Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)
2013-07-01T23:59:59.000Z
For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)
An improved finite difference calculation of downhole dynamometer cards for sucker rod pumps
Everitt, Thomas Aaron
1987-01-01T23:59:59.000Z
AN IMPROVED FINITE DIFFERENCE CALCULATION OF DOWNHOLE DYNAMOMETER CARDS FOR SUCKER ROD PUMPS A Thesis by THOMAS AARON EVERITT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1987 Maj or Subj ect: Petroleum Engineering AN IMPROVED FINITE DIFFERENCE CALCULATION OF DOWNHOLE DYNAMOMETER CARDS FOR SUCKER ROD PUMPS A Thesis by THOMAS AARON EVERITT Approved as to style and content by: James W. nin...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N GoodsMexico's EnergyCalculation of
Effects of the difference in tube voltage of the CT scanner on dose calculation
Rhee, Dong Joo; Moon, Young Min; Kim, Jung Ki; Jeong, Dong Hyeok
2015-01-01T23:59:59.000Z
Computed Tomography (CT) measures the attenuation coefficient of an object and converts the value assigned to each voxel into a CT number. In radiation therapy, CT number, which is directly proportional to the linear attenuation coefficient, is required to be converted to electron density for radiation dose calculation for cancer treatment. However, if various tube voltages were applied to take the patient CT image without applying the specific CT number to electron density conversion curve, the accuracy of dose calculation would be unassured. In this study, changes in CT numbers for different materials due to change in tube voltage were demonstrated and the dose calculation errors in percentage depth dose (PDD) and a clinical case were analyzed. The maximum dose difference in PDD from TPS dose calculation and Monte Carlo simulation were 1.3 % and 1.1 % respectively when applying the same CT number to electron density conversion curve to the 80 kVp and 140 kVp images. In the clinical case, the different CT nu...
Calculation of free-energy differences and potentials of mean force by a multi-energy gap method
Weston, Ken
Calculation of free-energy differences and potentials of mean force by a multi-energy gap method the convergence of free-energy calculations. It introduces a bias factor in Monte Carlo simulations or.e., the difference in energy function between two states, and is therefore specifically designed for calculating free-energy
Rasor, Robert Winston
1978-01-01T23:59:59.000Z
'itions, Babcock ct al . showed proppant concentration to be a ronti- 4 nuous function cf vertical posi tion, The ri. lationship is presented in Figure 3. This concentration profile is applicable to all fracture de- signs . Figure 4 illustrates the concentration... l artla1 fulfH1nient of ! he reOu!no sent Inn tn- d gnee of THE CALCULATION OF PROPPANT TRANSPORT IN VERTICAL HYDRAULIC FRACTLIRES USING FiliITE DIFFERENCE TECHfiIljUES A Thesis ROBERT WINSTON RASOR Approved as to styie and content by...
Calculation of large ion densities under HVdc transmission lines by the finite difference method
Suda, Tomotaka; Sunaga, Yoshitaka [Central Research Institute of Electrical Power Industry, Komae, Tokyo (Japan)] [Central Research Institute of Electrical Power Industry, Komae, Tokyo (Japan)
1995-10-01T23:59:59.000Z
A calculation method for large ion densities (charged aerosols) under HVdc transmission lines was developed considering both the charging mechanism of aerosols by small ions and the drifting process by wind. Large ion densities calculated by this method agreed well with the ones measured under the Shiobara HVdc test line on the lateral profiles at ground level up to about 70m downwind from the line. Measured values decreased more quickly than calculated ones farther downwind from the line. Considering the effect of point discharge from ground cover (earth corona) improved the agreement in the farther downwind region.
Iwase, Shigeru; Ono, Tomoya
2015-01-01T23:59:59.000Z
We propose an efficient procedure to obtain Green's functions by combining the shifted conjugate orthogonal conjugate gradient (shifted COCG) method with the nonequilibrium Green's function (NEGF) method based on a real-space finite-difference (RSFD) approach. The bottleneck of the computation in the NEGF scheme is matrix inversion of the Hamiltonian including the self-energy terms of electrodes to obtain perturbed Green's function in the transition region. This procedure first computes unperturbed Green's functions and calculates perturbed Green's functions from the unperturbed ones using a mathematically strict relation. Since the matrices to be inverted to obtain the unperturbed Green's functions are sparse, complex-symmetric and shifted for a given set of sampling energy points, we can use the shifted COCG method, in which once the Green's function for a reference energy point has been calculated, the Green's functions for the other energy points can be obtained with a moderate computational cost. We calc...
Marcus Mueller; Andreas Werner
1997-09-11T23:59:59.000Z
We investigate interfacial properties between two highly incompatible polymers of different stiffness. The extensive Monte Carlo simulations of the binary polymer melt yield detailed interfacial profiles and the interfacial tension via an analysis of capillary fluctuations. We extract an effective Flory-Huggins parameter from the simulations, which is used in self-consistent field calculations. These take due account of the chain architecture via a partial enumeration of the single chain partition function, using chain conformations obtained by Monte Carlo simulations of the pure phases. The agreement between the simulations and self-consistent field calculations is almost quantitative, however we find deviations from the predictions of the Gaussian chain model for high incompatibilities or large stiffness. The interfacial width at very high incompatibilities is smaller than the prediction of the Gaussian chain model, and decreases upon increasing the statistical segment length of the semi-flexible component.
Akkus, Harun, E-mail: physicisthakkus@gmail.com
2013-12-15T23:59:59.000Z
We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle.
Moya, A; Charpinet, S; Lebreton, Y; Miglio, A; Montalban, J; Monteiro, M J P F G; Provost, J; Roxburgh, I W; Scuflaire, R; Suárez, J C; Suran, M
2007-01-01T23:59:59.000Z
In order to make astroseismology a powerful tool to explore stellar interiors, different numerical codes should give the same oscillation frequencies for the same input physics. This work is devoted to test, compare and, if needed, optimize the seismic codes used to calculate the eigenfrequencies to be finally compared with observations. The oscillation codes of nine research groups in the field have been used in this study. The same physics has been imposed for all the codes in order to isolate the non-physical dependence of any possible difference. Two equilibrium models with different grids, 2172 and 4042 mesh points, have been used, and the latter model includes an explicit modelling of semiconvection just outside the convective core. Comparing the results for these two models illustrates the effect of the number of mesh points and their distribution in particularly critical parts of the model, such as the steep composition gradient outside the convective core. A comprehensive study of the frequency diffe...
charlotb
2014-08-24T23:59:59.000Z
MA 16010 -- CALCULATOR POLICY. A ONE-LINE scientific calculator is REQUIRED. No other calculator is allowed. RECOMMENDED: TI-30Xa calculator
Robust Neuroimaging-Based Classification Techniques of Autistic vs. Typically
Farag, Aly A.
abnormalities in several brain regions. Increased head size was the first observed characteristic in children1 Robust Neuroimaging-Based Classification Techniques of Autistic vs. Typically Developing Brain with autism. According to the published studies, different anatomical structures of the brain have been
Thermal performance of typical light frame walls with reflective surface insulations
Miller, R.G. (Jim Walter Research Corp., St. Petersburg, FL (US)); Riskowski, G.L.; Christianson, L.L. (Agricultural Engineering Dept., Univ. of Illinois at Urbana-Champaign, IL (US))
1989-01-01T23:59:59.000Z
A series of tests were conducted in a guarded hotbox to evaluate the thermal performance (R-value) of wall constructions typical of light-frame buildings that are commonly used in agricultural applications. The systems were insulated with either a commercially available foil-faced bubble pack material (FFBP) or foil-faced polyisocyanurate (PIR) foam board. Tests were conducted under two different temperature conditions, chosen to be representative of a midwestern winter and summer. This paper reports temperatures of the surfaces bounding the reflective airspaces measured and the R-value calculated. These data were used in the ASHRAE series/parallel calculations and the resultant R-value was compared to the measured R-value. Agreement was usually better than 10%.
charlotb
2014-06-10T23:59:59.000Z
MA 15800 – Calculators – GOOD AND BAD. ONLY ONE-LINE scientific calculators are permitted. *RECOMMENDED CALCULATOR: TI-30XA(See Below).
charlotb
2014-08-15T23:59:59.000Z
MA 15300 Calculator Policy. ONLY a TI-30Xa scientific calculator is allowed on quizzes and exams. If you have questions, please email the course coordinator ...
charlotb
2014-12-17T23:59:59.000Z
MA 15910 Calculator Policy. ONLY a TI-30Xa scientific calculator is allowed on quizzes and exams. If you have questions, please email the course coordinator ...
Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD
Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.
1997-09-01T23:59:59.000Z
An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.
Benchmark problems and results for verifying resonance calculation methodologies
Wu, H.; Yang, W.; Qin, Y.; He, L.; Cao, L.; Zheng, Y.; Liu, Q. [NECP Laboratory, School of Nuclear Science and Technology, Xi'An Jiaotong Univ., 710049 (China)
2012-07-01T23:59:59.000Z
Resonance calculation is one of the most important procedures for the multi-group neutron transport calculation. With the development of nuclear reactor concepts, many new types of fuel assembly are raised. Compared to the traditional designs, most of the new fuel assemblies have different fuel types either with complex isotopes or with complicated geometry. This makes the traditional resonance calculation method invalid. Recently, many advanced resonance calculation methods are proposed. However, there are few benchmark problems for evaluating those methods with a comprehensive comparison. In this paper, we design 5 groups of benchmark problems including 21 typical cases of different geometries and fuel contents. The reference results of the benchmark problems are generated based on the sub-group method, ultra-fine group method, function expanding method and Monte Carlo method. It is shown that those benchmark problems and their results could be helpful to evaluate the validity of the newly developed resonance calculation method in the future work. (authors)
E-Print Network 3.0 - andisol typic hapludand Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
considerable pressure difference (typically overcontent... :427-436. Sperry, J.S., V. Stiller, and U.G. Hacke. 2002b. Soil water uptake andisolated vascular bundles and whole...
Ex-plant consequence assessment for NUREG-1150: Models, typical results, uncertainties
Sprung, J.L.
1987-01-01T23:59:59.000Z
The assessment of ex-plant consequences for NUREG-1150 source terms was performed using the MELCOR Accident Consequence Code System (MACCS). This paper will briefly discuss the following elements of MACCS consequence calculations: input data, phenomena modeled, computational framework, typical results, controlling phenomena, and uncertainties. Wherever possible, NUREG-1150 results will be used to illustrate the discussion. 28 refs., 14 figs., 6 tabs.
Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)
Sheng, S.
2014-01-01T23:59:59.000Z
This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.
Structure of The Dixie Valley Geothermal System, a "Typical"...
Dixie Valley Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Typical support and Sanov large deviations of correlated states
I. Bjelakovic; J. -D. Deuschel; T. Krueger; R. Seiler; Ra. Siegmund-Schultze; A. Szkola
2007-03-28T23:59:59.000Z
Discrete stationary classical processes as well as quantum lattice states are asymptotically confined to their respective typical support, the exponential growth rate of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability of typical supports can be asymptotically specified by means of the relative entropy, according to Sanov's theorem. We give an extension to the correlated case, referring to the newly introduced class of HP-states.
TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA
Lutz, Jim; Melody, Moya
2012-11-08T23:59:59.000Z
There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.
OwenDavis
2014-08-22T23:59:59.000Z
MA 22400 -- CALCULATOR POLICY. A ONE-LINE scientific calculator is REQUIRED. No other calculator is allowed. RECOMMENDED: TI-30Xa calculator
Versatile Indian sari: Clothing insulation with different drapes of typical sari ensembles
Indraganti, Madhavi; Lee, Juyoun; Zhang, Hui; Arens, Edward
2014-01-01T23:59:59.000Z
Extension of the Clothing Insulation Database for Standardand air movement on that insulation. , s.l. : s.n. Havenith,Estimation of the thermal insulation and evaporative
Energy-Efficient Lighting The typical American family spends more
Energy-Efficient Lighting The typical American family spends more than $1,500 a year on household energy bills--and many households spend considerably more. Costs could climb even higher in the future, as electricity and natural gas prices continue to rise. Investing money in energy-saving products like compact
Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint
Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.
2012-07-01T23:59:59.000Z
This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.
Global variance reduction for Monte Carlo reactor physics calculations
Zhang, Q.; Abdel-Khalik, H. S. [Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695-7909 (United States)
2013-07-01T23:59:59.000Z
Over the past few decades, hybrid Monte-Carlo-Deterministic (MC-DT) techniques have been mostly focusing on the development of techniques primarily with shielding applications in mind, i.e. problems featuring a limited number of responses. This paper focuses on the application of a new hybrid MC-DT technique: the SUBSPACE method, for reactor analysis calculation. The SUBSPACE method is designed to overcome the lack of efficiency that hampers the application of MC methods in routine analysis calculations on the assembly level where typically one needs to execute the flux solver in the order of 10{sup 3}-10{sup 5} times. It places high premium on attaining high computational efficiency for reactor analysis application by identifying and capitalizing on the existing correlations between responses of interest. This paper places particular emphasis on using the SUBSPACE method for preparing homogenized few-group cross section sets on the assembly level for subsequent use in full-core diffusion calculations. A BWR assembly model is employed to calculate homogenized few-group cross sections for different burn-up steps. It is found that using the SUBSPACE method significant speedup can be achieved over the state of the art FW-CADIS method. While the presented speed-up alone is not sufficient to render the MC method competitive with the DT method, we believe this work will become a major step on the way of leveraging the accuracy of MC calculations for assembly calculations. (authors)
Johnson, J.J.; Schewe, E.C.; Maslenikov, O.R.
1984-04-01T23:59:59.000Z
The objectives of this study were two-fold: (1) develop building response calibration factors, i.e., factors which relate best estimate or median level response to responses calculated by selected design procedures. Soil-structure interaction was the phenomenon of interest because significant simplifications are frequently introduced in its treatment; and (2) the second objective can be viewed in the context of a question: what effect does placing an identical structure on different sites and with different foundation conditions have on structure response. The structure selected for this study is a part of the Zion AFT complex. Only the auxiliary, fuel-handling, and diesel generator buildings were studied. This structure is a connected group of shear-wall buildings constructed of reinforced concrete, typical of nuclear power plant structures. The bases of comparison for this study were structure responses: peak in-structure accelerations (27 components), and peak wall forces and moments (111 components). In-structure response spectra were also considered. This appendix contains in-structure response spectra comparisons in detail.
SSI response of a typical shear wall structure. Volume 1
Johnson, J.J.; Schewe, E.C.; Maslenikov, O.R.
1984-04-01T23:59:59.000Z
The Simplified Methods project of the US NRC-funded Seismic Safety Margins Research Program (SSMRP) has as its goal the development of a methodology to perform routine seismic probabilistic risk assessments of commercial nuclear power plants. The study reported here develops calibration factors to relate best estimate response to design values accounting for approximations and simplifications in SSI analysis procedures. Nineteen cases were analyzed and in-structure response compared. The structure of interest was a typical shear wall structure. 6 references, 44 figures, 22 tables.
Is the Sun Embedded in a Typical Interstellar Cloud?
P. C. Frisch
2008-04-23T23:59:59.000Z
The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.
How Do Calculators Calculate? Helmut Knaust
Knaust, Helmut
not convert numbers to base 2. They use a binary-coded decimal (BCD) system instead. Calculators can only
ANALYTICAL APPROACH TO TRANSIENT HEAT CONDUCTION IN COOLING LOAD CALCULATIONS
Michal Duška; Martin Barták; František Drkal; Jan Hensen
equation in cooling load calculations. The performance of nine different procedures (the four methods and
Broader source: Energy.gov [DOE]
Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).
Optimization Online - Calculating optimal conditions for alloy and ...
Aimen E. Gheribi
2010-12-21T23:59:59.000Z
Dec 21, 2010 ... Calculating optimal conditions for alloy and process design using thermodynamic and property databases, the FactSage software ... is maximized or minimized during annealing or rolling; other calculated functions such as ... which the objectives and constraints are typically outputs of computer simulations.
Quantum Monte Carlo Calculations Applied to Magnetic Molecules
Larry Engelhardt
2006-08-09T23:59:59.000Z
We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these ideas in hand, we then provide a detailed explanation of the current QMC method in Chapter 4. The remainder of the thesis is devoted to presenting specific results: Chapters 5 and 6 contain articles in which this method has been used to answer general questions that are relevant to broad classes of systems. Then, in Chapter 7, we provide an analysis of four different species of magnetic molecules that have recently been synthesized and studied. In all cases, comparisons between QMC calculations and experimental data allow us to distinguish a viable microscopic model and make predictions for future experiments. In Chapter 8, the infamous ''negative sign problem'' is described in detail, and we clearly indicate the limitations on QMC that are imposed by this obstacle. Finally, Chapter 9 contains a summary of the present work and the expected directions for future research.
Radiation Transport Calculations and Simulations
Fasso, Alberto; /SLAC; Ferrari, A.; /CERN
2011-06-30T23:59:59.000Z
This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is briefly considered.
The SUN Action database : collecting and analyzing typical actions for visual scene types
Olsson, Catherine Anne White
2013-01-01T23:59:59.000Z
Recent work in human and machine vision has increasingly focused on the problem of scene recognition. Scene types are largely defined by the actions one might typically do there: an office is a place someone would typically ...
Multiphase flow calculation software
Fincke, James R. (Idaho Falls, ID)
2003-04-15T23:59:59.000Z
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
David, Mathieu; Garde, Francois; Boyer, Harry
2014-01-01T23:59:59.000Z
In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...
Scott Robertson
2014-03-27T23:59:59.000Z
Analogue gravity experiments make feasible the realisation of black hole spacetimes in a laboratory setting and the observational verification of Hawking radiation. Since such analogue systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary $1+1$-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalised to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.
Some Calculations for Cold Fusion Superheavy Elements
Zhong, X H; Ning, P Z
2004-01-01T23:59:59.000Z
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Some Calculations for Cold Fusion Superheavy Elements
X. H. Zhong; L. Li; P. Z. Ning
2004-10-18T23:59:59.000Z
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Younger, John G.
2003-01-01T23:59:59.000Z
This summarizes a demonstration at the "Metron" conference (April 2002, Yale University), using a computer program to calculate the capacity of pots drawn on the computer screen and then given one dimension (e.g., its ...
Solar radiation intensity calculations
Levine, Randolph Steven
1978-01-01T23:59:59.000Z
SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...
Geothermal Life Cycle Calculator
Sullivan, John
2014-03-11T23:59:59.000Z
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Geothermal Life Cycle Calculator
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Sullivan, John
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Broader source: Energy.gov [DOE]
This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.
PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION
PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative
Plutonium 239 Equivalency Calculations
Wen, J
2011-05-31T23:59:59.000Z
This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.
Typical, finite baths as a means of exact simulation of open quantum systems
Luciano Silvestri; Kurt Jacobs; Vanja Dunjko; Maxim Olshanii
2014-04-09T23:59:59.000Z
There is presently considerable interest in accurately simulating the evolution of open systems for which Markovian master equations fail. Examples are systems that are time-dependent and/or strongly damped. A number of elegant methods have now been devised to do this, but all use a bath consisting of a continuum of harmonic oscillators. While this bath is clearly appropriate for, e.g., systems coupled to the EM field, it is not so clear that it is a good model for generic many-body systems. Here we explore a different approach to exactly simulating open-systems: using a finite bath chosen to have certain key properties of thermalizing many-body systems. To explore the numerical resources required by this method to approximate an open system coupled to an infinite bath, we simulate a weakly damped system and compare to the evolution given by the relevant Markovian master equation. We obtain the Markovian evolution with reasonable accuracy by using an additional averaging procedure, and elucidate how the typicality of the bath generates the correct thermal steady-state via the process of "eigenstate thermalization".
Abushakra, B.; Haberl, J. S.; Claridge, D. E.
1999-01-01T23:59:59.000Z
for classifying the Office building categories; (3) the relevant methods for daytyping necessary for creating the typical load shapes for energy and cooling load calculation; (4) the relevant robust variability (uncertainty) analysis; (5) typical load shapes...
Oxygen Toxicity Calculations by Erik C. Baker, P.E.
Read, Charles
1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving
Brain Bases of Reading Fluency in Typical Reading and Impaired Fluency in Dyslexia
Christodoulou, Joanna
Although the neural systems supporting single word reading are well studied, there are limited direct comparisons between typical and dyslexic readers of the neural correlates of reading fluency. Reading fluency deficits ...
The impact of sheared vs. sawn timber in the typical southern pine plywood mill
Swinney, Russell Garrett
1989-01-01T23:59:59.000Z
THE IMPACT OF SHEARED VS' SAWN TIMBER IN THE TYPICAL SOUTHERN PINE PLYWOOD MILL A Thesis by RUSSELL GARRETT SWINNEY Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1989 Major Subject: Forestry THE IMPACT OP SHEARED VS. SAWN T1MBER IN THE TYPICAL SOUTHERN PINE PLYWOOD MILI A Thesis by RUSSELL GARRETT SWINNEY Approved as to style and content by: Jease ( hair of mmi Jy...
Horizontal well IPR calculations
Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.
1996-12-31T23:59:59.000Z
This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.
ARM - Relative Humidity Calculations
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related LinksCalculatorsRelative
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAX NewsCalculators Outreach Home Room
Anthropogenic and Biogenic Carbon Dioxide Fluxes From Typical Land Uses in Houston, Texas
Werner, Nicholas D
2013-04-29T23:59:59.000Z
correlation with measured traffic counts collected on local thoroughfares. Due to a presumed small bias in the flux calculation methodology, neither flux contribution truly measured zero, so anthropogenic and biogenic “background” fluxes were calculated (0...
Signal probability calculations using partial functional manipulation
Kodavarti, Ravishankar
1992-01-01T23:59:59.000Z
CALCULATIONS IV THE CUTTING ALGORITHM 14 V RESULTS 17 VI CONCLUSIONS . . REFERENCES APPENDIX A 32 35 LIST OF TABLES TABLE Page I Characteristic table of all ISCAS combinational benchmarks II Number of ambiguous lines using the single best ordering... heuristics can be used to generate orderings, in a few cpu seconds [17]. These heuristics have a very low cost of generation, as compared to that of the best ordering. Iterative OPDD calculations with difFerent variable orderings were made, and the best...
Smith, A.
2010-02-16T23:59:59.000Z
Radioactive material package containment vessels typically employ bolted closures of various configurations. Closure bolts must retain the lid of a package and must maintain required seal loads, while subjected to internal pressure, impact loads and vibration. The need for insuring that the specified preload is achieved in closure bolts for radioactive materials packagings has been a continual subject of concern for both designers and regulatory reviewers. The extensive literature on threaded fasteners provides sound guidance on design and torque specification for closure bolts. The literature also shows the uncertainty associated with use of torque to establish preload is typically between 10 and 35%. These studies have been performed under controlled, laboratory conditions. The ability to insure required preload in normal service is, consequently, an important question. The study described here investigated the relationship between indicated torque and resulting bolt load for a typical radioactive materials package closure using methods available under normal service conditions.
ENRAF gauge reference level calculations
Huber, J.H., Fluor Daniel Hanford
1997-02-06T23:59:59.000Z
This document describes the method for calculating reference levels for Enraf Series 854 Level Detectors as installed in the tank farms. The reference level calculation for each installed level gauge is contained herein.
Unintended filtering in a typical photodiode detection system for optical tweezers
Texas at Austin. University of
Unintended filtering in a typical photodiode detection system for optical tweezers Kirstine Berg-PIN photodiode and a laser with wavelength 1064 nm, a system commonly used with optical tweezers. We chopped Institute of Physics. DOI: 10.1063/1.1554755 I. INTRODUCTION Photodiode based detection systems are used
Fig. 1. Typical topological arrangement of a hybrid fuel cell vehicle drive train [2].
Tolbert, Leon M.
Fig. 1. Typical topological arrangement of a hybrid fuel cell vehicle drive train [2]. TABLE I designed with more robust features. I. INTRODUCTION Fuel cell vehicles (FCV) are widely considered of a hybrid fuel cell vehicle is shown in Fig. 1 [2]. Developments in hybrid automobile industry have
Effects of internal gain assumptions in building energy calculations
Christensen, C.; Perkins, R.
1981-01-01T23:59:59.000Z
The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results of this study indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.
Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [California Univ., Berkeley, CA (United States)
1996-06-26T23:59:59.000Z
Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.
Salmon, R.; Hermann, O.W.
1992-10-01T23:59:59.000Z
The rate of neutron production from ([alpha], n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ([alpha], n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ([alpha], n) neutron production of each actinide in neutrons per second and the total for the canister. The ([alpha], n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.
Salmon, R.; Hermann, O.W.
1992-10-01T23:59:59.000Z
The rate of neutron production from ({alpha}, n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ({alpha}, n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ({alpha}, n) neutron production of each actinide in neutrons per second and the total for the canister. The ({alpha}, n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.
CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, Harvey J.
2013-01-01T23:59:59.000Z
Committee E-3.2, "Daylight: International RecommendationsCalculation of Natural Daylight," CIE PUBLICATION No. 16,Committee E-3.2, "Natural Daylight: Official Recommenda-
CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, Harvey J.
2013-01-01T23:59:59.000Z
Committee E-3.2, "Daylight: International Recommendationsthe Calculation of Natural Daylight, 11 CIE PUBLICATION No.Committee E-3.2 1 "Natural Daylight: Official Recommenda-
Gender stereotypes of typical and ideal man, woman and person: the impact of role inferences
Rhodes, Nancy Deane
1986-01-01T23:59:59.000Z
Housekeeping Mai ntenance of home 1. 40 0. 58 2. 01 0. 82 1. 59 1. 00 0. 225 0. 452 -0. 496 -0. 715 -0. 143 0. 305 9. 19 11. 14 20. 71 22. 76 11. 82 16. 67 4. 38 4. 48 10. 81 7. 71 6. 36 4. 05 7. 09 7. 95 4. 43 2. 76 3. 09 3. 90 Note. Higher numbers... sex, F(2, 121)=3. 23, p&. 05, and target role, F(1, 121)=22. 90, p&. 001. Planned comparisons revealed that the typical man was rated as possessing significantly fewer feminine positive traits than the typical woman, F(1, 121)=6. 53, p&. 01...
Sequential Covariance Calculation for Exoplanet Image Processing
Savransky, Dmitry
2015-01-01T23:59:59.000Z
Direct imaging of exoplanets involves the extraction of very faint signals from highly noisy data sets, with noise that often exhibits significant spatial, spectral and temporal correlations. As a results, a large number of post-processing algorithms have been developed in order to optimally decorrelate the signal from the noise. In this paper, we explore four such closely related algorithms, all of which depend heavily on the calculation of covariances between large data sets of imaging data. We discuss the similarities and differences between these methods, and demonstrate how the use sequential calculation techniques can significantly improve their computational efficiencies.
Quantum Monte Carlo calculations for light nuclei
Wiringa, R.B.
1998-08-01T23:59:59.000Z
Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.
Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)
2013-01-15T23:59:59.000Z
Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.
RTU Comparison Calculator Enhancement Plan
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31T23:59:59.000Z
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
A Framework for Lattice QCD Calculations on GPUs
F. T. Winter; M. A. Clark; R. G. Edwards; B. Joó
2014-08-25T23:59:59.000Z
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.
A Framework for Lattice QCD Calculations on GPUs
Winter, Frank; Clark, M.A.; Edwards, Robert G.; Joo, Balint
2014-08-01T23:59:59.000Z
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.
LCEs for Naval Reactor Benchmark Calculations
W.J. Anderson
1999-07-19T23:59:59.000Z
The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.
Monte Carlo calculation of helical tomotherapy dose delivery
Zhao Yingli; Mackenzie, M.; Kirkby, C.; Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)
2008-08-15T23:59:59.000Z
Helical tomotherapy delivers intensity modulated radiation therapy using a binary multileaf collimator (MLC) to modulate a fan beam of radiation. This delivery occurs while the linac gantry and treatment couch are both in constant motion, so the beam describes, from a patient/phantom perspective, a spiral or helix of dose. The planning system models this continuous delivery as a large number (51) of discrete gantry positions per rotation, and given the small jaw/fan width setting typically used (1 or 2.5 cm) and the number of overlapping rotations used to cover the target (pitch often <0.5), the treatment planning system (TPS) potentially employs a very large number of static beam directions and leaf opening configurations to model the modulated fields. All dose calculations performed by the system employ a convolution/superposition model. In this work the authors perform a full Monte Carlo (MC) dose calculation of tomotherapy deliveries to phantom computed tomography (CT) data sets to verify the TPS calculations. All MC calculations are performed with the EGSnrc-based MC simulation codes, BEAMnrc and DOSXYZnrc. Simulations are performed by taking the sinogram (leaf opening versus time) of the treatment plan and decomposing it into 51 different projections per rotation, as does the TPS, each of which is segmented further into multiple MLC opening configurations, each with different weights that correspond to leaf opening times. Then the projection is simulated by the summing of all of the opening configurations, and the overall rotational treatment is simulated by the summing of all of the projection simulations. Commissioning of the source model was verified by comparing measured and simulated values for the percent depth dose and beam profiles shapes for various jaw settings. The accuracy of the MLC leaf width and tongue and groove spacing were verified by comparing measured and simulated values for the MLC leakage and a picket fence pattern. The validated source and MLC configuration were then used to simulate a complex modulated delivery from fixed gantry angle. Further, a preliminary rotational treatment plan to a delivery quality assurance phantom (the 'cheese' phantom) CT data set was simulated. Simulations were compared with measured results taken with an A1SL ionization chamber or EDR2 film measurements in a water tank or in a solid water phantom, respectively. The source and MLC MC simulations agree with the film measurements, with an acceptable number of pixels passing the 2%/1 mm gamma criterion. 99.8% of voxels of the MC calculation in the planning target volume (PTV) of the preliminary plan passed the 2%/2 mm gamma value test. 87.0% and 66.2% of the voxels in two organs at risk (OARs) passed the 2%/2 mm tests. For a 3%/3 mm criterion, the PTV and OARs show 100%, 93.2%, and 86.6% agreement, respectively. All voxels passed the gamma value test with a criterion of 5%/3 mm. The TomoTherapy TPS showed comparable results.
Calculation of molecular free energies in classical potentials
Farhi, Asaf
2015-01-01T23:59:59.000Z
Free energy calculations in molecular simulations are used to predict the strength of molecular processes such as binding and solvation. We present an accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms that depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non interacting systems, the free energy associated with these atoms is analytically or numerically calculated. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.
Computational Tools for Supersymmetry Calculations
Howard Baer
2009-12-16T23:59:59.000Z
I present a brief overview of a variety of computational tools for supersymmetry calculations, including: spectrum generators, cross section and branching fraction calculators, low energy constraints, general purpose event generators, matrix element event generators, SUSY dark matter codes, parameter extraction codes and Les Houches interface tools.
Calculations of Heat-Capacities of Adsorbates
LAWRENCE, WR; Allen, Roland E.
1976-01-01T23:59:59.000Z
PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...
Sura, Philip
The construction manager is typically selected at the beginning of the design process. The Guaranteed Maximum Price is usually prepared based on 50% Construction Documents. In these typical cases and 50% Construction Documents. The deliverable at 50% Construction Documents includes the Guaranteed
Benchmark density functional theory calculations for nanoscale conductance
Thygesen, Kristian
Benchmark density functional theory calculations for nanoscale conductance M. Strange,a I. S. The transmission functions are calculated using two different density functional theory methods, namely state density functional theory DFT . The resulting NEGF- DFT formalism provides a numerically efficient
Vinogradskiy, Yevgeniy Y.; Balter, Peter; Followill, David S.; Alvarez, Paola E.; White, R. Allen; Starkschall, George [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)
2009-11-15T23:59:59.000Z
Purpose: Four-dimensional (4D) dose calculation algorithms, which explicitly incorporate respiratory motion in the calculation of doses, have the potential to improve the accuracy of dose calculations in thoracic treatment planning; however, they generally require greater computing power and resources than currently used for three-dimensional (3D) dose calculations. The purpose of this work was to quantify the increase in accuracy of 4D dose calculations versus 3D dose calculations. Methods: The accuracy of each dose calculation algorithm was assessed using measurements made with two phantoms. Specifically, the authors used a rigid moving anthropomorphic thoracic phantom and an anthropomorphic thoracic phantom with a deformable lung insert. To incorporate a clinically relevant range of scenarios, they programed the phantoms to move and deform with two motion patterns: A sinusoidal motion pattern and an irregular motion pattern that was extracted from an actual patient's breathing profile. For each combination of phantom and motion pattern, three plans were created: A single-beam plan, a multiple-beam plan, and an intensity-modulated radiation therapy plan. Doses were calculated using 4D dose calculation methods as well as conventional 3D dose calculation methods. The rigid moving and deforming phantoms were irradiated according to the three treatment plans and doses were measured using thermoluminescent dosimeters (TLDs) and radiochromic film. The accuracy of each dose calculation algorithm was assessed using measured-to-calculated TLD doses and a {gamma} analysis. Results: No significant differences were observed between the measured-to-calculated TLD ratios among 4D and 3D dose calculations. The {gamma} results revealed that 4D dose calculations had significantly greater percentage of pixels passing the 5%/3 mm criteria than 3D dose calculations. Conclusions: These results indicate no significant differences in the accuracy between the 4D and the 3D dose calculation methods inside the gross tumor volume. On the other hand, the film results demonstrated that the 4D dose calculations provided greater accuracy than 3D dose calculations in heterogeneous dose regions. The increase in accuracy of the 4D dose calculations was evident throughout the planning target volume.
Burnup calculation methodology in the serpent 2 Monte Carlo code
Leppaenen, J. [VTT Technical Research Centre of Finland, P.O.Box 1000, FI-02044 VTT (Finland); Isotalo, A. [Aalto Univ., Dept. of Applied Physics, P.O.Box 14100, FI-00076 AALTO (Finland)
2012-07-01T23:59:59.000Z
This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)
Calculation of Kinetics Parameters for the NBSR
Hanson A. L.; Diamond D.
2012-03-06T23:59:59.000Z
The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.
Typical atmospheric aerosol behavior at the Cherenkov Telescope Array candidate sites in Argentina
Piacentini, Rubén D; Micheletti, María I; Salum, Graciela M; Maya, Javier; Mancilla, Alexis; García, Beatriz
2013-01-01T23:59:59.000Z
Aerosols from natural and antropogenic sources are one of the atmospheric components that have the largest spacial-temporal variability, depending on the type (land or ocean) surface, human activity and climatic conditions (mainly temperature and wind). Since Cherenkov photons generated by the incidence of a primary ultraenergetic cosmic gamma photon have a spectral intensity distribution concentrated in the UV and visible ranges [Hillas AM. Space Science Reviews, 75, 17-30, 1996], it is important to know the aerosol concentration and its contribution to atmospheric radiative transfer. We present results of this concentration measured in typical rather calm (not windy) days at San Antonio de los Cobres (SAC) and El Leoncito/CASLEO proposed Argentinean Andes range sites for the placement of the Cherenkov Telescope Array (CTA). In both places, the aerosol concentration has a peak in the 2.5-5.0$\\mu$m range of the mean aerosol diameter and a very low mean total concentration of 0.097$\\mu$g/m$^3$ (0.365$\\mu$g/m$^...
LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods
Swamy, S.A.; Bhowmick, D.C.; Prager, D.E. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)
1997-04-01T23:59:59.000Z
The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.
Monte Carlo calculations of nuclei
Pieper, S.C. [Argonne National Lab., IL (United States). Physics Div.
1997-10-01T23:59:59.000Z
Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.
GrĂ¤ter, Frauke
Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Mechanics Frauke of the complexes are predicted (the "docking" problem) as well as in how the free energy is calculated from)solvation during the binding process.3 Typically, binding free energies calculated with these methods have average
Sleep and Cortisol in Preschool-Aged Children with Autism and Typically Developing Children
Kidd, Sharon Audrey
2010-01-01T23:59:59.000Z
after administration of 5-HTP, a precursor to serotonin.age berghs, 22 CONT before 5-HTP years of no differences inHealthy teen Belgium (post- HTP volunteers available from
Haselhorst, Alexandria J.
2011-08-08T23:59:59.000Z
of the food samples were plated on Tryptic Soy Agar media and Brucella Blood Agar to determine the aerobic and anaerobic bacterial loads respectively. The total microbioial communities were extracted from defined amounts of the different food samples...
Multi-Fuel Boiler Efficiency Calculations
Likins, M. R., Jr.
1984-01-01T23:59:59.000Z
to calculate the heat losses, a complete stack analysis is required. In 1956 when Buna's paper was published, stack analysis was done by Orsat analysis which gave the composition of carbon dioxide, carbon monoxide and oxygen. Nitrogen was assumed to make... up the difference. It was known that sulfur dioxide (if present) would be absorbed with carbon dioxide. Table 2 shows the components in the stack gas and the analysis of the combustion air. The total analysis of the stack gas is estimated by a...
Nucleotide capacitance calculation for DNA sequencing
Lu, Jun-Qiang [ORNL; Zhang, Xiaoguang [ORNL
2008-01-01T23:59:59.000Z
Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nano-gap electrodes may not sufficient to be used as a stand alone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.
Agriculture-related radiation dose calculations
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01T23:59:59.000Z
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations
Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain)] [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain)] [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain)] [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain)] [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)] [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)
2014-02-15T23:59:59.000Z
Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about ?3%. When the source was positioned at the skin surface, dose differences were smaller than ?1% for {sup 60}Co and {sup 192}Ir, yet ?3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were ?7% for {sup 60}Co, ?0.6% for {sup 192}Ir, and ?2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For lower energy radionuclides like {sup 169}Yb, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for {sup 60}Co to avoid underdosing superficial target layers. For {sup 192}Ir and {sup 169}Yb, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.
Jamir, Dewan R.
2006-05-19T23:59:59.000Z
This Field Project provides an overview of the typical substation Engineering-Procurement-Construction (EPC) project delivery method, the work breakdown structure, activities and sequences in the Critical Path Method (CPM) schedule, basic substation...
Gauthier Perron, Sébastien
2012-01-01T23:59:59.000Z
The effects of bend-twist coupling on typical commercial airplane wings are evaluated. An analytical formulation of the orthotropic box beam bending stiffness matrix is derived by combining Euler-Bernoulli beam theory and ...
Ion beam energy spectrum calculation via dosimetry data deconvolution.
Harper-Slaboszewicz, Victor Jozef; Sharp, Andrew Clinton (A& M University, College Station, TX)
2010-10-01T23:59:59.000Z
The energy spectrum of a H{sup +} beam generated within the HERMES III accelerator is calculated from dosimetry data to refine future experiments. Multiple layers of radiochromic film are exposed to the beam. A graphic user interface was written in MATLAB to align the film images and calculate the beam's dose depth profile. Singular value regularization is used to stabilize the unfolding and provide the H{sup +} beam's energy spectrum. The beam was found to have major contributions from 1 MeV and 8.5 MeV protons. The HERMES III accelerator is typically used as a pulsed photon source to experimentally obtain photon impulse response of systems due to high energy photons. A series of experiments were performed to explore the use of Hermes III to generate an intense pulsed proton beam. Knowing the beam energy spectrum allows for greater precision in experiment predictions and beam model verification.
Reactivity impact of delayed neutron spectra on MCNP calculations
Mosteller, R.D.; Werner, C.J.
2000-07-01T23:59:59.000Z
The new features in MCNP4C, the latest version of the MCNP Monte Carlo code, include the capability to sample from delayed as well as prompt fission emission spectra. Previous versions of MCNP all have sampled exclusively from prompt spectra. Delayed neutrons typically account for <1% of all neutrons emitted from fission, but the emission spectra for delayed neutrons are somewhat softer than those for prompt neutrons. Because of the softer spectrum, delayed neutrons are less likely to leak from the system, and they also are less likely to cause fission in isotopes that have an effective threshold for fission (e.g., {sup 238}U and {sup 240}Pu). Consequently, the inclusion of delayed neutron spectra can have a small but significant effect on reactivity calculations. This study performs MCNP4C calculations for a series of established benchmarks and quantifies the reactivity impact of the delayed neutron spectra.
A Calculable Toy Model of the Landscape
Keith R. Dienes; Emilian Dudas; Tony Gherghetta
2005-04-22T23:59:59.000Z
Motivated by recent discussions of the string-theory landscape, we propose field-theoretic realizations of models with large numbers of vacua. These models contain multiple U(1) gauge groups, and can be interpreted as deconstructed versions of higher-dimensional gauge theory models with fluxes in the compact space. We find that the vacuum structure of these models is very rich, defined by parameter-space regions with different classes of stable vacua separated by boundaries. This allows us to explicitly calculate physical quantities such as the supersymmetry-breaking scale, the presence or absence of R-symmetries, and probabilities of stable versus unstable vacua. Furthermore, we find that this landscape picture evolves with energy, allowing vacua to undergo phase transitions as they cross the boundaries between different regions in the landscape. We also demonstrate that supergravity effects are crucial in order to stabilize most of these vacua, and in order to allow the possibility of cancelling the cosmological constant.
Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public
Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations ABSTRACT This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types
Kota, S.; Haberl, J. S.
This paper traces the historical development of different daylighting calculation methods. Over the years there have been several developments in daylighting calculation methods. The last two decades have seen a number of new ideas and approaches...
Boyer, Edmond
; different fishing villages Small-scale fishermen Not really (only extensive fishing methods which do not overexploit the stocks : handline ; encircling gillnet Â« fĂ©lĂ©-fĂ©lĂ© Â» ; beach seine) Fair-Fish, Switzerland of the Sea 2007 World Export : Swiss consumer via Migros supermarket + minimum of fair- fish products
Determination of a peak benzene exposure to consumers at typical self-service gasoline stations
Carapezza, Ted
2012-06-07T23:59:59.000Z
. LITERATURE REVIEW Gasoline is a complex mixture of various volatile hydrocarbons blended with several additives depend1ng on the grade of gasoline desired. The goal in blending gasoline 1s to meet two criteria: l) improve antiknock performance, and 2.... This was due to differences in blending. Those identified hydrocarbons amounted to 98 percent, by weight, of the liquid gasoline sample. Benzene in Liquid Gasoline In 1928, Askey , reported that gasolines in West California 2 might contain as much as 17...
NERSC Calculations Provide Independent Confirmation of Global...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9,...
Calculate viscosities for 355 liquids
Yaws, C.L.; Lin, Xiaoyan; Li Bu (Lamar Univ., TX (United States))
1994-04-01T23:59:59.000Z
Liquid viscosities are important factors in process design and operation. The viscosity of a liquid determines its flow properties, such as velocity and pressure drop. In addition, the heat- and mass-transfer characteristics of a liquid are affected by its viscosity. An equation can be used to calculate liquid viscosities as a function of temperature. In the accompanying table, regression coefficients are included for 355 compounds with five, six or seven carbon atoms--generally the most-widely used in the chemical and petroleum industries. To calculate the viscosity of a liquid at any temperature between its melting and critical points (T[sub min] and T[sub max]), use the following equation: log[sub 10] [eta][sub liq] = A + B/T + CT + DT[sup 2] where [eta][sub liq] = viscosity, cP, A,B,C and D = regression coefficients, and T = liquid temperature, K. Insert the temperature into the equation along with the corresponding regression coefficients from the table. The chemical formulae are listed by the number of carbon atoms.
Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)
2013-05-10T23:59:59.000Z
Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.
CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS
Rubin, Michael
2013-01-01T23:59:59.000Z
Solar Energy CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS Michael Rub August 1981 TWO-WEEK LOAN
Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-25T23:59:59.000Z
We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).
Sensitivity analysis of coupled criticality calculations
Perko, Z.; Kloosterman, J. L.; Lathouwers, D. [Delft Univ. of Technology, Faculty of Applied Physics, Dept. of Radiation, Radionuclides and Reactors, Mekelweg 15, 2629 JB, Delft (Netherlands)
2012-07-01T23:59:59.000Z
Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)
Electron mobility calculation for graphene on substrates
Hirai, Hideki; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Tsuchiya, Hideaki, E-mail: tsuchiya@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Kamakura, Yoshinari; Mori, Nobuya [Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2014-08-28T23:59:59.000Z
By a semiclassical Monte Carlo method, the electron mobility in graphene is calculated for three different substrates: SiO{sub 2}, HfO{sub 2}, and hexagonal boron nitride (h-BN). The calculations account for polar and non-polar surface optical phonon (OP) scatterings induced by the substrates and charged impurity (CI) scattering, in addition to intrinsic phonon scattering in pristine graphene. It is found that HfO{sub 2} is unsuitable as a substrate, because the surface OP scattering of the substrate significantly degrades the electron mobility. The mobility on the SiO{sub 2} and h-BN substrates decreases due to CI scattering. However, the mobility on the h-BN substrate exhibits a high electron mobility of 170?000?cm{sup 2}/(V·s) for electron densities less than 10{sup 12?}cm{sup ?2}. Therefore, h-BN should be an appealing substrate for graphene devices, as confirmed experimentally.
E-Print Network 3.0 - application au calcul Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
As a result, investigations in potential applications of Au... of the different reduction kinetics of Au and Pt ions.7 In addition, theoretical calculations also suggest that Au......
Benchmark On Sensitivity Calculation (Phase III)
Ivanova, Tatiana [IRSN; Laville, Cedric [IRSN; Dyrda, James [Atomic Weapons Establishment; Mennerdahl, Dennis [E. Mennerdahl Systems; Golovko, Yury [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Raskach, Kirill [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Tsiboulia, Anatoly [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Lee, Gil Soo [Korea Institute of Nuclear Safety (KINS); Woo, Sweng-Woong [Korea Institute of Nuclear Safety (KINS); Bidaud, Adrien [Labratoire de Physique Subatomique et de Cosmolo-gie (LPSC); Patel, Amrit [NRC; Bledsoe, Keith C [ORNL; Rearden, Bradley T [ORNL; Gulliford, J. [OECD Nuclear Energy Agency
2012-01-01T23:59:59.000Z
The sensitivities of the keff eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods.
Numerical calculations of ultrasonic fields. [STEALTH
Johnson, J.A.
1982-02-01T23:59:59.000Z
A code for calculating ultrasonic fields has been developed by revisng the thermal-hydraulics code STEALTH. This code may be used in a wide variety of situations in which a detailed knowledge of a propagating wave field is required. Among the potential used are: interpretation of pulse-echo or pitch-catch ultrasonic signals in complicated geometries; ultrasonic transducer modeling and characterization; optimization and evaluation of transducer design; optimization and reliability of inspection procedures; investigation of the response of different types of reflectors; flaw modeling; and general theoretical acoustics. The code is described, and its limitations and potential are discussed. A discussion of the required input and of the general procedures for running the code is presented. Three sample problems illustrate the input and the use of the code.
CaĂ±izares, Claudio A.
Proc. IEEE PowerTech, Bucharest, June 2009. 1 Abstract-Power flow studies are typically used, and hence reliable solution algorithms that incorporate the effect of data uncertainty into the power flow to the power flow problem with uncertainties is explained in detail, and several numerical results
Mather, Patrick T.
General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project depending upon the scope, complexity, and specific features. Time periods indicated will vary depending on the nature of the project and needs of the user group
Title: Analytic Evolutions in the Digital Ocean Abstract: Until recently, the collection of data regarding the activity of learners typically required interruption of the learning process in the form to as the digital desert (DiCerbo & Behrens, 2012, 2014). As the use of digital devices increases during the natural
Carter, Emily A.
Research: A typical thermal barrier coating consists of two layers over the substrate: 1) a ceramic-level understanding of the metal-ceramic and ceramic-ceramic interfaces present in thermal barrier coatings. We have interfaces weaken as the ceramic thickens. This provides atomic-level insight as to why thermal barrier
Carter, John
BS in Environmental Science: Typical Program of Study1 Â 4 year (2011 Catalog) Fall Quarter Sciences (5) Core (5)4 ENSC 100Introduction to Environmental Science (2)5 Core (5) Sophomore BIOL) 1 In order to earn a Bachelor of Science in Environmental Science, a student must complete 180
Hemmers, Oliver
Career Options for MBA Graduates An MBA graduate typically works in upper management positions with small and large corporations or nonprofit organizations. Managers are needed in all businesses. The type of job often depends on prior work experience and elective courses taken in the MBA program. Popular job
Boyer, Edmond
SIMULATION OF A TYPICAL HOUSE IN THE REGION OF ANTANANARIVO, MADAGASCAR DETERMINATION OF PASSIVE union ABSTRACT This paper deals with new proposals for the design of passive solutions adapted use raw wood to warm the poorly designed houses. This leads to a large scale deforestation
Relativistic impulse-approximation calculation of p-bar-nucleus elastic scattering
Clark, B.C.; Hama, S.; McNeil, J.A.; Mercer, R.L.; Ray, L.; Serot, B.D.; Sparrow, D.A.; Stricker-Bauer, K.
1984-10-08T23:59:59.000Z
The first calculations of p-bar-nucleus elastic scattering using the relativistic impulse approximation are presented and compared with the recent 46.8-MeV p-bar-/sup 12/C elastic scattering data. The calculated cross sections agree well with the data. The differences between relativistic and nonrelativistic impulse approximation calculations using the same input are small.
Transition-phase calculation of a large, heterogeneous-core LMFBR. [SIMMER-II calculations
Luck, L.B.; Bell, C.R.; Asprey, M.W.; DeVault, G.P.
1981-01-01T23:59:59.000Z
A mechanistic calculation of a complete transition-phase sequence for a large heterogeneous core LMFBR has been performed using SIMMER-II. Recriticalities occurred as the disruption progressed through a series of different subphases. The number and severity of recriticalities was directly related to the timing and scale of fuel removal and coherence of material motion. The energetics associated with transition-phase are not yet resolved but the understanding of the characteristics of disruption and the effects of uncertainties has been extended significantly.
Determination of hydrogen cluster velocities and comparison with numerical calculations
Täschner, A.; Köhler, E.; Ortjohann, H.-W.; Khoukaz, A. [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster (Germany)] [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster (Germany)
2013-12-21T23:59:59.000Z
The use of powerful hydrogen cluster jet targets in storage ring experiments led to the need of precise data on the mean cluster velocity as function of the stagnation temperature and pressure for the determination of the volume density of the target beams. For this purpose a large data set of hydrogen cluster velocity distributions and mean velocities was measured at a high density hydrogen cluster jet target using a trumpet shaped nozzle. The measurements have been performed at pressures above and below the critical pressure and for a broad range of temperatures relevant for target operation, e.g., at storage ring experiments. The used experimental method is described which allows for the velocity measurement of single clusters using a time-of-flight technique. Since this method is rather time-consuming and these measurements are typically interfering negatively with storage ring experiments, a method for a precise calculation of these mean velocities was needed. For this, the determined mean cluster velocities are compared with model calculations based on an isentropic one-dimensional van der Waals gas. Based on the obtained data and the presented numerical calculations, a new method has been developed which allows to predict the mean cluster velocities with an accuracy of about 5%. For this two cut-off parameters defining positions inside the nozzle are introduced, which can be determined for a given nozzle by only two velocity measurements.
Owen Davis
2013-01-04T23:59:59.000Z
TI-30XA Calculator Tips. Calculator Memory. - To use the memory function, hit the STO key to store a number in either memory 1, 2, or 3. o To store the product of ...
Quantum transport calculations using periodic boundaryconditions
Wang, Lin-Wang
2004-06-15T23:59:59.000Z
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.
Calculating Evolutionary Dynamics in Structured Populations
Nowak, Martin A.
Calculating Evolutionary Dynamics in Structured Populations Charles G. Nathanson1. , Corina E. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured) Calculating Evolutionary Dynamics in Structured Populations. PLoS Comput Biol 5(12): e1000615. doi:10
Calculation of size for bound-state constituents
Stanislaw D. Glazek
2014-06-01T23:59:59.000Z
Elements are given of a calculation that identifies the size of a proton in the Schroedinger equation for lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in quantum field theory, executed only up to the second order of expansion in powers of the coupling constant. Already in this crude approximation, the extraction of size of a proton from bound-state observables is found to depend on the lepton mass, so that the smaller the lepton mass the larger the proton size extracted from the same observable bound-state energy splitting. In comparison of Hydrogen and muon-proton bound-state dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two cases can be a few percent. Such values would match the order of magnitude of currently discussed proton-size differences in leptonic atoms. Calculations using the RGPEP of higher order than second are required for a precise interpretation of the energy splittings in terms of the proton size in the Schroedinger equation. Such calculations should resolve the conceptual discrepancy between two conditions: that the renormalization group scale required for high accuracy calculations based on the Schroedinger equation is much smaller than the proton mass (on the order of a root of the product of reduced and average masses of constituents) and that the energy splittings due to the physical proton size can be interpreted ignoring corrections due to the effective nature of constituents in the Schr\\"odinger equation.
ESTIMATING THE UNCERTAINTY IN REACTIVITY ACCIDENT NEUTRONIC CALCULATIONS
DIAMOND,D.J.; YANG,C.Y.; ARONSON,A.L.
1998-10-26T23:59:59.000Z
A study of the uncertainty in calculations of the rod ejection accident in a pressurized water reactor is being carried out for the US Nuclear Regulatory Commission. This paper is a progress report on that study. Results are presented for the sensitivity of core energy deposition to the key parameters: ejected rod worth, delayed neutron fraction, Doppler reactivity coefficient, and fuel specific heat. These results can be used in the future to estimate the uncertainty in local fuel enthalpy given some assumptions about the uncertainty in the key parameters. This study is also concerned with the effect of the intra-assembly representation in calculations. The issue is the error that might be present if assembly-average power is calculated, and pin peaking factors from a static calculation are then used to determine local fuel enthalpy. This is being studied with the help of a collaborative effort with Russian and French analysts who are using codes with different intra-assembly representations. The US code being used is PARCS which calculates power on an assembly-average basis. The Russian code being used is BARS which calculates power for individual fuel pins using a heterogeneous representation based on a Green's Function method.
Estimating the uncertainty in reactivity accident neutronic calculations
Diamond, D.J.; Yang, C.Y.; Aronson, A.L.
1998-12-31T23:59:59.000Z
A study of the uncertainty in calculations of the rod ejection accident in a pressurized water reactor is being carried out for the US Nuclear Regulatory Commission. This paper is a progress report on that study. Results are presented for the sensitivity of core energy deposition to the key parameters: ejected rod worth, delayed neutron fraction, Doppler reactivity coefficient, and fuel specific heat. These results can be used in the future to estimate the uncertainty in local fuel enthalpy given some assumptions about the uncertainty in the key parameters. This study is also concerned with the effect of the intra-assembly representation in calculations. The issue is the error that might be present if assembly-average power is calculated, and pin peaking factors from a static calculation are then used to determine local fuel enthalpy. This is being studied with the help of a collaborative effort with Russian and French analysts who are using codes with different intra-assembly representations. The US code being used is PARCS which calculates power on an assembly-average basis. The Russian code being used is BARS which calculates power for individual fuel pins using a heterogeneous representation based on a Green`s Function method.
Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements
S. Mert Aybat; Alexei Prokudin; Ted C. Rogers
2012-06-27T23:59:59.000Z
The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the TMD evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD-functions that follow from the TMD-factorization theorem. Accordingly, the non-perturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent COMPASS measurements are consistent with the suppression prescribed by TMD evolution.
Identifying and bounding uncertainties in nuclear reactor thermal power calculations
Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)
2012-07-01T23:59:59.000Z
Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)
Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es [Instituto de Física Fundamental, C.S.I.C., Serrano 123, Madrid 28006 (Spain)
2014-09-21T23:59:59.000Z
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Hamp, S. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Jackson, T.J. [Geraghty and Miller, Inc., Albuquerque, NM (United States); Dotson, P.W. [Roy F. Weston, Inc., Albuquerque, NM (United States)
1995-03-01T23:59:59.000Z
Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.
Filter diagonalization of shell-model calculations
Mizusaki, Takahiro [Institute of Natural Sciences, Senshu University, Tokyo 101-8425 (Japan); Kaneko, Kazunari [Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503 (Japan); Honma, Michio [Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, 965-8580 (Japan); Sakurai, Tetsuya [Department of Computer Science, University of Tsukuba, Tsukuba, 305-8573 (Japan)
2010-08-15T23:59:59.000Z
We present a method of filter diagonalization for shell-model calculations. This method is based on the Sakurai and Sugiura (SS) method, but extended with the help of the shifted complex orthogonal conjugate gradient (COCG) method. A salient feature of this method is that it can calculate eigenvalues and eigenstates in a given energy interval. We show that this method can be an alternative to the Lanczos method for calculating ground and excited states, as well as spectral strength functions. With an application to the M-scheme shell-model calculations we demonstrate that several inherent problems in the widely used Lanczos method can be removed or reduced.
Calculators and Science and Engineering Calculus Occasionally ...
1910-10-51T23:59:59.000Z
on examinations and quizzes. These courses do spend some class time discussing the use of graphing calculators, and some of the pitfalls into which graphing ...
Evaluation Of Chemical Geothermometers For Calculating Reservoir...
Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
Wagner, J.C.; DeHart, M.D.
2000-03-01T23:59:59.000Z
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.
Theory and calculations of synchrotron instabilities and feedback-mechanism
Meijssen, T.E.M.
1981-08-12T23:59:59.000Z
The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.
Monte Carlo reactor calculation with substantially reduced number of cycles
Lee, M. J.; Joo, H. G. [Seoul National Univ., 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744 (Korea, Republic of); Lee, D. [Ulsan National Inst. of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Smith, K. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)
2012-07-01T23:59:59.000Z
A new Monte Carlo (MC) eigenvalue calculation scheme that substantially reduces the number of cycles is introduced with the aid of coarse mesh finite difference (CMFD) formulation. First, it is confirmed in terms of pin power errors that using extremely many particles resulting in short active cycles is beneficial even in the conventional MC scheme although wasted operations in inactive cycles cannot be reduced with more particles. A CMFD-assisted MC scheme is introduced as an effort to reduce the number of inactive cycles and the fast convergence behavior and reduced inter-cycle effect of the CMFD assisted MC calculation is investigated in detail. As a practical means of providing a good initial fission source distribution, an assembly based few-group condensation and homogenization scheme is introduced and it is shown that efficient MC eigenvalue calculations with fewer than 20 total cycles (including inactive cycles) are possible for large power reactor problems. (authors)
Scheib, J.; Pless, S.; Torcellini, P.
2014-08-01T23:59:59.000Z
NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.
SĂłbester, AndrĂˇs
for calculating laminar/turbulent boundary layer thickness and for transition prediction. Â· To study of how and the results of transition point (xtran) and drag cofficient (CDA) at Re = 5Ă?107 picture from Zedan (1978 techniques or the designer's experience. Â· The computer CFD software simulation is the main design tool
PVWatts (R) Calculator India (Fact Sheet)
Not Available
2014-01-01T23:59:59.000Z
The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.
Ris-M-2584 RELIABILITY CALCULATIONS
RisĂ¸-M-2584 RELIABILITY CALCULATIONS Improvements of methods intended for calculation of reliability of structures and systems Kurt E. Petersen Abstract. Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either
First principles calculations for analysis martensitic transformations
Harmon, B.N.; Zhao, G.L.; Ho, K.M.; Chan, C.T.; Ye, Y.Y.; Ding, Y.; Zhang, B.L.
1993-10-01T23:59:59.000Z
The change in crystal energy is calculated for atomic displacements corresponding to phonons, elastic shears, and lattice transformations. Anomalies in the phonon dispersion curves of NiAl and NiTi are analyzed and recent calculations for TiPd alloys are presented.
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIĂ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November
Quark model calculation of the EMC effect
Benesh, C.J.; Goldman, T.; Stephenson, G.J. Jr. [Los Alamos National Laboratory, NM (United States)
1993-10-01T23:59:59.000Z
Using a potential model, we calculate quark distributions for a six-quark quasi-deuteron, including the effects of the Pauli Principle and quark tunneling between nuclei. Using a phenomenological sea distribution, the EMC ratio is calculated and found to be in qualitative agreement with experiment.
AUXILIARY RATE CALCULATION The Budget Office
Weston, Ken
AUXILIARY RATE CALCULATION The Budget Office #12;AGENDA Guiding Principles Rate Proposal Building Office supplies for budget manager reconciliationOffice supplies for budget manager reconciliation: Equipment Compensated Leave #12;CALCULATING A RATE Budgeted Expenses Budgeted Usage BaseBudgeted Usage Base
Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie [Medical Physics Department, Addenbrooke's Hospital, Cambridge CB2 0QQ (United Kingdom)
2012-01-15T23:59:59.000Z
Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom measurements for some patients. The software has potential to be used in any application where one wishes to model changes to patient conditions.
Unimolecular decomposition of methyltrichlorosilane: RRKM calculations
Osterheld, T.H.; Allendorf, M.D.; Melius, C.F.
1993-06-01T23:59:59.000Z
Based on reaction thermochemistry and estimates of Arrhenius A-factors, it is expected that Si-C bond cleavage, C-H bond cleavage, and HCl elimination will be the primary channels for the unimolecular decomposition of methyltrichlorosilane. Using RRKM theory, we calculated rate constants for these three reactions. The calculations support the conclusion that these three reactions are the major decomposition pathways. Rate constants for each reaction were calculated in the high-pressure limit (800--1500 K) and in the falloff regime (1300--1500 K) for bath gases of both helium and hydrogen. These calculations thus provide branching fractions as well as decomposition rates. We also calculated bimolecular rate constants for the overall decomposition in the low-pressure limit. Interesting and surprising kinetic behavior of this system and the individual reactions is discussed. The reactivity of this chlorinated organosilane is compared to that of other organosilanes.
Relativistic QRPA calculation of muon capture rates
T. Marketin; N. Paar; T. Niksic; D. Vretenar
2009-03-30T23:59:59.000Z
The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from $^{12}$C to $^{244}$Pu, for which experimental values are available. The microscopic theoretical framework is based on the Relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the PN-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value $g_A = 1.262$ by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.
Numerical procedure for calculating temperature profiles in LMFBR coolant channels
Horak, W.C.; Kennett, R.J.; Guppy, J.G.
1981-07-01T23:59:59.000Z
A new numerical procedure (which makes use of a weighted residuals procedure in space and a fully-implicit finite difference procedure in time), for calculating temperatures in an LMFBR coolant channel has been developed and incorporated into the Super System Code (SSC). This procedure is highly accurate on a nodal basis and has greatly increased computational efficiency as compared to the method formerly in SSC.
Experiences with leak rate calculations methods for LBB application
Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G. [and others
1997-04-01T23:59:59.000Z
In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.
Carter, T. P.
2014-01-01T23:59:59.000Z
, kWh/Unit = 0.0039 85.1% February 5 12PM to 1PM Annual Values 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 841 865 889 913 937 961 985 G a l / U n i t P r o d u c e d D...1Metrics (and Methodologies) for Evaluating Energy and Water Impacts of Alternative Process Cooling Systems in a Typical Chemical Plant Presentation to the: May 21, 2014 Thomas P. Carter, P.E. Sr. Program Manager, Heat Rejection Technology...
Comparison of different global information sources used in surface radiative flux calculation
), the Laboratoire de MeÂ´teÂ´orologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project surface albedos in the near-infrared remain poorly constrained (highly uncertain), they do not cause too
Calculated structures and fluoride affinities for fluorides
O'Keeffe, M.
1986-07-23T23:59:59.000Z
It is shown that SCF-MO calculations provide good estimates of the energies of the processes MF/sub n/ ..-->.. M/sup n+/ + nF/sup -/ where M/sup n+/ is an ion of a first- or second-row element in a closed-shell or s/sup 2/ configuration. The fluoride ion affinities are then calculated for a number of molecules and ions. Where comparison with experiment is possible, the agreement is generally good when allowance is made for experimental uncertainties. In favorable cases, accurate heats of formation may be calculated from fluoride affinities.
IAEA sodium void reactivity benchmark calculations
Hill, R.N.; Finck, P.J.
1992-12-01T23:59:59.000Z
In this paper, the IAEA-1 992 ``Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core`` problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.
IAEA sodium void reactivity benchmark calculations
Hill, R.N.; Finck, P.J.
1992-01-01T23:59:59.000Z
In this paper, the IAEA-1 992 Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01T23:59:59.000Z
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Use of computers for multicomponent distillation calculations
Sullivan, Samuel Lane
1959-01-01T23:59:59.000Z
The corrected values for the b 's are best cal- i culated by multiplying (b. /d ) by (d. ) The compositions for each component in the vapor and liquid streams leaving plate j are calculated by use of the following equations. ('i/ i)ca ( i)co y. ji c Z (v... . . /b. ) (b. ) ji i ca i co i=1 , f a j x N+1 C (47-b) A temperature profile may be calculated by making either bubble or dew point calculations based on the compositions obtained by use of Equations (46) and (47). The specified distillate rate must...
Statistical verification of neutron-physics programs for calculations in support of nuclear safety
Tebin, V. V., E-mail: tebin@vver.kiae.ru [Russian Research Centre Kurchatov Institute (Russian Federation)
2012-12-15T23:59:59.000Z
An algorithm for statistical verification of the XT26 code contained in the SAPHIRE-2006 code system is described. The results of conservative estimation of the calculation error in the K{sub eff} calculations for different types of benchmark experiments are presented. The results of the statistical analysis of deviations from the experimental values are compared with the corresponding parameters obtained from the set of calculations performed using other codes.
Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4
Bailey, J.W.
1998-07-24T23:59:59.000Z
This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.
SIS Calculator User Guide 1 What's Inside
..................................................................................................................2 Measurement of Soil Moisture by Bonneville Power Administration (BPA) to provide general potential water and energy savings estimates, the calculator creates water and energy savings estimates associated with implementing SIS on a particular field
Historical river flow rates for dose calculations
Carlton, W.H.
1991-06-10T23:59:59.000Z
Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.
Essential Value, Pmax, and Omax Automated Calculator
Kaplan, Brent A.; Reed, Derek D.
2014-08-21T23:59:59.000Z
Behavioral economic measures of demand are often calculated in sophisticated spreadsheet programs. Unfortunately, no closed form models for exact pmax (point of unit elasticity) and omax (response output at pmax) can be ...
Medical physics calculations with MCNP: a primer
Lazarine, Alexis D
2006-10-30T23:59:59.000Z
of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...
Hartree-Fock calculations of nuclear masses
Quentin, P
1976-01-01T23:59:59.000Z
Hartree-Fock calculations pertaining to the determination of nuclear binding energies throughout the whole chart of nuclides are reviewed. Such an approach is compared with other methods. Main techniques in use are shortly presented. Advantages and drawbacks of these calculations are also discussed with a special emphasis on the extrapolation towards nuclei far from the stability valley. Finally, a discussion of some selected results from light to superheavy nuclei, is given.
Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel
Michael A. Pope
2014-10-01T23:59:59.000Z
These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU. Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.
A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties
Yu, Wenbin
A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties Hui assess several computer tools for calculating the inertial and structural properties of wind turbine, and a realistic composite wind turbine blade are used to evaluate the performance of different tools
Barlich, G.L.; Nasseri, S.S.
1990-01-01T23:59:59.000Z
Good decision-making in materials accounting requires a valid calculation of control limits and detection sensitivity for facilities handling special nuclear materials (SNM). A difficult aspect of this calculation is determining the appropriate variance and covariance values for the terms in the materials balance (MB) equation. Computer software such as MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator) can efficiently select and combine variance terms. These programs determine the variance and covariance of an MB equation by first obtaining relations for the variance and covariance of each term in the MB equation through propagating instrument errors and then substituting the measured quantities and their uncertainties into these relations. MAVARIC is a custom spreadsheet used with the second release of LOTUS 1-2-3.** PROFF is a stand-alone menu-driven program requiring no commercial software. Programs such as MAVARIC and PROFF facilitate the complex calculations required to determine the detection sensitivity of an SNM facility. These programs can also be used to analyze materials accounting systems.
Algorithm for the calculation of proximity area and area centroid within the carpal joint
Boyd, Nolan Lee
1998-01-01T23:59:59.000Z
's corresponding proximity distance and projected bone information to calculate proximity "area" and its centroid. The programs accuracy was tested creating input files from a know geometry and testing the output for different thresholds. Each wrist was analyzed...
Tissue Heterogeneity in IMRT Dose Calculation for Lung Cancer
Pasciuti, Katia, E-mail: ka.pasciuti@libero.i [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy); Iaccarino, Giuseppe; Strigari, Lidia [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy); Malatesta, Tiziana [Medical Physics Department, S. Giovanni Calibita, Fatebenefratelli Hospital, Roma (Italy); Benassi, Marcello; Di Nallo, Anna Maria [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy); Mirri, Alessandra; Pinzi, Valentina [Division of Radiotherapy, Istituto Regina Elena, Roma (Italy); Landoni, Valeria [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy)
2011-07-01T23:59:59.000Z
The aim of this study was to evaluate the differences in accuracy of dose calculation between 3 commonly used algorithms, the Pencil Beam algorithm (PB), the Anisotropic Analytical Algorithm (AAA), and the Collapsed Cone Convolution Superposition (CCCS) for intensity-modulated radiation therapy (IMRT). The 2D dose distributions obtained with the 3 algorithms were compared on each CT slice pixel by pixel, using the MATLAB code (The MathWorks, Natick, MA) and the agreement was assessed with the {gamma} function. The effect of the differences on dose-volume histograms (DVHs), tumor control, and normal tissue complication probability (TCP and NTCP) were also evaluated, and its significance was quantified by using a nonparametric test. In general PB generates regions of over-dosage both in the lung and in the tumor area. These differences are not always in DVH of the lung, although the Wilcoxon test indicated significant differences in 2 of 4 patients. Disagreement in the lung region was also found when the {Gamma} analysis was performed. The effect on TCP is less important than for NTCP because of the slope of the curve at the level of the dose of interest. The effect of dose calculation inaccuracy is patient-dependent and strongly related to beam geometry and to the localization of the tumor. When multiple intensity-modulated beams are used, the effect of the presence of the heterogeneity on dose distribution may not always be easily predictable.
End-to-end calculation of the radiation characteristics of VVER-1000 spent fuel assemblies
Linge, I. I.; Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)
2012-12-15T23:59:59.000Z
The results of end-to-end calculation of the radiation characteristics of VVER-1000 spent nuclear fuel are presented. Details of formation of neutron and gamma-radiation sources are analyzed. Distributed sources of different types of radiation are considered. A comparative analysis of calculated radiation characteristics is performed with the use of nuclear data from different ENDF/B and EAF files and ANSI/ANS and ICRP standards.
(beta beta)_{0 nu}-decay: a possible test of the nuclear matrix element calculations
S. M. Bilenky; J. A. Grifols
2002-07-23T23:59:59.000Z
The existing calculations of the nuclear matrix elements of the neutrinoless double beta-decay differ by about a factor three. This uncertainty prevents quantative interpretation of the results of experiments searching for this process. We suggest here that the observation of the neutrinoless double beta-decay of several nuclei in future experiments of could allow to test different calculations of the nuclear matrix elements through the direct comparison of them with the experimental data.
Calculation of conventional and prompt lepton fluxes at very high energy
Fedynitch, Anatoli; Gaisser, Thomas K; Riehn, Felix; Stanev, Todor
2015-01-01T23:59:59.000Z
An efficient method for calculating inclusive conventional and prompt atmospheric leptons fluxes is presented. The coupled cascade equations are solved numerically by formulating them as matrix equation. The presented approach is very flexible and allows the use of different hadronic interaction models, realistic parametrizations of the primary cosmic-ray flux and the Earth's atmosphere, and a detailed treatment of particle interactions and decays. The power of the developed method is illustrated by calculating lepton flux predictions for a number of different scenarios.
The status of nuclear data for transmutation calculations
Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.
1995-12-01T23:59:59.000Z
At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 {le} Z {le} 96 neutron-rich fission products of 22 {le} Z {le} 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table.
Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)
1995-11-01T23:59:59.000Z
This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.
Numerical calculations of ultrasonic fields I: transducer near fields
Johnson, J.A.
1982-03-01T23:59:59.000Z
A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.
Numerical calculations of ultrasonic fields I: transducer near fields
Johnson, J.A.
1982-04-01T23:59:59.000Z
A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.
Solid-State Calculation of Crystalline Color Superconductivity
Cao, Gaoqing; Zhuang, Pengfei
2015-01-01T23:59:59.000Z
It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase appears in a color superconductor when the pairing between different quark flavors is under the circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is still unclear because an exact treatment of 3D crystal structures is rather difficult. In this work we calculate the ground-state energy of the body-centered cubic (BCC) structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space, in analogy to the \\emph{ab initio} calculations in solid-state physics. We develop a computational scheme to overcome the difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more favorable than the 1D modulation in a narrow window around the conventional LOFF-normal phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau approach.
Solid-State Calculation of Crystalline Color Superconductivity
Gaoqing Cao; Lianyi He; Pengfei Zhuang
2015-02-11T23:59:59.000Z
It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase appears in a color superconductor when the pairing between different quark flavors is under the circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is still unclear because an exact treatment of 3D crystal structures is rather difficult. In this work we calculate the ground-state energy of the body-centered cubic (BCC) structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space, in analogy to the \\emph{ab initio} calculations in solid-state physics. We develop a computational scheme to overcome the difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more favorable than the 1D modulation in a narrow window around the conventional LOFF-normal phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau approach.
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
J. E. Lynn; J. Carlson; E. Epelbaum; S. Gandolfi; A. Gezerlis; A. Schwenk
2014-11-09T23:59:59.000Z
We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of $A=3$ and $A=4$ systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.
Benchmarking kinetic calculations of resistive wall mode stability
Berkery, J. W.; Sabbagh, S. A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wang, Z. R.; Logan, N. C.; Park, J.-K.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2014-05-15T23:59:59.000Z
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].
Improved Calculation of Thermal Fission Energy
Ma, X B; Wang, L Z; Chen, Y X; Cao, J
2013-01-01T23:59:59.000Z
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.
Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB
2014-08-01T23:59:59.000Z
We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.
Nonperturbative calculations in light-front QED
Chabysheva, Sophia S. [Department of Physics, University of Minnesota-Duluth, Duluth, Minnesota 55812 (United States)
2010-12-22T23:59:59.000Z
The methods of light-front quantization and Pauli-Villars regularization are applied to a nonperturbative calculation of the dressed-electron state in quantum electrodynamics. This is intended as a test of the methods in a gauge theory, as a precursor to possible methods for the nonperturbative solution of quantum chromodynamics. The electron state is truncated to include at most two photons and no positrons in the Fock basis, and the wave functions of the dressed state are used to compute the electrons's anomalous magnetic moment. A choice of regularization that preserves the chiral symmetry of the massless limit is critical for the success of the calculation.
Giant magnetoresistance calculated from first principles
Butler, W.H. [Oak Ridge National Lab., TN (United States); MacLaren, J.M. [Tulane Univ., New Orleans, LA (United States). Dept. of Physics; Zhang, X.G. [Univ. of Kentucky, Lexington, KY (United States). Center for Computational Sciences
1994-09-01T23:59:59.000Z
The Layer Korringa Kohn Rostoker-Coherent Potential Approximation technique was used to calculate the low temperature Giant Magnetoresistance from first principles for Co{vert_bar}Cu and permalloy{vert_bar}Cu superlattices. Our calculations predict large giant magnetoresistance ratios for Co{vert_bar}Cu and extremely large ratios for permalloy{vert_bar}Cu for current perpendicular to the layers. Mechanisms such as spin-orbit coupling which mix spin channels are expected to greatly reduce the GMR effect for permalloy{vert_bar}Cu.
The possible test of the calculations of nuclear matrix elements of the $(??)_{0?}$-decay
S. M. Bilenky; J. A. Grifols
2002-11-07T23:59:59.000Z
The existing calculations of the nuclear matrix elements of the neutrinoless double $\\beta$-decay differ by about a factor three. This uncertainty prevents quantitative interpretation of the results of experiments searching for this process. We suggest here that the observation of the neutrinoless double $\\beta$-decay of {\\em several} nuclei could allow to test calculations of the nuclear matrix elements through the comparison of the ratios of the calculated lifetimes with experimental data. It is shown that the ratio of the lifetimes is very sensitive to different models.
On the Sensitivity of ?/? Prediction to Dose Calculation Methodology in Prostate Brachytherapy
Afsharpour, Hossein [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada); Centre Intégré de Cancérologie de la Montérégie, Hôpital Charles-LeMoyne, Greenfield Park, QC (Canada); Walsh, Sean [Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands); Gray Institute for Radiation Oncology and Biology, The University of Oxford, The United Kingdom (United Kingdom); Collins Fekete, Charles-Antoine; Vigneault, Eric [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada); Verhaegen, Frank [Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec (Canada); Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada)
2014-02-01T23:59:59.000Z
Purpose: To study the relationship between the accuracy of the dose calculation in brachytherapy and the estimations of the radiosensitivity parameter, ?/?, for prostate cancer. Methods and Materials: In this study, Monte Carlo methods and more specifically the code ALGEBRA was used to produce accurate dose calculations in the case of prostate brachytherapy. Equivalent uniform biologically effective dose was calculated for these dose distributions and was used in an iso-effectiveness relationship with external beam radiation therapy. Results: By considering different levels of detail in the calculations, the estimation for the ?/? parameter varied from 1.9 to 6.3 Gy, compared with a value of 3.0 Gy suggested by the American Association of Physicists in Medicine Task Group 137. Conclusions: Large variations of the ?/? show the sensitivity of this parameter to dose calculation modality. The use of accurate dose calculation engines is critical for better evaluating the biological outcomes of treatments.
A PROCEDURE FOR CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, H.J.
2010-01-01T23:59:59.000Z
FOR CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH ACommittee E-3.2, "Daylight: International RecommendationsCalcula- tion of Natural Daylight," CIE PUBLICATION No. 16,
Calculation of nuclear masses using image reconstruction techniques
Barea, J.; Frank, A.; Hirsch, J. G.; Lopez, J. C.; Morales, I.; Mendoza, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Velazquez, V. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)
2007-10-26T23:59:59.000Z
Several methods have been developed to calculate and predict nuclear masses over the last 70 years. The accuracy of the present state-of-the-art nuclear mass models is impressive, because these quantities can be calculated with an average 0.05 % precision. However this precision level is still insufficient to deal with nuclear reactions of astrophysical interest, especially r-process ones. Different approaches exist to calculate nuclear masses, ranging from the simple Bethe-Weizsaecker Liquid Drop Formula (LDM) to the sophisticated Finite Range Droplet Model calculations or the microscopic Hartree-Fock-Bogoliuvob techniques from first principles, using Skyrme or Gogny parametrizations of the nucleon-nucleon interaction. Here we suggest a new method to calculate this fundamental property of the atomic nucleus, using a completely phenomenological point of view. Our method is based in the analysis of the differences between measured masses and LDM predictions, which contains information related to those ingredients not taken into account in the LDM formula, such as shell closures, nuclear deformations and residual nuclear interactions. The differences are arranged in a two dimensional plot which can be viewed as an incomplete image of the full chart of nuclides, equivalent to a product of the full image and a binary mask. In order to remove the distortions produced by this mask we employ an algorithm, well known in astronomy, used to remove artificial effects present in the astrophysical images collected through telescopes. This algorithm is called the CLEAN method. It is one of a number of methods which exists to deconvolve undesirable effects in images and to extrapolate or reconstruct missing parts in them. By using the CLEAN method we can fit measured masses with an r.m.s error of less than 100 keV. We have performed several checks and concluded that its utilization must be carried out carefully in order to obtain reliable results in the zone of unknown masses between the driplines. We also outline potential applications of the present approach.
Damien Allain Ingnieur recherche, dveloppement, calcul scientifique
, 5 articles publiĂ©s. Â· Administration du parc de machines de calculs Linux. 01/2003Â03/2003 IngĂ©nieur donnĂ©es, la rĂ©paration de code source en C/C++, de tĂ©lĂ©chargement de patch et de conversion d'image pour
2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT
CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 on net system power [Senate Bill 1305, (Sher), Chapter 796, Statute of 1997]1 . Net system power in California. Net system power plays a role in California's retail disclosure program, which requires every
FIRST PRINCIPLES CALCULATIONS OF TOKAMAK ENERGY TRANSPORT
Hammett, Greg
energy losses have prevented the experimental demonstration of net fusion energy production fromFIRST PRINCIPLES CALCULATIONS OF TOKAMAK ENERGY TRANSPORT M. KOTSCHENREUTHER, W. DORLAND, Q.P. LIU Institute for Fusion Studies, University of Texas, Austin, Texas, United States of America G.W. HAMMETT, M
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR
Su, Xiao
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single
New correlation calculates reliable paraffin solubilities
Yaws, C.L.; Pan, X. (Lamar Univ., Beaumont, TX (US))
1991-04-08T23:59:59.000Z
A new correlation based on boiling point has been developed which accurately calculates paraffin solubilities in water. The correlation provides reliable solubility values down to very low concentrations (parts per million and less), for which the API correlation is not accurate. It can be used for initial engineering studies, including those involving health, safety, and environmental considerations.
Oberseminar -ICP Temperature Calculation for Tribological
Harting, Jens
and passing to third parties. 0 #12;Overview Where to calculate the heat: diesel injection pump First focus: journal bearings DS/ETI2 Vortrag 24.01.05.tex 24.01.05 c Robert Bosch GmbH reserves all rights even;Approach Some assessments: Heat diffuses 30µm in diesel in the time of one rotation of the shaft
Novel Approach for Calculation and Analysis of Eigenvalues and Eigenvectors in Microgrids: Preprint
Li, Y.; Gao, W.; Muljadi, E.; Jiang, J.
2014-02-01T23:59:59.000Z
This paper proposes a novel approach based on matrix perturbation theory to calculate and analyze eigenvalues and eigenvectors in a microgrid system. Rigorous theoretical analysis to solve eigenvalues and the corresponding eigenvectors for a system under various perturbations caused by fluctuations of irradiance, wind speed, or loads is presented. A computational flowchart is proposed for the unified solution of eigenvalues and eigenvectors in microgrids, and the effectiveness of the matrix perturbation-based approach in microgrids is verified by numerical examples on a typical low-voltage microgrid network.
Scott Robertson; Ulf Leonhardt
2014-03-27T23:59:59.000Z
Hawking radiation has become experimentally testable thanks to the many analogue systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion, and give rise to a numerically soluble and stable ODE only if the rest-frame dispersion relation $\\Omega^{2}(k)$ is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.
Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)
1996-12-31T23:59:59.000Z
Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.
Calculation of material properties and ray tracing in transformation media
Schurig, D; Smith, D R
2006-01-01T23:59:59.000Z
Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability.
Envelope calculations for a low temperature neutron star
McCoy, Robert Paul
1976-01-01T23:59:59.000Z
with distance inward from the surface R for all three star models S, I and II at effective temperature Te = 10 K 34 Density-pressure dependence for the Model S star at different values of Te 35 Envelope calculation traces in the opacity-density plane... )] (20) Similarly a relation between p and T can be found 64v GN~ uH() a+1 1 a+1 ~a+ 3 r L k 4-b+aJ 0 (21) Inserting this back into the energy transport equation (13) gives the radial dependence of the temperature (22) (23) where R is the surface...
Multigroup calculations using VIM: A user's guide to ISOVIM
Blomquist, R.N.
1992-09-01T23:59:59.000Z
Monte Carlo calculations have long been used to benchmark more a mate approximate solution methods for reactor physics problems. The power of VIM (ref 1) lies partly in the detailed geometrical representations incorporating the (generally) curved surfaces of combinatorial geometry, and partly in the fine energy detail of pointwise cross sections which are independent of the neutron spectrum. When differences arise between Monte Carlo and deterministic calculations, the question arises, is the error in the multigroup cross sections, in the treatment of transport effects, or in the mesh-based treatment of space in the deterministic calculation The answers may not be obvious, but may be identified by combining the exact geometry capability of VIM with the multigroup formalism. We can now run VIM in a multigroup mode by producing special VIM Material files which contain point-wise data describing multigroup data with histograms. This forces VIM to solve the multigroup problem with only three small code modifications. P[sub N] scattering is simulated with the usual tabulated angular distributions with 20 equally-sized scattering angle cosine meshes. This document describes the VIM multigroup capability, the procedures for generating multigroup cross sections for VIM, and their use. The multigroup cross section generating code, ISOVIM, is described, and benchmark testing is documented.
CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS
C.E. Sanders
2005-04-07T23:59:59.000Z
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].
Nebraska-Lincoln, University of
temperature or the roots of typical Nebraska crops like corn, soybeans, alfalfa? Would crop yield likely
High School or PSEO: Important Differences to Consider
Amin, S. Massoud
High School or PSEO: Important Differences to Consider High School College High school set priorities Most classes are arranged for you The school year is typically 36 weeks long You may Teachers often arrange test dates to avoid conflict with school events Grades are given for most assigned
Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90
Hughes, P.S.; Rigdon, L.D.
1980-02-01T23:59:59.000Z
The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.
CFD calculations of S809 aerodynamic characteristics
Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States)
1997-01-01T23:59:59.000Z
Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.
Improvements in EBR-2 core depletion calculations
Finck, P.J.; Hill, R.N.; Sakamoto, S.
1991-01-01T23:59:59.000Z
The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs.
Precipitation chemistry: its behavior and its calculation
Hales, J.M.
1980-02-01T23:59:59.000Z
The purposes of this paper are twofold. The first of these is to present a rational basis for examining the aggregate set of scavenging-calculation techniques, and for guiding the reader in his course toward choosing the most appropriate technique for his particular application. The second purpose of this paper is to present a somewhat brief survey of our current understanding of scavenging and precipitation chemistry. Both objectives will be implemented by a flowchart approach, which attempts to draw the various facets of scavenging calculations together and present a generalized approach to the problem in total. The mathematical level of this paper is restricted to the presentation of the equations necessary to provide the reader with a basic appreciation of the fundamental concepts involved. References to more detailed mathematical treatments are cited at appropriate juncture points, for the reader interested in more detailed pursuit.
Calculation of source terms for NUREG-1150
Breeding, R.J.; Williams, D.C.; Murfin, W.B.; Amos, C.N.; Helton, J.C.
1987-10-01T23:59:59.000Z
The source terms estimated for NUREG-1150 are generally based on the Source Term Code Package (STCP), but the actual source term calculations used in computing risk are performed by much smaller codes which are specific to each plant. This was done because the method of estimating the uncertainty in risk for NUREG-1150 requires hundreds of source term calculations for each accident sequence. This is clearly impossible with a large, detailed code like the STCP. The small plant-specific codes are based on simple algorithms and utilize adjustable parameters. The values of the parameters appearing in these codes are derived from the available STCP results. To determine the uncertainty in the estimation of the source terms, these parameters were varied as specified by an expert review group. This method was used to account for the uncertainties in the STCP results and the uncertainties in phenomena not considered by the STCP.
How to Calculate Molecular Column Density
Mangum, Jeffrey G
2015-01-01T23:59:59.000Z
The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is con...
Calculations in support of a potential definition of large release
Hanson, A.L.; Davis, R.E.; Mubayi, V.
1994-05-01T23:59:59.000Z
The Nuclear Regulatory Commission has stated a hierarchy of safety goals with the qualitative safety goals as Level I of the hierarchy, backed up by the quantitative health objectives as Level II and the large release guideline as Level III. The large release guideline has been stated in qualitative terms as a magnitude of release of the core inventory whose frequency should not exceed 10{sup -6} per reactor year. However, the Commission did not provide a quantitative specification of a large release. This report describes various specifications of a large release and focuses, in particular, on an examination of releases which have a potential to lead to one prompt fatality in the mean. The basic information required to set up the calculations was derived from the simplified source terms which were obtained from approximations of the NUREG-1150 source terms. Since the calculation of consequences is affected by a large number of assumptions, a generic site with a (conservatively determined) population density and meteorology was specified. At this site, various emergency responses (including no response) were assumed based on information derived from earlier studies. For each of the emergency response assumptions, a set of calculations were performed with the simplified source terms; these included adjustments to the source terms, such as the timing of the release, the core inventory, and the release fractions of different radionuclides, to arrive at a result of one mean prompt fatality in each case. Each of the source terms, so defined, has the potential to be a candidate for a large release. The calculations show that there are many possible candidate source terms for a large release depending on the characteristics which are felt to be important.
Analytic calculation of properties of holographic superconductors
George Siopsis; Jason Therrien
2010-03-22T23:59:59.000Z
We calculate analytically properties of holographic superconductors in the probe limit. We analyze the range $1/2 3/2$. We also obtain the frequency dependence of the conductivity by solving analytically the wave equation of electromagnetic perturbations. We show that the real part of the DC conductivity behaves as $e^{-\\Delta_g /T}$ and estimate the gap $\\Delta_g$ analytically. Our results are in good agreement with numerical results.
Diffusion Simulation and Lifetime Calculation at RHIC
Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.
2009-01-02T23:59:59.000Z
The beam lifetime is an important parameter for any storage ring. For protons in RHIC it is dominated by the non-linear nature of the head-on collisions that causes the particles to diffuse outside the stable area in phase space. In this report we show results from diffusion simulation and lifetime calculation for the 2006 and 2008 polarized proton runs in RHIC.
Free Energy Calculation in MD Simulation
Nielsen, Steven O.
Free Energy Calculation in MD Simulation #12;Basic Thermodynamics Helmoholtz free energy A = U Â TS + i Ni dA = wrev (reversible, const N V T) eq (22.9) McQuarrie & Simon Gibbs free energy G = U;Implication of Free Energy A B Keq = [A]/[B] Keq = exp (-G0 /RT) G0 = -RT ln Keq G = G0 + RT ln Q G > 0
China 2050 Pathways Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways Calculator Jump to: navigation, search
Criticality Calculations for Step-2 GPHS Modules
Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)
2008-01-21T23:59:59.000Z
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
Criticality calculations for Step-2 GPHS modules.
Hensen, Danielle Lynn; Lipinski, Ronald J.
2007-08-01T23:59:59.000Z
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
SEECAL: Program to calculate age-dependent
Cristy, M.; Eckerman, K.F.
1993-12-01T23:59:59.000Z
This report describes the computer program SEECAL, which calculates specific effective energies (SEE) to specified target regions for ages newborn, 1 y, 5 y, 10 y, 15 y, a 70-kg adult male, and a 58-kg adult female. The dosimetric methodology is that of the International Commission on Radiological Protection (ICRP) and is generally consistent with the schema of the Medical Internal Radiation Dose committee of the US Society of Nuclear Medicine. Computation of SEEs is necessary in the computation of equivalent dose rate in a target region, for occupational or public exposure to radionuclides taken into the body. Program SEECAL replaces the program SEE that was previously used by the Dosimetry Research Group at Oak Ridge National Laboratory. The program SEE was used in the dosimetric calculations for occupational exposures for ICRP Publication 30 and is limited to adults. SEECAL was used to generate age-dependent SEEs for ICRP Publication 56, Part 1. SEECAL is also incorporated into DCAL, a radiation dose and risk calculational system being developed for the Environmental Protection Agency. Electronic copies of the program and data files and this report are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.
Cosmology calculations almost without general relativity
Thomas F. Jordan
2004-12-08T23:59:59.000Z
The Friedmann equation is derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the constant in the curvature term determined by matching with the present values of the Hubble parameter and energy density. General relativity is needed only for the luminosity distance, to describe how the curvature of space, determined by the energy density, can change the intensity of light by changing the area of the sphere to which the light has spread. Thirty-one problems are included.
Control Dewar Subcooler Heat Exchanger Calculations
Rucinski, R.; /Fermilab
1993-10-04T23:59:59.000Z
The calculations done to size the control dewar subcooler were done to obtain a sufficient subcooler size based on some conservative assumptions. The final subcooler design proposed in the design report will work even better because (1) It has more tubing length, and (2) will have already subcooled liquid at the inlet due to the transfer line design. The subcooler design described in the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab D0 Detector Upgrade' is the final design proposed. A short description of this design follows. The subcooler is constructed of 0.50-inch OD copper tubing with 1.0-inch diameter fins. It has ten and one half spirals at a 11.375-inch centerline diameter to provide 31 feet of tubing length. The liquid helium supply for the solenoid flows through the subcooler and then is expanded through a J-T valve. The subcooler spirals are immersed in the return two phase helium process stream. The return stream is directed over the finned tubing by an annulus created by a 10-inch pipe inside a 12-inch pipe. The transfer line from the refrigerator to the control dewar is constructed such that the liquid helium supply tube is in the refrigerator return stream, thereby subcooling the liquid up to the point where the u-tubes connect the transfer line to the control dewar. The subcooler within the control dewar will remove the heat picked up in the helium supply u-tube/bayonets. The attached subcooler/heat exchanger calculations were done neglecting any subcooling in the transfer line. All heat picked up in the transfer line from the refrigerator storage dewar to the control dewar is absorbed by the supply stream. The subcooler was sized such that the two phase supply fluid is subcooled at 1.7 atm pressure and when expanded through a JT valve to 1.45 atm pressure it is at a saturated liquid state. The calculations apply during steady state operation and at a flow rate of 16 g/s. The analysis of the heat exchanger was broken into two parts relating to the heat transfer mode taking place. The first part is considered the condensing part in which the helium supply stream is changed from two phase fluid to one phase liquid. The second part is the subcooling part where the liquid temperature is lowered, i.e.. subcooled. A summary of the calculations and results appears on the next page. The raw calculations follow the summary.
Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park
2014-01-01T23:59:59.000Z
Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.
Improve Claus simulation by integrating kinetic limitations into equilibrium calculations
Wen, T.C.
1986-01-01T23:59:59.000Z
Since all existing Claus simulators are based on equilibrium calculations, it is not surprising that the simulation results, including the overall sulfur yield, air to acid gas ratio, and stream compositions are somewhat different from the plant data. One method for improving the simulation is to consider the kinetic limitations in the Claus reactions. This has been accomplished in this work by integrating kinetic considerations into equilibrium calculations. Kinetic limitations have been introduced in both the Claus reaction furnace and the catalytic converters. An interactive computer program SULPLT Version 3 was written to implement the proposed modifications. The computer program was used to simulate the Claus furnace, catalytic converters, and the effect of air to acid gas ratio on sulfur recovery to check against literature data. Three Claus plants for which data exist have also been simulated. The results show that the proposed model predicts sulfur recovery, sulfur emission, optimal air to acid gas ratio, and various stream compositions more accurately than the equilibrium model. The proposed model appears to be valid, reliable, and applicable over a wide range of operating conditions (acid gas feeds ranging from 13% to 95% H/sub 2/S with different levels of impurities). The methodology developed in this study should be applicable to any reaction systems where kinetic limitations are important but where equilibrium still prevails.
Mass Insertions vs. Mass Eigenstates calculations in Flavour Physics
Dedes, A; Rosiek, J; Suxho, K; Tamvakis, K
2015-01-01T23:59:59.000Z
We present and prove a theorem of matrix analysis, the Flavour Expansion Theorem (or FET), according to which, an analytic function of a Hermitian matrix can be expanded polynomially in terms of its off-diagonal elements with coefficients being the divided differences of the analytic function and arguments the diagonal elements of the Hermitian matrix. The theorem is applicable in case of flavour changing amplitudes. At one-loop level this procedure is particularly natural due to the observation that every loop function in the Passarino-Veltman basis can be recursively expressed in terms of divided differences. FET helps to algebraically translate an amplitude written in mass eigenbasis into flavour mass insertions, without performing diagrammatic calculations in flavour basis. As a non-trivial application of FET up to a third order, we demonstrate its use in calculating strong bounds on the real parts of flavour changing mass insertions in the up- squark sector of the MSSM from neutron Electric Dipole Moment...
Individual Differences in Human Reliability Analysis
Jeffrey C. Joe; Ronald L. Boring
2014-06-01T23:59:59.000Z
While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.
Free energy differences : Representations, estimators, and sampling strategies
Acharya, Arjun R
In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of representation, the choice...
Illustrative Calculation of Economics for Heat Pump and "Grid...
Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...
Building America Webinar: HVAC Right-Sizing Part 1-Calculating...
HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS...
Abdel-Khalik, Hany S.; Gardner, Robin; Mattingly, John; Sood, Avneet
2014-05-20T23:59:59.000Z
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calulations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 10-10 times to properly characterize the few-group cross-sections for deownstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the faborable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.
SB EE Calculator | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A(SAPC) WorkingB.ProgramCalculator
USAID Carbon Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to: navigation, search Tool Summary LAUNCH
Calculational procedure for multicomponent distillation columns with side-stream-strippers
Dickey, Billy Ray
1962-01-01T23:59:59.000Z
, Based u ion tne Ji composition calculated by direct-iter;ition, the coi i icte. . te. . i, erature , irofilo ives ca' culated using iiewton's nethod. The above c. . lcul itio ial procedure w. - found to diver "e if the calcul. i ed i iate c&m csitions...M point calculations based on these oalculatcd cccqxositions, iXthsr Hex&ton&s mthod ca' ths . uxthcxx of interpolation ~ ~) ~ as dsscnibed by Sorolnikof' (27)& may be employed, Thc difference either in the m3culctod tempera5xres frcm trial to trix...
Liu, M.; Zheng, K.; Wu, L.; Wang, Z.; Johnson, C.
2007-01-01T23:59:59.000Z
. In this part, a simulated air handling unit (AHU) system in Omaha NE is used to demonstrate the energy savings performance in one typical climate year. This AHU system has a static pressure reset system and two constant static pressure systems, one having...
Corrosion of reinforcing steel is typically one of the main problems causing deterioration available steel, has proven to have high corrosion resistance in comparison with conventional steel without provides a high resistance to corrosion due to severe environmental exposure in comparison to the use
Figure 1. The dataset for the running example is excerpted at left, arranged in the typical manner for MVPA. The boxes at right introduce the dataset representation used in later figures. In these boxes the "dataset-wise" scheme, the examples are relabeled prior to conducting the cross- validation, while
Johnson, Eric E.
unit of a HVAC system. When the performance of an HVAC system deteriorates, it is usually inspected remain installed on the roof even after the system is no longer being used. Although HVAC units have only jumpers and screws effectively bond all parts of the listed device together. HVAC components are typically
Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya
2012-06-01T23:59:59.000Z
The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.
Burial container subsidence load stress calculations
Veith, E.M.
1995-11-01T23:59:59.000Z
This document captures the supporting analyses conducted to determine if the LLCE (Long-Length Contaminated Equipment) burial containers are structurally adequate under different trench closure scenarios. The LLCE is equipment that was inside tank farm tanks.
Consistent neutron kinetics data generation for nodal transient calculations
Akdeniz, B. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States); Mueller, E.; Panayotov, D. [Westinghouse Electric Sweden, SE - 721 63 Vaesteraas (Sweden); Ivanov, K. N. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States)
2006-07-01T23:59:59.000Z
Current three-dimensional transient codes for thermal reactors are mostly based on two-group diffusion-theory nodal models. In the two-group approach no explicit distinction is made between prompt fission neutrons and delayed neutrons. Consequently, effective delayed neutron fractions have traditionally been used in an attempt to compensate for this shortcoming. A fundamentally better approach would be to solve the nodal kinetics equations in a sufficient number of energy groups to explicitly capture neutron emission spectrum effects. However, this would require the availability of a multi-group nodal transient code as well as a lattice code to generate the appropriate multi-group nodal data for the simulator. One such simulator is the PARCS nodal transient code, which is widely used and recognized as representative of the current state-of-the-art. Unfortunately, a proper nodal data preparation path between PARCS and a lattice code is not available. Even though several industrial lattice codes could be considered as candidates, most of them are tailored to producing two-group nodal data and would require modifications to produce multi-group prompt and delayed neutron emission spectra. In this paper, the particular modifications required to match the TransLAT lattice code and the PARCS nodal transient code for BWR transient applications are reported. Some modifications to PARCS were also required to make two-group and multi-group applications fully consistent. Numerical results are presented both to verify the proper functioning of these modifications and to illuminate the impact of various nodal kinetics data approximations in a selected transient calculation. In particular, the significance of blending rodded and un-rodded kinetics data in partially rodded nodes is demonstrated. It is also confirmed that the use of delayed neutron importance factors in two-group calculations notably reduces the differences between two-group and multi-group kinetics calculations. (authors)
Tung, Wei-Cheng; Adamowicz, Ludwik, E-mail: ludwik@u.arizona.edu [Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721 (United States)
2014-03-28T23:59:59.000Z
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.
LMR thermal hydraulics calculations in the US
Dunn, F.E.; Malloy, D.J.; Mohr, D.
1987-04-27T23:59:59.000Z
A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.
Angular Size-Redshift: Experiment and Calculation
Amirkhanyan, V R
2015-01-01T23:59:59.000Z
In this paper the next attempt is made to clarify the nature of the Euclidean behavior of the boundary in the angular size-redshift cosmological test. It is shown experimentally that this can be explained by the selection determined by anisotropic morphology and anisotropic radiation of extended radio sources. A catalogue of extended radio sources with minimal flux densities of about 0.01 Jy at 1.4 GHz was compiled for conducting the test. Without the assumption of their size evolution, the agreement between the experiment and calculation was obtained both in the Lambda CDM model (Omega_m=0.27 , Omega_v=0.73.) and the Friedman model (Omega = 0.1 ).
Ab initio calculation of the Hoyle state
Evgeny Epelbaum; Hermann Krebs; Dean Lee; Ulf-G. Meißner
2011-01-13T23:59:59.000Z
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle [1] as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago [2,3], nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine-tuning needed in nature for the production of carbon in stars.
A COMPARISON OF MEASURED AND CALCULATED GAMMA RAY ATTENUATION FOR A COMMON COUNTING GEOMETRY
Gaylord, R F
2004-02-26T23:59:59.000Z
In order to perform quantitative gamma spectroscopy, it is necessary to know the sample-specific detection efficiency for photons as a function of energy. The detection efficiency, along with the branching ratio for the isotope and gamma ray of interest, is used to convert observed counts/second to actual disintegrations/second, and, hence, has a large effect on the accuracy of the measurement. In cases where the geometry of the source is simple and reproducible, such as a point source, small vial of solid, or jar of liquid, geometry-specific standards may be counted to determine the detection efficiency. In cases where the samples are large, irregular, or unique, this method generally cannot be used. For example, it is impossible to obtain a NIST-traceable standard glovebox or 55-gallon drum. In these cases, a combination of measured absolute detector efficiency and calculated sample-specific correction factors is commonly used. The correction factors may be calculated via Monte Carlo simulation of the item (the method used by Canberra's ISOCS system), or via semi-empirical calculation of matrix and container attenuations based on the thickness and composition of the container and radioactive matrix (ISOTOPIC by EG&G Ortec uses this method). The accuracy of these correction factors for specific geometries is often of vital interest when assessing the quality of gamma spectroscopy data. During the Building 251 Risk-Reduction Project, over 100 samples of high activity actinides will be characterized via gamma spectroscopy, typically without removing the material from the current storage containers. Most of the radioactive materials in B-251 are stored in cylindrical stainless steel canisters (called USV containers, after the Underground Storage Vaults they are commonly stored in), 13 cm in diameter, by 28 cm high, with walls that are 1.8 mm thick. While the actual samples have a variety of configurations inside the USV container, a very common configuration is the material (usually as an oxide powder pellet of approximately 2 cm diameter by {approx}2 mm thick) in a squat glass jar, with the jar placed in a thin steel food-pack can, which is then placed in the bottom of the USV canister. During data acquisition, the USV containers are typically rotated at approximately 4 rpm on a turntable to eliminate errors due to the material not being centered in the can, or attenuation not being isotropic. An aluminum plate is placed over the container, secured by three vertical rods, to securely hold the container. Pictures of both the containers, and this typical counting configuration are shown below.
Lowest vibrational states of {sup 4}He{sup 3}He{sup +}: Non-Born-Oppenheimer calculations
Stanke, Monika; Bubin, Sergiy [Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (United States); Kedziera, Dariusz [Department of Chemistry, Nicholaus Copernicus University, ul. Gagarina 7, PL 87-100 Torun (Poland); Molski, Marcin [Department of Theoretical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, ul. Grunwaldzka 6, Poznan, PL 60-780 (Poland); Adamowicz, Ludwik [Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (United States); Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States)
2007-11-15T23:59:59.000Z
Very accurate quantum mechanical calculations of the first five vibrational states of the {sup 4}He{sup 3}He{sup +} molecular ion are reported. The calculations have been performed explicitly including the coupling of the electronic and nuclear motions [i.e., without assuming the Born-Oppenheimer (BO) approximation]. The nonrelativistic non-BO wave functions were used to calculate the {alpha}{sup 2} relativistic mass velocity, Darwin, and spin-spin interaction corrections. For the lowest vibrational transition, whose experimental energy is established with high precision, the calculated and the experimental results differ by only 0.16 cm{sup -1}.
Different Approach to the Aluminium Oxide Topography Characterisation
Poljacek, Sanja Mahovic; Gojo, Miroslav [Faculty of Graphic Arts, University of Zagreb, Getaldiceva 2, 10000 Zagreb (Croatia); Raos, Pero; Stoic, Antun [Mechanical Engineering Faculty, J.J. Strossmayer University of Osijek, Trg Ivane Brlic Mazuranic 2, 35000 Slavonski Brod (Croatia)
2007-04-07T23:59:59.000Z
Different surface topographic techniques are being widely used for quantitative measurements of typical industrial aluminium oxide surfaces. In this research, specific surface of aluminium oxide layer on the offset printing plate has been investigated by using measuring methods which have previously not been used for characterisation of such surfaces. By using two contact instruments and non-contact laser profilometer (LPM) 2D and 3D roughness parameters have been defined. SEM micrographs of the samples were made. Results have shown that aluminium oxide surfaces with the same average roughness value (Ra) and mean roughness depth (Rz) typically used in the printing plate surface characterisation, have dramatically different surface topographies. According to the type of instrument specific roughness parameters should be used for defining the printing plate surfaces. New surface roughness parameters were defined in order to insure detailed characterisation of the printing plates in graphic reproduction process.
Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study
Pajunen, A. J.; Tedeschi, A. R.
2012-09-18T23:59:59.000Z
This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.
SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING...
Broader source: Energy.gov (indexed) [DOE]
SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING wpn10-14asep10-07aeecbg10-08a.pdf More...
Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations
Diego Lonardoni; Alessandro Lovato; Stefano Gandolfi; Francesco Pederiva
2015-02-27T23:59:59.000Z
The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the grounds for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and $\\Lambda$ particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars.
Calculation of Helium nuclei in quenched lattice QCD
T. Yamazaki
2010-12-02T23:59:59.000Z
We present results for the binding energies for ^4He and ^3He nuclei calculated in quenched lattice QCD at the lattice spacing of a =0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state energy of the nucleus channel and the free multi-nucleon states by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.
Variations in gear fatigue life for different wind turbine braking strategies
McNiff, B.P. (Second Wind, Inc., Somerville, MA (USA)); Musial, W.D. (Solar Energy Research Inst., Golden, CO (USA)); Errichello, R. (GEARTECH, Albany, CA (USA))
1991-06-01T23:59:59.000Z
A large number of gearbox failures have occurred in the wind industry in a relatively short period, many because service loads were underestimated. High-torque transients that occur during starting and stopping are difficult to predict and may be overlooked in specifying gearbox design. Although these events comprise a small portion of total load cycles, they can be the most damaging. The severity of these loads varies dramatically with the specific configuration of the wind turbine. The large number of failures in Danish-designed Micon 65 wind turbines prompted this investigation. The high-speed and low-speed shaft torques were measured on a two-stage helical gearbox of a single Micon 65 turbine. Transient events and normal running loads were combined statistically to obtain a typical annual load spectrum. The pitting and bending fatigue lives of the gear teeth were calculated by using Miner's rule for four different high-speed shaft brake configurations. Each breaking scenario was run for both a high- and a low-turbulence normal operating load spectrum. The analysis showed increases in gear life by up to a factor of 25 when the standard high-speed shaft brake is replaced with a dynamic brake or modified with a damper. 9 refs., 9 figs., 3 tabs.
TDHF fusion calculations for spherical+deformed systems
A. S. Umar; V. E. Oberacker
2006-04-04T23:59:59.000Z
We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation DataDatastreamswacrspeccmaskcopolDatastreamsxsacrslrAlaskaDefensive Shotgun -ListDifferent Climates
MATLAB Tutorial Getting Started with Calculations, Graphing and Programming
Weinberger, Hans
MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner UI 2 Calculations with MATLAB Standard Calculations and Variables Matrices and Vectors 3 Graphing NRK;Matrices and Vectors, Definitions MATLAB is short for MATrix LABoratory. It was built for high-speed matrix
Project W-320, 241-C-106 sluicing master calculation list
Bailey, J.W.
1998-08-07T23:59:59.000Z
This supporting document has been prepared to make the Master Calculation List readily retrievable. The list gives the status of the calculation (as-built, not used, applied, etc.), the calculation title, its originator, comments, and report number under which it was issued. Tank 241-C-106 has been included on the High Heat Load Watch List.
STORM in Monte Carlo reactor physics calculations KAUR TUTTELBERG
Haviland, David
STORM in Monte Carlo reactor physics calculations KAUR TUTTELBERG Master of Science Thesis Carlo reactor physics criticality calculations. This is achieved by optimising the number of neutron for more efficient Monte Carlo reactor physics calculations, giving results with errors that can
Entropy Calculations and the Third Law of Thermodynamics Chemistry 223
Ronis, David M.
Entropy Calculations and the Third Law of Thermodynamics Chemistry 223 1. Entropy Calculations I We heat of fusion, sublimation, or vaporization) is added to the system, with no resulting change, 2014 #12;Entropy Calculations and the Third Law -2- Chemistry 223 STiT f = T0 Ti CP,i(T, P, N) T d
A MODIFIED TRANSMISSION LINE MODEL FOR LIGHTNING RETURN STROKE FIELD CALCULATIONS
Florida, University of
- 229 - 44Hl A MODIFIED TRANSMISSION LINE MODEL FOR LIGHTNING RETURN STROKE FIELD CALCULATIONS V. The modifications considered differ from each other by the height dependent attenuation factor for the return stroke data available. Some problems with modeling of the early and late stages of the return stroke process
First-principles calculations of step formation energies and step interactions on TiN(001)
Ciobanu, Cristian
First-principles calculations of step formation energies and step interactions on TiN(001) Cristian the formation energies and repulsive interactions of monatomic steps on the TiN(001) surface, using den- sity studies on different aspects related to thin film growth on TiN surfaces, few atomistic studies have been
Napier, B.A.
1992-12-01T23:59:59.000Z
A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.
Helium release rates and ODH calculations from RHIC magnet cooling line failure
Liaw, C.J.; Than, Y.; Tuozzolo, J.
2011-03-28T23:59:59.000Z
A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.
Verweij, A
2006-01-01T23:59:59.000Z
CUDI is the extended Fortran code to calculate the electrodynamic and thermal behaviour of any type of Rutherford cable subject to global and/or local variations in field, transport current, and external heat release. The internal parameters of the cable can be freely varied along the length and across the width, such as contact resistances, critical current, cooling rates etc. In this way, all the typical non-uniformities occurring in a cable, e.g. broken filaments, strand welds, cable joints, and edge degradation can be simulated. Also the characteristics of the strands in the cable can be varied from strand to strand. Heat flows through the matrix, through the interstrand contacts, and to the helium are incorporated, as well as the self-field and self- and mutual inductances between the strands. The main features and structure of the program will be discussed.
Scoping Inventory Calculations for the Rare Isotope Accelerator
Ahle, L E; Boles, J L
2003-07-25T23:59:59.000Z
This document is a report on our activities in FY03 exploring nuclear safety and hazard analysis issues relevant to the Rare Isotope Accelerator (RIA). It is not clear whether DOE will classify the RIA as an accelerator facility subject to the accelerator-specific safety requirements of DOE Order 420.2A or as a nonreactor nuclear facility subject to the requirements of 10 CFR 830. The final outcome of this issue will have significant impact on the construction and operation of the facility and the quality assurance requirements for items or services that may affect nuclear safety. The resolution of this issue will be an important earlier decision for the RIA project team and will require early consultation with the appropriate DOE authorities. For nuclear facilities, facility hazard classification depends on the inventory of releasable radionuclides; therefore, some simplistic, scoping inventory calculations for some assumed targets and beams are done to estimate the hazard category of RIA if it is declared a nuclear facility. These calculations show that for the scenarios analyzed, RIA would produce sufficient quantities of radionuclides to be classified as a Category 3 nuclear facility. Over the lifetime of RIA operations, it may be possible to build up Category 2 quantities of {sup 227}Ac and {sup 228}Th. A storage building, separate from the driver, target, and experimental buildings, used to store and isolate accumulated targets and other hardware, can mitigate the potential impact on RIA. The more onerous requirements of Category 2 facilities would only be imposed on the storage facility and not on the rest of the RIA facilities. Some of the differences in a category 2 and category 3 facility are discussed in Appendix 1.
Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART
Hursin, Mathieu
2010-01-01T23:59:59.000Z
for multi- dimensional reactor calculation." Atomkernenergiein Light Water Reactor calculations, which are processedlight water reactor diffusion calculations." Nuclear Science
SCHWARTZ,S.E.
2000-09-21T23:59:59.000Z
It is no longer appropriate, if it ever was, to think of atmospheric aerosols as homogeneous spheres of uniform composition and size. Within the United States, and even more globally, not only the mass loading but also the composition, morphology, and size distribution of atmospheric aerosols are highly variable, as a function of location, and at a given location as a function of time. Particles of a given aerodynamic size may differ from one another, and even within individual particles material may be inhomogeneously distributed, as for example, carbon spherules imbedded in much larger sulfate particles. Some of the particulate matter is primary, that is, introduced into the atmosphere directly as particles, such as carbon particles in diesel exhaust. Some is secondary, that is, formed in the atmosphere by gas-to-particle conversion. Much of the material is inorganic, mainly sulfates and nitrates resulting mainly from energy-related emissions. Some of the material is carbonaceous, in part primary, in part secondary, and of this material some is anthropogenic and some biogenic. While the heterogeneity of atmospheric aerosols complicates the problem of understanding their loading and distribution, it may well be the key to its solution. By detailed examination of the materials comprising aerosols it is possible to infer the sources of these materials. It may be possible as well to identify specific health impairing agents. The heterogeneity of aerosol particles is thus the key to identifying their sources, to understanding the processes that govern their loading and properties, and to devising control strategies that are both effective and efficient. Future research must therefore take cognizance of differences among aerosol particles and use these differences to advantage.
The Filter Difference Spectrometer
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2Different ImpactsTheRolling Stone"TheThe
CRC handbook of nuclear reactors calculations. Vol. III
Ronen, Y.
1986-01-01T23:59:59.000Z
This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.
Well performance graph simplifies field calculations
De Ghetto, G.
1987-05-01T23:59:59.000Z
Graphic Methods are widely employed in order to understand overall well behavior using only surface parameters. The authors propose a new graphic method, used successfully by Agip for oil and gas wells in Italy, Libya, Nigeria and Tunisia. The well performance graph helps solve many production problems, including estimation of: inflow performance relationship; causes of rate decline throughout well life; and production rate and bottomhole flowing pressure for various pressures upstream of the surface choke, and vice-versa. This method differs from others by using flow behavior through the choke for both critical and subcritical conditions. Equations describing flow through the formation, string and surface choke are also used. Results are quite reliable when these theoretical equations are calibrated with field data, either from the well concerned or from nearby wells producing the same fluid. This article describes the technique as it applies to oil wells. The methodology for gas wells is similar.
Clanton, John L
2012-06-07T23:59:59.000Z
and Liquid Phases for Assumed Initial Volume of 3, 900, 000, 000 Barrels. 31 ABSTRACT The theory of the material balance based on equihbrium ratios is described. The Kelley-Snyder field is described and a calculation of oil in place by the Schilthuis...& noglectbag the pres?ace of a water drive might ~ the high value of 4x 000, 000?000 barrels, and would if included, briag this value mox's into line with the others, Any water drive that would cause such effects would have to be from a limited aquifer...
Contributions of different neutron pairs in different approaches for neutrinoless double beta decay
Alberto Escuderos; Amand Faessler; Vadim Rodin; Fedor Simkovic
2010-06-07T23:59:59.000Z
The methods used till now to calculate the neutrinoless double beta decay matrix elements are: the Quasiparticle Random Phase Approximation (QRPA), the Shell Model (SM), the angular momentum projected Hartee-Fock-Bogoliubov approach (HFB) and the Interacting Boson Model (IBM). The different approaches are compared specifically concerning the the angular momenta and parities of the neutron pairs, which are changed into two protons by the $0\
Calculating and reporting changes in net heat of combustion of wood fuel
Harris, R.A.; McMinn, J.W.; Payne, F.A.
1986-06-01T23:59:59.000Z
There is often confusion when reporting net heat of combustion changes in wood fuel due to changes in moisture content (MC) of the fuel. This paper was written to identify and clarify the bases on which changes in net heat of combustion can be calculated. Formulae for calculating changes in net heat of combustion of wood fuel due to MC changes are given both on a per unit weight of fuel basis and on an actual gain basis. Examples which illustrate the difference in the two reporting approaches, as well as the importance of both approaches, are presented. (Refs. 7).
Farhi, Asaf
2012-01-01T23:59:59.000Z
The thesis consists of two projects. In the first project, we present a software that analyses RNA secondary structures and compares them. The goal of this software is to find the differences between two secondary structures (experimental or predicted) in order to improve or compare algorithms for predicting secondary structures. Then, a comparison between secondary structures predicted by the Vienna package to those found experimentally is presented and cases in which there exists a difference between the prediction and the experimental structure are identified. As the differences originate mainly from faces and hydrogen bonds that are not allowed by the Vienna package, it is suggested that prediction may be improved by integrating them into the software. In the second project we calculate the free energy of an interior loop using Monte-Carlo simulation. We first present a semi-coarse grained model for interior loops of RNA, and the energy model for the different interactions. We then introduce the Monte-Car...
Calculating Energy Savings in High Performance Residential Buildings Programs: Preprint
Hendron, B.; Rarrar-Nagy, S.; Anderson, R.; Judkoff, R.; Reeves, P.; Hancock, E.
2003-08-01T23:59:59.000Z
Accurate and meaningful energy savings calculations are essential for the evaluation of residential energy efficiency programs sponsored by the U.S. Department of Energy (DOE), such as the Building America Program (a public-private partnership designed to achieve significant energy savings in the residential building sector). The authors investigated the feasibility of applying existing performance analysis methodologies such as the Home Energy Rating System (HERS) and the International Energy Conservation Code (IECC) to the high performance houses constructed under Building America, which sometimes achieve whole-house energy savings in the 50-70% range. However, because Building America addresses all major end-use loads and because the technologies applied to Building America houses often exceed what is envisioned by energy codes and home-rating programs, the methodologies used in HERS and IECC have limited suitability, and a different approach was needed. The authors have researched these issues extensively over the past several years and developed a set of guidelines that draws upon work done by DOE's Energy Information Administration, the California Energy Commission, the International Code Council, RESNET, and other organizations that have developed similar methodologies to meet their needs. However, the final guidelines are tailored to provide accurate techniques for quantifying energy savings achieved by Building America to help policymakers assess the effectiveness of the program.
Calculation of the compressibility factor and thermodynamic properties for methane
Dowling, Dennis William
1966-01-01T23:59:59.000Z
of Saturated Vapor Volumes Reported by Bloomer and Parent (5) and Those Calculated in This Work Thermodynamic Properties Calculated by Use of Berlin Equation Thermodynamic Properties Calculated by Use of Benedict-Webb-Rubin Equation 35 36 39 40 48..., and Smith (15), Gardoso (7), and Bloomer and Parent (5) have reported experimental vapor pressure data and values for the saturated liquid density. Cardoso (7) and Bloomer and Parent (5) have also reported values for saturated vapor densities. A critical...
Ghost Diffraction: Causal Explanation via Correlated Trajectory Calculations
Bill Dalton
2001-02-22T23:59:59.000Z
We use trajectory calculations to successfully explain two-photon "ghost" diffraction, a phenomenon previously explained via quantum mechanical entanglement. The diffraction patterns are accumulated one photon pair at a time. The calculations are based on initial correlation of the trajectories in the crystal source and a trajectory-wave ordering interaction with a variant generator inherent in its structure. Details are presented in comparison with ordinary diffraction calculated with the same trajectory model.
A Cosmology Calculator for the World Wide Web
Edward L. Wright
2006-10-10T23:59:59.000Z
A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.
Microsoft Word - 911127_0 Parametric-Calculations_rel.doc
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
7 Revision 0 Engineering Services for the Next Generation Nuclear Plant (NGNP) with Hydrogen Production NGNP Parametric Fuel and Reactor Pressure Vessel Temperature Calculations...
assessment calculations related: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
chi values surrounding the common rotameric states of leucine and valine. Relative free enegy slices were calculated from the biased trajectories using the weighted histogram...
Solid Waste Operations Complex (SWOC) Facilities Sprinkler System Hydraulic Calculations
KERSTEN, J.K.
2003-07-11T23:59:59.000Z
The attached calculations demonstrate sprinkler system operational water requirements as determined by hydraulic analysis. Hydraulic calculations for the waste storage buildings of the Central Waste Complex (CWC), T Plant, and Waste Receiving and Packaging (WRAP) facility are based upon flow testing performed by Fire Protection Engineers from the Hanford Fire Marshal's office. The calculations received peer review and approval prior to release. The hydraulic analysis program HASS Computer Program' (under license number 1609051210) is used to perform all analyses contained in this document. Hydraulic calculations demonstrate sprinkler system operability based upon each individual system design and available water supply under the most restrictive conditions.
Examen de calcul matriciel Licence MASHS -MI -SPC, semestre 2
Lafont, Yves
Examen de calcul matriciel Licence MASHS - MI - SPC, semestre 2 14 juin 2007 DurĂ©e de l'Ă©preuve : 3
Approach for calculating population doses using the CIDER computer code
Shipler, D.B.
1993-04-29T23:59:59.000Z
This report describes an approach for calculating radiation doses for the Hanford Environmental Dose Reconstruction Project. The approach utilizes the CIDER computer code.
Formation enthalpies by mixing GGA and GGA + U calculations
Jain, Anubhav
Standard approximations to the density functional theory exchange-correlation functional have been extraordinary successful, but calculating formation enthalpies of reactions involving compounds with both localized and ...
Calculation of tunneling rates across a barrier with continuous potential
Sina Khorasani
2011-04-10T23:59:59.000Z
Here, approximate, but accurate expressions for calculation of wavefunctions and tunneling rates are obtained using the method of uniform asymptotic expansion.
A Method for Calculating Reference Evapotranspiration on Daily Time Scales
Farmer, William
Measures of reference evapotranspiration are essential for applications of agricultural management and water resources engineering. Using numerous esoteric variables, one can calculate daily reference evapotranspiration ...
First Principles Calculations and NMR Spectroscopy of Electrode...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Calculations and NMR Spectroscopy of Electrode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...
First-principles calculations of the electronic structure, phase...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local...
Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations
Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.
2008-07-01T23:59:59.000Z
We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.
A High-Performance Fortran Code to Calculate Spin- and Parity-Dependent Nuclear Level Densities
R. Sen'kov; M. Horoi; V. G. Zelevinsky
2012-06-20T23:59:59.000Z
A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities.The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g9/2 - model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g9/2-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g9/2, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf.
A High-Performance Fortran Code to Calculate Spin- and Parity-Dependent Nuclear Level Densities
Sen'kov, R; Zelevinsky, V G
2012-01-01T23:59:59.000Z
A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities.The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g9/2 - model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g9/2-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g9/2, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf.
Model calculations of nuclear data for biologically-important elements
Chadwick, M.B.; Blann, M.; Reffo, G. [Lawrence Livermore National Lab., CA (United States); Young, P.G. [Los Alamos National Lab., NM (United States)
1994-05-01T23:59:59.000Z
We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed.
AHR 3/16/06 Equilibrium Flux Surface Calculations
Hudson, Stuart
preserved, with no flattening in edge stochastic region. Â· Assume zero net current (00 = 0). #12;#12;2 AHR 31 AHR 3/16/06 Equilibrium Flux Surface Calculations for W7AS and NCSX A. Reiman1, M. Zarnstorff1, D resonant magnetic field near plasma edge. Coil calculated to have little effect on rotational transform
Easier way to calculate E fields Equivalent to Coulomb's law
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
lines enter as leave closed surface the net is zero = Â·= dAE AdE cos rr #12;Flux Calculate fluxGauss' Law Easier way to calculate E fields Â Gauss' Law Equivalent to Coulomb's law Use Â·= AE rr Let A become small so flux becomes integral over Gaussian surface Flux is proportional to net
IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION
IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET, Australia 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D
Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques
Sosonkina, Masha
Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques Masha Sosonkina1 into the field of nuclear physics calculations where the objective functions are very complex and computationally the ab initio nuclear physics code MFDn and the VTDIRECT95 code for derivative-free op- timization. We
RETI Resource Valuation Methodology Cost of Generation Calculator
) Â· Cost of equity investment in capital Â· Cost of financing capital Â· Taxes, including investmentRETI Resource Valuation Methodology Cost of Generation Calculator The Cost of Generation Calculator determines the levelized cost of generating power over the life of the resource, and is an input
Appendix II. Calculation of Slope Factors for Naturally Occurring Radionuclides
Appendix II. Calculation of Slope Factors for Naturally Occurring Radionuclides In developing calculates the slope factors for the naturally occurring radionuclides under consideration. The Radionuclide products with half-lives of less than 6 months). As explained below, naturally occurring radionuclides
CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE
DemaziĂ¨re, Christophe
CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE FISSION REACTORS CORE-BARREL VIBRATIONS-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZIĂ?RE, and IMRE PĂZSIT Chalmers University of Technology for Publication October 12, 2005 The subject of this paper is the calculation of the in-core neutron noise induced
Overview of `classical' or `standardized' DPA calculation stemming from the
McDonald, Kirk
Overview of `classical' or `standardized' DPA calculation stemming from the reactor world. Colin English, NNL 7 April 2014 #12;2 Purpose Â· Overview of `classical' or `standardized' DPA calculation stemming from the reactor world. Â· Current Status Â· Details of accepted Methodology Â· Known Limitations
Calculating reactor transfer functions by Pade approximation via Lanczos algorithm
PĂˇzsit, Imre
Calculating reactor transfer functions by PadeĂ? approximation via Lanczos algorithm Zhifeng Kuang a function of a reactor, i.e. the neutron noise induced by a localised perturbation is calculated in one, *,1 , Imre PaĂ? zsit a , Axel Ruhe b a Department of Reactor Physics, Chalmers University of Technology
Texas LoanSTAR Program Savings Calculation Workbook
Liu, Z.; Baltazar-Cervantes, J. C.; Haberl, J. S.
2003-01-01T23:59:59.000Z
This is the report and manual for the Texas LoanSTAR Program Savings Calculation Workbook. The purpose of this report is to document the Texas LoanSTAR Program Savings Calculation Workbook to be used by the State Energy Conservation Office (SECO...
Processus communicants Communication synchrone CSP/CCS/-calcul
Grigoras, .Romulus
Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous Ă©tendu Ada HuitiĂ¨me partie Processus communicants CSP/Ada SystĂ¨mes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous Ă©tendu Ada Principes Synchronisation DĂ©signation
DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE
Shultis, J. Kenneth
DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE IRON, LEAD, AND WATER FOR PHOTONS AND NEUTRONS for four materials: concrete, iron, lead, and water. Unlike previous compilations of albedo data, modern obtained by fits to results of Monte Carlo calculations for concrete,3 and later extended to water, iron
General calculations using graphics hardware, with application to interactive caustics
Paris-Sud XI, UniversitĂ© de
General calculations using graphics hardware, with application to interactive caustics Chris Trendall and A. James Stewart iMAGISÂGRAVIR/IMAG and University of Toronto Abstract. Graphics hardware has general computation. This paper shows that graphics hardware can perform general calculations, which
STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL
STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL CEC-WS-2R (Revised 08/09) CALIFORNIA ENERGY COMMISSION Area Weighted Average Calculation Worksheet WS-2R Residential (Page 1 of 1) Site/Time: ____________________ HERS Provider: __________________ 2008 Residential Compliance Forms August 2009 This worksheet should
Yi-Ping Qin
2004-11-13T23:59:59.000Z
In this paper, we employ the peak count rate{\\bf \\}$C_p$ and the total count $C_{total}$ of light curves to study in the corresponding aspects the relationship between different channel light curves. To make a direct comparison between count rates of different channel light curves we introduce a plot of $C(\\tau)$ versus $C_H(\\tau)$, where $C(\\tau)$ is the count rate of a channel and $C_H(\\tau)$ is the count rate of a definite cannel, channel H (see the text). According to the plot we define $\\Delta C_{\\max}$ as the maximum deviation of the two count rate values of $C(\\tau)$ associated with a same count rate value of $% C_H(\\tau)$ and define $\\Delta S$ as the area confined by the close curve of $C(\\tau)$ in the plot to measure the difference of the rising and decaying portions of a light curve relative to the count rate of channel H. Under the assumption that some GRBs observed are in the stage of fireballs which expand relativistically, predictions on the relationships between the four quantities{\\bf (}$C_p$, $C_{total}$, $\\Delta C_{\\max}$, and $\\Delta S$) and energy within a wide band, calculated with different rest frame radiation forms and two typical Lorentz factors ($\\Gamma =20$ and 200), are made and presented, which would make the test of our model with the coming Swift data easier. Interpretations to the relationships within the mechanism of fireballs are also presented.
Lattice calculation of the pion form factor with Ginsparg-Wilson-type fermions
Capitani, Stefano; Gattringer, Christof; Lang, C.B. [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria)
2006-02-01T23:59:59.000Z
Results for Monte Carlo calculations of the electromagnetic vector and scalar form factors of the pion in a quenched simulation are presented. We work with two different lattice volumes up to a spatial size of 2.4 fm at a lattice spacing of 0.148 fm. The pion form factors in the spacelike region are determined for pion masses down to 340 MeV.
A lattice calculation of the pion form factor with Ginsparg-Wilson-type fermions
Stefano Capitani; Christof Gattringer; C. B. Lang
2006-02-03T23:59:59.000Z
Results for Monte Carlo calculations of the electromagnetic vector and scalar form factors of the pion in a quenched simulation are presented. We work with two different lattice volumes up to a spatial size of 2.4 fm at a lattice spacing of 0.148 fm. The pion form factors in the space-like region are determined for pion masses down to 340 MeV.
Ellis, Ronald J.; Yugo, James J.; Frankle, S. C. (Stephanie C.); Little, R. C. (Robert C.)
2003-01-01T23:59:59.000Z
A project was undertaken to assess the MENDF5 and MENDF6 nuclear data libraries through the analysis of 86 critical assembly benchmarks using the LANL discrete ordinates transport code PARTISN. As an initial analysis of the effects of some limitations in the MENDF libraries, this current work assesses differences in k,,a calculations between the PARTISN cases (with MENDF5 and MENDF6 nuclear data libraries) and MCNP cases, and compares these results to the experimental data.
Different convection models in ATLAS
Barry Smalley
2005-09-19T23:59:59.000Z
Convection is an important phenomenon in the atmospheres of A-type and cooler stars. A description of convection in ATLAS models is presented, together with details of how it is specified in model calculations. The effects of changing the treatment of convection on model structures and how this affects observable quantities are discussed. The role of microturbulence is examined, and its link to velocity fields within the atmosphere. Far from being free parameters, mixing-length and microturbulence should be constrained in model calculations.
Calculation of Heating Values for the High Flux Isotope Reactor
Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL
2012-01-01T23:59:59.000Z
Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.
Density functional theory and evolution algorithm calculations of elastic properties of AlON
Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)
2014-01-14T23:59:59.000Z
Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.
Practical calculation of amplitudes for electron-impact ionization
McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.
2001-02-01T23:59:59.000Z
An integral expression that is formally valid only for short-range potentials is applied to the problem of calculating the amplitude for electron-impact ionization. It is found that this expression provides a practical and accurate path to the calculation of singly differential cross sections for electron-impact ionization. Calculations are presented for the Temkin-Poet and collinear models for ionization of hydrogen by electron impact. An extension of the finite-element approach using the discrete-variable representation, appropriate for potentials with discontinuous derivatives like the Temkin-Poet interaction, is also presented.
CRC handbook of nuclear reactors calculations. Vol. II
Ronen, Y.
1986-01-01T23:59:59.000Z
This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.
Relativistic mean field calculations in neutron-rich nuclei
Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)
2014-08-14T23:59:59.000Z
Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.
The Use of Graphics Calculator in a Matriculation Statistics Classroom: A Malaysian Perspective
Krishnan, Saras; Idris, Noraini
2013-01-01T23:59:59.000Z
mathematics: Why graphics calculator? Proceedings of the 2Learning statistics with graphics calculator: A case study.Learning statistics with graphics calculator: Students’
Water-thinnable polymers for durable coatings for different materials
Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)
2014-05-15T23:59:59.000Z
The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.
Calculation of Accurate Hexagonal Discontinuity Factors for PARCS
Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.
2007-11-01T23:59:59.000Z
In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.
Protein Thermostability Calculations Using Alchemical Free Energy Simulations
de Groot, Bert
Protein Thermostability Calculations Using Alchemical Free Energy Simulations Daniel Seeliger by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem- ical free energy simulations, such as free energy perturbation or thermodynamic integration
Dose Rate Calculations for Rotary Mode Core Sampling Exhauster
Foust, D J
2000-01-01T23:59:59.000Z
This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.
Reactor physics calculation of BWR fuel bundles containing gadolinia
Morales, Diego
1977-01-01T23:59:59.000Z
A technique for the calculation of the neutronic behavior of BWR fuel bundles has been developed and applied to a Vermont Yankee fuel bundle. The technique is based on a diffusion theory treatment of the bundle, with ...
A computer program for HVDC converter station RF noise calculations
Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)
1994-04-01T23:59:59.000Z
HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.
D0 Silicon Upgrade: Control Dewar Valve Calculations
Rucinski, Russ; /Fermilab
1995-10-20T23:59:59.000Z
This engineering note documents the calculations that were done to support the valve size selection for the magnet flow control valve, EVMF in the solenoid control dewar. The size selected was a control valve with a Cv = 0.32.
AIM: Web-Based, Residential Energy Calculator for Homeowners
Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.
This paper discusses AIM, or Assess, Improve, Measure. AIM is an energy efficiency calculator for existing residences that has been developed to provide homeowners, realtors and builders with a method to rate the energy efficiency of an existing...
THE APPLICATION OF FIXED AND RANDOM ERROR TO SHIPPER/RECEIVER DIFFERENCES
B. G. SCOTT
2001-06-01T23:59:59.000Z
In order to determine if a statistically significant difference exists between shipper and receiver measurements, a statistical combination of the shipper's and receiver's limit-of-error (LOE) is calculated to determine the shipper/receiver limit-of-error, LOES/R. The shipper's and receiver's LOE may possess random and systematic components. Depending on the interpretation of the systematic and random components, the determination of the LOES/R can be performed by several different calculational methods. These calculational methods and their associated underlying assumptions are reviewed in the context of the LANL shipper receiver program. This paper, by presenting the assumptions that form the basis of a site-specific shipper/receiver difference calculation, can assist those individuals responsible for calculating LOES/R.
Statewide Air Emissions Calculations from Wind and Other Renewable
Haberl, Jeff; Baltazar, Juan Carlos; Bahman, Yazdani; Claridge, David; Mao, Chunliu; Sandeep, Kota
ESL-TR-13-07-01 STATEWIDE AIR EMISSIONS CALCULATIONS FROM WIND AND OTHER RENEWABLES SUMMARY REPORT A Report to the Texas Commission on Environmental Quality For the Period September 2012 – July 2013 Jeff Haberl... report, “Statewide Emissions Calculations From Wind and Other Renewables,” as required by the 79th Legislature. This work has been performed through a contract with the Texas Environmental Research Consortium (TERC). In this work the ESL is required...
Strategy Guideline: Accurate Heating and Cooling Load Calculations
Burdick, A.
2011-06-01T23:59:59.000Z
This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.
Improved load models for multi-area reliability calculations
Pathak, Sanjesh
1992-01-01T23:59:59.000Z
IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SANJESH PATHAK Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Electrical Engineering IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SAN JESH PATHAK Approved as to style and content by: Chanan Singh (Chair of Committee) Prasad Enjeti (Member) Ces . Mal, e...
Reservoir rock-property calculations from thin section measurements
Sneed, David Richard
1988-01-01T23:59:59.000Z
RESERVOIR ROCK-PROPERTY CALCULATIONS FROM THIN SECTION MEASUREMENTS A Thesis by DAVID RICHARD SNEED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1988 Major Subject: Geology RESERVOIR ROCK-PROPERTY CALCULATIONS FROM THIN SECTION MEASUREMENTS A Thesis by DAVID RICHARD SNEED Approved as to style and content by: Robert R. Berg (Chair of Committee) ~ c(. Thomas T. Tieh (Member...
Scoping calculations of power sources for nuclear electric propulsion
Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)
1994-05-01T23:59:59.000Z
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.
CRC handbook of nuclear reactors calculations. Vol. I
Ronen, Y.
1986-01-01T23:59:59.000Z
This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described.
Water coning calculations for vertical and horizontal wells
Yang, Weiping
1990-01-01T23:59:59.000Z
Breakthrough Time WOR after Breakthrough RATE SENSITIVITY 8 12 13 16 WATER CONING CALCULATIONS FOR HIGH MOBILITY RATIOS . . 19 Method of Developing Correlations Correlations for a Vertical Well Correlations for a Horizontal Well Discussion 19 26... APPENDIX E: BASE CASE AND SIMULATION RUNS FOR HORIZONTAL WELLS 98 APPENDIX F: TEST CASES AND RESULTS FOR HORIZONTAL WELLS 100 APPENDIX G: ADDINGTON'S METHOD APPENDIX H: CALCULATION OF HEIGHT h~ APPENDIX I: BASE CASE AND SIMULATION RUN SUMMARY...
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01T23:59:59.000Z
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Goddard III, William A.
Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models methodologies make systematic errors in the computed free energies because of the incorrect accounting consideration. We analyze two different thermodynamic cycles for calculating the solvation free energies
DemaziĂ¨re, Christophe
Comparative study of 2-group P1 and diffusion theories for the calculation of the neutron noise of the neutron flux around its mean value, is calculated in 2-group P1 and diffusion theories for a 2-region slab reactor using Green's function technique. The applicability of diffusion theory for different types
Formal Management Review of the Safety Basis Calculations Noncompliance
Altenbach, T J
2008-06-24T23:59:59.000Z
In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.
Tzanos, C.P.; Adamantiades, A.G.; Hanan, N.A.
1983-12-01T23:59:59.000Z
A comparative assessment of the core degradation frequency due to internal accident initiators between a typical large liquid-metal fast breeder reactor (LMFBR) design and pressurized water reactors (PWRs) has been performed. For the PWR system, existing analyses have been utilized. For the reference LMFBR, an extensive analysis has been performed for two accident initiators, i.e., loss of off-site power and loss of main feedwater. Based on this analysis an estimate of about1 X 10/sup -6//reactor X yr has been obtained for the core degradation frequency of the reference LMFBR. This estimate is significantly smaller than the PWR core degradation frequency ( about 6 X 10/sup -5//yr). A sensitivity analysis shows that the parameters having the largest impact on the unavailability of decay heat removal are (a) for the ''loss of off-site power'' initiator: human error and failure to restore off-site power, and (b) for the ''loss of main feedwater'' initiator: the leakage rates of the passive decay heat removal system and the adoption of the policy to repair the Na-NaK heat exchanger only during normal shutdowns. The results indicate that the LMFBR system has the potential of higher resistance than the PWR system to the accident initiators considered. The lower core degradation frequency estimated for the LMFBR system is due to the presence of two redundant and diverse reactor shutdown systems, with a self-actuated feature included in one of them, the incorporation of a passive decay heat removal system, and the significantly lower sensitivity of the reference LMFBR to primary system pipe breaks.
Electromagnetic mass difference on the lattice
Yusuke Namekawa; Yoshio Kikukawa
2005-09-24T23:59:59.000Z
We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.
Beta-delayed fission and neutron emission calculations for the actinide cosmochronometers
Meyer, B.S.; Howard, W.M.; Mathews, G.J.; Takahashi, K.; Moeller, P.; Leander, G.A.
1989-05-01T23:59:59.000Z
The Gamow-Teller beta-strength distributions for 19 neutron-rich nuclei, including ten of interest for the production of the actinide cosmochronometers, are computed microscopically with a code that treats nuclear deformation explicitly. The strength distributions are then used to calculate the beta-delayed fission, neutron emission, and gamma deexcitation probabilities for these nuclei. Fission is treated both in the complete damping and WKB approximations for penetrabilities through the nuclear potential-energy surface. The resulting fission probabilities differ by factors of 2 to 3 or more from the results of previous calculations using microscopically computed beta-strength distributions around the region of greatest interest for production of the cosmochronometers. The indications are that a consistent treatment of nuclear deformation, fission barriers, and beta-strength functions is important in the calculation of delayed fission probabilities and the production of the actinide cosmochronometers. Since we show that the results are very sensitive to relatively small changes in model assumptions, large chronometric ages for the Galaxy based upon high beta-delayed fission probabilities derived from an inconsistent set of nuclear data calculations must be considered quite uncertain.
Tahmasebi Birgani, Mohamad J. [Department of Radiation Therapy, Golestan Hospital, JondiShapour University of Medical Science, Ahvaz (Iran, Islamic Republic of); Department of Medical Physics, JondiShapour University of Medical Sciences, Ahvaz (Iran, Islamic Republic of); Chegeni, Nahid, E-mail: nchegen@yahoo.com [Department of Medical Physics, JondiShapour University of Medical Sciences, Ahvaz (Iran, Islamic Republic of); Zabihzadeh, Mansoor; Hamzian, Nima [Department of Medical Physics, JondiShapour University of Medical Sciences, Ahvaz (Iran, Islamic Republic of)
2014-04-01T23:59:59.000Z
Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18 MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.
The first-principle coupled calculations using TMCC and CFX for the pin-wise simulation of LWR
Li, L.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ., Liuqing Building, Beijing, 100084 (China)
2012-07-01T23:59:59.000Z
The coupling of neutronics and thermal-hydraulics plays an important role in the reactor safety, core design and operation of nuclear power facilities. This paper introduces the research on the coupling of Monte Carlo method and CFD method, specifically using TMCC and CFX. The methods of the coupling including the coupling approach, data transfer, mesh mapping and transient coupling scheme are studied firstly. The coupling of TMCC and CFX for the steady state calculations is studied and described for the single rod model and the 3 x 3 Rod Bundle model. The calculation results prove that the coupling method is feasible and the coupled calculation can be used for steady state calculations. However, the oscillation which occurs during the coupled calculation indicates that this method still needs to be improved for the accuracy. Then the coupling for the transient calculations is also studied and tested by two cases of the steady state and the lost of heat sink. The preliminary results of the transient coupled calculations indicates that the transient coupling with TMCC and CFX is able to simulate the transients but instabilities are occurring. It is also concluded that the transient coupling of TMCC and CFX needs to be improved due to the limitation of computational resource and the difference of time scales. (authors)
514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the
Handbook--Fundamentals (ASHRAE 1997) and the Cooling and Heating Load Calculation Manual (Mc514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are Load Calculation Methods (942-RP)" are also given. INTRODUCTION Design cooling load calculation
Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States)] [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States)] [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States)] [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)
2013-11-14T23:59:59.000Z
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges ?5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ?mol{sup ?1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ?mol{sup ?1}). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pK{sub a} and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
Solar Reflectance Index Calculation Worksheet Instructions Usage: The purpose of this calculator is to enable contractors and homeowners to quickly and accurately calculate the solar reflectance product exceeds the Building Energy Efficiency Standards requirement for either the aged solar
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01T23:59:59.000Z
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Kevin Christiansen "This week I got started on different project than I've
Zanibbi, Richard
solar panels from broken calculator panels), and other projects relating on different project than I've been working on in previous weeks. I began." Zach Kruchoski "This week I organized and typed up a paper regarding running
Benchmark calculations for elastic fermion-dimer scattering
Shahin Bour; H. -W. Hammer; Dean Lee; Ulf-G. Meißner
2012-06-08T23:59:59.000Z
We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.
Measured and Monte Carlo calculated k{sub Q} factors: Accuracy and comparison
Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Ottawa Medical Physics Institute (OMPI), Ottawa Carleton Institute for Physics, Carleton University Campus, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Ottawa Medical Physics Institute (OMPI), Ottawa Carleton Institute for Physics, Carleton University Campus, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)
2011-08-15T23:59:59.000Z
Purpose: The journal Medical Physics recently published two papers that determine beam quality conversion factors, k{sub Q}, for large sets of ion chambers. In the first paper [McEwen Med. Phys. 37, 2179-2193 (2010)], k{sub Q} was determined experimentally, while the second paper [Muir and Rogers Med. Phys. 37, 5939-5950 (2010)] provides k{sub Q} factors calculated using Monte Carlo simulations. This work investigates a variety of additional consistency checks to verify the accuracy of the k{sub Q} factors determined in each publication and a comparison of the two data sets. Uncertainty introduced in calculated k{sub Q} factors by possible variation of W/e with beam energy is investigated further. Methods: The validity of the experimental set of k{sub Q} factors relies on the accuracy of the NE2571 reference chamber measurements to which k{sub Q} factors for all other ion chambers are correlated. The stability of NE2571 absorbed dose to water calibration coefficients is determined and comparison to other experimental k{sub Q} factors is analyzed. Reliability of Monte Carlo calculated k{sub Q} factors is assessed through comparison to other publications that provide Monte Carlo calculations of k{sub Q} as well as an analysis of the sleeve effect, the effect of cavity length and self-consistencies between graphite-walled Farmer-chambers. Comparison between the two data sets is given in terms of the percent difference between the k{sub Q} factors presented in both publications. Results: Monitoring of the absorbed dose calibration coefficients for the NE2571 chambers over a period of more than 15 yrs exhibit consistency at a level better than 0.1%. Agreement of the NE2571 k{sub Q} factors with a quadratic fit to all other experimental data from standards labs for the same chamber is observed within 0.3%. Monte Carlo calculated k{sub Q} factors are in good agreement with most other Monte Carlo calculated k{sub Q} factors. Expected results are observed for the sleeve effect and the effect of cavity length on k{sub Q}. The mean percent differences between experimental and Monte Carlo calculated k{sub Q} factors are -0.08, -0.07, and -0.23% for the Elekta 6, 10, and 25 MV nominal beam energies, respectively. An upper limit on the variation of W/e in photon beams from cobalt-60 to 25 MV is determined as 0.4% with 95% confidence. The combined uncertainty on Monte Carlo calculated k{sub Q} factors is reassessed and amounts to between 0.40 and 0.49% depending on the wall material of the chamber. Conclusions: Excellent agreement (mean percent difference of only 0.13% for the entire data set) between experimental and calculated k{sub Q} factors is observed. For some chambers, k{sub Q} is measured for only one chamber of each type--the level of agreement observed in this study would suggest that for those chambers the measured k{sub Q} values are generally representative of the chamber type.
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling
2014-06-01T23:59:59.000Z
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ?PBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ?PBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of ?{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.
Hickman, R.; Reitter, T.
1985-01-01T23:59:59.000Z
The purpose of our investigation was to determine if the rapid progression of fire to flashover conditions in a furnished room, observed in a 1953 nuclear weapons test at the Nevada Test Site (the Encore Event), might be typical behavior rather than an aberration. If flashover under such conditions is indeed likely, this phenomenon is worth pursuing in view of the increased threat to buildings and human life from possible large-scale fires. We placed special emphasis on fires that occurred in modern rooms, i.e., ones furnished with upholstery and drapery materials made from synthetic polymers. Examination of photochemical processes showed them to be an unlikely explanation, either in Encore or in the future. Our calculation of rapid radiant-heating behavior of a few materials demonstrated that fabrics and fabric-covered foams would exceed their autoignition temperature when exposed to a 25-cal/cm/sup 2/ fluence from a 1-Mt air burst weapon. Because synthetic polymers have higher heating values and release heat faster during combustion than do the cellulosics used in the Encore experiment, early flashover should not be unexpected in contemporary households. However, the far-field thermal fluence required would be higher because of the absorption of thermal energy by windows and window coverings. Because of the complexity of the problem, carefully planned, full-scale experiments will be needed to finally answer the question. 39 refs., 9 figs., 8 tabs.
Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR
Fish, B.R.
2001-08-07T23:59:59.000Z
Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.
Benchmark data for validating irradiated fuel compositions used in criticality calculations
Bierman, S.R.; Talbert, R.J.
1994-10-01T23:59:59.000Z
To establish criticality safety margins utilizing burnup credit in the storage and transport of spent reactor fuels requires a knowledge of the uncertainty in the calculated fuel composition used in making the reactivity assessment. To provide data for validating such calculated burnup fuel compositions, radiochemical assays have been obtained as part of the United States Department of Energy From-Reactor Cask Development Program. Assay results and associated operating histories on the initial three samples analyzed in this effort are presented. The three samples were taken from different axial regions of a Pressurized Water Reactor fuel rod and represent radiation exposures of about 37, 27, and 44 GWd/MTU. The data are presented in a benchmark type format to facilitate identification/referencing and computer code input.
Sun, Shih-Jye [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Ken-Huang; Li, Jia-Yun [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Ju, Shin-Pon, E-mail: jushin-pon@mail.nsysu.edu.tw [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)
2014-10-07T23:59:59.000Z
The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.
Morris-Sherwood, Betty Jeanne
1981-01-01T23:59:59.000Z
-Hall molecular orbital calculations are reported for (n -CSH5)M(NO)&X where M=Cr, W and X=C1, Br, I and for [(n -CSH5) 5 5 M(CO)&]& where M=Cr, Mo, W. These compounds are derivatives of two related fragments, (n -CSH5)M(NO)2 and (q -CSH5)M(CO)B. The first 5 5... are assigned by comparison with the Fenske-Hall molecular orbital calculations on the chromium and molybdenum species. The difference in the (n -C H )-M-M angle between M=Cr and M=Mo is best explained 5 5 5 as steric crowding between C5H5 and CO...
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
Jia, Weile, E-mail: jiawl@sccas.cn [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China) [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China); Fu, Jiyun, E-mail: fujy@sccas.cn [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China) [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China); Cao, Zongyan, E-mail: zycao@sccas.cn [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China)] [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China); Wang, Long, E-mail: wangl@sccas.cn [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China)] [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China); Chi, Xuebin, E-mail: chi@sccas.cn [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China)] [Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No. 4 South 4th Street, ZhongGuanCun, Beijing 100190 (China); Gao, Weiguo, E-mail: wggao@fudan.edu.cn [School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai 200433 (China) [School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai 200433 (China); MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Road Mail Stop 50F Berkeley, CA 94720 (United States)] [Material Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Road Mail Stop 50F Berkeley, CA 94720 (United States)
2013-10-15T23:59:59.000Z
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP.
Methods, algorithms and computer codes for calculation of electron-impact excitation parameters
Bogdanovich, P; Stonys, D
2015-01-01T23:59:59.000Z
We describe the computer codes, developed at Vilnius University, for the calculation of electron-impact excitation cross sections, collision strengths, and excitation rates in the plane-wave Born approximation. These codes utilize the multireference atomic wavefunctions which are also adopted to calculate radiative transition parameters of complex many-electron ions. This leads to consistent data sets suitable in plasma modelling codes. Two versions of electron scattering codes are considered in the present work, both of them employing configuration interaction method for inclusion of correlation effects and Breit-Pauli approximation to account for relativistic effects. These versions differ only by one-electron radial orbitals, where the first one employs the non-relativistic numerical radial orbitals, while another version uses the quasirelativistic radial orbitals. The accuracy of produced results is assessed by comparing radiative transition and electron-impact excitation data for neutral hydrogen, helium...
Bottom-quark fragmentation: comparing results from tuned event generators and resummed calculations
Gennaro Corcella; Volker Drollinger
2005-11-23T23:59:59.000Z
We study bottom-quark fragmentation in e+e- annihilation, top and Higgs decay H -> b bbar, using Monte Carlo event generators, as well as calculations, based on the formalism of perturbative fragmentation functions, which resum soft- and collinear-radiation effects in the next-to-leading logarithmic approximation. We consider the PYTHIA and HERWIG generators, and implement matrix-element corrections to the parton shower simulation of the H -> b bbar process in HERWIG. We tune the Kartvelishvili, string and cluster models to B-hadron data from LEP and SLD, and present results in both x_B and moment spaces. The B-hadron spectra yielded by HERWIG, PYTHIA and resummed calculations show small discrepancies, which are due to the different approaches and models employed and to the quality of the fits to the e+e- data.
Ab-initio calculations on two-electron ions in strongly coupled plasma environment
Bhattacharyya, S; Mukherjee, T K
2015-01-01T23:59:59.000Z
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...
Can fusion coefficients be calculated from the depth rule ?
A. N. Kirillov; P. Mathieu; D. Senechal; M. Walton
1992-09-28T23:59:59.000Z
The depth rule is a level truncation of tensor product coefficients expected to be sufficient for the evaluation of fusion coefficients. We reformulate the depth rule in a precise way, and show how, in principle, it can be used to calculate fusion coefficients. However, we argue that the computation of the depth itself, in terms of which the constraints on tensor product coefficients is formulated, is problematic. Indeed, the elements of the basis of states convenient for calculating tensor product coefficients do not have a well-defined depth! We proceed by showing how one can calculate the depth in an `approximate' way and derive accurate lower bounds for the minimum level at which a coupling appears. It turns out that this method yields exact results for $\\widehat{su}(3)$ and constitutes an efficient and simple algorithm for computing $\\widehat{su}(3)$ fusion coefficients.
On calculation of microlensing light curve by gravitational lens caustic
M. B. Bogdanov
2001-02-02T23:59:59.000Z
For an analysis of microlensing observational data in case of binary gravitational lenses as well as for an interpretation of observations of high magnification events in multiple images of a lensed quasar it is necessary to calculate for a given source the microlensing light curve by a fold caustic. This problem comes to the numerical calculation of a singular integral. We formulated the sufficient condition of a convergence of the integral sum for this singular integral. The strictly approach to the problem of a comparison of model results with the unequally sampled observational data consists in calculation of the model light curve in equidistant points of the canonical dissection of the integration segment and a following interpolation of its values at the moments of observations.
Gender Differences in Seeking Help.
Jackson, Jeff
2011-01-01T23:59:59.000Z
??Gender differences in willingness to seek help were examined in this study. Males often appear to not seek help from others, especially from a professional,… (more)
Individual differences in sentence processing
Troyer, Melissa L
2012-01-01T23:59:59.000Z
This thesis aims to elucidate shared mechanisms between retrieval in sentence processing and memory retrieval processes in nonlinguistic domains using an individual differences approach. Prior research in individual ...
Building a World of Difference
Broader source: Energy.gov [DOE]
Waste?to?Energy Roadmapping Workshop Building a World of Difference Presentation by Patricia Scanlan, Director of Residuals Treatment Technologies, Black & Veatch
Flow conditions of fresh mortar and concrete in different pipes
Jacobsen, Stefan, E-mail: stefan.jacobsen@ntnu.n [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway); Haugan, Lars; Hammer, Tor Arne [SINTEF Byggforsk AS Building and Infrastructure, Trondheim (Norway); Kalogiannidis, Evangelos [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway)
2009-11-15T23:59:59.000Z
The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.
Evaluation and validation of criticality codes for fuel dissolver calculations
Santamarina, A.; Smith, H.J. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)); Whitesides, G.E. (Oak Ridge National Lab., TN (United States))
1991-01-01T23:59:59.000Z
During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to {plus minus} 12,000 pcm in the realistic fuel dissolver exercise n{degrees} 19 proposed by BNFL, and to {plus minus} 25,000 pcm in the benchmark n{degrees} 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P{sub IC} method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for {sup 238}U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs.
Kim, Philip
Tooling Factor Calculation In order to yield a more accurate indication of a deposited film's thickness, the rate monitor's tooling factor attempts to compensate for necessary differences member before changing an established tooling factor. 1. Position a sample, masked on a half
RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT
D. Musat
2005-03-07T23:59:59.000Z
This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.
Phenomenological method of calculating microwave longitudinal coupling impedances
Giordano, S.; Votruba, J.
1980-05-01T23:59:59.000Z
A previous paper described an investigation of the longitudinal coupling impedance of the TM/sub olm/ modes in the ISA vacuum chamber. A method was developed for calculating these impedances by using the data derived from pertubation measurements. This method gave accurate results between 2.6 and 2.8 GHz, but above 2.8 GHz measurements became difficult because of the mixing of the TM/sub olm/ modes with other modes. This paper presents a phenomenological approach for calculating these impedances based on previously developed concepts.
Quantum statistical calculation of cluster abundances in hot dense matter
Gerd Ropke
2014-07-01T23:59:59.000Z
The cluster abundances are calculated from a quantum statistical approach taking into account in-medium corrections. For arbitrary cluster size the self-energy and Pauli blocking shifts are considered. Exploratory calculations are performed for symmetric matter at temperature $T=5$ MeV and baryon density $\\varrho=0.0156$ fm$^{-3}$ to be compared with the solar element distribution. It is shown that the abundances of weakly bound nuclei with mass number $4
Equation calculates activated carbon's capacity for adsorbing pollutants
Yaws, C.L.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))
1995-02-13T23:59:59.000Z
Adsorption on activated carbon is an effective method for removing volatile organic compound (VOC) contaminants from gases. A new, simple equation has been developed for calculating activated carbon's adsorption capacity as a function of the VOC concentration in the gas. The correlation shows good agreement with experimental results. Results from the equation are applicable for conditions commonly encountered in air pollution control techniques (25 C, 1 atm). The only input parameters needed are VOC concentrations and a table of correlation coefficients for 292 C[sub 8]-C[sub 14] compounds. The table is suitable for rapid engineering usage with a personal computer or hand calculator.
Recent Advances in Shell Evolution with Shell-Model Calculations
Yutaka Utsuno; Takaharu Otsuka; Yusuke Tsunoda; Noritaka Shimizu; Michio Honma; Tomoaki Togashi; Takahiro Mizusaki
2014-09-16T23:59:59.000Z
Shell evolution in exotic nuclei is investigated with large-scale shell-model calculations. After presenting that the central and tensor forces produce distinctive ways of shell evolution, we show several recent results: (i) evolution of single-particle-like levels in antimony and cupper isotopes, (ii) shape coexistence in nickel isotopes understood in terms of configuration-dependent shell structure, and (iii) prediction of the evolution of the recently established $N=34$ magic number towards smaller proton numbers. In any case, large-scale shell-model calculations play indispensable roles in describing the interplay between single-particle character and correlation.
Napier, B.A.
1992-12-01T23:59:59.000Z
A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 003) examined the contributions of numerous radionuclides to dose via environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk (calculation 001). Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in Calculation 001.
Hwang, R.N.; Toppel, B.J.; Henryson, H. II
1980-10-01T23:59:59.000Z
Motivated by a need for an economical yet rigorous tool which can address the computation of the structural material Doppler effect, an extremely efficient improved RABANL capability has been developed utilizing the fact that the Doppler broadened line shape functions become essentially identical to the natural line shape functions or Lorentzian limits beyond about 100 Doppler widths from the resonance energy, or when the natural width exceeds about 200 Doppler widths. The computational efficiency has been further enhanced by preprocessing or screening a significant number of selected resonances during library preparation into composition and temperature independent smooth background cross sections. The resonances which are suitable for such pre-processing are those which are either very broad or those which are very weak. The former contribute very little to the Doppler effect and their self-shielding effect can readily be averaged into slowly varying background cross section data, while the latter contribute very little to either the Doppler or to self-shielding effects. To illustrate the accuracy and efficiency of the improved RABANL algorithms and resonance screening techniques, calculations have been performed for two systems, the first with a composition typical of the STF converter region and the second typical of an LMFBR core composition. Excellent agreement has been found for RABANL compared to the reference Monte Carlo solution obtained using the code VIM, and improved results have also been obtained for the narrow resonance approximation in the ultra-fine-group option of MC/sup 2/-2.
James, Scott; Cohan, Alexander [Sandia National Laboratories, Albuquerque, NM] [Sandia National Laboratories, Albuquerque, NM
2005-08-01T23:59:59.000Z
Given pre-existing Groundwater Modeling System (GMS) models of the Horonobe Underground Research Laboratory (URL) at both the regional and site scales, this work performs an example uncertainty analysis for performance assessment (PA) applications. After a general overview of uncertainty and sensitivity analysis techniques, the existing GMS site-scale model is converted to a PA model of the steady-state conditions expected after URL closure. This is done to examine the impact of uncertainty in site-specific data in conjunction with conceptual model uncertainty regarding the location of the Oomagari Fault. A heterogeneous stochastic model is developed and corresponding flow fields and particle tracks are calculated. In addition, a quantitative analysis of the ratio of dispersive to advective forces, the F-ratio, is performed for stochastic realizations of each conceptual model. Finally, a one-dimensional transport abstraction is modeled based on the particle path lengths and the materials through which each particle passes to yield breakthrough curves at the model boundary. All analyses indicate that accurate characterization of the Oomagari Fault with respect to both location and hydraulic conductivity is critical to PA calculations. This work defines and outlines typical uncertainty and sensitivity analysis procedures and demonstrates them with example PA calculations relevant to the Horonobe URL. Acknowledgement: This project was funded by Japan Nuclear Cycle Development Institute (JNC). This work was conducted jointly between Sandia National Laboratories (SNL) and JNC under a joint JNC/U.S. Department of Energy (DOE) work agreement. Performance assessment calculations were conducted and analyzed at SNL based on a preliminary model by Kashima, Quintessa, and JNC and include significant input from JNC to make sure the results are relevant for the Japanese nuclear waste program.
Introduzione Matlab Carla Guerrini 1 IEEE-754 Calculators
Guerrini, Carla
1 Introduzione Matlab Carla Guerrini 1 IEEE-754 Calculators http://babbage.cs.qc.edu/IEEE-754 and Making an Impact http://www.ima.umn.edu/newsltrs/updates/summer03/ Introduzione Matlab Carla Guerrini 2 Introduzione all'ambiente Matlab #12;2 Introduzione Matlab Carla Guerrini 3 Riferimenti bibliografici Â· Guida
MATLAB Tutorial Getting Started with Calculations, Graphing and Programming
Weinberger, Hans
MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner University of Minnesota Thursday, August 30, 2012 #12;Outline 1 MATLAB installation NRK (University of Minnesota) MATLAB 2012.08.30 2 / 28 #12;Outline 1 MATLAB installation 2 The MATLAB UI NRK (University
Structural Analysis and Design Calculations for Hogan Project
Mobasher, Barzin
Live Load Load Case 4: DL + WL With Cp = + 0.9 Load Case 5: DL + WL With Cp = - 0.3 The following. Introduction 2. Load calculations a. Dead Load b. Live Load c. Snow Load d. Wind Load e. Summary 3. Finite Element Model Analysis a. Element Description b. Loads c. Analysis i. Load Case 2 Truss Substructure ii
MHD Stability Calculations of High-Quasi-Axisymmetric Stellarators
because the net toroidal current is zero or very small. However, in high-beta compact stellaratorsMHD Stability Calculations of High- Quasi-Axisymmetric Stellarators G. Y. Fu, L. P. Ku, N. Pomphrey the external kink modes. Most previous work has assumed cylindrical geometry and zero beta. In this work
MHD Stability Calculations of High-Quasi-Axisymmetric Stellarators
because the net toroidal current is zero or very small. However, in high-beta compact stellaratorsMHD Stability Calculations of High- Quasi-Axisymmetric Stellarators G. Y. Fu, L. P. Ku, N. Pomphrey kink modes. Most previous work has assumed cylindrical geometry and zero beta. In this work, extensive
Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary
windings occurs at the level of individual turns, the method could be applied, but its advantages are lessComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics
Wind energy calculated from SAR and scatterometer satellite data
. Â· Offshore wind resources estimated from SAR Â· On WASP Â· Wind indexing based on scatterometer Â· Wake effects footprint 62 m footprint Wind field maps from SAR are valid for 10 m height #12;7 Slide no. 62 m 10 m Upwind1 Slide no. 4 Wind energy calculated from SAR and scatterometer satellite data Charlotte Bay
Adaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets
Averbuch, Amir
Description Generating a "good" discrete representation for continuous operators is one of the basic problemsAdaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets Amir rather than in the original physical space can speed up the performance of the sparse solver by a factor
Gas-storage calculations yield accurate cavern, inventory data
Mason, R.G. (Transcontinental Gas Pipeline Corp., Houston, TX (US))
1990-07-02T23:59:59.000Z
This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.
Calculation of dose to soft tisse from implanted beta sources
Dauffy, Lucile
1998-01-01T23:59:59.000Z
for beta dose calculations are reported in the literature. Monte Carlo codes are very often used but are cumbersome. A Monte Carlo code can be used to model the exact path and energies that a particle assumes as it passes through a medium using random...
Calculating Very Rough Market Share Using the Canadian Business Database
Thompson, Michael
Calculating Very Rough Market Share Using the Canadian Business Database If you cannot find market market share using the company information provided in the Canadian Business Database (CBD), an online - it should be considered a last resort for this information. STEP 1: ACCESS THE CANADIAN BUSINESS DATABASE 1a
Quantum Monte Carlo calculations of symmetric nuclear matter
Stefano Gandolfi; Francesco Pederiva; Stefano Fantoni; Kevin E. Schmidt
2007-04-13T23:59:59.000Z
We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon--nucleon interactions by means of Auxiliary Field Diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and can provide quantitative understanding of problems in nuclear structure and astrophysics.
Improved Calculation of Core Loss With Nonsinusoidal Waveforms
. Comparison with experimental measure- ments in MnZn ferrite shows improved accuracy. The result may be op machines, transformers, inductors, and other static reactors, loss in the magnetic material is often pre of the flux density. It can be directly calculated from geometry and bulk resistivity in ferrites, and
Empirical Estimation of Biota Exposure Range for Calculation
for species lacking home range information Establish relationships between biota and sediment for BAF/BSAF calculation Identify potential applications for future sediment quality assessments #12;#12;#12;#12;BSAF = Ct.28 1 10 100 1000 10000 1 10 100 1000 10000 Sediment DDT (ug/kg dry) TissueDDT(ug/kgdry) BAF BSAF #12
On the ‘‘direct’’ calculation of thermal rate constants
Thompson, Ward H.; Miller, William H.
1995-03-01T23:59:59.000Z
required to obtain C f,s (t) is evaluated by a Lanczos iteration procedure which calculates only the nonzero eigenvalues. The propagation in complex time, t c =t?i??/2, is carried out using a Chebychev expansion. This method is seen to be both accurate...
Bohr Model Calculations for Atoms and Ions Frank Rioux
Rioux, Frank
in doing energy audits, carrying out simple variational calculations and critically analyzing := V12 R1( ) 1 17 R1 := #12;The next step is to do an energy audit for the atom or ion under Department of Chemistry College of St. Benedict| St. Johns University
A Lattice Energy Calculation for LiH Frank Rioux
Rioux, Frank
energy operators for each of the electrons, and an electron-electron potential energy operator. HLi 1 2 r d d 2 1 r1 1 r2 1 r12 = When the trial wavefunction and the appropriate energy operator is usedA Lattice Energy Calculation for LiH Frank Rioux Lithium hydride is a white crystalline solid
Alternative similarity renormalization group generators in nuclear structure calculations
Nuiok M. Dicaire; Conor Omand; Petr Navratil
2014-08-22T23:59:59.000Z
The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.
GPA CALCULATION GPA = QUALITY POINTS DIVIDED BY QUALITY HOURS
Lawrence, Rick L.
. THIS IS THE TOTAL QUALITY POINTS THAT YOU THINK YOU WILL EARN THIS SEMESTER. TO PLAY WHAT IFGPA CALCULATION WORKSHEET GPA = QUALITY POINTS DIVIDED BY QUALITY HOURS #1 QUALITY HOURS (THROUGH LAST TERM) = __________ #2 QUALITY POINTS (THROUGH LAST TERM) = __________ #3 QUALTIY HOURS CURRENTLY
Calculation of burnup of a black neutron absorber
Yudkevich, M. S., E-mail: umark@adis.vver.kiae.ru [Russian Research Centre Kurchatov Institute (Russian Federation)
2011-12-15T23:59:59.000Z
The procedure of calculation of burnup of fuel and strong neutron absorber in a nuclear reactor is described. The method proposed here makes it possible to avoid difficulties associated with heterogeneous blocking of the absorption cross section. The effectiveness of the method is demonstrated by an example.
Atomic Structure Calculations from the Los Alamos Atomic Physics Codes
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Cowan, R. D.
The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.
Using Graphical Representations to Support the Calculation of Infusion Parameters
Subramanian, Sriram
Using Graphical Representations to Support the Calculation of Infusion Parameters Sandy J. J. Gould in which participants were asked to solve a num- ber of infusion parameter problems that were represented representations transfer to actual workplace settings. Keywords: Graphical reasoning, infusion pumps, re
Fuzzy-probabilistic calculations of water-balance uncertainty
Faybishenko, B.
2009-10-01T23:59:59.000Z
Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.
Patent Citation Analysis: Calculating Science linkage based on Citing Motivation
Menczer, Filippo
1 Patent Citation Analysis: Calculating Science linkage based on Citing Motivation Rui Li used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy
RZ calculations for self shielded multigroup cross sections
Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z. [Commissariat a l'Energie Atomique CEA, Direction de l'Energie Nucleaire, DEN/DM2S/SERMA/LENR, 91191 Gif-sur-Yvette Cedex (France)
2006-07-01T23:59:59.000Z
A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)
Degree Day Calculations Dr. Nikki Rothwell, District Fruit IPM Educator
. For example, if the min/max thermometer indicates a low of 45 degrees F and a high of 75 degrees F F, then 10 degree days would have accumulated. Check your thermometer and make this calculation each toward your target number. Minimum and maximum temperatures should be recorded from a Min/Max thermometer
Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.
2011-01-01T23:59:59.000Z
Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.
Thermonuclear reaction rate of $^{18}$Ne($?$,$p$)$^{21}$Na from Monte-Carlo calculations
P. Mohr; R. Longland; C. Iliadis
2014-12-14T23:59:59.000Z
The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
Thermonuclear reaction rate of $^{18}$Ne($\\alpha$,$p$)$^{21}$Na from Monte-Carlo calculations
Mohr, P; Iliadis, C
2014-01-01T23:59:59.000Z
The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
Weather data for simplified energy calculation methods. Volume IV. United States: WYEC data
Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.
1984-08-01T23:59:59.000Z
The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 23 cities using Weather Year for Energy Calculations (WYEC) source weather data. Considerable overlap is present in cities (21) covered by both the TRY and WYEC data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.
Multigroup calculations using VIM: A user`s guide to ISOVIM
Blomquist, R.N.
1992-09-01T23:59:59.000Z
Monte Carlo calculations have long been used to benchmark more a mate approximate solution methods for reactor physics problems. The power of VIM (ref 1) lies partly in the detailed geometrical representations incorporating the (generally) curved surfaces of combinatorial geometry, and partly in the fine energy detail of pointwise cross sections which are independent of the neutron spectrum. When differences arise between Monte Carlo and deterministic calculations, the question arises, is the error in the multigroup cross sections, in the treatment of transport effects, or in the mesh-based treatment of space in the deterministic calculation? The answers may not be obvious, but may be identified by combining the exact geometry capability of VIM with the multigroup formalism. We can now run VIM in a multigroup mode by producing special VIM Material files which contain point-wise data describing multigroup data with histograms. This forces VIM to solve the multigroup problem with only three small code modifications. P{sub N} scattering is simulated with the usual tabulated angular distributions with 20 equally-sized scattering angle cosine meshes. This document describes the VIM multigroup capability, the procedures for generating multigroup cross sections for VIM, and their use. The multigroup cross section generating code, ISOVIM, is described, and benchmark testing is documented.
Three dimensional neutronics calculation comparison study for a fusion breeder with large channels
Huang, J.H.; Xie, Z.Y.; You, C.L. [Southwestern Inst. of Physics, Chengdu (China)] [and others
1994-12-31T23:59:59.000Z
A tokamak reactor is characterized by a toroidal geometry with large ports and channels. The three dimensional calculation seems necessary for the prediction of the neutronics parameters of the calculation. People have been attempting to simulate the configuration by one dimensional model. Assuming that the neutronics parameters such as tritium breeding ratio depends almost only on the primary 14 MeV neutron number entering the blanket, the following approximate scheme was proposed: {Alpha} = {Sigma}W{sub i}{sm_bullet}{Alpha}{sub i}, where {Alpha} represents the total value of a parameter; {Alpha}{sub i} is a partial value contributed from the i`th part of the blanket and is calculated by a 1-D cylindrical model; W{sub i} is the fusion number entering the i`th part of the blanket through the first wall. This scheme seems reasonable for a pure fusion reactor with similar inboard and outboard blankets, since neutron flux angular distribution is strongly forward and the mutual influence between similar blankets is weak. A study on influence between inboard and outboard blankets showed a rather strong influence between blankets in a fusion breeder, where the partial blankets are quite different in neutronics characteristics. The explanation is that the neutron source from fission and n,2n reactions in the outboard blanket causes considerable neutron leakage through the inner surface when it faces an {open_quote}inferior{close_quote} inboard blanket.
Linear calculations of edge current driven kink modes with BOUT++ code
Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y. [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Snyder, P. B.; Turnbull, A. D. [General Atomics, San Diego, California 92186 (United States); Ma, C. H.; Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); FSC, School of Physics, Peking University, Beijing 100871 (China)
2014-10-15T23:59:59.000Z
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.
Yang, Huazhe [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Biophysics, China Medical University, Shenyang 110001 (China); Liu, Chen [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wan, Peng; Tan, Lili; Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2013-11-01T23:59:59.000Z
Thermodynamical stabilities of four conventional second phases as well as magnesium matrix in bioabsorbable magnesium alloys were investigated theoretically via computer calculation method. Model of individual phase and systems including phase and four water molecular (phase-4H{sub 2}O) were established to simulate the in vitro and in vivo environment. Local orbital density functional theory approach was applied to calculate the total energy for the individual phase and phase-4H{sub 2}O system. The results demonstrated that all the second phases possessed higher phase stability compared with magnesium matrix, but the phase stability was quite different for different types of second phases or second phase-4H{sub 2}O systems. Furthermore, a schematic process of inflammation reaction caused by magnesium alloy implants was proposed for the further evaluation on biocompatibility of different second phases.
Munir, A.; Hensel, O. [Department of Agricultural Engineering,University of Kassel, Nordbahnhofstr. 1 a 37213 Witzenhausen (Germany); Scheffler, W. [Solar Bruecke G.v.Werdenbergstr.6 D-89344 Aislingen (Germany)
2010-08-15T23:59:59.000Z
Scheffler fixed focus concentrators are successfully used for medium temperature applications in different parts of the world. These concentrators are taken as lateral sections of paraboloids and provide fixed focus away from the path of incident beam radiations throughout the year. The paper presents a complete description about the design principle and construction details of an 8 m{sup 2} surface area Scheffler concentrator. The first part of the paper presents the mathematical calculations to design the reflector parabola curve and reflector elliptical frame with respect to equinox (solar declination = 0) by selecting a specific lateral part of a paraboloid. Crossbar equations and their ellipses, arc lengths and their radii are also calculated to form the required lateral section of the paraboloid. Thereafter, the seasonal parabola equations are calculated for two extreme positions of summer and winter in the northern hemisphere (standing reflectors). The slopes of the parabola equations for equinox (solar declination = 0), summer (solar declination = +23.5) and winter (solar declination = -23.5) for the Scheffler reflector (8 m{sup 2} surface area) are calculated to be 0.17, 0.28, and 0.13 respectively. The y-intercepts of the parabola equations for equinox, summer and winter are calculated as 0, 0.54, and -0.53 respectively. By comparing with the equinox parabola curve, the summer parabola is found to be smaller in size and uses the top part of the parabola curve while the winter parabola is bigger in size and uses the lower part of the parabola curve to give the fixed focus. For this purpose, the reflector assembly is composed of flexible crossbars and a frame to induce the required change of the parabola curves with the changing solar declination. The paper also presents the calculation procedure of seasonal parabola equations for standing reflectors in the southern hemisphere as well as for laying reflectors in the northern and southern hemispheres. Highly reflective aluminium sheets are used on the crossbar profiles to complete the concentrator. The reflector is installed at the required site by setting its axis of rotation at an angle equal to the latitude of the site. For daily tracking, these concentrators rotate along an axis parallel to the polar axis of the earth at an angular velocity of one revolution per day with the help of simpler and cheaper self-tracking devices. For seasonal tracking, the reflector rotates at half the solar declination angle with the help of a telescopic clamp mechanism. The design procedure is simple, flexible and does not need any special computational setup, thus offering the prospect of potential application in domestic as well as industrial configurations. (author)
Uncertainties Associated with Theoretically Calculated N2-Broadened Half-Widths of H2O Lines
Gamache, Robert R.
to be calculated theoretically. The accuracy of these calculated values depends on many factors such as the line-shape1 Uncertainties Associated with Theoretically Calculated N2- Broadened Half-Widths of H2O Lines Q-offs used in the theoretical calculations, we have carried out extensive numerical calculations of the N2
Borodkin, P.G.; Borodkin, G.I.; Khrennikov, N.N. [Scientific and Engineering Centre for Nuclear and Radiation Safety SEC NRS, Malaya Krasnoselskaya ul., 2/8, Bld. 5, 107140 Moscow (Russian Federation); Konheiser, J. [Helmholz Zentrum Dresden-Rossendorf HZDR, Postfach 510119, D-01314 Dresden (Germany)
2011-07-01T23:59:59.000Z
This paper deals with calculated and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Neutron activation measurements analyzed in the paper were carried out in an ex-vessel air cavity at different nuclear power plant units with VVER-1000 during different fuel cycles. The time-integrated neutron source distributions used for DORT calculations were prepared via two different approaches based on (a) calculated fuel burnup (standard routine procedure) and (b) in-core measurements by means of self-powered detectors (SPDs) and thermocouples (TCs) (new approach). Considering that fuel burnup distributions in operating VVER may be evaluated now by the use of analytical methods (calculations) only, it is necessary to develop new approaches for the testing and correction of calculated evaluations of a neutron source. The results presented in this paper allow one to consider the reverse task of the alternative estimation of fuel burnup distributions. The proposed approach is based on the adjustment (fitting) of time-integrated neutron source distributions, and thus fuel burnup patterns, in some part of the reactor core, taking into account neutron leakage measurements, neutron-physical calculations, and in-core SPD and TC measurement data. (authors)
Border flow rights and Contracts for differences of differences
Baldick, Ross
marginal price for energy that it delivers to the rest of the system and pays the locational marginal price analogously to "contracts for differences" (CFDs) that are used to hedge locational marginal price variation implementation of the border flow rights model, the owner of a transmission line or lines is paid the locational
Non-Born-Oppenheimer calculations of the BH molecule
Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik
2009-07-30T23:59:59.000Z
Variational calculations employing explicitly correlated Gaussian basis functions have been performed for the ground state of the boron monohydride molecule (BH) and for the boron atom (B). Up to 2000 Gaussians were used for each system. The calculations did not assume the Born-Oppenheimer (BO) approximation. In the optimization of the wave function, we employed the analytical energy gradient with respect to the Gaussian exponential parameters. In addition to the total nonrelativistic energies, we computed scalar relativistic corrections (mass-velocity and Darwin). With those added to the total energies, we estimated the dissociation energy of BH. The non-BO wave functions were also used to compute some expectation values involving operators dependent on the interparticle distances.
Variational calculations of the HT{sup +} rovibrational energies
Bekbaev, A. K. [Al Farabi Kazakh National University, 050012 Almaty (Kazakhstan); Korobov, V. I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dineykhan, M. [Al Farabi Kazakh National University, 050012 Almaty (Kazakhstan); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2011-04-15T23:59:59.000Z
In this Brief Report, we use the exponential explicitly correlated variational basis set of the type exp(-{alpha}{sub n}R-{beta}{sub n}r{sub 1}-{gamma}{sub n}r{sub 2}) to calculate systematically the nonrelativistic bound-state energies for the hydrogen molecular ion HT{sup +}. We perform calculations for the states of the total orbital angular momentum L=0 and 1 with the complete set of vibrational quantum numbers v= 0-23, as well as for the states of L= 2-5 and v= 0-5. The E1 dipole transition moments, which are of importance for the planning of spectroscopic laser experiments, have been obtained as well.
Elastic properties of superconducting MAX phases from first principles calculations
I. R. Shein; A. L. Ivanovskii
2010-06-03T23:59:59.000Z
Using first-principles density functional calculations, a systematic study on the elastic properties for all known superconducting MAX phases (Nb2SC, Nb2SnC, Nb2AsC, Nb2InC, Mo2GaC and Ti2InC) was performed. As a result, the optimized lattice parameters, independent elastic constants, indicators of elastic anisotropy and brittle/ductile behavior as well as the so-called machinability indexis were calculated. We derived also bulk and shear moduli, Young's moduli, and Poisson's ratio for ideal polycrystalline MAX aggregates. The results obtained were discussed in comparison with available theoretical and experimental data and elastic parameters for other layered superconductors.
Calculation of the cross section for top quark production
Berger, E.L.; Contopanagos, H. [Argonne National Lab., IL (United States). High Energy Physics Div.
1996-06-21T23:59:59.000Z
The authors summarize calculations of the cross section for top quark production at hadron colliders within the context of perturbative quantum chromodynamics, including resummation of the effects of initial-state soft gluon radiation to all orders in the strong coupling strength. In their approach they resume the universal leading-logarithm contributions, and they restrict the calculation to the region of phase space that is demonstrably perturbative. They compare the approach with other methods. They present predictions of the physical cross section as a function of the top quark mass in proton-antiproton reactions at center-of-mass energies of 1.8 and 2.0 TeV, and they discuss estimated uncertainties.
Calculations of multiquark functions in effective models of strong interaction
Jafarov, R. G., E-mail: raufjafarov@bsu.az [Institute for Physical Problems of Baku State University (Azerbaijan); Rochev, V. E. [Institute of High Energy Physics, Theoretical Division (Russian Federation)] [Institute of High Energy Physics, Theoretical Division (Russian Federation)
2013-09-15T23:59:59.000Z
In this paper we present our results of the investigation of multiquark equations in the Nambu-Jona-Lasinio model with chiral symmetry of SU(2) group in the mean-field expansion. To formulate the mean-field expansion we have used an iteration scheme of solution of the Schwinger-Dyson equations with the fermion bilocal source. We have considered the equations for Green functions of the Nambu-Jona-Lasinio model up to third step for this iteration scheme. To calculate the high-order corrections to the mean-field approximation, we propose the method of the Legendre transformation with respect to the bilocal source, which allows effectively to take into account the symmetry constraints related with the chiral Ward identity. We discuss also the problem of calculating the multiquark functions in the mean-field expansion for Nambu-Jona-Lasinio-type models with other types of the multifermion sources.
Zhang, D. X.; Shen, B.; Zheng, Y. X.; Wang, S. Y.; Zhang, J. B.; Yang, S. D.; Zhang, R. J.; Chen, L. Y.; Wang, C. Z.; Ho, K. M.
2014-03-24T23:59:59.000Z
The temperature dependent optical properties of tin film from solid to liquid were studied by spectroscopic ellipsometry and ab initio molecular dynamics simulations. The dielectric function of liquid Sn was different from solid, and an interband transition near 1.5?eV was easily observed in solid while it apparently disappeared upon melting. From the evolution of optical properties with temperature, an optical measurement to acquire the melting point by ellipsometry was presented. From first principles calculation, we show that the local structure difference in solid and liquid is responsible for this difference in the optical properties observed in experiment.
Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)
2012-06-07T23:59:59.000Z
The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.
Calculating the probability of detecting radio signals from alien civilizations
Marko Horvat
2007-07-14T23:59:59.000Z
Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.
Calculating the probability of detecting radio signals from alien civilizations
Horvat, Marko
2006-01-01T23:59:59.000Z
Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.
Validation of Criticality Safety Calculations with SCALE 6.2
Marshall, William BJ J [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL
2013-01-01T23:59:59.000Z
SCALE 6.2 provides numerous updates in nuclear data, nuclear data processing, and computational tools utilized in the criticality safety calculational sequences relative to SCALE 6.1. A new 252-group ENDF/B-VII.0 multigroup neutron library, improved ENDF/B-VII.0 continuous energy data, as well as the previously deployed 238-group ENDF/B-VII.0 neutron library are included in SCALE 6.2 for criticality safety analysis. The performance of all three libraries for keff calculations is examined with a broad sampling of critical experiment models covering a range of fuels and moderators. Critical experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) that are available in the SCALE Verified, Archived Library of Inputs and Data (VALID) are used in this validation effort. Over 300 cases are used in the validation of KENO V.a, and a more limited set of approximately 50 configurations are used for KENO-VI validation. Additionally, some KENO V.a cases are converted to KENO-VI models so that an equivalent set of experiments can be used to validate both codes. For continuous-energy calculations, SCALE 6.2 provides improved performance relative to SCALE 6.1 in most areas with notable improvements in fuel pin lattice cases, particularly those with mixed oxide fuel. Multigroup calculations with the 252-group library also demonstrate improved performance for fuel lattices, uranium (high and intermediate enrichment) and plutonium metal experiments, and plutonium solution systems. Overall, SCALE 6.2 provides equivalent or smaller biases than SCALE 6.1, and the two versions of KENO provide similar results on the same suite of problems.
Calculation of sensitivity coefficients for a neutron well logging tool
Chen, Chien-Hsiang
2012-06-07T23:59:59.000Z
(Lsmsrsh, 1966; Bartine et al. , 1974; Duderstadt et al. , 1976). The straightforward (direct) calculation requires knowledge of the forward neutron flux, neutron cross section data, and detector responses (such as reaction rates) for each situation, i.... e. , the detector's responses are repeatedly com- puted for each change in the formation's composition. The perturbation (indirect) method requires knowledge of the forward neutron flux, detector response, and sd- joint neutron flux for a base...
Quantum Monte Carlo Calculations of Symmetric Nuclear Matter
Gandolfi, Stefano [Dipartimento di Fisica and INFN, University of Trento, via Sommarive 14, I-38050 Povo, Trento (Italy); Pederiva, Francesco [Dipartimento di Fisica and INFN, University of Trento, via Sommarive 14, I-38050 Povo, Trento (Italy); CNR-DEMOCRITOS National Supercomputing Center, Trieste (Italy); Fantoni, Stefano [Scuola Internazionale Superiore di Studi Avanzati and INFN via Beirut 2/4, 34014 Trieste (Italy); CNR-DEMOCRITOS National Supercomputing Center, Trieste (Italy); Schmidt, Kevin E. [Department of Physics, Arizona State University, Tempe, Arizona (United States)
2007-03-09T23:59:59.000Z
We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon-nucleon interactions by means of auxiliary field diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and represents an important step forward towards a quantitative understanding of problems in nuclear structure and astrophysics.
NAC-1 cask dose rate calculations for LWR spent fuel
CARLSON, A.B.
1999-02-24T23:59:59.000Z
A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.
New correlation accurately calculates water solubilities of aromatics
Yaws, C.L.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))
1994-08-29T23:59:59.000Z
A new correlation calculates reliable aromatics solubilities in water down to very low concentrations. The correlation, based on boiling point, can be used for initial engineering studies. The importance of hydrocarbon solubility in water is increasing because of health, safety, and environmental issues. The paper begins with a discussion of the importance of solubility, even at low concentrations. The new correlation is described, aromatics are compared with paraffins, and the new correlation is compared with the API correlation.
Quantum Monte Carlo calculations of neutron-alpha scattering
Kenneth M. Nollett; Steven C. Pieper; R. B. Wiringa; J. Carlson; G. M. Hale
2006-12-09T23:59:59.000Z
We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.
An alternative method for calculating the energy of gravitational waves
Miroslav Sukenik; Jozef Sima
1999-09-21T23:59:59.000Z
In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.
NREL-Levelized Cost of Energy Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator Jump to: navigation, search
Community Wind Handbook/Calculate Simple Payback | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information FeedColombia:|Calculate Simple Payback
Application of nuclear models to neutron nuclear cross section calculations
Young, P.G.
1982-01-01T23:59:59.000Z
Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).
WIPP Benchmark calculations with the large strain SPECTROM codes
Callahan, G.D.; DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)
1995-08-01T23:59:59.000Z
This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.
A general higher-order remap algorithm for ALE calculations
Chiravalle, Vincent P [Los Alamos National Laboratory
2011-01-05T23:59:59.000Z
A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problems were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.
WIPP shaft seal system parameters recommended to support compliance calculations
Hurtado, L.D.; Knowles, M.K. [Sandia National Labs., Albuquerque, NM (United States); Kelley, V.A.; Jones, T.L.; Ogintz, J.B. [INTERA Inc., Austin, TX (United States); Pfeifle, T.W. [RE/SPEC, Inc., Rapid City, SD (United States)
1997-12-01T23:59:59.000Z
The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system.
Exact-to-precision generalized perturbation for neutron transport calculation
Wang, C.; Abdel-Khalik, H. S. [North Carolina State University, 911 Oval Dr., Centennial Campus, Raleigh, NC 27606 (United States)
2013-07-01T23:59:59.000Z
This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)
Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP
G. Belanger; S. Kraml; A. Pukhov
2005-06-15T23:59:59.000Z
We compare results of four public supersymmetric (SUSY) spectrum codes, Isajet, Softsusy, Spheno and Suspect to estimate the present-day uncertainty in the calculation of the relic density of dark matter in mSUGRA models. We find that even for mass differences of about 1% the spread in the obtained relic densities can be 10%. In difficult regions of the parameter space, such as large tan(beta) or large m_0, discrepancies in the relic density are much larger. We also find important differences in the stau co-annihilation region. We show the impact of these uncertainties on the bounds from WMAP for several scenarios, concentrating on the regions of parameter space most relevant for collider phenomenology. We also discuss the case of non-zero A_0 and the stop co-annihilation region. Moreover, we present a web application for the online comparison of the spectrum codes.
Duan, Yuhua
2012-11-02T23:59:59.000Z
Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.
Pre-test CFD Calculations for a Bypass Flow Standard Problem
Rich Johnson
2011-11-01T23:59:59.000Z
The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.
Spatial homogenization of thermal feedback regions in Monte Carlo reactor calculations
Hanna, B. R.; Gill, D. F.; Griesheimer, D. P. [Bertis Atomic Power Laboratory, Bechtel Marine Propulsion Corporation, P.O. Box 79, West Mifflin, PA 15122 (United States)
2012-07-01T23:59:59.000Z
An integrated thermal-hydraulic feedback module has previously been developed for the Monte Carlo transport solver, MC21. The module incorporates a flexible input format that allows the user to describe heat transfer and coolant flow paths within the geometric model at any level of spatial detail desired. The effect that the varying levels of spatial homogenization of thermal regions has on the accuracy of the Monte Carlo simulations is examined in this study. Six thermal feedback mappings are constructed from the same geometric model of the Calvert Cliffs core. The spatial homogenization of the thermal regions is varied, giving each scheme a different level of detail, and the adequacy of the spatial homogenization is determined based on the eigenvalue produced by each Monte Carlo calculation. The purpose of these numerical experiments is to determine the level of detail necessarily to accurately capture the thermal feedback effect on reactivity. Several different core models are considered: axial-flow only, axial and lateral flow, asymmetry due to control rod insertion, and fuel heating (temperature -dependent cross sections). The thermal results generated by the MC21 thermal feedback module are consistent with expectations. Based upon the numerical experiments conducted it is concluded that the amount of spatial detail necessary to accurately capture the feedback effect on reactivity is relatively small. Homogenization at the assembly level for the Calvert Cliffs PWR model results in a similar power defect to that calculated with individual pin-cells modeled as explicit thermal regions. (authors)
Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido
2002-08-01T23:59:59.000Z
The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.
Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR
Hanson, A.L.; Diamond, D.
2011-09-30T23:59:59.000Z
A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Previously, the design of the LEU fuel had been determined in order to provide the users of the NBSR with the same cycle length as exists for the current HEU fueled reactor. The fuel composition at different points within an equilibrium fuel cycle had also been determined. In the present study, neutronics parameters have been calculated for these times in the fuel cycle for both the existing HEU and the proposed LEU equilibrium cores. The results showed differences between the HEU and LEU cores that would not lead to any significant changes in the safety analysis for the converted core. In general the changes were reasonable except that the figure-of-merit for neutrons that can be used by experimentalists shows there will be a 10% reduction in performance. The calculations included kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal)] [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal) [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Cięncias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de Săo Paulo, CP 66318, 05314-970 Săo Paulo, SP (Brazil)
2014-04-28T23:59:59.000Z
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Chen, Y.; Li, X.; Zhang, Q.; Spitler, J.; Fisher, D.
2006-01-01T23:59:59.000Z
USA lxq9031@yahoo.com.cn Abstract: Conduction transfer functions (CTFs) are widely used to calculate conduction heat transfer in building cooling load and energy calculations. They can conveniently fit into any load and energy calculation...
Fogliata, Antonella, E-mail: afc@iosi.ch [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)] [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Cozzi, Luca [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)] [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)
2012-08-01T23:59:59.000Z
Purpose: To assess the clinical impact of the Acuros XB algorithm (implemented in the Varian Eclipse treatment-planning system) in non-small-cell lung cancer (NSCLC) cases. Methods and Materials: A CT dataset of 10 patients presenting with advanced NSCLC was selected and contoured for planning target volume, lungs, heart, and spinal cord. Plans were created for 6-MV and 15-MV beams using three-dimensional conformal therapy, intensity-modulated therapy, and volumetric modulated arc therapy with RapidArc. Calculations were performed with Acuros XB and the Anisotropic Analytical Algorithm. To distinguish between differences coming from the different heterogeneity management and those coming from the algorithm and its implementation, all the plans were recalculated assigning Hounsfield Unit (HU) = 0 (Water) to the CT dataset. Results: Differences in dose distributions between the two algorithms calculated in Water were <0.5%. This suggests that the differences in the real CT dataset can be ascribed mainly to the different heterogeneity management, which is proven to be more accurate in the Acuros XB calculations. The planning target dose difference was stratified between the target in soft tissue, where the mean dose was found to be lower for Acuros XB, with a range of 0.4% {+-} 0.6% (intensity-modulated therapy, 6 MV) to 1.7% {+-} 0.2% (three-dimensional conformal therapy, 6 MV), and the target in lung tissue, where the mean dose was higher for 6 MV (from 0.2% {+-} 0.2% to 1.2% {+-} 0.5%) and lower for 15 MV (from 0.5% {+-} 0.5% to 2.0% {+-} 0.9%). Mean doses to organs at risk presented differences up to 3% of the mean structure dose in the worst case. No particular or systematic differences were found related to the various modalities. Calculation time ratios between calculation time for Acuros XB and the Anisotropic Analytical Algorithm were 7 for three-dimensional conformal therapy, 5 for intensity-modulated therapy, and 0.2 for volumetric modulated arc therapy with RapidArc. Conclusion: The availability of Acuros XB could improve patient dose estimation, increasing the data consistency of clinical trials.
Escher, Christine
.green-e.org. Greenguard is a nonprofit organization that certifies products that impact indoor air quality. Find productsEco-Labels Biodegradable Products Institute is an organization that certifies that so-called "biodegradable" plastic products will safely break down in a typical commercial composting facility. www
Jefferys, William
The Astronomy Freshman Prizes for Excellence (AFPE) typically range from $2,000 to $10,000 per Astronomy program. The AFPE awards are funded jointly by the Astronomy Department excellence funds@astro.as.utexas.edu Mailing address: Char Burke - Student Coordinator Department of Astronomy The University of Texas
Talbot, James P.
- sentatives from the public sector and NGOs. Business delegates are typically senior execu- tives and maintain a Pro- gramme which brings together business leaders and key public sector and civil society global trends and challenges: energy and natural resource security, cities, consumption, emerging
Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shanxi 710049 (China)
2014-03-15T23:59:59.000Z
The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model.
Electric Field Calculations on Dry-Type Medium Voltage Current Transformers.
Lakshmichand Jain, Sandeep Kumar
2012-01-01T23:59:59.000Z
??This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs… (more)
Kostal, M.; Juricek, V.; Rypar, V.; Svadlenkova, M. [Research Center Rez Ltd., 250 68 Husinec-Rez 130 (Czech Republic); Cvachovec, F. [Univ. of Defence, Kounicova 65, 662 10 Brno (Czech Republic)
2011-07-01T23:59:59.000Z
The power density distribution in a reactor has significant influence on core structures and pressure vessel mechanical resistance, as well as on the physical characteristics of nuclear fuel. This quantity also has an effect on the leakage neutron and photon field. This issue has become of increasing importance, as it touches on actual questions of the VVER nuclear power plant life time extension. This paper shows the comparison of calculated and experimentally determined pin by pin power distributions. The calculation has been performed with deterministic and Monte Carlo approaches. This quantity is accompanied by the neutron and photon flux density calculation and measurements at different points of the light water zero-power (LR-0) research reactor mock-up core, reactor built-in component (core barrel), and reactor pressure vessel and model. The effect of the different data libraries used for calculation is discussed. (authors)
TWO SUBCLASSES OF PROTOPLANETARY NEBULAE: MODEL CALCULATIONS Margaret Meixner,1
Speck, Angela Karen
sources in detail and constrain their mass-loss histories, inclination angles, and dust com- position different and that their observed differences cannot be attributed to inclination-angle effects. Both HD shaped by the AGB mass loss and by interaction of that mass loss with a fast wind from the evolving
J. W. Sterbentz
1999-08-01T23:59:59.000Z
Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.
Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables
Haberl, J.; Yazdani, B.; Culp, C.
AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Speed (MPH) T u rb in e P o w er (k W h /h ) Hourly electricity produced vs on- site wind data acceptable for hourly modeling. Issue: hourly on-site data not always available. Calculating NOx Reductions from Wind Farms Energy...
Calculational comparison of DT, neon, and argon implosions
Stevens, J.C.
1980-10-28T23:59:59.000Z
A number of laboratories have been doing laser driven implosions of pure neon and argon gas as a diagnostic of the peak imploded conditions. The relationship of these implosions to DT implosions has been unclear. This paper will explore the physics of these higher Z gases and show that they are fundamentally easier to compress than DT gas. Specifically, this paper will show that, for the same initial mass density, and the same capsule design and drive conditions, the calculated peak compressed density is dependent on the type of fill gas, being substantially higher for Ne and Ar implosions than for DT implosions.
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Hugh Potter; Dossay Oryspayev; Pieter Maris; Masha Sosonkina; James Vary; Sven Binder; Angelo Calci; Joachim Langhammer; Robert Roth; Ümit Çatalyürek; Erik Saule
2014-12-18T23:59:59.000Z
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
L2-Logique, TD5 Calcul des propositions
Narboux, Julien
L2-Logique, TD5 2007/08 Calcul des propositions 1 DÂ´emonstrations Dans cette partie, utilisez le mÂ´eta-thÂ´eor standard. On interpr`ete ce syst`eme par l'alg`ebre de Boole standard. 2 - Est-ce que tout thÂ´eor`eme de CP) (A B) | A, B FCP0 } 4 - Est-ce que toute tautologie est un thÂ´eor`eme de CP0' ? 5 - Le mÂ´eta-thÂ´eor
Proton induced activation in mercury: Comparison of measurements and calculations
Remec, Igor [ORNL; Glasgow, David C [ORNL; Haines, John R [ORNL; Johnson, Jeffrey O [ORNL
2008-01-01T23:59:59.000Z
Measurements and simulations of the proton beam interaction with the mercury target were performed to support Spallation Neutron Source design. Due to the abundance of isotopes produced in mercury, the long delay between the irradiation and the measurements, and the self-shielding of the mercury sample, the measurements were difficult to perform and the activities of several isotopes have large uncertainties. Calculations predicted the activities of the most reliably measured isotopes within 20%/40%; however, some large discrepancies were observed for some isotopes for which the measurements were considered less reliable. Predicted dose rates were in very good agreement with the measurements.
Semiclassical framework for the calculation of transport anisotropies
Vyborny, Karel; Kovalev, Alexey A.; Sinova, Jairo; Jungwirth, T.
2009-01-01T23:59:59.000Z
and well-known phenomenon1?3 with applications in spintronics.4,5 Although the experimental observation of this anisotropic magnetoresistance #1;AMR#2; is rather direct?first accomplished as early as 1857?its theo- retical understanding is far from...; relies on calculating the transport relaxation time #2; from the scattering amplitudes w#1;k#1; ,k#1;#1;#2; between two states on the Fermi surface using 1 #2; =#3; d2k#1;#1;2#3;#2;2w#1;k#1;,k#1;#1;#2;#4;1 ? cos #4;k#1;k#1;#1;#5; . #1;1...
Calculation of nuclear matrix elements in neutrinoless double electron capture
Tomas R. Rodriguez; Gabriel Martinez-Pinedo
2012-03-05T23:59:59.000Z
We compute nuclear matrix elements for neutrinoless double electron capture on $^{152}$Gd, $^{164}$Er and $^{180}$W nuclei. Recent precise mass measurements for these nuclei have shown a large resonance enhancement factor that makes them the most promising candidates for observing this decay mode. We use an advanced energy density functional method which includes beyond mean-field effects such as symmetry restoration and shape mixing. Our calculations reproduce experimental charge radii and $B(E2)$ values predicting a large deformation for all these nuclei. This fact reduces significantly the values of the NMEs leading to half-lives larger than $10^{29}$ years for the three candidates.
Atomic data for astrophysics. Calculations, benchmarking and distribution
Del Zanna, G. [Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2012-05-25T23:59:59.000Z
Some recent R-matrix and distorted-wave calculations, done as part of the UK APAPNetwork, are presented. They are focused on some ions important for the EUV and the X-rays, in particular for the solar corona. A long-term and novel project to benchmark atomic data against laboratory and astrophysical data is summarised, highlighting new plasma diagnostics. The various ways in which the atomic data are made available to the various communities through e.g. the CHIANTI and the VAMDC EU framework are also presented.
Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations
Riendeau, C.D.; Moses, D.L.; Olson, A.P.
1998-11-01T23:59:59.000Z
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.
Calculating and Communicating Program Results | Department of Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in Illinois CO2SoftwareCalculating and
CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route Segments (not drawn30:133PortableCALCULATION OF
BjĂ¶rnsson, Yngvi
. Typically a grid is superimposed over the map where each cell in the grid forms a unique state. A state; however, this is no longer true and good graphics alone is not sufficient to fuel sales. Instead consumers Comparison In this section we analyse the search complexity of IDA* for each of the different grid topologies
Williams, Scott G. [Peter MacCallum Cancer Centre and University of Melbourne, Melbourne (Australia)]. E-mail: scott.williams@petermac.org; Pickles, Tom [British Columbia Cancer Agency, Vancouver, BC (Canada); Kestin, Larry [William Beaumont Hospital, Royal Oak, MI (United States); Potters, Louis [New York Prostate Institute, South Nassau Communities Hospital, Oceanside, NY (United States); Fearn, Paul [New York Prostate Institute, South Nassau Communities Hospital, Oceanside, NY (United States); Smith, Ryan [William Buckland Radiotherapy Centre, The Alfred Hospital, Melbourne (Australia); Pratt, Gary [Division of Oncology, Royal Brisbane Hospital, Brisbane (Australia)
2006-08-01T23:59:59.000Z
Purpose: To evaluate the interobserver variation of four electronic biochemical failure (bF) calculators using three bF definitions. Methods and Materials: The data of 1200 men were analyzed using the electronic bF calculators of four institutions. Three bF definitions were examined for their concordance of bF identification across the centers: the American Society for Therapeutic Radiology and Oncology consensus definition (ACD), the lowest prostate-specific antigen (PSA) level to date plus 2 ng/mL (L2), and a threshold of 3 ng/mL (T3). Results: Unanimous agreement regarding bF status using the ACD, L2, and T3 definitions occurred in 87.3%, 96.4%, and 92.7% of cases, respectively. Using the ACD, 63% of the variation was from one institution, which allowed the bF status to be reversed if a PSA decline was seen after bF (PSA 'bounce'). A total of 270 men had an ACD bF time variation of >2 months across the calculators, and the 5-year freedom from bF rate was 49.8-60.9%. The L2 definition had a 20.5% rate of calculated bF times; which varied by >2 months (median, 6.4; range, 2.1-75.6) and a corresponding 5-year freedom from bF rate of 55.9-61.0%. The T3 definition had a 2.0% range in the 5-year freedom from bF. Fifteen definition interpretation variations were identified. Conclusion: Reported bF results vary not only because of bF definition differences, but because of variations in how those definitions are written into computer-based calculators, with multiple interpretations most prevalent for the ACD. An algorithm to avoid misinterpretations is proposed for the L2 definition. A verification system to guarantee consistent electronic bF results requires development.
Color Printer Characterization Adjustment for Different
Sharma, Gaurav
is often implemented as a 3D look-up table that maps from a device independent color space (e.g. CIELAB by printing a number of color patches with known device control values, measuring the colors obtained-uniformity). Typically, the impact of these factors is minimized through careful design of the printing system. However
Pyranometers and Reference Cells, What's the Difference?: Preprint
Meydbray, J.; Emery, K.; Kurtz, S.
2012-03-01T23:59:59.000Z
As the photovoltaic industry has grown exponentially in the past decade, large photovoltaic (PV) fields have become more common. The investors for these projects calculate the expected return on investment based on expected electricity generation and adjust the interest rates and other financial terms according to the perceived risk. These calculations usually assume worst case according to the listed warranty and any uncertainty in the measurement is translated directly into a reduced predicted performance. Because a 1% difference in predicted output could represent a large fraction of the expected return on investment, a small reduction in uncertainty translates into a much larger value to the entity making investment decisions. To reduce perceived risk in large-scale solar investments power plant performance (or production) guarantees have become increasingly common. This two part article explores some subtleties of accurately measuring PV efficiency in the field.
Physics methods for calculating light water reactor increased performances
Vandenberg, C.; Charlier, A.
1988-11-01T23:59:59.000Z
The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained.
Efficient Execution of Electronic Structure Calculations on SMP Clusters
Nurzhan Ustemirov
2006-05-01T23:59:59.000Z
Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.
Exposure Time Calculator for Immersion Grating Infrared Spectrograph: IGRINS
Le, Huynh Anh N; Jaffe, Daniel T; Lee, Jae-Joon; Im, Myungshin; Kaplan, Kyle; Seifahrt, Andreas
2015-01-01T23:59:59.000Z
We present an exposure-time calculator (ETC) for the Immersion Grating Infrared Spectrograph (IGRINS). The signal and noise values are calculated by taking into account the telluric background emission and absorption, the emission and transmission of the telescope and instrument optics, and the dark current and read noise of the infrared detector arrays. For the atmospheric transmission, we apply models based on the amount of precipitable water vapor along the line of sight to the target. The ETC produces the expected signal-to-noise ratio (S/N) for each resolution element, given the exposure-time and number of exposures. In this paper, we compare the simulated continuum S/N for the early-type star HD 124683 and the late-type star GSS 32, and the simulated emission line S/N for the H2 rovibrational transitions from the Iris Nebula NGC 7023 with the observed IGRINS spectra. The simulated S/N from the ETC is overestimate by 10 - 15 % for the sample continuum targets.
Measurement and numerical calculation of Rubidium Rydberg Stark spectra
Grimmel, Jens; Karlewski, Florian; Jessen, Florian; Reinschmidt, Malte; Sándor, Nóra; Fortágh, József
2015-01-01T23:59:59.000Z
We report on the measurement of Stark shifted energy levels of $^{87}$Rb Rydberg atoms in static electric fields by means of electromagnetically induced transparency (EIT). Electric field strengths of up to 500V/cm, ranging beyond the classical ionisation threshold, were applied using electrodes inside a glass cell with rubidium vapour. Stark maps for principal quantum numbers $n=35$ and $n=70$ have been obtained with high signal-to-noise ratio for comparison with results from ab initio calculations following the method described in [M. L. Zimmerman et al., Phys. Rev. A 20, 2251 (1979)], which was originally only verified for states around $n=15$. We also calculate the dipole matrix elements between low-lying states and Stark shifted Rydberg states to give a theoretical estimate of the relative strength of the EIT signal. The present work significantly extends the experimental verification of this numerical method in the range of both high principal quantum numbers and high electric fields with an accuracy of...
Recent Developments in No-Core Shell-Model Calculations
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20T23:59:59.000Z
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Arrieta, Eduardo
1986-01-01T23:59:59.000Z
A COMPUTATIONAL PROCEDURE FOR CALCULATING THE THERMODYNAMIC PROPERTIES OF BINARY MIXTURES OF YUKAWA FLUIDS UNDER THE MEAN SPHERICAL APPROXIMATION A Thesis by EDUARDO ARRIFTA Submitted to the Graduate College of Texas AkM University... Region (below the curves) of non-real mathematical solution for M2 mixtures at different compositions zi. 22 3. Comparison between the initial estimates and solution values for the (D, I). Mixture Ml at zi ? 0. 65 and temperature T' = 0. 717. 27...
The use of Ansys to calculate sandwich Vincent Manet
Paris-Sud XI, UniversitĂ© de
in the industry, and especially in the field of transport (automotive, aeronautics, shipbuilding and railroads skin and the core and located at x1 = L/4) when different parameters vary. Skins are made of aluminum
Modularization and simulation techniques for heat balance-based energy and load calculation
Richard K. Strand
2001-01-01T23:59:59.000Z
the Loads Toolkit research project is to obtain a heat balance based load calculation procedure that
Fedkiw, Peter
2011-01-01T23:59:59.000Z
Calculations for the Asymptotic, Diffusion Dominated Mass-Transfer Coefficient in Packed Bed Reactors
Drover, Damion, Ryan
2011-12-01T23:59:59.000Z
One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.
Rietzel, Eike [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States) and Abteilung Biophysik, Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]. E-mail: eike@rietzel.net; Chen, George T.Y. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Choi, Noah C. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Willet, Christopher G. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)
2005-04-01T23:59:59.000Z
Purpose: To describe approaches to four-dimensional (4D) treatment planning, including acquisition of 4D-CT scans, target delineation of spatio-temporal image data sets, 4D dose calculations, and their analysis. Methods and Materials: The study included patients with thoracic and hepatocellular tumors. Specialized tools were developed to facilitate visualization, segmentation, and analysis of 4D-CT data: maximum intensity volume to define the extent of lung tumor motion, a 4D browser to examine and dynamically assess the 4D data sets, dose calculations, including respiratory motion, and deformable registration to combine the dose distributions at different points. Results: Four-dimensional CT was used to visualize and quantitatively assess respiratory target motion. The gross target volume contours derived from light breathing scans showed significant differences compared with those extracted from 4D-CT. Evaluation of deformable registration using difference images of original and deformed anatomic maps suggested the algorithm is functionally useful. Thus, calculation of effective dose distributions, including respiratory motion, was implemented. Conclusion: Tools and methods to use 4D-CT data for treatment planning in the presence of respiratory motion have been developed and applied to several case studies. The process of 4D-CT-based treatment planning has been implemented, and technical barriers for its routine use have been identified.
Matsika, Spiridoula; Zhou, Congyi; Kotur, Marija; Weinacht, Thomas C.
2011-06-27T23:59:59.000Z
Nonadiabatic processes play an important role in molecular dynamics, and understanding these processes better can help interpret and guide control over molecules. We are using high level electronic structure calculations in combination with intense, shaped, ultrafast laser pulses to study excited state dynamics in the nucleic acid bases, cytosine and uracil. These molecules have very short excited state lifetimes as they relax radiationless through conical intersections after absorption of UV radiation. The presence of more than one relaxation pathway provides the possibility to control which pathway can be involved in the dynamics. In our approach the molecules were excited using ultrafast laser pulses in the deep UV and then probed with strong field near infrared pulses which ionize and dissociate the molecules. Key to this approach is the fact that different fragments exhibit different dynamics and we can correlate these fragments, and their associated dynamics, to the various pathways involved in the neutral dynamics. Multiconfigurational electronic structure methods were used to calculate potential energy surfaces of the neutral and ionic states involved in the dynamics. Calculating mechanisms for fragmentation in the ion enables us to relate specific fragments to different neutral pathways, and use them as signatures to follow the dynamics. Possibilities for control are also discussed.
Muir, B. R., E-mail: bmuir@physics.carleton.ca; Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Physics Department, Carleton Laboratory for Radiotherapy Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)] [Physics Department, Carleton Laboratory for Radiotherapy Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)
2013-12-15T23:59:59.000Z
Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01T23:59:59.000Z
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
Max Morris
2001-04-01T23:59:59.000Z
Recent advances in sensor technology and engineering have made it possible to assemble many related sensors in a common array, often of small physical size. Sensor arrays may report an entire vector of measured values in each data collection cycle, typically one value per sensor per sampling time. The larger quantities of data provided by larger arrays certainly contain more information, however in some cases experience suggests that dramatic increases in array size do not always lead to corresponding improvements in the practical value of the data. The work leading to this report was motivated by the need to develop computational planning tools to approximate the relative effectiveness of arrays of different size (or scale) in a wide variety of contexts. The basis of the work is a statistical model of a generic sensor array. It includes features representing measurement error, both common to all sensors and independent from sensor to sensor, and the stochastic relationships between the quantities to be measured by the sensors. The model can be used to assess the effectiveness of hypothetical arrays in classifying objects or events from two classes. A computer program is presented for evaluating the misclassification rates which can be expected when arrays are calibrated using a given number of training samples, or the number of training samples required to attain a given level of classification accuracy. The program is also available via email from the first author for a limited time.
Stirling engine performance optimization with different working fluids
Daley, J.G.; Marr, W.W.; Heames, T.J.
1986-01-01T23:59:59.000Z
The design flexibility of Stirling cycle devices is evident from the wide variety of mechanical configurations that have been developed as well as the many differing applications that have been shown to be technically feasible. The choice of working fluid is one option that strongly influences engine design. Hydrogen permits the most compact engine (for a given power output and efficiency) of any gaseous working fluid investigated and has therefore been the choice in Stirling development programs directed at the automotive application where engine size is a major concern. Systems using helium or air are presently under development for applications where size is not as important a consideration. This paper describes calculated characteristics of engines optimized for four working fluids (hydrogen, helium, air and methane). A comparison is given between engines whose exterior dimensions are minimized and with lower rpm, lower pressure engine designs calculated by maximizing the dimensionless parameter known as the Beale number. Design point power and efficiency are the same in the resulting eight conceptual designs but great variation is shown in engine characteristics due both to working fluid differences and to the two different design objectives. 5 refs., 7 figs., 5 tabs.
Refinements in Effective Potential Calculations in the MSSM
M. Argyrou; A. Katsikatsou; I. Malamos
2006-02-17T23:59:59.000Z
The one-loop effective potential is a powerful tool in studying the electroweak symmetry breaking of supersymmetric theories, whose precise calculation may have important phenomenological consequences. In this work, we are correctly treating the contribution of the Higgs sector to the effective potential and refine the radiative corrections to the Higgs mixing parameter $\\mu$, which is known to affect greatly the supersymmetric spectrum. Working at the average stop scale to minimize the effect of the stop sector, we find additional corrections which can play a dominant role in the Focus Point region of the parameter space of the MSSM. The comparison of our results with those of the literature is discussed. We also discuss the gauge dependence of the effective potential and its effect on the $\\mu$ parameter in analyses where this is determined from the 1-loop minimization conditions of the effective potential.
Center of pressure calculations for a bent-axis vehicle
Rutledge, W.H.; Polansky, G.F.
1992-01-01T23:59:59.000Z
Bent-axis maneuvering vehicles provide a unique type of control for a variety of supersonic and hypersonic missions. Unfortunately, large hinge moments, incomplete pitching moment predictions, and a misunderstanding of corresponding center of pressure calculations have prevented their application. A procedure is presented for the efficient design of bent-axis vehicles given an adequate understanding of origins of pitching moment effects. In particular,sources of pitching moment contributions will be described including not only normal force, but inviscid axial force and viscous effects as well. Off-centerline center of pressure effects are first reviewed for symmetric hypersonic sphere-cone configurations. Next the effects of the bent-axis geometry are considered where axial force, acting on the deflected tail section, can generate significant pitching moment components. The unique relationship between hinge moments and pitching moments for the bent-axis class of vehicles is discussed. 15 refs.
Novel variational approach for photonic crystal slab mode calculation
Aram, Mohammad Hasan
2015-01-01T23:59:59.000Z
We propose a new method based on variational principle for analysis of photonic crystal (PC) slabs. Most of the methods used today treat PC slab as a three-dimensional (3D) crystal and this makes them very time and/or memory consuming. In this method we use Bloch theorem to expand the field on infinite plane waves which their amplitudes depend on the component perpendicular to the slab surface. By approximating these amplitudes with appropriate functions, we can find modes of PC slabs almost as fast as we can find modes of a two-dimensional (2D) crystal. Besides this advantage, we can also calculate radiation modes with this method which is not feasible with 3D Plane Wave Expansion (PWE) method.
Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements
Mert Aybat, Ted Rogers, Alexey Prokudin
2012-06-01T23:59:59.000Z
In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.
Calculating the chiral condensate diagrammatically at strong coupling
Christensen, Alexander S; Pedersen, Peter D; Rosseel, Jan
2015-01-01T23:59:59.000Z
We calculate the chiral condensate of QCD at infinite coupling as a function of the number of fundamental fermion flavours using a lattice diagrammatic approach inspired by recent work of Tomboulis, and other work from the 80's. We outline the approach where the diagrams are formed by combining a truncated number of sub-diagram types in all possible ways. Our results show evidence of convergence and agreement with simulation results at small Nf. However, contrary to recent simulation results, we do not observe a transition at a critical value of Nf. We further present preliminary results for the chiral condensate of QCD with symmetric or adjoint representation fermions at infinite coupling as a function of Nf for Nc = 3. In general, there are sources of error in this approach associated with miscounting of overlapping diagrams, and over-counting of diagrams due to symmetries. These are further elaborated upon in a longer paper.
Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation
Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.
2014-05-19T23:59:59.000Z
The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.
Calculations on permanent-magnet quadrupoles with nonrectangular cross section
Boicourt, G.P.; Merson, J.L.
1988-01-01T23:59:59.000Z
The current trend toward higher frequencies to power drift-tube linacs (DTLs) and coupled-cavity linacs (CCLs) reduces the space available for quadrupole focusing magnets. Similarly, the space available for matching sections between linac sections is limited, and often the matching section bunchers are designed in odd shapes to make them fit. This shaping further restricts focusing magnet space. One approach to attaining sufficient quadrupole strength is such situations is to use rare-earth permanent-magnet quadrupoles (PMQs) with cross sections tailored to fill as much of the available space as possible. In this paper, we describe some techniques we have developed to calculate the properties of such magnets both singly and when other magnets are nearby. 3 refs., 4 figs.
Fast calculation of HELAS amplitudes using graphics processing unit (GPU)
K. Hagiwara; J. Kanzaki; N. Okamura; D. Rainwater; T. Stelzer
2010-10-11T23:59:59.000Z
We use the graphics processing unit (GPU) for fast calculations of helicity amplitudes of physics processes. As our first attempt, we compute $u\\bar{u}\\to n\\gamma$ ($n=2$ to 8) processes in $pp$ collisions at $\\sqrt{s} = 14$TeV by transferring the MadGraph generated HELAS amplitudes (FORTRAN) into newly developed HEGET ({\\bf H}ELAS {\\bf E}valuation with {\\bf G}PU {\\bf E}nhanced {\\bf T}echnology) codes written in CUDA, a C-platform developed by NVIDIA for general purpose computing on the GPU. Compared with the usual CPU programs, we obtain 40-150 times better performance on the GPU.
Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment
Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes
2013-03-01T23:59:59.000Z
This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INL’s Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.
MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION
Nichols, T.; Sternat, M.; Charlton, W.
2011-05-08T23:59:59.000Z
MONTEBURNS is a Monte-Carlo depletion routine utilizing MCNP and ORIGEN 2.2. Uncertainties exist in the MCNP transport calculation, but this information is not passed to the depletion calculation in ORIGEN or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of a multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 25.5 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of results do not. The standard deviation at each burnup step was consistent between fission product isotopes as expected, while the uranium isotopes created some unique results. The variation in the quantity of uranium was small enough that, from the reaction rate MCNP tally, round off error occurred producing a set of repeated results with slight variation. Statistical analyses were performed using the {chi}{sup 2} test against a normal distribution for several isotopes and the k-effective results. While the isotopes failed to reject the null hypothesis of being normally distributed, the {chi}{sup 2} statistic grew through the steps in the k-effective test. The null hypothesis was rejected in the later steps. These results suggest, for a high accuracy solution, MCNP cell material quantities less than 100 grams and greater kcode parameters are needed to minimize uncertainty propagation and minimize round off effects.
Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment
Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes
2012-04-01T23:59:59.000Z
This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INL's Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.
Calculating limits for torsion and tensile loads on drill pipe
Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)
1998-02-01T23:59:59.000Z
Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.
User's manual for GILDA: An infinite lattice diffusion theory calculation
Le, T.T.
1991-11-01T23:59:59.000Z
GILDA is a static two-dimensional diffusion theory code that performs either buckling (B[sup 2]) or k-effective (k[sub eff]) calculations for an infinite hexagonal lattice which is constructed by repeating identical seven-cell zones (one cell is one or seven identical homogenized hexes). GILDA was written by J. W. Stewart in 1973. This user's manual is intended to provide all of the information necessary to set up and execute a GILDA calculation and to interpret the output results. It is assumed that the user is familiar with the computer (VAX/VMS or IBM/MVS) and the JOSHUA system database on which the code is implemented. Users who are not familiar with the JOSHUA database are advised to consult additional references to understand the structure of JOSHUA records and data sets before turning to section 4 of this manual. Sections 2 and 3 of this manual serve as a theory document in which the basic diffusion theory and the numerical approximations behind the code are described. Section 4 describes the functions of the program's subroutines. Section 5 describes the input data and tutors the user how to set up a problem. Section 6 describes the output results and the error messages which may be encountered during execution. Users who only wish to learn how to run the code without understanding the theory can start from section 4 and use sections 2 and 3 as references. Finally, the VAX/VMS and the IBM execution command files together with sample input records are provided in the appendices at the end of this manual.