prospects for this microscope to identify defects that limit the performance of SRF cavities will also be discussed.

  18. Atomic-scale electrochemistry on the surface of a manganite by scanning tunneling microscopy

    SciTech Connect (OSTI)

    Vasudevan, Rama K. Tselev, Alexander; Baddorf, Arthur P.; Gianfrancesco, Anthony G.

    2015-04-06

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunneling microscopy (STM), we demonstrate atomic resolution on samples of La{sub 0.625}Ca{sub 0.375}MnO{sub 3} grown on (001) SrTiO{sub 3} by pulsed laser deposition. Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunneling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including formation of oxygen vacancies and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  19. Copper intercalation at the interface of graphene and Ir(111) studied by scanning tunneling microscopy

    SciTech Connect (OSTI)

    Sicot, M. Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.

    2014-11-10

    We report on the intercalation of a submonolayer of copper at 775?K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77?K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.

  20. Method and apparatus to debug an integrated circuit chip via synchronous clock stop and scan

    SciTech Connect (OSTI)

    Bellofatto, Ralph E.; Ellavsky, Matthew R.; Gara, Alan G.; Giampapa, Mark E.; Gooding, Thomas M.; Haring, Rudolf A.; Hehenberger, Lance G.; Ohmacht, Martin

    2012-03-20

    An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.

  1. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    SciTech Connect (OSTI)

    Toutounji, Mohamad

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  2. Fully Polarimetric Differential Intensity W-band Imager

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Tedeschi, Jonathan R.; Kelly, James F.; Sheen, David M.; Hall, Thomas E.; Valdez, Patrick LJ; Lechelt, Wayne M.; McMakin, Douglas L.

    2013-05-31

    We present a novel architecture based upon a Dicke-switched heterodyne radiometer architecture employing two identical input sections consisting of horn and orthomode transducer to detect the difference between the H and V polarization states of two separate object patches imaged by the radiometer. We have constructed and described previously a fully polarimetric W-band passive millimeter wave imager constructed to study the phenomenology of anomaly detection using polarimetric image exploitation of the Stokes images. The heterodyne radiometer used a PIN diode switch between the input millimeter wave energy and that of a reference load in order to eliminate the effects of component drifts and reduce the effects of 1/f noise. The differential approach differs from our previous work by comparing H and V polarization states detected by each of the two input horns instead of a reference load to form signals delta H and delta V from closely adjacent paired object patches. This novel imaging approach reduces common mode noise and enhances detection of small changes between the H and V polarization states of two object patches, now given as difference terms of the fully polarimetric radiometer. We present the theory of operation, initial proof of concept experimental results, and extension of the differential radiometer to a system with a binocular fore optics that allow adjustment of the convergence or shear of the object patches viewed by the differential polarimetric imager.

  3. Differential vent and bar actuated circulating valve and method

    SciTech Connect (OSTI)

    Brieger, E. F.

    1985-07-16

    A tool for use downhole in a borehole for carrying out a backsurging method whereby existing open perforations are cleaned. The tool comprises an annular body having spaced cylindrical walls, each of which reciprocatingly receives spaced pistons which move individually relative to one another. A port is formed through each of the walls of each of the cylinders with the first port being normally closed by a first piston and the second port being normally open. The second piston is moved to close the second port. The tool is placed on the end of a tubing string or within a tool string and run downhole into the borehole. A packer device enables the pressure between the lower annulus, the upper annulus, and the tubing to be adjusted relative to one another. A bar is then dropped down the tubing string, contacts the second piston and moves the second piston to cover the second port. The tubing pressure is reduced to provide a pressure differential between the lower annulus and the interior of the tubing. The first valve automatically opens when a predetermined pressure differential is achieved between the tubing and lower annulus, thereby providing a predetermined pressure differential across the old perforations, and cleaning debris therefrom upon the opening of the first port.

  4. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (OSTI)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  5. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    SciTech Connect (OSTI)

    Yonezawa, Takayuki; Lee, Ji-Won; Hibino, Ayaka; Asai, Midori; Hojo, Hironori; Cha, Byung-Yoon; Teruya, Toshiaki; Nagai, Kazuo; Chung, Ung-Il; Yagasaki, Kazumi; and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  6. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    SciTech Connect (OSTI)

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  7. Impact of membrane-induced particle immobilization on seeded growth monitored by in situ liquid scanning transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weiner, Rebecca G.; Chen, Dennis P.; Unocic, Raymond R.; Skrabalak, Sara E.

    2016-04-01

    In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Furthermore, different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell.

  8. FAST PIXEL SPACE CONVOLUTION FOR COSMIC MICROWAVE BACKGROUND SURVEYS WITH ASYMMETRIC BEAMS AND COMPLEX SCAN STRATEGIES: FEBeCoP

    SciTech Connect (OSTI)

    Mitra, S.; Rocha, G.; Gorski, K. M.; Lawrence, C. R.; Huffenberger, K. M.; Eriksen, H. K.; Ashdown, M. A. J. E-mail: graca@caltech.edu E-mail: Charles.R.Lawrence@jpl.nasa.gov E-mail: h.k.k.eriksen@astro.uio.no

    2011-03-15

    Precise measurement of the angular power spectrum of the cosmic microwave background (CMB) temperature and polarization anisotropy can tightly constrain many cosmological models and parameters. However, accurate measurements can only be realized in practice provided all major systematic effects have been taken into account. Beam asymmetry, coupled with the scan strategy, is a major source of systematic error in scanning CMB experiments such as Planck, the focus of our current interest. We envision Monte Carlo methods to rigorously study and account for the systematic effect of beams in CMB analysis. Toward that goal, we have developed a fast pixel space convolution method that can simulate sky maps observed by a scanning instrument, taking into account real beam shapes and scan strategy. The essence is to pre-compute the 'effective beams' using a computer code, 'Fast Effective Beam Convolution in Pixel space' (FEBeCoP), that we have developed for the Planck mission. The code computes effective beams given the focal plane beam characteristics of the Planck instrument and the full history of actual satellite pointing, and performs very fast convolution of sky signals using the effective beams. In this paper, we describe the algorithm and the computational scheme that has been implemented. We also outline a few applications of the effective beams in the precision analysis of Planck data, for characterizing the CMB anisotropy and for detecting and measuring properties of point sources.

  9. Effects of Field of View and Visual Complexity on Virtual Reality Training Effectiveness for a Visual Scanning Task

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ragan, Eric D.; Bowman, Doug A.; Kopper, Regis; Stinson, Cheryl; Scerbo, Siroberto; McMahan, Ryan P.

    2015-02-13

    Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the realism of a training simulation influences training effectiveness. The paper presents a framework for evaluating the effects of virtual reality fidelity based on an analysis of a simulation’s display, interaction, and scenario components. Following this framework, we conducted a controlled experiment to test the effects of fidelity on training effectiveness for a visual scanning task. The experiment varied the levels of field of view and visual realism during a training phase and then evaluated scanning performance with the simulator’s highestmore » level of fidelity. To assess scanning performance, we measured target detection and adherence to a prescribed strategy. The results show that both field of view and visual realism significantly affected target detection during training; higher field of view led to better performance and higher visual realism worsened performance. Additionally, the level of visual realism during training significantly affected learning of the prescribed visual scanning strategy, providing evidence that high visual realism was important for learning the technique. The results also demonstrate that task performance during training was not always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training—evaluation in a more realistic setting may be necessary.« less

  10. SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; O'Rourke, P.; Ajo, H.

    2012-03-08

    The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

  11. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    SciTech Connect (OSTI)

    Tang, Shikui; Deville, Curtiland; McDonough, James; Tochner, Zelig; Wang, Ken Kang-Hsin; Vapiwala, Neha; Both, Stefan

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  12. SU-E-T-73: Commissioning of a Treatment Planning System for Proton Spot Scanning

    SciTech Connect (OSTI)

    Saini, J; Kang, Y; Schultz, L; Nicewonger, D; Herrera, M; Wong, T; Bowen, S; Bloch, C

    2014-06-01

    Purpose: A treatment planning system (TPS) was commissioned for clinical use with a fixed beam line proton delivery system. An outline of the data collection, modeling, and verification is provided. Methods: Beam data modeling for proton spot scanning in CMS Xio TPS requires the following measurements: (i) integral depth dose curves (IDDCs); (ii) absolute dose calibration; and (iii) beam spot characteristics. The IDDCs for 18 proton energies were measured using an integrating detector in a single spot field in a water phantom. Absolute scaling of the IDDCs were performed based on ion chamber measurements in mono-energetic 1010 cm{sup 2} fields in water. Beam spot shapes were measured in air using a flat panel scintillator detector at multiple planes. For beam model verification, more than 45 uniform dose phantom and patient plans were generated. These plans were used to measure range, point dose, and longitudinal and lateral profiles. Tolerances employed for verification are: point dose and longitudinal profiles, 2%; range, 1 mm; FWHM for lateral profiles, 2 mm; and patient plan dose distribution, gamma index of >90% at 3%/3 mm criteria. Results: More than 97% of the point dose measurements out of 115 were within +/-2% with maximum deviation of 3%. 98% of the ranges measured were within 1 mm with maximum deviation of 1.4mm. The normalized depth doses were within 2% at all depths. The maximum error in FWHM of lateral profiles was found to be less than 2mm. For 5 patient plans representing different anatomic sites, a total of 38 planes for 12 beams were analyzed for gamma index with average value of 99% and minimum of 94%. Conclusions: The planning system is successfully commissioned and can be safely deployed for clinical use. Measurements of IDDCs on user beam are highly recommended instead of using standard beam IDDCs.

  13. SU-E-T-304: Study of Secondary Neutrons From Uniform Scanning Proton Beams

    SciTech Connect (OSTI)

    Islam, M; Zheng, Y; Benton, E

    2014-06-01

    Purpose: Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient's lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations. Methods: CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA. Results: The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5. Conclusion: The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.

  14. Loss Aversion and Time-Differentiated Electricity Pricing

    SciTech Connect (OSTI)

    Spurlock, C. Anna

    2015-06-01

    I develop a model of loss aversion over electricity expenditure, from which I derive testable predictions for household electricity consumption while on combination time-of-use (TOU) and critical peak pricing (CPP) plans. Testing these predictions results in evidence consistent with loss aversion: (1) spillover effects - positive expenditure shocks resulted in significantly more peak consumption reduction for several weeks thereafter; and (2) clustering - disproportionate probability of consuming such that expenditure would be equal between the TOUCPP or standard flat-rate pricing structures. This behavior is inconsistent with a purely neoclassical utility model, and has important implications for application of time-differentiated electricity pricing.

  15. Differential capacitance probe for process control involving aqueous dielectric fluids

    DOE Patents [OSTI]

    Svoboda, John M.; Morrison, John L.

    2002-10-08

    A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.

  16. Detection and differentiation of coxiella burnetii in biological fluids

    DOE Patents [OSTI]

    Frazier, Marvin E.; Mallavia, Louis P.; Baca, Oswald G.; Samuel, James E.

    1989-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  17. Detection and differentiation of coxiella burnetii in biological fluids

    DOE Patents [OSTI]

    Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.

    1990-01-01

    Methods for detecting the presence of Coxiella burenetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  18. Detection and differentiation of coxiella burnetii in biological fluids

    DOE Patents [OSTI]

    Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.

    1993-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA with a DNA probe containing DNA sequences that specifically hybridize with C. burnetii DNA of strains associated with the capacity to cause acute or chronic disease.

  19. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  20. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  1. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  3. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  4. Double Precision Differential/Algebraic Sensitivity Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-06-02

    DDASAC solves nonlinear initial-value problems involving stiff implicit systems of ordinary differential and algebraic equations. Purely algebraic nonlinear systems can also be solved, given an initial guess within the region of attraction of a solution. Options include automatic reconciliation of inconsistent initial states and derivatives, automatic initial step selection, direct concurrent parametric sensitivity analysis, and stopping at a prescribed value of any user-defined functional of the current solution vector. Local error control (in the max-normmore » or the 2-norm) is provided for the state vector and can include the sensitivities on request.« less

  5. Effects of differential compaction fracturing shown in four reservoirs

    SciTech Connect (OSTI)

    Thomas, G.E. )

    1992-02-03

    With the advent of horizontal drilling in the U.S., fractured reservoirs have become a major target in the ongoing search for hydrocarbons. This paper will examine four fractured-reservoir fields in the U.S.: Silo (Niobrara), Wyoming; Elkhorn Ranch (Bakken), North Dakota; Pearsal (Austin chalk), Texas; and the Syndicated Options Ltd. 9372 Ferguson Brothers well (Ordovician carbonates), Kentucky. The paper will show that differential compaction fracturing is more of a major factor in long-term, sustainable production in a fractured reservoir than is tectonic fracturing. In this paper, a general discussion of the two types of fracturing and how they affect reservoir production is provided.

  6. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect (OSTI)

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  7. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    SciTech Connect (OSTI)

    Wang, Dongxu Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T.

    2014-12-15

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.

  8. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept

    SciTech Connect (OSTI)

    Hyer, Daniel E. Hill, Patrick M.; Wang, Dongxu; Smith, Blake R.; Flynn, Ryan T.

    2014-09-15

    Purpose: In the absence of a collimation system the lateral penumbra of spot scanning (SS) dose distributions delivered by low energy proton beams is highly dependent on the spot size. For current commercial equipment, spot size increases with decreasing proton energy thereby reducing the benefit of the SS technique. This paper presents a dynamic collimation system (DCS) for sharpening the lateral penumbra of proton therapy dose distributions delivered by SS. Methods: The collimation system presented here exploits the property that a proton pencil beam used for SS requires collimation only when it is near the target edge, enabling the use of trimmers that are in motion at times when the pencil beam is away from the target edge. The device consists of two pairs of parallel nickel trimmer blades of 2 cm thickness and dimensions of 2 cm × 18 cm in the beam's eye view. The two pairs of trimmer blades are rotated 90° relative to each other to form a rectangular shape. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s{sup 2}, respectively. The blades travel on curved tracks to match the divergence of the proton source. An algorithm for selecting blade positions is developed to minimize the dose delivered outside of the target, and treatment plans are created both with and without the DCS. Results: The snout of the DCS has outer dimensions of 22.6 × 22.6 cm{sup 2} and is capable of delivering a minimum treatment field size of 15 × 15 cm{sup 2}. Using currently available components, the constructed system would weigh less than 20 kg. For irregularly shaped fields, the use of the DCS reduces the mean dose outside of a 2D target of 46.6 cm{sup 2} by approximately 40% as compared to an identical plan without collimation. The use of the DCS increased treatment time by 1–3 s per energy layer. Conclusions: The spread of the

  9. On the interplay effects with proton scanning beams in stage III lung cancer

    SciTech Connect (OSTI)

    Li, Yupeng; Kardar, Laleh; Liao, Li; Lim, Gino; Li, Xiaoqiang; Li, Heng; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Zhang, Xiaodong; Cao, Wenhua; Chang, Joe Y.; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.

    2014-02-15

    Purpose: To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Methods: Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Results: Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Conclusions: Despite

  10. Waste compatibility safety issues and final results for tank 241-T-110 push mode samples

    SciTech Connect (OSTI)

    Nuzum, J.L.

    1997-05-15

    This document is the final laboratory report for Tank 241-T-110. Push mode core segments were removed from risers 2 and 6 between January 29, 1997, and February 7, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-T-110 Push Mode Core Sampling and analysis Plan (TSAP) and Safety Screening Data Quality Objective (DQO). None of the subsamples submitted for total alpha activity (AT) or differential scanning calorimetry (DSC) analyses exceeded the notification limits stated in DQO.

  11. Copper-silicon-magnesium alloys for latent heat storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  12. Statistical analysis of an inter-laboratory comparison of small-scale safety and thermal testing of RDX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Geoffrey W.; Sandstrom, Mary M.; Preston, Daniel N.; Pollard, Colin J.; Warner, Kirstin F.; Sorensen, Daniel N.; Remmers, Daniel L.; Phillips, Jason J.; Shelley, Timothy J.; Reyes, Jose A.; et al

    2014-11-17

    In this study, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency test for small-scale safety and thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results from this test for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Class 5 Type II standard. The material was tested as a well-characterized standard several times during the proficiency test to assess differences among participants and the range of results that may arise for well-behaved explosive materials.

  13. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect (OSTI)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Shassere, Benjamin; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Safa-Sefat, Athena; Rusanu, Aurelian; Brown, Greg; Evans III, Boyd Mccutchen

    2014-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system are explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering method. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy are investigated using differential scanning calorimetry and superconducting quantum interference device. Experiments are performed at the Spallation Neutron Source at Oak Ridge National Laboratory to observe the structural and magnetic phase transformations.

  14. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  15. Differential Angstrom model for predicting insolation from hours of sunshine

    SciTech Connect (OSTI)

    Yeboah-Amankwah, D.; Agyeman, K.

    1990-01-01

    The Angstrom model for predicting insolation is limited in scope because it gives equal weighting to sunshine hours recorded at any time of the day. The differential Angstrom model presented in this paper removes this limitation and relates insolation, q{sub j}, in the j{sup th} hour to the sunshine duration, n{sub j}, of the same period by the equation: q{sub j} = a{sub j} + b{sub j}. By regression analysis of monthly data, the set of constants a{sub j} and b{sub j} for each hour of each month of the year can be determined. Thus, using the appropriate set of a and b regression coefficients, any sunshine data can be transformed to insolation. The sum of the equation over a day gives the daily insolation from which monthly means can be calculated. The method has been applied to the 1986 and 1988 sunshine data recorded at the University of Papua New Guinea to predict the observed insolation to within 3.5%. The differential Angstrom method has applications in places which have much recorded data on hours of sunshine but have limited observed insolation data.

  16. Determination of pigments in colour layers on walls of some selected historical buildings using optical and scanning electron microscopy

    SciTech Connect (OSTI)

    Skapin, A. Sever Ropret, P. Bukovec, P.

    2007-11-15

    For successful restoration of painted walls and painted coloured finishing coats it is necessary to determine the composition of the original colour layers. Identification of the pigments used in The Cistercian Abbey of Sticna and The Manor of Novo Celje was carried out using optical and scanning electron microscopy. Selected samples of wall paintings were inspected by the combined application of an optical microscope and a low-vacuum Scanning Electron Microscope to determine their colour and structural features and to identify the position of individual pigment grains. Energy dispersive spectroscopy was used to determine the elemental distribution on selected surfaces and elemental composition of individual pigments. It was found that the most abundantly used pigments were iron oxide red, cinnabar, green earth, umber, calcium carbonate white, ultramarine, yellow ochre and carbon black. These identifications have allowed us to compare the use of various pigments in buildings from different historical periods.

  17. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    SciTech Connect (OSTI)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-06-15

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  18. The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egerton, Victoria M.; Wogelius, Roy A.; Norell, Mark A.; Edwards, Nicholas P.; Sellers, William I.; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; van Veelen, Arjen; et al

    2015-01-22

    The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the ~50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu andmore » Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.« less

  19. The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird

    SciTech Connect (OSTI)

    Egerton, Victoria M.; Wogelius, Roy A.; Norell, Mark A.; Edwards, Nicholas P.; Sellers, William I.; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; van Veelen, Arjen; Anné, Jennifer; van Dongen, Bart; Knoll, Fabien; Manning, Phillip L.

    2015-01-22

    The preservation of fossils reflects the interplay of inorganic and organic chemical processes, which should be clearly differentiated to make interpretations about the biology of extinct organisms. A new coliiformes bird (mouse bird) from the ~50 million year old Green River Formation (Wyoming, USA) has here been analysed using synchrotron X-ray fluorescence and environmental scanning electron microscopy with an attached X-ray energy dispersive system (ESEM-EDS). The concentration and distribution of 16 elements (Si, P, S, Cl, K, Ca, Ti, Mg, Fe, Ni, Cu, Zn, As, Br, Ba, Hg) has been mapped for individual points on the sample. S, Cu and Zn map distinctly within visibly preserved feathers and X-ray Absorption Spectroscopy (XAS) shows that S and Cu within the feathers are organically bound in a similar manner to modern feathers. The morphological preservation of the feathers, on both macro- and microscopic scales, is variable throughout the fossil and the differences in the lateral microfacies have resulted in a morphological preservation gradient. This study clearly differentiates endogenous organic remains from those representing exogenous overprinted geochemical precipitates and illustrates the chemical complexity of the overall taphonomic process.

  20. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT

    SciTech Connect (OSTI)

    Miller, Michael K; Parish, Chad M

    2014-01-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  1. SU-E-I-60: The Correct Selection of Pitch and Rotation Time for Optimal CT Scanning : The Big Misconception

    SciTech Connect (OSTI)

    Ranallo, F; Szczykutowicz, T

    2014-06-01

    Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise and dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.

  2. Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila L'Aquila, Italy J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,

  3. H Scan/AHP decision process planning for evaluating and ranking of proposals submitted to the DOE hydrogen program

    SciTech Connect (OSTI)

    Szoka de Valladares, M.R.; Mack, S.

    1995-09-01

    The DOE Hydrogen Program needs to develop criteria as part of a systematic evaluation process for proposal identification, evaluation and selection. The H Scan component of this process provides a framework in which a project proposer can fully describe their candidate technology system and its components. The H Scan complements traditional methods of capturing cost and technical information. It consists of a special set of survey forms designed to elicit information so expert reviewers can assess the proposal relative to DOE specified selection criteria. The Analytic Hierarchy Process (AHP) component of the decision process assembles the management defined evaluation and selection criteria into a coherent multi-level decision construct by which projects can be evaluated in pair-wise comparisons. The AHP model will reflect management`s objectives and it will assist in the ranking of individual projects based on the extent to which each contributes to management`s objectives. This paper contains a detailed description of the products and activities associated with the planning and evaluation process: The objectives or criteria; the H Scan; and The Analytic Hierarchy Process (AHP).

  4. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect (OSTI)

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  5. Thermodynamic studies of CaLaFe??O??(s)

    SciTech Connect (OSTI)

    Rakshit, S.K.; Parida, S.C.; Lilova, Kristina; Navrotsky, Alexandra

    2013-05-01

    Thermodynamic studies on CaLaFe??O??(s) were carried out using Knudsen effusion mass spectrometry and calorimetry, viz. differential scanning calorimetry and high temperature oxide melt solution calorimetry. Standard molar Gibbs free energy of formation (?{sub f}G?{sub m}), enthalpy of formation and heat capacity (C?{sub ?,m}) of the compound were calculated as a function of temperature for the first time. C?{sub ?,m}(CaLaFe??O??) was determined and used for second law analysis, from which enthalpy and entropy of formation of the compound were calculated and the respective values are: ?{sub f}H?{sub m}(298.15 K)/kJ mol?=-6057(8) and S?{sub m}(298.15 K)/J K? mol?=427(5). ?{sub f}H?{sub m}(298.15 K)/kJ mol?: -6055(6) was also calculated using oxide melt solution calorimetry, which is in close agreement with the second law value. A heat capacity anomaly was also observed at T=684 K. A table of thermodynamic data from 298.15 K to 1000 K for CaLaFe??O??(s) was also constructed to represent an optimized set of data. - graphical abstract: Variation of standard molar heat capacities of CaLaF??O??(s) and MFe??O??(s) (M=Sr, Ba and Pb) as a function of temperature. Highlights: Thermodynamic studies on CaLaFe??O??(s) were performed using KEQMS and solution calorimetry. It was synthesized using gel combustion route and characterized by XRD technique. The compound is magnetic in nature and shows a heat capacity anomaly at 684 K. Thermodynamic table was constructed from 298 K to 1000 K.

  6. Spot Scanning Proton Therapy for Malignancies of the Base of Skull: Treatment Planning, Acute Toxicities, and Preliminary Clinical Outcomes

    SciTech Connect (OSTI)

    Grosshans, David R.; Zhu, X. Ronald; Melancon, Adam; Allen, Pamela K.; Poenisch, Falk; Palmer, Matthew; McAleer, Mary Frances; McGovern, Susan L.; Gillin, Michael; DeMonte, Franco; Chang, Eric L.; Brown, Paul D.; Mahajan, Anita

    2014-11-01

    Purpose: To describe treatment planning techniques and early clinical outcomes in patients treated with spot scanning proton therapy for chordoma or chondrosarcoma of the skull base. Methods and Materials: From June 2010 through August 2011, 15 patients were treated with spot scanning proton therapy for chordoma (n=10) or chondrosarcoma (n=5) at a single institution. Toxicity was prospectively evaluated and scored weekly and at all follow-up visits according to Common Terminology Criteria for Adverse Events, version 3.0. Treatment planning techniques and dosimetric data were recorded and compared with those of passive scattering plans created with clinically applicable dose constraints. Results: Ten patients were treated with single-field-optimized scanning beam plans and 5 with multifield-optimized intensity modulated proton therapy. All but 2 patients received a simultaneous integrated boost as well. The mean prescribed radiation doses were 69.8 Gy (relative biological effectiveness [RBE]; range, 68-70 Gy [RBE]) for chordoma and 68.4 Gy (RBE) (range, 66-70) for chondrosarcoma. In comparison with passive scattering plans, spot scanning plans demonstrated improved high-dose conformality and sparing of temporal lobes and brainstem. Clinically, the most common acute toxicities included fatigue (grade 2 for 2 patients, grade 1 for 8 patients) and nausea (grade 2 for 2 patients, grade 1 for 6 patients). No toxicities of grades 3 to 5 were recorded. At a median follow-up time of 27 months (range, 13-42 months), 1 patient had experienced local recurrence and a second developed distant metastatic disease. Two patients had magnetic resonance imaging-documented temporal lobe changes, and a third patient developed facial numbness. No other subacute or late effects were recorded. Conclusions: In comparison to passive scattering, treatment plans for spot scanning proton therapy displayed improved high-dose conformality. Clinically, the treatment was well tolerated, and

  7. Triply differential (e,2e) studies of phenol

    SciTech Connect (OSTI)

    Silva, G. B. da; Neves, R. F. C.; Chiari, L.; Jones, D. B.; Ali, E.; Madison, D. H.; Ning, C. G.; Nixon, K. L.; Lopes, M. C. A.; Brunger, M. J.

    2014-09-28

    We have measured (e,2e) triple differential cross sections (TDCS) for the electron-impact ionisation of phenol with coplanar asymmetrical kinematics for an incident electron energy of 250 eV. Experimental measurements of the angular distribution of the slow outgoing electrons at 20 eV are obtained when the incident electron scatters through angles of ?5, ?10, and ?15, respectively. The TDCS data are compared with calculations performed within the molecular 3-body distorted wave model. In this case, a mixed level of agreement, that was dependent on the kinematical condition being probed, was observed between the theoretical and experimental results in the binary peak region. The experimental intensity of the recoil features under all kinematical conditions was relatively small, but was still largely underestimated by the theoretical calculations.

  8. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  9. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOE Patents [OSTI]

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  10. Method and apparatus for calibrating a linear variable differential transformer

    DOE Patents [OSTI]

    Pokrywka, Robert J.

    2005-01-18

    A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.

  11. Programmable Differential Delay Circuit With Fine Delay Adjustment

    DOE Patents [OSTI]

    DeRyckere, John F.; Jenkins, Philip Nord; Cornett, Frank Nolan

    2002-07-09

    Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.

  12. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    SciTech Connect (OSTI)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  13. DEVELOPMENT OF AUTOMATED SOFTWARE PROGRAM FOR THE ANALYSIS OF ALZHEIMER'S DISEASE BETA-AMYLOID SCANS

    SciTech Connect (OSTI)

    Mariotti, Jack; Zubal, George

    2013-12-18

    scanning will be performed over a 3.5 hour period. Each subject will have a telephone follow-up 7 days (± 3 days) thereafter to assess for adverse events. Methodology: - Assessments to provide clinical characterization of the AD subjects will be performed. - After administration of PBR-111, images will be generated with state-of-the-art PET imaging. Images will be assessed quantitatively for the presence of microglial activation by a nuclear physician blinded to clinical data. - Total radioactivity and estimation of the fraction of radioactivity associated to the un-metabolized tracer will be determined. In addition, the metabolite patterns of PBR-111 are determined in venous plasma and arterial samples based on high-performance liquid chromatography (HPLC) analyses. - Arterial sampling will be acquired in the initial two AD and two HV subjects and modeling will be assessed to determine if additional arterial sampling is necessary.

  14. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    SciTech Connect (OSTI)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  15. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy

    SciTech Connect (OSTI)

    Sorriaux, J; Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J; Bertrand, D; Orban de Xivry, J.; Lee, J; Palmans, H; Vynckier, S; Sterpin, E

    2014-06-01

    Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 101010 cm{sup 3} homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 220.2 cm{sup 3}, the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)

  16. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect (OSTI)

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  17. Manipulation of subsurface carbon nanoparticles in Bi?Sr?CaCu?O8+? using a scanning tunneling microscope

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stollenwerk, A. J.; Gu, G.; Hurley, N.; Beck, B.; Spurgeon, K.; Kidd, T. E.

    2015-03-01

    We present evidence that subsurface carbon nanoparticles in Bi?Sr?CaCu?O8+? can be manipulated with nanometer precision using a scanning tunneling microscope. High resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface.

  18. Measuring inside damage of individual multi-walled carbon nanotubes using scanning transmission X-ray microscopy

    SciTech Connect (OSTI)

    Liu, Jinyin; Bai, Lili; Zhao, Guanqi; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn; Wang, Jian

    2014-06-16

    The electronic structure of individual multi-walled carbon nanotubes (MWCNTs) has been probed using scanning transmission X-ray microscopy (STXM). Although transmission electron microscope (TEM) images show that the exterior of the MWCNTs are clean and straight; the inside structure of some of the MWCNTs is much less well ordered, as revealed by STXM. The amorphization of the interior tubes can be introduced in the growth or modification processes. Moreover, TEM measurement with high dose may also lead to the inside damage. Our results reveal that the structure of individual MWCNTs can be complex and suggest that electronic structure measurements are an important tool for characterizing carbon nanomaterials.

  19. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect (OSTI)

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Oshima, Yoshifumi

    2014-10-13

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  20. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect (OSTI)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.