Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)
2013-07-01
For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)
Hale, Barbara N.
CALCULATION OF SCALED NUCLEATION RATES FOR WATER USING MONTE CARLO GENERATED CLUSTER FREE ENERGYMattio All Rights Reserved #12;iii ABSTRACT Helmholtz free energy differences, -dFn , are calculated inconsistent with the experimental properties of water. Summation of the scaled TIP4P free energy differences
Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca [National Research Council Canada, National Science Infrastructure portfolio, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, B.C., V9E 2E7 (Canada)
2014-07-01
From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some arms major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).
IDS120h: Be WINDOW DETAILED CALCULATION, SHIELDING VESSELS, RESULTS FOR DIFFERENT
McDonald, Kirk
IDS120h: Be WINDOW DETAILED CALCULATION, SHIELDING VESSELS, RESULTS FOR DIFFERENT GLOBAL STEPS with different STEPEM, STEPH global steps, and introducing shielding vessels. >mars1510/MCNP >10-11 MeV NEUTRON Be Window Hg Pool SC8 SC 7 SC 6 SH 2 SH 4 SH 3 #12;IDS120h:SHIELDING VESSELS. RESULTS FOR 0.5 cm THIKNESS
Typical Pure Nonequilibrium Steady States
Takaaki Monnai; Kazuya Yuasa
2014-08-12
We show that typicality holds for a class of nonequilibrium systems, i.e., nonequilibrium steady states (NESSs): almost all the pure states properly sampled from a certain Hilbert space well represent a NESS and characterize its intrinsic thermal nature. We clarify the relevant Hilbert space from which the pure states are to be sampled, and construct practically all the typical pure NESSs. The scattering approach leads us to the natural extension of the typicality for equilibrium systems. Each pure NESS correctly yields the expectation values of observables given by the standard ensemble approach. It means that we can calculate the expectation values in a NESS with only a single pure NESS. We provide an explicit construction of the typical pure NESS for a model with two reservoirs, and see that it correctly reproduces the Landauer-type formula for the current flowing steadily between the reservoirs.
Calculation of free-energy differences and potentials of mean force by a multi-energy gap method
Weston, Ken
Calculation of free-energy differences and potentials of mean force by a multi-energy gap method the convergence of free-energy calculations. It introduces a bias factor in Monte Carlo simulations or.e., the difference in energy function between two states, and is therefore specifically designed for calculating free-energy
Tu, Kevin
'q'] ) If a correction for crosswind effects on the temperature measurement (typically derived from the vertical wind
Voltage Converter TYPICAL APPLICATION
Berns, Hans-Gerd
1 LTC660 100mA CMOS Voltage Converter TYPICAL APPLICATION U s Simple Conversion of 5V to 5V Supply s Output Drive: 100mA s ROUT: 6.5 (0.65V Loss at 100mA) s BOOST Pin (Pin 1) for Higher Switching Frequency-capacitor voltage converter. It performs supply voltage conversion from positive to negative from an input range
Garcia-Herranz, Nuria [Universidad de Nacional de Educacion a Distancia (Spain); Cabellos, Oscar [Polytechnic University of Madrid (Spain); Aragones, Jose M. [Polytechnic University of Madrid (Spain); Ahnert, Carol [Polytechnic University of Madrid (Spain)
2003-05-15
In order to take into account in a more effective and accurate way the intranodal heterogeneities in coarse-mesh finite-difference (CMFD) methods, a new equivalent parameter generation methodology has been developed and tested. This methodology accounts for the dependence of the nodal homogeneized two-group cross sections and nodal coupling factors, with interface flux discontinuity (IFD) factors that account for heterogeneities on the flux-spectrum and burnup intranodal distributions as well as on neighbor effects.The methodology has been implemented in an analytic CMFD method, rigorously obtained for homogeneous nodes with transverse leakage and generalized now for heterogeneous nodes by including IFD heterogeneity factors. When intranodal mesh node heterogeneity vanishes, the heterogeneous solution tends to the analytic homogeneous nodal solution. On the other hand, when intranodal heterogeneity increases, a high accuracy is maintained since the linear and nonlinear feedbacks on equivalent parameters have been shown to be as a very effective way of accounting for heterogeneity effects in two-group multidimensional coarse-mesh diffusion calculations.
Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations The heat capacity has played a major role in relating microscopic and macroscopic properties of proteins, and configurational averaging. To better understand these factors on calculating a protein heat capacity, we provide
Energy conservation in typical Asian countries
Yang, M.; Rumsey, P.
1997-06-01
Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.
A. M. Sukhovoj; V. A. Khitrov
2008-09-15
The gamma-spectra were calculated for the set of different level densities and radiative strength functions. The sufficiently precise reproduction of the experiment is impossible without taking into account the influence of the process of the nucleons Cooper pairs breaking on any nuclei cascade gamma-decay parameters.
Mayer, Alexandre
Finite-difference calculation of the Green's function of a one-dimensional crystal: Application the Green's function of a one-dimensional crystal. The method enables one to derive the band structure and the density of states of this type of structures, whatever the particular values of the potential energy
Sharada, Shaama Mallikarjun; Bell, Alexis T. E-mail: bell@cchem.berkeley.edu; Head-Gordon, Martin E-mail: bell@cchem.berkeley.edu
2014-04-28
The cost of calculating nuclear hessians, either analytically or by finite difference methods, during the course of quantum chemical analyses can be prohibitive for systems containing hundreds of atoms. In many applications, though, only a few eigenvalues and eigenvectors, and not the full hessian, are required. For instance, the lowest one or two eigenvalues of the full hessian are sufficient to characterize a stationary point as a minimum or a transition state (TS), respectively. We describe here a method that can eliminate the need for hessian calculations for both the characterization of stationary points as well as searches for saddle points. A finite differences implementation of the Davidson method that uses only first derivatives of the energy to calculate the lowest eigenvalues and eigenvectors of the hessian is discussed. This method can be implemented in conjunction with geometry optimization methods such as partitioned-rational function optimization (P-RFO) to characterize stationary points on the potential energy surface. With equal ease, it can be combined with interpolation methods that determine TS guess structures, such as the freezing string method, to generate approximate hessian matrices in lieu of full hessians as input to P-RFO for TS optimization. This approach is shown to achieve significant cost savings relative to exact hessian calculation when applied to both stationary point characterization as well as TS optimization. The basic reason is that the present approach scales one power of system size lower since the rate of convergence is approximately independent of the size of the system. Therefore, the finite-difference Davidson method is a viable alternative to full hessian calculation for stationary point characterization and TS search particularly when analytical hessians are not available or require substantial computational effort.
Temporary Pedestrian & Vehicular Traffic Flow Typical Conditions
Kamat, Vineet R.
Temporary Pedestrian & Vehicular Traffic Flow Typical Conditions Winter 2014 Ann Arbor - Ross 900150 Feet Pedestrian Route Existing Building Construction Area Traffic Detour Temporary Transit Stop
Temporary Pedestrian & Vehicular Traffic Flow Typical Conditions
Kamat, Vineet R.
Temporary Pedestrian & Vehicular Traffic Flow Typical Conditions Winter 2014 Ann Arbor - Medical://www.umaec.umich.edu/closures.html Roadway Closure Existing Traffic Pattern I0 400 800 1,200200 Feet Pedestrian Route Existing Building
charlotb
2015-06-10
MA 15300Y Calculator Policy. ONLY a computer desktop calculator in scientific view is allowed on exams. If you have questions, please email the course ...
charlotb
2015-08-21
MA 15300 Calculator Policy. ONLY a TI-30Xa scientific calculator is allowed on quizzes and exams. If you have questions, please email the course coordinator ...
Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD
Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.
1997-09-01
An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.
Entropy and the Typicality of Universes
Julian Barbour; Tim Koslowski; Flavio Mercati
2015-07-24
The universal validity of the second law of thermodynamics is widely attributed to a finely tuned initial condition of the universe. This creates a problem: why is the universe atypical? We suggest that the problem is an artefact created by inappropriate transfer of the traditional concept of entropy to the whole universe. Use of what we call the relational $N$-body problem as a model indicates the need to employ two distinct entropy-type concepts to describe the universe. One, which we call entaxy, is novel. It is scale-invariant and decreases as the observable universe evolves. The other is the algebraic sum of the dimensionful entropies of branch systems (isolated subsystems of the universe). This conventional additive entropy increases. In our model, the decrease of entaxy is fundamental and makes possible the emergence of branch systems and their increasing entropy. We have previously shown that all solutions of our model divide into two halves at a unique `Janus point' of maximum disorder. This constitutes a common past for two futures each with its own gravitational arrow of time. We now show that these arrows are expressed through the formation of branch systems within which conventional entropy increases. On either side of the Janus point, this increase is in the same direction in every branch system. We also show that it is only possible to specify unbiased solution-determining data at the Janus point. Special properties of these `mid-point data' make it possible to develop a rational theory of the typicality of universes whose governing law, as in our model, dictates the presence of a Janus point in every solution. If our self-gravitating universe is governed by such a law, then the second law of thermodynamics is a necessary direct consequence of it and does not need any special initial condition.
Geographical extrapolation of typical hourly weather data for energy calculation in buildings
Arens, Edward A; Flynn, Larry E; Nall, Daniel N; Ruberg, Kalev
1980-01-01
FOR REAL 1951 YEARS PASSIVE HOUSES DAILY LOADS FOR REAL 1951Requirements for Real Year Passive Houses DAILY LOADS FOR
Pressurized pyrolysis and gasification of Chinese typical coal samples
Hanping Chen; Zhiwu Luo; Haiping Yang; Fudong Ju; Shihong Zhang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion
2008-03-15
This paper aims to understand the pyrolysis and gasification behavior of different Chinese coal samples at different pressures. First, the pyrolysis of four typical Chinese coals samples (Xiaolongtan brown coal, Shenfu bituminous coal, Pingzhai anthracite coal, and Heshan lean coal) were carried out using a pressurized thermogravimetric analyzer at ambient pressure and 3 MPa, respectively. The surface structure and elemental component of the resultant char were measured with an automated gas adsorption apparatus and element analyzer. It was observed that higher pressure suppressed the primary pyrolysis, while the secondary pyrolysis of coal particles was promoted. With respect to the resultant solid char, the carbon content increased while H content decreased; however, the pore structure varied greatly with increasing pressure for different coal samples. For Xiaolongtan brown coal (XLT) char, it decreased greatly, while it increased obviously for the other three char types. Then, the isothermal gasification behavior of solid char particles was investigated using an ambient thermal analyzer with CO{sub 2} as the gasifying agent at 1000{sup o}C. The gasification reactivity of solid char was decreased greatly with increasing pyrolysis pressure. However, the extent of change displayed a vital relation with the characteristics of the original coal sample. 26 refs., 5 figs., 5 tabs.
McCann, R.A.
1980-12-01
A finite difference computer code, named HYDRA-I, has been developed to simulate the three-dimensional performance of a spent fuel assembly contained within a cylindrical canister. The code accounts for the coupled heat transfer modes of conduction, convection, and radiation and permits spatially varying boundary conditions, thermophysical properties, and power generation rates. This document is intended as a manual for potential users of HYDRA-I. A brief discussion of the governing equations, the solution technique, and a detailed description of how to set up and execute a problem are presented. HYDRA-I is designed for operation on a CDC 7600 computer. An appendix is included that summarizes approximately two dozen different cases that have been examined. The cases encompass variations in fuel assembly and canister configurations, power generation rates, filler materials, and gases. The results presented show maximum and various local temperatures and heat fluxes illustrating the changing importance of the three heat transfer modes. Finally, the need for comparison with experimental data is emphasized as an aid in code verification although the limited data available indicate excellent agreement.
Structure of The Dixie Valley Geothermal System, a "Typical"...
Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...
Recycling and processing of several typical crosslinked polymer...
Office of Scientific and Technical Information (OSTI)
Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling Citation Details In-Document...
The Science of Hurricanes Typical eye diameter ~20 miles
Miami, University of
#12;The Science of Hurricanes #12;#12;Typical eye diameter ~20 miles Typical hurricane diameter-View of a Hurricane #12;Day 0, Disturbance Day 1, 35mph Depression Day 2, 46mph Tropical Storm Day 3, 63mph Tropical Storm Day 4, 92mph Hurricane Day 5, 127mph Hurricane Day 6, 150mph Hurricane Day 7, 144mph Hurricane Day
Using a calculator to do statistics
Dave
2012-03-25
Statistics on a Scientific Calculator. NOTE: Some of these may not be regular keys on your calculator and may appear in a different color above another key.
Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)
Sheng, S.
2014-01-01
This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.
Table 1. HARVESTING MANAGEMENT STRATEGIES Strategy Name Use Typical location
Table 1. HARVESTING MANAGEMENT STRATEGIES Strategy Name Use Typical location Harvesting strategies Unstable gullies with debris flow potential, unstable channels with high water transport, unstable fans by water flows Channels with high or moderate water transport potential Clean large woody debris /CLWD
Figure 1. Typical Slow Sand Filter Schematic Supernatant Water
Figure 1. Typical Slow Sand Filter Schematic Headspace Supernatant Water Schmutzdecke Raw water for support and also at the bottom an underdrain system collects the filtered water (Figure 1). As water of SSFs to marginal source waters, filter harrowing and faster methods of filter scraping have greatly
B.S. in Biochemistry Typical Program of Study
Houston, Paul L.
B.S. in Biochemistry Typical Program of Study: First Semester Second Semester 1st Year CHEM 1211K Biochemistry I Organic Chemistry Lab CHEM 4512 (3) CHEM 4581 (3) Biology Elective (3) Core Elective (3) Core Elective (3) Biochemistry II Biochemistry Lab I 4th Year CHEM 4582 (3) CHEM 4521 (3) Biology Elective (3
Security Implications of Typical Grid Computing Usage Scenarios Marty Humphrey
Thompson, Mary R.
Security Implications of Typical Grid Computing Usage Scenarios Marty Humphrey Computer Science. A broader goal of these scenarios are to increase the awareness of security issues in Grid Computing. 1 easy and secure ac- cess to the Grid's diverse resources. Infrastructure software such as Legion [6
Feb. 1, 01:32 EDT A typically Canadian story
John, Sajeev
process light the same way that the semiconductor processes electrical current. In plain English in Germany - is more celebrated abroad than at home is typically Canadian. As if in keeping, they are the sons of the late King Faisal (reigned 1964-75). He is remembered in the West for quadrupling oil prices
Energy-Efficient Lighting The typical American family spends more
Energy-Efficient Lighting The typical American family spends more than $1,500 a year on household energy bills--and many households spend considerably more. Costs could climb even higher in the future, as electricity and natural gas prices continue to rise. Investing money in energy-saving products like compact
Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint
Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.
2012-07-01
This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.
Emergence of typical entanglement in two-party random processes
O. C. O. Dahlsten; R. Oliveira; M. B. Plenio
2007-01-17
We investigate the entanglement within a system undergoing a random, local process. We find that there is initially a phase of very fast generation and spread of entanglement. At the end of this phase the entanglement is typically maximal. In previous work we proved that the maximal entanglement is reached to a fixed arbitrary accuracy within $O(N^3)$ steps, where $N$ is the total number of qubits. Here we provide a detailed and more pedagogical proof. We demonstrate that one can use the so-called stabilizer gates to simulate this process efficiently on a classical computer. Furthermore, we discuss three ways of identifying the transition from the phase of rapid spread of entanglement to the stationary phase: (i) the time when saturation of the maximal entanglement is achieved, (ii) the cut-off moment, when the entanglement probability distribution is practically stationary, and (iii) the moment block entanglement scales exhibits volume scaling. We furthermore investigate the mixed state and multipartite setting. Numerically we find that classical and quantum correlations appear to behave similarly and that there is a well-behaved phase-space flow of entanglement properties towards an equilibrium, We describe how the emergence of typical entanglement can be used to create a much simpler tripartite entanglement description. The results form a bridge between certain abstract results concerning typical (also known as generic) entanglement relative to an unbiased distribution on pure states and the more physical picture of distributions emerging from random local interactions.
Typical Problems of AHU and Air Movement in Buildings
2006-01-01
of AHU and Air Typical Problems of AHU and Air Movement in Buildings Movement in Buildings TsinghuaTsinghua UniversityUniversityOct. 2006Oct. 2006 22 ???????? Supply More Than NeededSupply More Than Needed ???????? TP1: Oversize of fresh air supplyTP1...: Oversize of fresh air supply ???????? TP2: CAV serving big spaceTP2: CAV serving big space ???????? TP3: Continuously running in partial time occupied zonesTP3: Continuously running in partial time occupied zones ???????? Wrong Air Handling Process...
Is the Sun Embedded in a Typical Interstellar Cloud?
P. C. Frisch
2008-06-17
The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.
Cattin, Rodolphe
1990-01-01
of the lower continental crust have been measured by seismic reflection profiling (BIRPS, CALCRUST, COCORP
Calculating chiller emissions and source energy use
Aumann, D.J. [Bevilacqua-Knight, Inc., Oakland, CA (United States)
1996-12-31
Various analyses have compared the emissions and over-all source energy use of different chillers. However, these analyses are typically based on national or regional electric power plant annual averages or rely on outdated emissions data that do not account for scrubbers and other pollution controls applied in response to the 1990 Clean Air Act Amendments (CAAA). Other analyses have used power generation data for a specific utility but require hourly generation profiles, which are difficult to obtain. Thus, many of the existing models are either too general to provide valuable information or too complex to be practical for the day-to-day applications engineers face. This paper introduces a simple yet reliable hand calculation method for estimating the combustion-related emissions and source energy use of gas and electric chillers. The user needs to supply only two inputs: annual chiller system energy use and the utility`s power generation mix during chiller operation. The analysis supplies electric power plant heat rates and emission factors. Referenced guidelines are documented for all calculation inputs.
Playful calculation : tangible coding for visual calculation
Ham, Derek (Derek Allen)
2015-01-01
Play and calculation are often considered to be at odds. Play embraces the wildness of youth, imagination, and a sense of freedom. Calculation, to most, represents rigor, mechanistic behavior, and following inflexible ...
Typical Properties of Winners and Losers in Discrete Optimization
Beier, RenÃ©
the accuracy of calculation until the optimal solution is found. The strength of our techniques is illustrated. # Email: rbeier@mpiÂsb.mpg.de. Supported by the DFG studies program GRK 623. + Email: berthold of this work for personal or classroom use is granted without fee provided that copies are not made
Typical Properties of Winners and Losers in Discrete Optimization
Voecking, Berthold
of an adaptive rounding scheme increasing the accu- racy of calculation until the optimal solution is found mathematical programming, network Email: rbeier@mpi-sb.mpg.de. Supported by the DFG studies program GRK 623 or hard copies of all or part of this work for personal or classroom use is granted without fee provided
R-Process Nucleosynthesis In Neutrino-Driven Winds From A Typical Neutron Star With M = 1.4 Msun
M. Terasawa; K. Sumiyoshi; S. Yamada; H. Suzuki; T. Kajino
2002-06-18
We study the effects of the outer boundary conditions in neutrino-driven winds on the r-process nucleosynthesis. We perform numerical simulations of hydrodynamics of neutrino-driven winds and nuclear reaction network calculations of the r-process. As an outer boundary condition of hydrodynamic calculations, we set a pressure upon the outermost layer of the wind, which is approaching toward the shock wall. Varying the boundary pressure, we obtain various asymptotic thermal temperature of expanding material in the neutrino-driven winds for resulting nucleosynthesis. We find that the asymptotic temperature slightly lower than those used in the previous studies of the neutrino-driven winds can lead to a successful r-process abundance pattern, which is in a reasonable agreement with the solar system r-process abundance pattern even for the typical proto-neutron star mass Mns ~ 1.4 Msun. A slightly lower asymptotic temperature reduces the charged particle reaction rates and the resulting amount of seed elements and lead to a high neutron-to-seed ratio for successful r-process. This is a new idea which is different from the previous models of neutrino-driven winds from very massive (Mns ~ 2.0 Msun) and compact (Rns ~ 10 km) neutron star to get a short expansion time and a high entropy for a successful r-process abundance pattern. Although such a large mass is sometimes criticized from observational facts on a neutron star mass, we dissolve this criticism by reconsidering the boundary condition of the wind. We also explore the relation between the boundary condition and neutron star mass, which is related to the progenitor mass, for successful r-process.
Spurious Effects in perturbative Calculations
M. Hortacsu; B. C. Lutfuoglu
1998-12-11
We show spurious effects in perturbative calculations due to different orderings of inhomogeneous terms while computing corrections to Green functions for two different metrics. These effects are not carried over to physically measurable quantities like the renormalized value of the vacuum expectation value of the stress-energy tensor.
Typicality of thermal equilibrium and thermalization in isolated macroscopic quantum systems
Hal Tasaki
2015-08-01
Based on the view that thermal equilibrium should be characterized through macroscopic observations, we develop a general theory about typicality of thermal equilibrium and the approach to thermal equilibrium in macroscopic quantum systems. We first formulate the notion that a pure state in an isolated quantum system represents thermal equilibrium. Then by assuming, or proving in certain classes of nontrivial models (including that of two bodies in thermal contact), large-deviation type bounds (which we call thermodynamic bounds) for the microcanonical ensemble, we prove that to represent thermal equilibrium is a typical property for pure states in the microcanonical energy shell. We also establish the approach to thermal equilibrium under two different assumptions; one is that the initial state has a moderate energy distribution, and the other is the energy eigenstate thermalization hypothesis. We also discuss three easily solvable models in which these assumptions can be verified.
Performance Assessment of a Typical Range Hood Ventilation System
Chen, Meinan
2015-05-01
and Case 2. In Case 1 three different lengths of flexible duct (32”, 46”, 75”) and five different lengths of rigid duct (32”, 46”, 75”119”, 148”) were mounted so as to exit a sidewall. In Case 2, rigid duct was vented through the roof by using the same duct...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of...
Calculation Complexity and Planning
Cockshott, W.P.
Cockshott,W.P. Cottrell,A. Socialism and the market: the socialist calculation debate revisited By Peter J. Boettke
Transfer Area Mechanical Handling Calculation
B. Dianda
2004-06-23
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related manufacturer. A component produced by one manufacturer certainly varies dimensionally from a similar product produced by a different manufacturer. The internal envelope dimensions are dependent on the selection of the individual components. The external envelope dimensions, as well as, key interface dimensions are established within this calculation and are to be treated as bounding dimensions.
The SUN Action database : collecting and analyzing typical actions for visual scene types
Olsson, Catherine Anne White
2013-01-01
Recent work in human and machine vision has increasingly focused on the problem of scene recognition. Scene types are largely defined by the actions one might typically do there: an office is a place someone would typically ...
Waste Package Lifting Calculation
H. Marr
2000-05-11
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.
Multiphase flow calculation software
Fincke, James R. (Idaho Falls, ID)
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
David, Mathieu; Garde, Francois; Boyer, Harry
2014-01-01
In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...
Some Calculations for Cold Fusion Superheavy Elements
Zhong, X H; Ning, P Z
2004-01-01
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Some Calculations for Cold Fusion Superheavy Elements
X. H. Zhong; L. Li; P. Z. Ning
2004-10-18
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Broader source: Energy.gov [DOE]
Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...
quantum scattering calculations
Ihee, Hyotcherl
in a given quantum state per solid angle unit cross section : integral of the differential cross section) converged integral and differential cross sections geometriquantum scattering calculations on chemical reaction 1st Day #12;schedule day 1. 1.Introduction day
Geothermal Life Cycle Calculator
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Sullivan, John
2014-03-11
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Geothermal Life Cycle Calculator
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Sullivan, John
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Broader source: Energy.gov [DOE]
This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.
Plutonium 239 Equivalency Calculations
Wen, J
2011-05-31
This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.
Washington at Seattle, University of
to RMF FRC experiments at RPPL Theory: RMF fully penetrates plasma, Cosynchronous electron rotation plasma, Magnetic profiles flattened across null. Theory: Revised to encompass FRC condition. RMFAPS DPP November 11 15 2002University of Washington Redmond Plasma Physics Laboratory Typical
Zero Temperature Hope Calculations
Rozsnyai, B F
2002-07-26
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.
Determination of a peak benzene exposure to consumers at typical self-service gasoline stations
Carapezza, Ted
1977-01-01
DETERMINATION OF A PEAK BENZENE EXPOSURE TO CONSUMERS AT TYPICAL SELF-SERVICE GASOLINE STATIONS A Thesis by TED CARAPEZZA Submitted to the Graduate College of Texas A8M University in Partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1977 Major Subject: Industrial Hygiene DETERMINATION OF A PEAK BENZENE EXPOSURE TO CONSUMERS AT TYPICAL SELF-SERVICE GASOLINE STATIONS A Thesis by TED CARAPEZZA Approved as to style and content by: (. (iL, &? Chairman...
Analysis of a typical BWR/4 MSIV closure ATWS using RAMONA-3B and TRAC-BD1 codes
Hsu, C.J.; Neymotin, L.; Saha, P.
1984-01-01
Analysis of a typical BWR/4 Anticipated Transient Without Scram (ATWS) has been performed using two advanced, best-estimate computer codes, namely, RAMONA-3B and TRAC-BD1. The transient was initiated by an inadvertant closure of all Main Steam Isolation Valves (MSIVs) with subsequent failure to scram the reactor. However, all other safety features namely, the safety and relief valves, recirculation pump trip, high pressure coolant injection and the standby liquid (boron) control system were assumed to work as designed. No other operator action was assumed. It has been found that both RAMONA-3B (with three-dimensional neutron kinetics) and TRAC-BD1 (with point kinetics) yielded similar results for the global parameters such as reactor power, system pressure and the suppression pool temperature. Both calculations showed that the reactor can be brought to hot shutdown in approximately twenty to twenty-five minutes with borated water mass flow rate of 2.78 kg/s (43 gpm) with 23800 ppM of boron. The suppression pool water temperature (assuming no pool cooling) at this time could be in the range of 170 to 205/sup 0/F. An additional TRAC-BD1 calculation with RAMONA-3B reactor power indicates that the thermal-hydraulic models in RAMONA-3B, although simpler than those in TRAC-BD1, can adequately represent the system behavior during the ATWS-type transient.
Smith, A.
2010-02-16
Radioactive material package containment vessels typically employ bolted closures of various configurations. Closure bolts must retain the lid of a package and must maintain required seal loads, while subjected to internal pressure, impact loads and vibration. The need for insuring that the specified preload is achieved in closure bolts for radioactive materials packagings has been a continual subject of concern for both designers and regulatory reviewers. The extensive literature on threaded fasteners provides sound guidance on design and torque specification for closure bolts. The literature also shows the uncertainty associated with use of torque to establish preload is typically between 10 and 35%. These studies have been performed under controlled, laboratory conditions. The ability to insure required preload in normal service is, consequently, an important question. The study described here investigated the relationship between indicated torque and resulting bolt load for a typical radioactive materials package closure using methods available under normal service conditions.
Radiation dose estimates for typical piloted NTR lunar and Mars mission engine operations
Schnitzler, B.G. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Borowski, S.K. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center)
1991-01-01
The natural and manmade radiation environments to be encountered during lunar and Mars missions are qualitatively summarized. The computational methods available to characterize the radiation environment produced by an operating nuclear propulsion system are discussed. Mission profiles and vehicle configurations are presented for a typical all-propulsive, fully reusable lunar mission and for a typical all-propulsive Mars mission. Estimates of crew location biological doses are developed for all propulsive maneuvers. Post-shutdown dose rates near the nuclear engine are estimated at selected mission times. 15 refs., 4 figs.
Daylighting Calculation in DOE-2
Winkelmann, F.C
2013-01-01
2.9) DAYLIGHTING CALCULATION IN DOE-2 Table of Contents 1.55 —-17:-.. LBL-11353 (III.2.9 only) EEB-DOE-2 83—3DAYLIGHTING CALCULATION IN DOE-2 Frederick C. Winkelmann
How Are Momentum Savings Calculated?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...
INTRODUCTION Motor control of the feeding mechanism is typically regarded as
Lauder, George V.
3095 INTRODUCTION Motor control of the feeding mechanism is typically regarded as phylogenetically). In spite of this conservatism, most of these fishes are capable of modulating the kinematics of the feeding et al., 2006b; Nauwelaerts et al., 2007). Thus, the effect of kinematic modulation on the resulting
Strain Storage Typically, mycobacteria can be stored as lyophilized stocks, agar slants, or frozen stocks. Since lyophilization is not a cost-effective product storage alternative for virulent M. tuberculosis and agar slants can take up considerable BSL3 storage space, the best alternative for strain
Assessing Student Learning We typically assess student learning in terms of their grades on
Champagne, Frances A.
need to be student-focused rather than instructor-focused. Focus on the learning resulting fromAssessing Student Learning We typically assess student learning in terms of their grades on quizzes should be linked to our learning objectives. To properly assess student learning, you need to know what
Little, Tony
1 Introduction Studies of facial attractiveness have typically investigated how physical cues for a recent meta-analytic review). By contrast with this emphasis on the effects that physical cues have of these invariant physical cues and those of changeable social signals, such as gaze direction and expression, might
Roe, Gerard
OROGRAPHIC PRECIPITATION Precipitation that has been generated or modified by topography, typically rainfall). Orographic effects on precipitation are also responsible for some of the planet's sharpest perpendicular to the prevailing winds, precipitation is greatly enhanced on the windward side and suppressed
The impact of different weather data on simulated residential heating and cooling load
Huang, J. [Lawrence Berkeley National Lab., CA (United States)
1998-12-31
Since 1995, two major new sources of typical year weather data--ASHRAE`s Weather Year for Energy Calculations, Version 2 (WYEC2), for 59 US and Canadian locations and NREL`s Typical Meteorological Year, Version 2 (TMY2), for 239 US locations--have become available for use in building energy simulations. Both of these data sets represent several years of effort in correcting data anomalies and adding improved solar models to the earlier WYEC and TMY weather sets. Although it is straightforward to tabulate and compare the changes in climate statistics, e.g., degree-days, wind speed, average solar heat gain, etc., the impact that such changes have on the simulated energy consumption of a building is less clear. The purpose of this study is to use DOE-2 simulations of prototypical residential buildings to (1) determine the ability of various typical year weather data such as TMY2, TMY, WYEC2, WYEC, and TRY to reproduce the long-term average heating and cooling energy consumption when simulated using 30 years of historical weather data and (2) compare the simulated energy consumption from different typical year data and determine if there are systematic differences due to the type of weather data.
RAMONA-3B calculations for Browns Ferry ATWS (Anticipated Transient Without Scram) study
Saha, P; Slovik, G C; Neymotin, L Y
1987-02-01
Several aspects of the Anticipated Transient Without Scram (ATWS) initiated by an inadvertent closure of all Main Steam Isolation Valves (MSIV) in a typical BWR/4 are analyzed in the report. The analysis is performed using the Brookhaven National Laboratory code, RAMONA-3B, which employs a three-dimensional neutron kinetics model coupled with a parallel-channel thermal hydraulics in representing a Boiling Water Reactor (BWR) Core. Four different transient scenarios have been investigated: (a) downcomer water level and reactor pressure control, (b) manual control rod insertion transient, (c) high pressure boil-off, and (d) recirculation pump trip failure. Results of these calculations should provide better understanding of mitigative effects of operator actions during ATWS, thus helping in the development of adequate Emergency Procedure Guidelines (EPG) required for the BWR plant safety. A few unresolved questions subject to future investigations are also discussed.
Thermosyphon Cooler Hybrid System Providing Water Resiliency in a typical Chemical Plant
Carter, T. P.
2014-01-01
System Providing Water Resiliency in a Typical Chemical Plant Presentation to the: May 21, 2014 Thomas P. Carter, P.E. Sr. Program Manager, Heat Rejection Technology Johnson Controls, Building Efficiency thomas.p.carter@jci.com ESL-IE-14...-05-20 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 2Johnson Controls is a globally diversified company in the building and automotive industries Automotive ExperienceBuilding Efficiency Power Solutions...
RTU Comparison Calculator Enhancement Plan
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Unifying typical entanglement and coin tossing: on randomization in probabilistic theories
Markus P. Müller; Oscar C. O. Dahlsten; Vlatko Vedral
2012-11-12
It is well-known that pure quantum states are typically almost maximally entangled, and thus have close to maximally mixed subsystems. We consider whether this is true for probabilistic theories more generally, and not just for quantum theory. We derive a formula for the expected purity of a subsystem in any probabilistic theory for which this quantity is well-defined. It applies to typical entanglement in pure quantum states, coin tossing in classical probability theory, and randomization in post-quantum theories; a simple generalization yields the typical entanglement in (anti)symmetric quantum subspaces. The formula is exact and simple, only containing the number of degrees of freedom and the information capacity of the respective systems. It allows us to generalize statistical physics arguments in a way which depends only on coarse properties of the underlying theory. The proof of the formula generalizes several randomization notions to general probabilistic theories. This includes a generalization of purity, contributing to the recent effort of finding appropriate generalized entropy measures.
A Framework for Lattice QCD Calculations on GPUs
F. T. Winter; M. A. Clark; R. G. Edwards; B. Joó
2014-08-25
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.
A Framework for Lattice QCD Calculations on GPUs
Winter, Frank; Clark, M.A.; Edwards, Robert G.; Joo, Balint
2014-08-01
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.
SU-E-T-27: A Tool for Routine Quality Assurance of Radiotherapy Dose Calculation Software
Popple, R; Cardan, R; Duan, J; Wu, X; Shen, S; Brezovich, I
2014-06-01
Purpose: Dose calculation software is thoroughly evaluated when it is commissioned; however, evaluation of periodic software updates is typically limited in scope due to staffing constraints and the need to quickly return the treatment planning system to clinical service. We developed a tool for quickly and comprehensively testing and documenting dose calculation software against measured data. Methods: A tool was developed using MatLab (The MathWorks, Natick, MA) for evaluation of dose calculation algorithms against measured data. Inputs to the tool are measured data, reference DICOM RT PLAN files describing the measurements, and dose calculations in DICOM format. The tool consists of a collection of extensible modules that can perform analysis of point dose, depth dose curves, and profiles using dose difference, distance-to-agreement, and the gamma-index. Each module generates a report subsection that is incorporated into a master template, which is converted to final form in portable document format (PDF). Results: After each change to the treatment planning system, a report can be generated in approximately 90 minutes. The tool has been in use for more than 5 years, spanning 5 versions of the eMC and 4 versions of the AAA. We have detected changes to the algorithms that affected clinical practice once during this period. Conclusion: Our tool provides an efficient method for quality assurance of dose calculation software, providing a complete set of tests for an update. Future work includes the addition of plan level tests, allowing incorporation of, for example, the TG-119 test suite for IMRT, and integration with the treatment planning system via an application programming interface. Integration with the planning system will permit fully-automated testing and reporting at scheduled intervals.
LCEs for Naval Reactor Benchmark Calculations
W.J. Anderson
1999-07-19
The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.
Computational Tools for Supersymmetry Calculations
Howard Baer
2009-12-16
I present a brief overview of a variety of computational tools for supersymmetry calculations, including: spectrum generators, cross section and branching fraction calculators, low energy constraints, general purpose event generators, matrix element event generators, SUSY dark matter codes, parameter extraction codes and Les Houches interface tools.
Closure and Sealing Design Calculation
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not be addressed in this calculation.
An Economic Study of a Typical Ranching Area on the Edwards Plateau of Texas.
Youngblood, B. (Bonney); Cox, Alonzo B. (Alonzo Bettis)
1922-01-01
.SCHOOL OF THE UNI- VERSITY OF WISCONSIN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ENTITLED AN ECONOMIC STUDY OF A TYPICAL RANCHING AREA EDWARDS PLATEAU OF TEXAS LI BHAH Y &)@S A&M I.JNIVERSi BONNY;' ~q...: in reported, this chapter is devoted to a discussion of thl ective domains of the farmer and the grazier and to esti 2s as to the area and extent of the lands occupied by each present and potential. Historically, ranching has been a frontier industry. I...
An Agricultural Economic Survey of Rockwall County, Texas : A Typical Blackland Cotton Farming Area.
Gabbard, L. P. (Letcher P.)
1925-01-01
XPfRIMfNT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, President BULLETIN NO. 327 February, 1925 DIVISION OF FARM AND RANCH ECONOMICS AN AGRICULTURAL ECONOMIC SURVEY OF ROCKWALL COUNTY, TEXAS A Typical Blackland Cotton Farming Area B..., Ph. D., Chief of Div ision ,J. M. SCHAEDEL, Executive Assistant FARM AND RANCH ECONOMICS VECTE~I~f~~El~~~N~Ehnical A ssistant L. P. GABBARD, M. S., Chief of Division *M. FRANCIS, D. V. M., Chief of Division B. a~~Vl:;;c~LJ12,~~.!_;t S., Ph. D...
Analysis of high-pressure boiloff situation during an MSIV closure ATWS in a typical BWR/4
Neymotin, L.Y.; Slovik, G.C.; Saha, P.
1986-01-01
An anticipated transient without scram (ATWS) is recognized as one of the boiling water reactor (BWR) accident sequences potentially leading to core damage. Of all the various ATWS initiating events, the main steam isolation valve (MSIV) closure ATWS is the most severe, because of its relatively high frequency of occurrence and its challenge to the residual heat removal and containment integrity systems. Although under investigation for quite a long period of time, different aspects of this type of transient are still being analyzed. The final outcome of these studies should be a well-defined set of recommendations for the plant operator to mitigate an ATWS accident. The objective of this paper is to provide a best estimate analysis of the MSIV closure ATWS in the Browns Ferry Unit 1 BWR with Mark-1 containment. The calculations have been performed using the RAMONA-3B code which as a three-dimensional neutron kinetics model coupled with one-dimensional four-equation, nonhomogeneous, nonequilibrium thermal hydraulics. The code also allows for one-dimensional neutronic core representation. The one-dimensional capability of the code has been employed in this calculation since a thorough sensitivity study showed that for a full ATWS, a one-dimensional neutron kinetics adequately describes the core behavior. The calculation described in the paper was started from a steady-state fuel condition corresponding to the end of cycle 5 of the Browns Ferry reactor.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods POCTBT Y-12
Binding Energies in Benzene Dimers: Nonlocal Density Functional Calculations
Aaron Puzder; Maxime Dion; David C. Langreth
2005-09-15
The interaction energy and minimum energy structure for different geometries of the benzene dimer has been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations can elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces, and van der Waals crystals.
SB EE Calculator | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...
Feng, Jingjuan; Bauman, Fred
2013-01-01
and high temperature cooling_REHVA Guidebook, Federation ofEvaluation of cooling performance of thermally activatedsystem with evaporative cooling source for typical United
Ma, Hongshen
Abstract--During medical procedures, such as surgery, a patient's vital signs are typically unit, patient vital signs are obtained through various wires and adhesive electrodes attached
Laurent Berger TOPOLOGIE ET CALCUL
Berger, Laurent
Laurent Berger TOPOLOGIE ET CALCUL DIFF´ERENTIEL #12;Laurent Berger UMPA, ENS de Lyon, UMR 5669 du CNRS, Universit´e de Lyon. E-mail : laurent.berger@ens-lyon.fr Url : http://perso.ens-lyon
Fission life-time calculation using a complex absorbing potential
Guillaume Scamps; Kouichi Hagino
2015-12-28
A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.
Graphical User Interface for Simplified Neutron Transport Calculations
Schwarz, Randolph; Carter, Leland L
2011-07-18
A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.
Improved Calculation of Thermal Fission Energy
X. B. Ma; W. L. Zhong; L. Z. Wang; Y. X. Chen; J. Cao
2013-06-30
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. One is more recent input data acquired from updated nuclear databases. the second one is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The last one is more carefully calculation of the average energy taken away by antineutrinos in thermal fission with the comparison of antineutrino spectrum from different models. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.32%, and the uncertainties of the new values are about 50% smaller.
Calculating Residential Carbon Dioxide Emissions --A New Approach
Hughes, Larry
Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane of tables relating to national sources and sinks of greenhouse gases (principally carbon dioxide, methane, 1
Guidelines for the analysis of free energy calculations
Klimovich, PV; Shirts, MR; Mobley, DL; Mobley, DL
2015-01-01
Efficient estimation of free energy differ- ences from Montenumerical instabilities in free energy calculations based onD.L. , DiCapua, F.M. : Free energy via molecular simulation:
A critical look at methods for calculating charge transfer couplings fast and accurately
Ramos, Pablo; Pavanello, Michele
2015-01-01
We present here a short and subjective review of methods for calculating charge transfer couplings. Although we mostly focus on Density Functional Theory, we discuss a small subset of semiempirical methods as well as the adiabatic-to-diabatic transformation methods typically coupled with wavefunction-based electronic structure calculations. In this work, we will present the reader with a critical assessment of the regimes that can be modeled by the various methods their strengths and weaknesses. In order to give a feeling about the practical aspects of the calculations, we also provide the reader with a practical protocol for running coupling calculations with the recently developed FDE-ET method.
Asymptotic normalization coefficients from ab initio calculations
Kenneth M. Nollett; R. B. Wiringa
2011-04-14
We present calculations of asymptotic normalization coefficients (ANCs) for one-nucleon removals from nuclear states of mass numbers 3 to 9. Our ANCs were computed from variational Monte Carlo solutions to the many-body Schroedinger equation with the combined Argonne v18 two-nucleon and Urbana IX three-nucleon potentials. Instead of computing explicit overlap integrals, we applied a Green's function method that is insensitive to the difficulties of constructing and Monte Carlo sampling the long-range tails of the variational wave functions. This method also allows computation of the ANC at the physical separation energy, even when it differs from the separation energy for the Hamiltonian. We compare our results, which for most nuclei are the first ab initio calculations of ANCs, with existing experimental and theoretical results and discuss further possible applications of the technique.
Equation of State from Lattice QCD Calculations
Rajan Gupta
2011-04-01
We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest (W-B) collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T=150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that the lattice results of EoS are getting precise enough to justify being used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.
Calculation of Kinetics Parameters for the NBSR
Hanson A. L.; Diamond D.
2012-03-06
The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.
Technology Solutions Case Study: Calculating Design Heating Loads for Superinsulated Buildings
2015-08-01
Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, the Consortium for Advanced Residential Buildings team monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.
Permeability Calculation in a Fracture Network - 12197
Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)
2012-07-01
Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)
Hubrig, S; Gonzalez, J F; Carroll, T A; Ilyin, I; Schöller, M; Drake, N A; Korhonen, H; Briquet, M
2014-01-01
The aim of this study is to carry out an abundance determination, to search for spectral variability and for the presence of a weak magnetic field in the typical PGa star HD19400. High-resolution, high signal-to-noise HARPS spectropolarimetric observations of HD19400 were obtained at three different epochs in 2011 and 2013. For the first time, we present abundances of various elements determined using an ATLAS12 model, including the abundances of a number of elements not analysed by previous studies, such as Ne I, Ga II, and Xe II. Several lines of As II are also present in the spectra of HD19400. To study the variability, we compared the behaviour of the line profiles of various elements. We report on the first detection of anomalous shapes of line profiles belonging to Mn and Hg, and the variability of the line profiles belonging to the elements Hg, P, Mn, Fe, and Ga. We suggest that the variability of the line profiles of these elements is caused by their non-uniform surface distribution, similar to the pr...
Typical atmospheric aerosol behavior at the Cherenkov Telescope Array candidate sites in Argentina
Piacentini, Rubén D; Micheletti, María I; Salum, Graciela M; Maya, Javier; Mancilla, Alexis; García, Beatriz
2013-01-01
Aerosols from natural and antropogenic sources are one of the atmospheric components that have the largest spacial-temporal variability, depending on the type (land or ocean) surface, human activity and climatic conditions (mainly temperature and wind). Since Cherenkov photons generated by the incidence of a primary ultraenergetic cosmic gamma photon have a spectral intensity distribution concentrated in the UV and visible ranges [Hillas AM. Space Science Reviews, 75, 17-30, 1996], it is important to know the aerosol concentration and its contribution to atmospheric radiative transfer. We present results of this concentration measured in typical rather calm (not windy) days at San Antonio de los Cobres (SAC) and El Leoncito/CASLEO proposed Argentinean Andes range sites for the placement of the Cherenkov Telescope Array (CTA). In both places, the aerosol concentration has a peak in the 2.5-5.0$\\mu$m range of the mean aerosol diameter and a very low mean total concentration of 0.097$\\mu$g/m$^3$ (0.365$\\mu$g/m$^...
LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods
Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.
1997-04-01
The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.
Petrophysical corner - calculating water cut
Elphick, R.Y. )
1990-02-01
The problem of determining the amount of water cut that can be expected from a well is discussed in conjunction with a program for making this calculation. The program was written for Amiga, Apple Macintosh, and MS DOS personal computers and source code for the program is provided.
Gräter, Frauke
Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Mechanics Frauke of the complexes are predicted (the "docking" problem) as well as in how the free energy is calculated from)solvation during the binding process.3 Typically, binding free energies calculated with these methods have average
Laske, Gabi
fracture in a rock Fissure eruption extrusion of lava along a fissure Flood basalt an extensive flow and steam from which minerals precipitate onto surrounding surfaces; the temperature in a fumarole typically
Agriculture-related radiation dose calculations
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant
Osamu KAawabata; Mitsuhiro Kajimoto [Japan Nuclear Energy Safety Organization (Japan)
2006-07-01
In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the start of steam release. (authors)
Social Media revolutionising the building industry towards sustainability Buildings have typically. A summary sheet provides information on energy and environmental performance, equipment, cost, innovation solutions which contribute to the total performance of the building. An annual ranking list promotes
Beigl, Michael
Typical Sensors needed in Ubiquitous and Pervasive Computing Michael Beigl, Albert Krohn, Tobias and presents an overview of their characteristics. Keywords: ubiquitous and pervasive computing, networked for networked embedded sensor systems, especially in ubiquitous and pervasive computing settings. Several
Biswanath Rath
2015-06-09
We notice through a direct calculation that any variational based calculation on $PT$ symmetrized complex Harmonic Oscillator can lead to breakdown of $PT$ symmetry condition on real spectra. Two different types of oscillators have been tested yielding an uniform conclusion.
A household carbon footprint calculator for islands: Case study of the United States Virgin Islands
Kammen, Daniel M.
Survey A household carbon footprint calculator for islands: Case study of the United States Virgin xxxx Keywords: Carbon footprint Green house gas emissions Small Island Developing States Island regions the carbon footprint of typical households within the US Virgin Islands. We find the average carbon footprint
Real-time thermal load calculation by automatic estimation of convection coefficients
Bahrami, Majid
of Heating, Ventilating, Air Conditioning, and Refrigeration (HVAC-R) systems is to calculate the room conditioning is a significant energy-consuming unit in vehicles (Farrington et al., 1999). The air conditioning losses for a typical vehicle. Air conditioning can reduce the fuel economy of mid- size vehicles by more
Calculating loops without loop calculations: NLO computation of pentaquark correlators
S. Groote; J. G. Körner; A. A. Pivovarov
2012-08-27
We compute next-to-leading order (NLO) perturbative QCD corrections to the correlators of interpolating pentaquark currents. We employ modular techniques in configuration space which saves us from the onus of having to do loop calculations. The modular technique is explained in some detail. We present explicit NLO results for several interpolating pentaquark currents that have been written down in the literature. Our modular approach is easily adapted to the case of NLO corrections to multiquark correlators with an arbitrary number of quarks/antiquarks.
Boyer, Edmond
; different fishing villages Small-scale fishermen Not really (only extensive fishing methods which do not overexploit the stocks : handline ; encircling gillnet « félé-félé » ; beach seine) Fair-Fish, Switzerland of the Sea 2007 World Export : Swiss consumer via Migros supermarket + minimum of fair- fish products
Microcomputer Software for Refrigerant Property and Cycle Analysis Calculations
Bierschenk, J. L.; Strohl, S. T.; Schmidt, P. S.
1985-01-01
.e., minimum temperature difference betweeD the refrigerant and the process stream) in the evapo rator and condenser on the energy utilization and cooling requirements for the refrigeration system. The assumed refrigeration load is 30 million Btu... on an existing system for purposes of improving energy utilization efficiency. Consider the case of a chiller for a commercial office building, operating on R12 at an evapo rator temperature of 42 deg F. During typical summer conditions, the chiller provides...
Primordial Gravitational Wave Calculations: Nonlinear vs Linear Codes
Garrison, David
2015-01-01
This work is a follow-up to the paper, "Numerical Relativity as a Tool for Studying the Early Universe". In this article, we present the first results of direct numerical simulations of primordial plasma turbulence as it applies to the generation of gravitational waves. We calculate the normalized energy density, strain and degree of polarization of gravitational waves produced by a simulated turbulent plasma similar to what was believed to have existed at the electroweak scale, 246 GeV. This calculation is completed using two numerical codes, one which utilizes full General Relativity calculations based on modified BSSN equations while the other utilizes a linearized approximation of General Relativity. Our results show that there is a significant difference between the spectrum of gravitational waves calculated using a nonlinear code as opposed to that calculated with a linear approximation. This implies that simulations that do not take into account nonlinear effects may not give accurate results.
Primordial Gravitational Wave Calculations: Nonlinear vs Linear Codes
David Garrison
2015-06-17
This work is a follow-up to the paper, "Numerical Relativity as a Tool for Studying the Early Universe". In this article, we present the first results of direct numerical simulations of primordial plasma turbulence as it applies to the generation of gravitational waves. We calculate the normalized energy density, strain and degree of polarization of gravitational waves produced by a simulated turbulent plasma similar to what was believed to have existed shortly after the electroweak scale. This calculation is completed using two numerical codes, one which utilizes full General Relativity calculations based on modified BSSN equations while the other utilizes a linearized approximation of General Relativity. Our results show that there is a significant difference between the spectrum of gravitational waves calculated using a nonlinear code as opposed to that calculated with a linear approximation. This implies that simulations that do not take into account nonlinear effects may not give accurate results.
Incorporating Weather Data into Energy Savings Calculations ...
Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...
Health Calculators & Logs - HPMC Occupational Health Services
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculators & Logs Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Body Mass Index Health Coaching Health Fairs and...
NAPL Calculator - Energy Innovation Portal
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL Calculator
On calculating the equilibrium structure of molecular crystals.
Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene
2010-03-01
The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.
Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich
2013-05-10
Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.
Benchmark On Sensitivity Calculation (Phase III)
Ivanova, Tatiana [IRSN; Laville, Cedric [IRSN; Dyrda, James [Atomic Weapons Establishment; Mennerdahl, Dennis [E. Mennerdahl Systems; Golovko, Yury [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Raskach, Kirill [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Tsiboulia, Anatoly [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Lee, Gil Soo [Korea Institute of Nuclear Safety (KINS); Woo, Sweng-Woong [Korea Institute of Nuclear Safety (KINS); Bidaud, Adrien [Labratoire de Physique Subatomique et de Cosmolo-gie (LPSC); Patel, Amrit [NRC; Bledsoe, Keith C [ORNL; Rearden, Bradley T [ORNL; Gulliford, J. [OECD Nuclear Energy Agency
2012-01-01
The sensitivities of the keff eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods.
Filman, Robert E.
CHAPTER TWO PROGRAMMING LANGUAGES We assume the readers of this book are familiar with material covered in a typical undergraduate course on programming languages. Texts for such classes include Pratt, not all readers have identical backgrounds. This chapter reviews two aspects of programming languages
WHAT IS THE MASTER COMPOSTER PROGRAM? Between 10 and 25 % of a typical household's waste can be
Alpay, S. Pamir
WHAT IS THE MASTER COMPOSTER PROGRAM? Between 10 and 25 % of a typical household's waste can in partnership with the Connecticut Recyclers Coalition, is offering the Master Composter Program to educate and train state residents about the composting process and to assist participants in passing this knowledge
Stern, Robert J.
Glass Inclusions in Mariana Arc Phenocrysts: A New Perspective on Magmatic Evolution in a Typical at Dallas, Box 830688, Richardson, TX 75083-0688, USA A B S T R A C T Major element compositions of glass of these lavas reflects accumulation of plagioclase. Glass inclusions also show the common occurrence of felsic
Chemical-equilibrium calculations for aqueous geothermal brines
Kerrisk, J.F.
1981-05-01
Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.
DENSITY OF STATES CALCULATIONS FOR CARBON
Adler, Joan
DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES EDUARDO WARSZAWSKI #12;#12;DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES Research Thesis Submitted in Partial;#12;Contents Abstract xiii 1 Introduction 1 1.1 Carbon allotropes
Adaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets
Averbuch, Amir
Adaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets Amir in numerical solution of differential and integral equations. Classical methods for discretization lead-based multiplication is af- fected by different input parameters for the algorithm. We integrated a sparse
Quantum transport calculations using periodic boundaryconditions
Wang, Lin-Wang
2004-06-15
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.
Quasi Exactly Solvable Difference Equations
Ryu Sasaki
2007-10-11
Several explicit examples of quasi exactly solvable `discrete' quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable Hamiltonians of one degree of freedom. These are difference analogues of the well-known quasi exactly solvable systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic potential and the 1/sin^2x potential deformed by a cos2x potential. They have a finite number of exactly calculable eigenvalues and eigenfunctions.
Carter, T. P.
2014-01-01
) for Evaluating Energy and Water Impacts of Alternative Process Cooling Systems in a Typical Chemical Plant Presentation to the: May 21, 2014 Thomas P. Carter, P.E. Sr. Program Manager, Heat Rejection Technology Johnson Controls, Building Efficiency thomas... less water consumption? 2. How can you financially evaluate the alternatives? ESL-IE-14-05-19 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 When evaluating the total economic impact of water...
Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Visual Analytics for Roof Savings Calculator Ensembles
Jones, Chad [University of California, Davis] [University of California, Davis; New, Joshua Ryan [ORNL] [ORNL; Sanyal, Jibonananda [ORNL] [ORNL; Ma, Kwan-Liu [University of California, Davis] [University of California, Davis
2012-01-01
The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.
Computerized Energy and Treatment Cost Calculations
Trace, W. L.
1981-01-01
operating conditions. This fact will be demonstrated graphically by comparing sodium zeolite softening versus demineralization on a typical raw water analysis. RAW WATER pH 7.2 Bicarbonate as HC0 3 102 mg I L Chloride as CI 10 mgt L Sulfate as S04... be necessary to control scale and corrosion throughout the boiler system. DE!\\i1N ERALIZAnON Let us now consider using the same raw water analysis, but using demineralization as treatment on the typical raw water. Figure 7 lists the ~2rlysis effluent...
Effect of housing conditions on sex differences in spatial cognition in rats
Harris, Anjanette Patricia
2009-01-01
Male mammals typically outperform females in tests of spatial ability. However, in laboratory rats (Rattus norvegicus), from which the majority of data in support of this difference come, sex differences are not consistently ...
Calculation of complex DNA damage induced by ions
Eugene Surdutovich; David C. Gallagher; Andrey V. Solov'yov
2012-01-27
This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The analysis and assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We studied the flux of secondary electrons through the surface of nucleosomes and calculated the radial dose and the distribution of clustered damage around the ion's track. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. Comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.
Fully microscopic shell-model calculations with realistic effective hamiltonians
L. Coraggio; A. Covello; A. Gargano; N. Itaco; T. T. S. Kuo
2011-01-24
The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in realistic shell-model calculations. Here we focus on calculations where a fully microscopic approach is adopted. No phenomenological input is needed in these calculations, because single-particle energies, matrix elements of the two-body interaction, and matrix elements of the electromagnetic multipole operators are derived theoretically. This has been done within the framework of the time-dependent degenerate linked-diagram perturbation theory. We present results for some nuclei in different mass regions. These evidence the ability of realistic effective hamiltonians to provide an accurate description of nuclear structure properties.
Theory and calculations of synchrotron instabilities and feedback-mechanism
Meijssen, T.E.M.
1981-08-12
The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.
Analysis of high pressure boil-off situation during MSIV closure ATWS in a typical BWR/4
Neymotin, L.Y.; Slovik, G.C.; Saha, P.
1986-01-01
The objective of this paper is to provide a best-estimate analysis of the MSIV Closure ATWS in the Browns Ferry Unit 1 BWR with Mark 1 containment. The calculations have been performed using the RAMONA-3B code which has a three-dimensional neutron kinetics model coupled with one-dimensional (multi-channel core representation), four-equation, nonhomogeneous, nonequilibrium thermal hydraulics. The code also allows for one-dimensional neutronic core representation. The 1-D capability of the code has been employed in this calculation since a thorough sensitivity study showed that for a full ATWS, a one-dimensional (axial) neutron kinetics adequately describes the core behavior. (Note that the core steady-state symmetry in this case was preserved throughout the transient so that radial effects could be neglected.) The calculation described in the paper was started from a steady-state fuel condition corresponding to the end of Cycle 5 of the Browns Ferry reactor.
Hamp, S. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Jackson, T.J. [Geraghty and Miller, Inc., Albuquerque, NM (United States); Dotson, P.W. [Roy F. Weston, Inc., Albuquerque, NM (United States)
1995-03-01
Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.
Cooling airflow design calculations for UFAD
Bauman, Fred; Webster, Tom; Benedek, Corinne
2007-01-01
written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-
Minimum Day Time Load Calculation and Screening
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
from field measurements available to calculate feeder PV production based in installed Capacity per feeder (Example: capture clear day vs cloudy day): PV gen. on circuit...
Evaluation Of Chemical Geothermometers For Calculating Reservoir...
Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Scheib, J.; Pless, S.; Torcellini, P.
2014-08-01
NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.
Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.
2013-11-01
pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.
Chemistry 365: Force Constant Calculations David Ronis
Ronis, David M.
cost energy, and hence, there will no force in thy y or z directions (thereby resulting in 4 zero eigenChemistry 365: Force Constant Calculations © David Ronis McGill University Here is an example of a force constant matrix calculation. We will consider a diatomic molecule, where the two atoms interact
PVWatts (R) Calculator India (Fact Sheet)
Not Available
2014-01-01
The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.
Tools for calculations in color space
Malin Sjodahl; Stefan Keppeler
2013-07-04
Both the higher energy and the initial state colored partons contribute to making exact calculations in QCD color space more important at the LHC than at its predecessors. This is applicable whether the method of assessing QCD is fixed order calculation, resummation, or parton showers. In this talk we discuss tools for tackling the problem of performing exact color summed calculations. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal multiplet bases (for which a general method of construction was recently presented). Following this, we focus on two new packages for performing color structure calculations: one easy to use Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more demanding calculations, and for interfacing with event generators.
Krylov, Anna I.
Efficient Strategies for Accurate Calculations of Electronic Excitation and Ionization Energies on single-reference methods for calculating accurate energy differences. Different schemes for calculating of energy differences, such as electronic excitation and ionization energies, as well as heats of formation
Comparison of the calculated neutron noise using finite differences and the Analytical Nodal Method
Demazière, Christophe
dynamical parameters, as the Decay Ratio in a Boiling Water Reactor, or the Moderator Temperature Coefficient in a Pressurized Water Reactor. It can also be used for diagnostic purposes, e.g. when anomalies-core neutron detectors in western-type Light Water Reactors is very limited, the full spatial dependence
68 energy risk November 2003 The ability to calculate correlations for different assets or for the
Carmona, Rene
.The questions of how natural gas storage is correlated to temperature in a certain location or what the trend or seasonal component. For example, natural gas storage and temperature decrease in winter
Using Nyquist or Nyquist-Like Plot to Predict Three Typical Instabilities in DC-DC Converters
Fang, Chung-Chieh
2012-01-01
By transforming an exact stability condition, a new Nyquist-like plot is proposed to predict occurrences of three typical instabilities in DC-DC converters. The three instabilities are saddle-node bifurcation (coexistence of multiple solutions), period-doubling bifurcation (subharmonic oscillation), and Neimark bifurcation (quasi-periodic oscillation). In a single plot, it accurately predicts whether an instability occurs and what type the instability is. The plot is equivalent to the Nyquist plot, and it is a useful design tool to avoid these instabilities. Nine examples are used to illustrate the accuracy of this new plot to predict instabilities in the buck or boost converter with fixed or variable switching frequency.
Using Nyquist or Nyquist-Like Plot to Predict Three Typical Instabilities in DC-DC Converters
Chung-Chieh Fang
2012-04-09
By transforming an exact stability condition, a new Nyquist-like plot is proposed to predict occurrences of three typical instabilities in DC-DC converters. The three instabilities are saddle-node bifurcation (coexistence of multiple solutions), period-doubling bifurcation (subharmonic oscillation), and Neimark bifurcation (quasi-periodic oscillation). In a single plot, it accurately predicts whether an instability occurs and what type the instability is. The plot is equivalent to the Nyquist plot, and it is a useful design tool to avoid these instabilities. Nine examples are used to illustrate the accuracy of this new plot to predict instabilities in the buck or boost converter with fixed or variable switching frequency.
A. J. Baltz
1997-01-10
An exact solution of the time-dependent Dirac equation for ionization and pair production induced by ultrarelativistic heavy ion collisions is presented. Exact transition probabilities, equivalent to those that would be obtained in an untruncated basis coupled channels calculation, are presented. Exact bound-electron positron pair production probabilities are calculated to be mostly smaller than those calculated with the same potential in perturbation theory at impact parameters small enough for differences to occur.
Yerokhin, V A; Fritzsche, S
2014-01-01
Relativistic configuration-interaction calculations have been performed for the energy levels of the low-lying and core-excited states of beryllium-like argon, Ar$^{14+}$. These calculations include the one-loop QED effects as obtained by two different methods, the screening-potential approach as well as the model QED operator approach. The calculations are supplemented by a systematic estimation of uncertainties of theoretical predictions.
Rooftop Unit Comparison Calculator User Manual
Miller, James D.
2015-04-30
This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4
Bailey, J.W.
1998-07-24
This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.
Dose calculation for electron therapy using an improved LBR method
Gebreamlak, Wondesen T.; Alkhatib, Hassaan A. [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); South Carolina Oncology Associates, Columbia, South Carolina 29210 (United States); Tedeschi, David J. [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States)
2013-07-15
Purpose: To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method.Methods: Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 Multiplication-Sign 6, 10 Multiplication-Sign 10, 14 Multiplication-Sign 14, and 20 Multiplication-Sign 20 cm{sup 2}. Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared.Results: The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 Multiplication-Sign 14 cm{sup 2} cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [{sigma}{sub R}(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that {sigma}{sub R}(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves.Conclusions: In this research, it is shown that the lateral spread parameter {sigma}{sub R}(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of {sigma}{sub R}(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV)
INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS
Finley Jr., Russell L.
INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST TUITION STIPEND EQUIPMENT] (.52 ) + DIRECT
HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT
Hall, W.G.
2012-01-01
LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES • . • • • • . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED
Medical physics calculations with MCNP: a primer
Lazarine, Alexis D
2006-10-30
of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...
Essential Value, Pmax, and Omax Automated Calculator
Kaplan, Brent A.; Reed, Derek D.
2014-08-21
Behavioral economic measures of demand are often calculated in sophisticated spreadsheet programs. Unfortunately, no closed form models for exact pmax (point of unit elasticity) and omax (response output at pmax) can be applied to initial regression...
Nested-grid calculations of disk-planet interaction
Gennaro D'Angelo; Thomas Henning; Wilhelm Kley
2001-12-18
We study the evolution of embedded protoplanets in a protostellar disk using very high resolution nested-grid computations. This method allows us to perform global simulations of planets orbiting in disks and, at the same time, to resolve in detail the dynamics of the flow inside the Roche lobe of the planet. The primary interest of this work lies in the analysis of the gravitational torque balance acting on the planet. For this purpose we study planets of different masses, ranging from one Earth-mass up to one Jupiter-mass, assuming typical parameters of the protostellar disk. The high resolution of the method allows a precise determination of the mass flow onto the planet and the resulting torques. The obtained migration time scales are in the range from few times 10^4 years, for intermediate mass planets, to 10^6 years, for very low and high mass planets. Typical growth time scales depend strongly on the planetary mass, ranging from a few hundred years, in the case of Earth-type planets, to several ten thousand years, in the case of Jupiter-type planets.
Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel
Michael A. Pope
2014-10-01
These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU. Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.
Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements
Song, Xueyu
Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements Yan Mu perturbation method to compute the interfacial free energies by nonequilibrium work measurements with cleaving potential procedure. Using this method, we calculated the interfacial free energies of different crystal
First principle thousand atom quantum dot calculations
Wang, Lin-Wang; Li, Jingbo
2004-03-30
A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.
Quantum Monte Carlo calculations of $A=9,10$ nuclei
Steven C. Pieper; K. Varga; R. B. Wiringa
2002-06-24
We report on quantum Monte Carlo calculations of the ground and low-lying excited states of $A=9,10$ nuclei using realistic Hamiltonians containing the Argonne $v_{18}$ two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an $\\alpha$-like core and multiple p-shell nucleons, $LS$-coupled to the appropriate $(J^{\\pi};T)$ quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in $^9$Li, $^9$Be, $^{10}$Be, and $^{10}$B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3$^+$ ground state for $^{10}$B, whereas the Argonne $v_{18}$ alone or with Urbana IX predicts a 1$^+$ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.
NERSC Calculations Provide Independent Confirmation of Global...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
show interesting differences in some regions such as the midwestern United States, Argentina and eastern Brazil. The differences may be due previously unrecognized issues with...
Typical BWR/4 MSIV closure ATWS analysis using RAMONA-3B code with space-time neutron kinetics
Neymotin, L.; Saha, P.
1984-01-01
A best-estimate analysis of a typical BWR/4 MSIV closure ATWS has been performed using the RAMONA-3B code with three-dimensional neutron kinetics. All safety features, namely, the safety and relief valves, recirculation pump trip, high pressure safety injections and the standby liquid control system (boron injection), were assumed to work as designed. No other operator action was assumed. The results show a strong spatial dependence of reactor power during the transient. After the initial peak of pressure and reactor power, the reactor vessel pressure oscillated between the relief valve set points, and the reactor power oscillated between 20 to 50% of the steady state power until the hot shutdown condition was reached at approximately 1400 seconds. The suppression pool bulk water temperature at this time was predicted to be approx. 96/sup 0/C (205/sup 0/F). In view of code performance and reasonable computer running time, the RAMONA-3B code is recommended for further best-estimate analyses of ATWS-type events in BWRs.
Chen, Jacqueline H.; Hawkes, Evatt R.
2004-08-01
Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they also show less departure from the unstrained laminar value, suggesting that detailed modeling of this quantity may not be critical for the conditions considered. For all quantities investigated, including CO production, the R-to-P laminar configuration provides an improved description relative to the twin flame configuration, which predicts qualitatively incorrect trends and overestimates extinction.
Calculation of intervention doses for the CNGS facility
Lorenzo-Sentis, M; Roesler, Stefan
2006-01-01
The purpose of the CNGS (CERN Neutrinos to Gran Sasso) project is to generate at CERN a powerful artificial muon-neutrino beam aimed at the Gran Sasso Laboratory in Italy. There, detectors will detect those neutrinos and try to disentangle those, which on their 730 km trip have changed their flavour. During the operating lifetime of the neutrino beam facility some interventions are required. These maintenance operations have to be planned in advance to define the guidelines of design and operational procedures in order to keep the doses received by personnel As Low As Reasonably Achievable (ALARA-principle). A calculational method developed for the Monte Carlo simulation program FLUKA has been used, which allows one to compute dose equivalent rates from induced radioactivity for different cooling times in the regions of the human intervention. In this paper the method of calculation is described, the results of dose equivalent rate in the areas of interventions are summarized and discussed and finally, these ...
ASME PTC 47 -- Calculation of overall IGCC plant performance
Xiong, T.; Horazak, D.A.
1999-07-01
An integrated gasification combined cycle (IGCC) plant is a combined chemical and power system that converts coal or other unrefined fuel into clean gaseous fuel, electric power, and other byproducts. The conversion process requires interactions among the gasification, gas cleaning, air or oxygen production, power and steam generation systems. Overall performance testing of IGCC plants. however, is based only on the streams that cross the overall plant boundary. This paper describes the calculation procedures required to conduct a fair and accurate performance test of an IGCC plant, as proposed for ASME Performance Test Code 47. Discussions include identification of parameters to be measured, calculations needed to evaluate performance, and corrections to performance data for test conditions that differ from reference conditions.
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
J. E. Lynn; J. Carlson; E. Epelbaum; S. Gandolfi; A. Gezerlis; A. Schwenk
2014-11-09
We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of $A=3$ and $A=4$ systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.
Benchmarking kinetic calculations of resistive wall mode stability
Berkery, J. W.; Sabbagh, S. A.; Liu, Y. Q.; Betti, R.
2014-05-15
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].
2015-08-01
Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.
Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB
2014-08-01
We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Kenny, Elise P
2015-01-01
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...
Improved Calculation of Thermal Fission Energy
Ma, X B; Wang, L Z; Chen, Y X; Cao, J
2013-01-01
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-André
2014-04-15
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.
The difference between “equivalent” and “not different”
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Anderson-Cook, Christine M.; Borror, Connie M.
2015-10-27
Often, experimenters wish to establish that populations of units can be considered equivalent to each other, in order to leverage improved knowledge about one population for characterizing the new population, or to establish the comparability of items. Equivalence tests have existed for many years, but their use in industry seems to have been largely restricted to biomedical applications, such as for assessing the equivalence of two drugs or protocols. We present the fundamentals of equivalence tests, compare them to traditional two-sample and ANOVA tests that are better suited to establishing differences in populations, and propose the use of a graphicalmore »summary to compare p-values across different thresholds of practically important differences.« less
Radiological Dose Calculations for Fusion Facilities
Michael L. Abbott; Lee C. Cadwallader; David A. Petti
2003-04-01
This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.
Heat Exchanger Support Bracket Design Calculations
Rucinski, Russ; /Fermilab
1995-01-12
This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.
Abdel-Khalik, Hany S.; Zhang, Qiong
2014-05-20
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 10^{3} - 10^{5} times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Elise P. Kenny; Ivan Kassal
2015-09-09
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution against computationally optimizing a crystal structure before calculating couplings, as it can lead to large, uncontrollable errors. Understanding the unavoidable uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions--which do not depend on the precise values of the simulation parameters--to be addressed with greater confidence about the conclusions.
Spin Contamination in Inorganic Chemistry Calculations
Schlegel, H. Bernhard
R EVISED PAG E PR O O FS ia617 Spin Contamination in Inorganic Chemistry Calculations Jason L . In such cases, 0 is said to be spin contaminated owing to incorporation of higher spin state character of IronSulfur ia618 Clusters). It is important to note that while spin-contaminated and broken
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR
Su, Xiao
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single
Multipole Electrostatics in Hydration Free Energy Calculations
Ponder, Jay
Multipole Electrostatics in Hydration Free Energy Calculations YUE SHI,1 CHUANJIE WU,2 JAY W: Hydration free energy (HFE) is generally used for evaluating molecular solubility, which is an important interactions. The effect of long-range correction to van der Waals interaction on the hydration free energies
PIC : Protein Interaction Calculator HELP AND GUIDELINES
Srinivasan, N.
PIC : Protein Interaction Calculator HELP AND GUIDELINES CONTENTS 1. Overview 2. Method 3. Input 4 (PIC) is a server which, given the coordinate set of threedimensional structure of a protein colored by PIC programmes can be downloaded and conveniently displayed with structural viewers
Calculated fission properties of the heaviest elements
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1986-09-01
A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab.
Oberseminar -ICP Temperature Calculation for Tribological
Harting, Jens
and passing to third parties. 0 #12;Overview Where to calculate the heat: diesel injection pump First focus in the steel in the meantime of one step It takes some rotations to have the heat penetrate the whole pump even in the event of industrial property rights. We reserve all rights of disposal such as copying
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÑON RIDGE PROJECT MONTROSE COUNTY, COLORADO (EFRC) proposes to license, construct, and operate a conventional acid leach uranium and vanadium mill storage pad, and access roads. The mill is designed to process ore containing uranium and vanadium
SCALE Sensitivity Calculations Using Contributon Theory
Rearden, Bradley T [ORNL] [ORNL; Perfetti, Chris [University of Michigan] [University of Michigan; Williams, Mark L [ORNL] [ORNL; Petrie Jr, Lester M [ORNL] [ORNL
2010-01-01
The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case keff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.
Mezei, Mihaly
method on the calculation of the aqueous hydration free energy difference between acetone and dimethyl in an aqueous system: on the calculation of the hydration free energy difference between acetone for the calculation of free energy from computer simulations, a com- putationally exacting task, have been
Abushakra, B.; Haberl, J.S.; Claridge, D.E
2004-01-01
on monitored data collected for PG&E and the California Energy Commission (CEC). Noren (1997) and Noren and Pyrko (1998a and b) described a typical load shape technique used with data collected from 13 schools and nine hotels in Sweden. Major sources of data... Literature on Diversity Factors and Schedules for Energy and Cooling Load Calculations (1093-RP) Bass Abushakra, Ph.D. Jeff S. Haberl, Ph.D., P.E. David E. Claridge, Ph.D., P.E. Member ASHRAE Member ASHRAE Member ASHRAE ABSTRACT This paper provides...
Novel Approach for Calculation and Analysis of Eigenvalues and Eigenvectors in Microgrids: Preprint
Li, Y.; Gao, W.; Muljadi, E.; Jiang, J.
2014-02-01
This paper proposes a novel approach based on matrix perturbation theory to calculate and analyze eigenvalues and eigenvectors in a microgrid system. Rigorous theoretical analysis to solve eigenvalues and the corresponding eigenvectors for a system under various perturbations caused by fluctuations of irradiance, wind speed, or loads is presented. A computational flowchart is proposed for the unified solution of eigenvalues and eigenvectors in microgrids, and the effectiveness of the matrix perturbation-based approach in microgrids is verified by numerical examples on a typical low-voltage microgrid network.
Kauweloa, K; Gutierrez, A; Bergamo, A; Stathakis, S; Papanikolaou, N; Mavroidis, P
2014-06-01
Purpose: There is growing interest about biological effective dose (BED) and its application in treatment plan evaluation due to its stronger correlation with treatment outcome. An approximate biological effective dose (BEDA) equation was introduced to simplify BED calculations by treatment planning systems in multi-phase treatments. The purpose of this work is to reveal its mathematical properties relative to the true, multi-phase BED (BEDT) equation. Methods: The BEDT equation was derived and used to reveal the mathematical properties of BEDA. MATLAB (MathWorks, Natick, MA) was used to simulate and analyze common and extreme clinical multi-phase cases. In those cases, percent error (Perror) and Bland-Altman analysis were used to study the significance of the inaccuracies of BEDA for different combinations of total doses, numbers of fractions, doses per fractions and ? over ? values. All the calculations were performed on a voxel-basis in order to study how dose distributions would affect the accuracy of BEDA. Results: When the voxel dose-per-fractions (DPF) delivered by both phases are equal, BEDA and BEDT are equal. In heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the imprecision of BEDA is greater. It was shown that as the ? over ? ratio increased the accuracy of BEDA would improve. Examining twenty-four cases, it was shown that the range of DPF ratios for a 3 Perror varied from 0.32 to 7.50Gy, whereas for Perror of 1 the range varied from 0.50 to 2.96Gy. Conclusion: The DPF between the different phases should be equal in order to render BEDA accurate. OARs typically receive heterogeneous dose distributions hence the probability of equal DPFs is low. Consequently, the BEDA equation should only be used for targets or OARs that receive uniform or very similar dose distributions by the different treatment phases.
Escher, Christine
-called "biodegradable" plastic products will safely break down in a typical commercial composting facility. www
Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard
2014-01-01
Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.
Isogeometric analysis in electronic structure calculations
Cimrman, Robert; Kolman, Radek; T?ma, Miroslav; Vacká?, Ji?í
2016-01-01
In electronic structure calculations, various material properties can be obtained by means of computing the total energy of a system as well as derivatives of the total energy w.r.t. atomic positions. The derivatives, also known as Hellman-Feynman forces, require, because of practical computational reasons, the discretized charge density and wave functions having continuous second derivatives in the whole solution domain. We describe an application of isogeometric analysis (IGA), a spline modification of finite element method (FEM), to achieve the required continuity. The novelty of our approach is in employing the technique of B\\'ezier extraction to add the IGA capabilities to our FEM based code for ab-initio calculations of electronic states of non-periodic systems within the density-functional framework, built upon the open source finite element package SfePy. We compare FEM and IGA in benchmark problems and several numerical results are presented.
Quantum Monte Carlo Calculations of Light Nuclei
Steven C. Pieper
2004-10-27
Variational Monte Carlo and Green's function Monte Carlo are powerful tools for calculations of properties of light nuclei using realistic two-nucleon and three-nucleon potentials. Recently the GFMC method has been extended to multiple states with the same quantum numbers. The combination of the Argonne v_18 two-nucleon and Illinois-2 three-nucleon potentials gives a good prediction of many energies of nuclei up to 12C. A number of other recent results are presented: comparison of binding energies with those obtained by the no-core shell model; the incompatibility of modern nuclear Hamiltonians with a bound tetra-neutron; difficulties in computing RMS radii of very weakly bound nuclei, such as 6He; center-of-mass effects on spectroscopic factors; and the possible use of an artificial external well in calculations of neutron-rich isotopes.
A Methodology for Calculating Radiation Signatures
Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Development of finite-difference equations for variance of neutron fluxes in reactor
Laletin, N. I., E-mail: nil@adis.vver.kiae.ri; Kovalishin, A. A., E-mail: kaa@adis.vver.kiae.ri [Russian Research Center Kurchatov Institute (Russian Federation)
2010-12-15
Different sources-methodical, constant, and technological-are discussed for uncertainties in calculation functionals. The basic principles of three methods used in calculations of uncertainties are briefly described.
Individual Differences in Human Reliability Analysis
Jeffrey C. Joe; Ronald L. Boring
2014-06-01
While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.
Index calculation by means of harmonic expansion
Imamura, Yosuke
2015-01-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Index calculation by means of harmonic expansion
Yosuke Imamura
2015-10-28
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Transport calculations of antiproton-nucleus interactions
A. B. Larionov; I. N. Mishustin; I. A. Pshenichnov; L. M. Satarov; W. Greiner
2010-01-15
The Giessen Boltzmann-Uehling-Uhlenbeck transport model is extended and applied to the antiproton-nucleus interactions in a wide beam momentum range. The model calculations are compared with the experimental data on $\\bar p$-absorption cross sections on nuclei with an emphasis on extraction of the real part of an antiproton optical potential. The possibility of the cold compression of a nucleus by an antiproton in-flight is also considered.
Economic Calculations for the ASHRAE Handbook
Haberl, J. S.
1993-01-01
ESL-TR-93/04-07 Economic Calculations for the ASHRAE Handbook Jeff S. Haberl Dept. of Mechanical Engineering Texas A&M University College Station, TX 77843-3123 For any proposed capital investment, the capital and interest costs, salvage costs... Office, Washington, D.C. BIBLIOGRAPHY ASTM. 1985. Definition of terms relating to building economics. ASTM Standard E933-S5. ASTM, Philadelphia. Kurtz, M. 1984. Handbook of engineering economics: A guide for engineers, technicians, scientists and managers...
Free Energy Calculation in MD Simulation
Nielsen, Steven O.
Free Energy Calculation in MD Simulation #12;Basic Thermodynamics Helmoholtz free energy A = U TS + i Ni dA = wrev (reversible, const N V T) eq (22.9) McQuarrie & Simon Gibbs free energy G = U;Implication of Free Energy A B Keq = [A]/[B] Keq = exp (-G0 /RT) G0 = -RT ln Keq G = G0 + RT ln Q G > 0
Iron loss calculation for synchronous reluctance machines
Leonardi, F.; Matsuo, T.; Lipo, T.A. [Univ. of Wisconsin, Madison, WI (United States)
1995-12-31
A numerical method for iron loss calculation is presented in this paper. The method is suitable for any synchronous and most dc machines, especially if the current waveforms are known a priori . This technique will be principally useful for high speed machines and in particular for the synchronous reluctance machines and in particular for the synchronous reluctance machine, where the iron losses are often an important issue. The calculation is based on Finite Element Analysis, which provides the flux density waveforms in the iron, and on the Fourier Analysis of these waveforms. Several Finite Element Simulations are necessary to obtain the induced voltage versus time waveforms. To reduce the post-processing time the majority of the elements of the model are grouped together to create super elements. Also the periodicity of the motor can be used to reduce the number of required simulations. The method is applied to the calculation of the iron losses of a synchronous reluctance generator, and a number of interesting results are discussed in the paper.
Criticality calculations for Step-2 GPHS modules.
Hensen, Danielle Lynn; Lipinski, Ronald J.
2007-08-01
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
Criticality Calculations for Step-2 GPHS Modules
Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)
2008-01-21
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
Advanced Neutronics Tools for BWR Design Calculations
Santamarina, A.; Hfaiedh, N.; Letellier, R.; Sargeni, A.; Vaglio, C. [CEA-Cadarache, 13108 St Paul lez Durance Cedex (France); Marotte, V. [AREVA NP SAS (France); Misu, S. [AREVA NP GmbH (Germany); Zmijarevic, I. [CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-07-01
This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007 BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)
Hybrid reduced order modeling for assembly calculations
Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Radiative accelerations for evolutionary model calculations
Richer, J.; Michaud, G.; Rogers, F.; Iglesias, C.; Turcotte, S.; LeBlanc, F.
1998-01-01
Monochromatic opacities from the OPAL database have been used to calculate radiative accelerations for the 21 included chemical species. The 10{sup 4} frequencies used are sufficient to calculate the radiative accelerations of many elements for T{gt}10{sup 5}K, using frequency sampling. This temperature limit is higher for less abundant elements. As the abundances of Fe, He, or O are varied, the radiative acceleration of other elements changes, since abundant elements modify the frequency dependence of the radiative flux and the Rosseland opacity. Accurate radiative accelerations for a given element can only be obtained by allowing the abundances of the species that contribute most to the Rosseland opacity to vary during the evolution and recalculating the radiative accelerations and the Rosseland opacity during the evolution. There are physical phenomena that cannot be included in the calculations if one uses only the OPAL data. For instance, one should correct for the momentum given to the electron in a photoionization. Such effects are evaluated using atomic data from Opacity Project, and correction factors are given. {copyright} {ital 1998} {ital The American Astronomical Society}
Free energy differences : Representations, estimators, and sampling strategies
Acharya, Arjun R
In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of ...
Structure and vibrations of different charge Ge impurity in ?-quartz
Kislov, A. N., E-mail: a.n.kislov@urfu.ru; Mikhailovich, A. P., E-mail: a.n.kislov@urfu.ru; Zatsepin, A. F., E-mail: a.n.kislov@urfu.ru [Ural Federal University, 19 Mira St., Yekaterinburg, 620002 (Russian Federation)
2014-10-21
Atomic structure and localized vibrations of ??SiO{sub 2}:Ge are studied using computer modeling techniques. The simulation was carried out by the lattice dynamics calculation of the local density of vibrational states. Local structures parameters are calculated, localized symmetrized vibrations frequency caused by Ge impurity in different charge states are defined. The movements of atoms located near Ge impurity are analyzed and their contribution into localized vibrations of different type is evaluated.
Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.
2013-11-14
Reliable pH estimation is essential for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies of formation reactivities conducted under geologic CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH; however, the accuracy of these model predictions is typically uncertain. In this study, we expanded the measurement range of a spectrophotometric method for pH determination, and we applied the method to measure the pH in batch-reactor experiments utilizing rock samples from five ongoing GCS demonstration projects. A combination of color-changing pH indicators, bromophenol blue and bromocresol green, was shown to enable measurements over the pH range of 2.5-5.2. In-situ pH measurements were compared with pH values calculated using geochemical models. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. For rocks comprised of carbonate, siltstone, and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain proton consuming and producing reactions that occur between the basalt minerals and CO2-saturated brine solutions.
Calculated fission-fragment yield systematics in the region 74
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Möller, Peter; Randrup, Jørgen
2015-04-01
Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ? 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ? 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more »[Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹??Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹??Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ? Z ? 85 and 100 ? N ? 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.« less
Fragment Yields Calculated in a Time-Dependent Microscopic Theory...
Office of Scientific and Technical Information (OSTI)
Fragment Yields Calculated in a Time-Dependent Microscopic Theory of Fission Citation Details In-Document Search Title: Fragment Yields Calculated in a Time-Dependent Microscopic...
Energy Department Report Calculates Emissions and Costs of Power...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant...
Illustrative Calculation of Economics for Heat Pump and "Grid...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...
Calculation of nuclear reaction cross sections on excited nuclei...
Office of Scientific and Technical Information (OSTI)
Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method Citation Details In-Document Search Title: Calculation of nuclear reaction cross...
Using Laguerre polynomials to compute the matrix exponential in burnup calculations
She, D.; Zhu, A.; Wang, K.
2012-07-01
An essential part of burnup analysis is to solve the burnup equations. The burnup equations can be regarded as a first-order linear system and solved by means of matrix exponential methods. Because of its large spectrum, it is difficult to compute the exponential of the burnup matrix. Conventional methods of computing the matrix exponential, such as the truncated Taylor expansion and the Pade approximation, are not applicable to burnup calculations. Recently the Chebyshev Rational Approximation Method (CRAM) has been applied to solve burnup matrix exponential and shown to be robust and accurate. However, the main defect of CRAM is that its coefficients are not easy to obtain. In this paper, an orthogonal polynomial expansion method, called Laguerre Polynomial Approximation Method (LPAM), is proposed to compute the matrix exponential in burnup calculations. The polynomial sequence of LPAM can be easily computed in any order and thus LPAM is quite convenient to be utilized into burnup codes. Two typical test cases with the decay and cross-section data taken from the standard ORIGEN 2.1 libraries are calculated for validation, against the reference results provided by CRAM of 14 order. Numerical results show that, LPAM is sufficiently accurate for burnup calculations. The influences of the parameters on the convergence of LPAM are also discussed. (authors)
Beyond the Quasi-Particle picture in Nuclear Matter calculations using Green's function techniques
H. S. Kohler
2005-09-22
Widths of low-lying states in nuclei are of the order of 30 MeV. These large widths are a consequence of the strong interactions leading to a strongly correlated many body system at the typical densities of nuclear matter. Nevertheless "traditional" Brueckner calculations treat these states as quasiparticles i.e. with spectral functions of zero widths. The width is related to the imaginary part of the selfenergy and is included selfconsistently in an extension of the Brueckner theory using T-matrix and Green's function techniques. A more general formulation applicable also to non-equilibrium systems is contained in the Kadanoff-Baym (KB) equations while still maintaining the basic many-body techniques of Bruecknet theory. In the present work the two-time KB-equations are time-stepped along the imaginary time-axis to calculate the binding energy of nuclear matter as a function of density, including the spectral widths self-consistently. These zero temperature calculations are compared with quasi-particle calculations. The inclusion of the self-consistent widths are found to add several MeV to the binding. The spectral widths are due to the long-ranged correlations. Short-ranged correlations decrease rather than increase the binding. The metod is easily extended to non-zero temperatures where the importance of the widths are expected to increase.
Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system
Ionel Stetcu; Sofia Quaglioni; Sonia Bacca; Bruce R. Barrett; Calvin W. Johnson; Petr Navratil; Nir Barnea; Winfried Leidemann; Giuseppina Orlandini
2006-05-23
Both the no-core shell model and the effective interaction hyperspherical harmonic approaches are applied to the calculation of different response functions to external electromagnetic probes, using the Lorentz integral transform method. The test is performed on the four-body nuclear system, within a simple potential model. The quality of the agreement in the various cases is discussed, together with the perspectives for rigorous ab initio calculations of cross sections of heavier nuclei.
Yerokhin, V A; Fritzsche, S
2014-01-01
We perform relativistic configuration-interaction calculations of the energy levels of the low-lying and core-excited states of beryllium-like iron, Fe$^{22+}$. The results include the QED contributions calculated by two different methods, the model QED operator approach and the screening-potential approach. The uncertainties of theoretical energies are estimated systematically. The predicted wavelengths of the K\\alpha transitions in beryllium-like iron improve previous theoretical results and compare favorably with the experimental data.
Touschek Lifetime Calculations for NSLS-II
Nash,B.; Kramer, S.
2009-05-04
The Touschek effect limits the lifetime for NSLS-II. The basic mechanism is Coulomb scattering resulting in a longitudinal momentum outside the momentum aperture. The momentum aperture results from a combination of the initial betatron oscillations after the scatter and the non-linear properties determining the resultant stability. We find that higher order multipole errors may reduce the momentum aperture, particularly for scattered particles with energy loss. The resultant drop in Touschek lifetime is minimized, however, due to less scattering in the dispersive regions. We describe these mechanisms, and present calculations for NSLS-II using a realistic lattice model including damping wigglers and engineering tolerances.
Excited state contamination in nucleon structure calculations
Jeremy Green; Stefan Krieg; John Negele; Andrew Pochinsky; Sergey Syritsyn
2011-11-28
Among the sources of systematic error in nucleon structure calculations is contamination from unwanted excited states. In order to measure this systematic error, we vary the operator insertion time and source-sink separation independently. We compute observables for three source-sink separations between 0.93 fm and 1.39 fm using clover-improved Wilson fermions and pion masses as low as 150 MeV. We explore the use of a two-state model fit to subtract off the contribution from excited states.
Calculation of Neutral Beam Injection into SSPX
Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S
2006-06-13
The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.
Microscopic calculations in asymmetric nuclear matter
D. Alonso; F. Sammarruca
2003-02-06
A microscopic calculation of the equation of state for asymmetric nuclear matter is presented. We employ realistic nucleon-nucleon forces and operate within the Dirac-Brueckner-Hartree-Fock approach to nuclear matter. The focal point of this paper is a (momentum-space) G-matrix which properly accounts for the asymmetry between protons and neutrons. This will merge naturally into the development of an effective interaction suitable for applications to asymmetric nuclei, which will be the object of extensive study in the future.
Calculations of Surface Thermal-Expansion
KENNER, VE; Allen, Roland E.
1973-01-01
expansion. At high temperatures, the results for the surface thermal expansion are in agreement with the prediction of an approximate model which we gave earlier, +surface/abu)k ?(3/4) & ur ) su f / (0 )b lk At lOW temperatureS, a,???e/ab?,k paSSeS thr... influence the shifts in the Bragg peaks which are observed experimentally, as has been found to be the case in other attempts to measure surface thermal expansion. A nonkinematical calculation of temperature effects in low-energy-electron diffraction from...
Linear Transformation Method for Multinuclide Decay Calculation
Ding Yuan
2010-12-29
A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.
Distributed Energy Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,DepartmentCalculator Jump to: navigation, search
Cool Roof Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, EtInformationRoof Calculator Jump to:
MELCOR calculations for a low-pressure short-term station blackout in a BWR-6
Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)
1995-12-31
A postulated, low-pressure, short term station blackout severe accident has been analyzed using the MELCOR code for the Grand Gulf nuclear power plant. Different versions have been used with three different models of the plant. This paper presents results of the effects of different plant models and versions of MELCOR on the calculated results and to present the best-estimating timing of events for this transient.
11141-4244-1176-9/07/$25.00 2007 IEEE. Figure 1. A typical read and write cycle timing of DDR2.
Draper, Jeff
11141-4244-1176-9/07/$25.00 ©2007 IEEE. Figure 1. A typical read and write cycle timing of DDR2. Data Strobe Timing of DDR2 using a Statistical Random Sampling Technique Rashed Zafar Bhatti EE@isi.edu Abstract-- This paper presents a new way to tackle critical bus cycle timing issues related to DDR/DDR2 bus
Johnson, Eric E.
PV modules, with a life measured in decades, will typically be in place longer than the outdoor and repaired promptly. PV systems suffer gradual degradation that is often not monitored, and the PV array may with copper conductors. On the other hand, PV systems have numerous modules (tens to thousands) and mounting
Subramaniam, Anandh
Vacuum Arc Melting Unit Arc Melting is used for melting metals typically to form alloys. Heating unit is used as a power source. Heat generated by the electric arc struck between the electrode unit. The vacuum unit with rotary and diffusion pumps can attain a vacuum of 106 m bar. The cold
Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya
2012-06-01
The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.
Minnesota, University of
G - 1 Appendix G: Sample Laboratory Report There is no set length for a problem report but experience shows that good reports are typically three pages long. Graphs and photocopies of your lab journal make up additional pages. Complete reports will include the terminology and the mathematics relevant
Minnesota, University of
E - 1 Appendix E: Sample Laboratory Report There is no set length for a problem report but experience shows good reports are typically four pages long. Graphs and photocopies of your lab journal make up additional pages. Complete reports will include the terminology and the mathematics relevant
Minnesota, University of
F - 1 Appendix F: Sample Laboratory Report There is no set length for a problem report but experience shows that good reports are typically three pages long. Graphs and photocopies of your lab journal make up additional pages. Complete reports will include the terminology and the mathematics relevant
Lawrence, Deborah
#12;ii Abstract Carbon sequestration is accelerated by the presence of seagrass in coastal habitats as the vegetation promotes the accumulation of carbon-rich sediment. Typically, measurements of carbon sequestration is to quantify the carbon sequestration potential of the restored seagrass habitat at the Virginia Coast Reserve
Zero energy scattering calculation in Euclidean space
Carbonell, J
2016-01-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Followup calculations for the UVAR LEU conversion
Rydin, R.A.; Hosticka, B.; Burns, T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others
1995-12-31
The UVAR reactor was successfully converted to LEU fuel in April 1994. Void coefficient measurements were made on the 4-by-4 fully-graphite-reflected LEU-1 core configuration, and an isothermal temperature coefficient measurement was made on the operational 4-by-5 partially-graphite-reflected LEU-2 core configuration. Both of these experiments have now been modeled in their critical configurations using the 3DBUM code. The LEU cores were also modeled using the Monte Carlo code MCNP in order to obtain a neutron/gamma source for BNCT filter design calculations. Advanced BNCT filters have been evaluated using both MCNP and the discrete ordinates code DORT. The results indicate that the UVAR would be an ideal source for the BNCT treatment of brain tumors.
Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts
Sapir, Nir; Halbertal, Dorri [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-12-01
We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.
A primer for criticality calculations with DANTSYS
Busch, R.D.
1997-08-01
With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.
RELAP5 posttest calculation of IAEA-SPE-4
Petelin, S.; Mavko, B.; Parzer, I.; Prosek, A.
1994-12-31
The International Atomic Energy Agency`s Fourth Standard Problem Exercise (IAEA-SPE-4) was performed at the PMK-2 facility. The PMK-2 facility is designed to study processes following small- and medium-size breaks in the primary system and natural circulation in VVER-440 plants. The IAEA-SPE-4 experiment represents a cold-leg side small break, similar to the IAEA-SPE-2, with the exception of the high-pressure safety injection being unavailable, and the secondary side bleed and feed initiation. The break valve was located at the dead end of a vertical downcomer, which in fact simulates a break in the reactor vessel itself, and should be unlikely to happen in a real nuclear power plant (NPP). Three different RELAP5 code versions were used for the transient simulation in order to assess the calculations with test results.
Variational perturbation theory and nonperturbative calculations in QCD
Solovtsova, O. P.
2013-10-15
A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic {tau}-decay data: the R{sub {tau}} ratio, the light-quark Adler function, and the smeared R{sub {Delta}} function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.
Quantum Monte Carlo Calculations of $A\\leq6$ Nuclei
B. S. Pudliner; V. R. Pandharipande; J. Carlson; R. B. Wiringa
1995-02-13
The energies of $^{3}H$, $^{3}He$, and $^{4}He$ ground states, the ${\\frac{3}{2}}^{-}$ and ${\\frac{1}{2}}^{-}$ scattering states of $^{5}He$, the ground states of $^{6}He$, $^{6}Li$, and $^{6}Be$ and the $3^{+}$ and $0^{+}$ excited states of $^{6}Li$ have been accurately calculated with the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the $A=3$ isospin $T=\\frac{1}{2}$ and $A=6$ isospin $T=1$, $J^{\\pi} = 0^{+}$ multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.
Bratt, Jonathan D.
We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain-wall valence fermions. We perform extrapolations of our data based on different ...
Development of a Roof Savings Calculator
New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01
A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.
Development of a Roof Savings Calculator
New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01
A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.
PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS
Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC
2010-08-25
PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.
The First Calculation of Fractional Jets
Daniele Bertolini; Jesse Thaler; Jonathan R. Walsh
2015-05-14
In collider physics, jet algorithms are a ubiquitous tool for clustering particles into discrete jet objects. Event shapes offer an alternative way to characterize jets, and one can define a jet multiplicity event shape, which can take on fractional values, using the framework of "jets without jets". In this paper, we perform the first analytic studies of fractional jet multiplicity $\\tilde{N}_{\\rm jet}$ in the context of $e^+e^-$ collisions. We use fixed-order QCD to understand the $\\tilde{N}_{\\rm jet}$ cross section at order $\\alpha_s^2$, and we introduce a candidate factorization theorem to capture certain higher-order effects. The resulting distributions have a hybrid jet algorithm/event shape behavior which agrees with parton shower Monte Carlo generators. The $\\tilde{N}_{\\rm jet}$ observable does not satisfy ordinary soft-collinear factorization, and the $\\tilde{N}_{\\rm jet}$ cross section exhibits a number of unique features, including the absence of collinear logarithms and the presence of soft logarithms that are purely non-global. Additionally, we find novel divergences connected to the energy sharing between emissions, which are reminiscent of rapidity divergences encountered in other applications. Given these interesting properties of fractional jet multiplicity, we advocate for future measurements and calculations of $\\tilde{N}_{\\rm jet}$ at hadron colliders like the LHC.
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)
2006-06-14
We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H{sub 2}O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)
Handbook of Industrial Engineering Equations, Formulas, and Calculations
Badiru, Adedeji B; Omitaomu, Olufemi A
2011-01-01
The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?
Calculation of Helium nuclei in quenched lattice QCD
T. Yamazaki
2010-12-02
We present results for the binding energies for ^4He and ^3He nuclei calculated in quenched lattice QCD at the lattice spacing of a =0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state energy of the nucleus channel and the free multi-nucleon states by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.
Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study
Pajunen, A. J.; Tedeschi, A. R.
2012-09-18
This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.
Optimizing the ATLAS code with different profilers
Kama, S; The ATLAS collaboration
2013-01-01
After the current maintenance period, the LHC will provide higher energy collisions with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to speed up substantially. However, ATLAS code is composed of approximately 4M lines, written by many different programmers with different backgrounds, which makes code optimisation a challenge. To help with this effort different profiling tools and techniques are being used. These include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools like PIN, PAPI, and GOODA; as well as techniques such as library interposing. In this talk we will mainly focus on PIN tools and GOODA. PIN is a dynamic binary instrumentation tool which can obtain statistics such as call counts, instruction counts and interrogate functions' arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes for linear algebra calculations which has provided the insight necessary to achieve significant performance...
Clanton, John L
1956-01-01
. CALCULATION OF OIL INITIALLY IN PLACE BY SCHILTHUIS MATERIAL BALANCE . . . ZO 6. MATERIAL BALANCE BASED ON EQUILIBRIUM CONSTANTS 7. DISCUSSION OF RESULTS 8. CONCLUSIONS 9. ACKNOWLEDGEMENT 10. REFERENCES 11. BIBLIOGRAPHY , 36 . 38 39 LIST... OF FIGURES AND TABLES FIGURES FOLLOWING PAGE Isovol Map of Scurry Reef Reservoir 22 Histogram of Production, Gas-Oil Ratio, Pressure and Water Injection History. Shrinkage of Scurry Reef Reservoir Oil, Scurry County, Texas. Gas Volumes Liberated from...
Discussion about Noise Equivalent Power and its use for photon noise calculation.
Leclercq, Samuel
. 2007-03-02. Abstract. The Noise Equivalent Power (NEP) is a concept often used to quantify processes, I show the link between the different definitions of the NEP. In the third part, starting from the fundamental properties of boson I calculate the most general expression for the photon NEP, allowing to link
TTDTTC^/TTN MS#-R-68I Danish Calculations of
»Reactor« Calculations on Assembly Basis 10 3.4 Fin Power Reconstruction 11 4Res*ks 13 4.1 Cl;1 Introduction Thebenchmark is described in NEACRP-L-33*. Så efferent .reactor, coo- figwations are considered,which togetherwith a numberofcodes based on different principles (nodal expansion, nKshcenocs or mesh coroen bawd
An enhanced model for calculating delay as a function of offset
Jain, Shweta
1996-01-01
This thesis presents the enhancements made to an existing model for calculating delay as a function of offset between the traffic signals of a link. The delay-difference-of offset technique is a signal control concept used for strategic optimization...
TDHF fusion calculations for spherical+deformed systems
A. S. Umar; V. E. Oberacker
2006-04-04
We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.
hp calculators HP 50g Confidence Intervals Real Estate
Vetter, Frederick J.
hp calculators HP 50g Confidence Intervals Real Estate The STAT menu Confidence Intervals Practice finding confidence intervals Real Estate #12;hp calculators HP 50g Confidence Intervals Real Estate hp calculators - 2 - HP 50g Confidence Intervals Real Estate The STAT menu The Statistics menu
hp calculators HP 50g Hypothesis tests Real Estate
Vetter, Frederick J.
hp calculators HP 50g Hypothesis tests Real Estate The STAT menu Hypothesis tests Practice evaluating hypothesis tests Real Estate #12;hp calculators HP 50g Hypothesis tests Real Estate hp calculators - 2 - HP 50g Hypothesis tests Real Estate The STAT menu The Statistics menu is accessed from
The melting lines of model systems calculated from coexistence simulations
Song, Xueyu
rapidly as a function of the potential cutoff, indicating that long-range corrections to the free energies of the solid and liquid phases very nearly cancel. This approach provides an alternative to traditional methods them. Tradition- ally, these calculations have been made using free energy calculations: by calculating
Calculation of K-shell fluorescence yields for low-Z elements
Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.
2015-03-30
The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (?{sub K}) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (?{sub K}) of elements in the range of 11?Z?30. The experimental data are interpolated by using the famous analytical function (?{sub k}/(1??{sub k})){sup 1/q} (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.
Helium release rates and ODH calculations from RHIC magnet cooling line failure
Liaw, C.J.; Than, Y.; Tuozzolo, J.
2011-03-28
A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.
Contributions of different neutron pairs in different approaches for neutrinoless double beta decay
Alberto Escuderos; Amand Faessler; Vadim Rodin; Fedor Simkovic
2010-06-07
The methods used till now to calculate the neutrinoless double beta decay matrix elements are: the Quasiparticle Random Phase Approximation (QRPA), the Shell Model (SM), the angular momentum projected Hartee-Fock-Bogoliubov approach (HFB) and the Interacting Boson Model (IBM). The different approaches are compared specifically concerning the the angular momenta and parities of the neutron pairs, which are changed into two protons by the $0\
Once-through steam-generator sensitivity calculations
Steiner, J.L.; Siebe, D.A.
1988-01-01
A series of TRAC-PF1/MOD2 thermal-hydraulic calculations has been performed to determine the effect of uncertainties in modeling once through steam-generator (OTSG) secondary-side phenomena on the calculated behavior of Babcock and Wilcox power plants. The calculations were performed by varying parameters in correlations for the secondary-side phenomena. The parameters and transients were chosen to show the maximum expected sensitivity of the calculated results to the parameter variations. The parameters were then varied over a range representing the estimated uncertainty in the correlation. In this manner, the sensitivity if the calculated plant behavior to the modeling uncertainties was determined with a reasonable number of calculations. The sensitivity of calculated plant behavior to variations in interfacial heat-transfer in the OTSG secondaries was determined in a series of steam-generator overfill transient calculations. Calculations were performed for a main steam line break (MSLB) transient to quantify the sensitivity to variations in interfacial drag in the secondaries; the interfacial drag was varied in these calculations to indicate the effects of entrainment and de-entrainment processes, for which no specific models exist in the code. In addition to the transient calculations, a series of steady-state calculations was performed to determine the sensitivity of the OTSG primary-to-secondary heat transfer to the assumed fraction of tubes wetted by the auxiliary feedwater (AFW) injection. The plant model used for the sensitivity calculations was qualified by performing a benchmark calculation for a natural circulation test in the TMI-1 plant.
Radhakrishnan, Archana, E-mail: anju.archana@gmail.com [B.Tech, Engineering Physics, National Institute Of Technology, Calicut (India); Murugesan, Dr V., E-mail: murugesh@serc.iisc.in [Assistant Professor, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore (India)
2014-10-15
The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.
Camps, Peter; Bianchi, Simone; Lunttila, Tuomas; Pinte, Christophe; Natale, Giovanni; Juvela, Mika; Fischera, Joerg; Fitzgerald, Michael P; Gordon, Karl; Baes, Maarten; Steinacker, Juergen
2015-01-01
We define an appropriate problem for benchmarking dust emissivity calculations in the context of radiative transfer (RT) simulations, specifically including the emission from stochastically heated dust grains. Our aim is to provide a self-contained guide for implementors of such functionality, and to offer insights in the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. The benchmark problem definition includes the optical and calorimetric material properties, and the grain size distributions, for a typical astronomical dust mixture with silicate, graphite and PAH components; a series of analytically defined radiation fields to which the dust population is to be exposed; and instructions for the desired output. We process this problem using six RT codes participating in this benchmark effort, and compare the results to a reference solution computed with the publicly available dust emission code DustEM. The participating codes implement...
Solid-state calculation of crystalline color superconductivity
Gaoqing Cao; Lianyi He; Pengfei Zhuang
2015-06-15
It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase appears in a color superconductor when the pairing between different quark flavors is under the circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is still unclear because an exact treatment of 3D crystal structures is rather difficult. In this work we present a solid-state-like calculation of the ground-state energy of the body-centered cubic (BCC) structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space without assuming a small amplitude of the order parameter. We develop a computational scheme to overcome the difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more favorable than the 1D modulation in a narrow window around the conventional LOFF-normal phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau approach.
A Cosmology Calculator for the World Wide Web
Edward L. Wright
2006-10-10
A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.
Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C
2009-04-24
We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.
Thermoelectric properties of AgSbTe? from first-principles calculations
Rezaei, Nafiseh; Akbarzadeh, Hadi; Hashemifar, S. Javad
2014-09-14
The structural, electronic, and transport properties of AgSbTe? are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3?m and trigonal R3?m structures of AgSbTe? are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe? compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe? as a function of temperature and carrier concentration.
Multigroup Radiation Transport in Supernova Light Curve Calculations...
Office of Scientific and Technical Information (OSTI)
Multigroup Radiation Transport in Supernova Light Curve Calculations Even, Wesley P. Los Alamos National Laboratory; Frey, Lucille H. Los Alamos National Laboratory; Fryer,...
Multigroup Radiation Transport in Supernova Light Curve Calculations...
Office of Scientific and Technical Information (OSTI)
Technical Report: Multigroup Radiation Transport in Supernova Light Curve Calculations Citation Details In-Document Search Title: Multigroup Radiation Transport in Supernova Light...
Energy savings estimates and cost benefit calculations for high...
Office of Scientific and Technical Information (OSTI)
Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings estimates and cost...
Integrated System Transmission and Ancillary Services Rate Calculation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Western Area Power Administration Basin Electric Power Cooperative Heartland Consumers Power District 1 Integrated System Transmission and Ancillary Services Rate Calculation...
Integrated System Transmission and Ancillary Services Rate Calculation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
System Transmission and Ancillary Services 2013 Rate True-up Calculation Western Area Power Administration Basin Electric Power Cooperative Heartland Consumers Power District 1...
XOP : a graphical user interface for spectral calculations and...
Office of Scientific and Technical Information (OSTI)
XOP : a graphical user interface for spectral calculations and x-ray optics utilities. Citation Details In-Document Search Title: XOP : a graphical user interface for spectral...
Qualified Software for Calculating Commercial Building Tax Deductions
Office of Energy Efficiency and Renewable Energy (EERE)
On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements.
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral...
Office of Scientific and Technical Information (OSTI)
Details In-Document Search This content will become publicly available on November 4, 2015 Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials...
A Method for Calculating Reference Evapotranspiration on Daily Time Scales
Farmer, William
Measures of reference evapotranspiration are essential for applications of agricultural management and water resources engineering. Using numerous esoteric variables, one can calculate daily reference evapotranspiration ...
Remarks on calculation of positron flux from galactic dark matter...
Office of Scientific and Technical Information (OSTI)
involves solving transport equations, which account for interaction of positrons with matter and galactic magnetic fields. Existing calculations solve the equations inside the...
Magnetic Field Line Tracing Calculations for Conceptual PFC Design...
Office of Scientific and Technical Information (OSTI)
Conference: Magnetic Field Line Tracing Calculations for Conceptual PFC Design in the National Compact Stellarator Experiment Citation Details In-Document Search Title: Magnetic...
NREL: Energy Analysis - Levelized Cost of Energy Calculator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
distributed generation data used within this calculator. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database...
NSRD-2015-TD01, Technical Report for Calculations of Atmospheric...
material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposure at the co-located worker...
Yi-Ping Qin
2004-11-13
In this paper, we employ the peak count rate{\\bf \\}$C_p$ and the total count $C_{total}$ of light curves to study in the corresponding aspects the relationship between different channel light curves. To make a direct comparison between count rates of different channel light curves we introduce a plot of $C(\\tau)$ versus $C_H(\\tau)$, where $C(\\tau)$ is the count rate of a channel and $C_H(\\tau)$ is the count rate of a definite cannel, channel H (see the text). According to the plot we define $\\Delta C_{\\max}$ as the maximum deviation of the two count rate values of $C(\\tau)$ associated with a same count rate value of $% C_H(\\tau)$ and define $\\Delta S$ as the area confined by the close curve of $C(\\tau)$ in the plot to measure the difference of the rising and decaying portions of a light curve relative to the count rate of channel H. Under the assumption that some GRBs observed are in the stage of fireballs which expand relativistically, predictions on the relationships between the four quantities{\\bf (}$C_p$, $C_{total}$, $\\Delta C_{\\max}$, and $\\Delta S$) and energy within a wide band, calculated with different rest frame radiation forms and two typical Lorentz factors ($\\Gamma =20$ and 200), are made and presented, which would make the test of our model with the coming Swift data easier. Interpretations to the relationships within the mechanism of fireballs are also presented.
Efficient Calculation of Statistical Moments for Structural Health Monitoring
Sweetman, Bert
, such as the blades on wind turbines, cabling is nearly impossible. For these reasons and others, active development 77553-1675, USA Abstract Wireless networks of smart sensors with computations distributed over multiple (SHM). In these networks, microprocessors are typically embedded in indi- vidual smart sensor packages
Independent review of SCDAP/RELAP5 natural circulation calculations
Martinez, G.M.; Gross, R.J.; Martinez, M.J.; Rightley, G.S.
1994-01-01
A review and assessment of the uncertainties in the calculated response of reactor coolant system natural circulation using the SCDAP/RELAP5 computer code were completed. The SCDAP/RELAP5 calculation modeled a station blackout transient in the Surry nuclear power plant and concluded that primary system depressurization from natural circulation induced primary system failure is more likely than previously thought.
Computing Partial Eigenvalue Sum in Electronic Structure Calculations
Bai, Zhaojun
and CPU time. In the application of electronic structure calculations in molecular dynamics, the newComputing Partial Eigenvalue Sum in Electronic Structure Calculations Z. Bai M. Faheyy G. Golubz M where computation of the total energy of an electronic structure requires the evaluation of partial
Dynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov
Sosonkina, Masha
and Molecular Electronic Structure System (GAMESS) used for ab initio molecular quantum chemistry calculationsDynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov Masha Sosonkina, network, or disk I/O. For large-scale scientific applications, dynamic adjustments to a computationally
Realistic shell-model calculations: current status and open problems
A. Covello; A. Gargano
2010-03-29
The main steps involved in realistic shell-model calculations employing two-body low-momentum interactions are briefly reviewed. The practical value of this approach is exemplified by the results of recent calculations and some remaining open questions and directions for future research are discussed.
An efficient Java implementation of the immediate successors calculation
Paris-Sud XI, Université de
An efficient Java implementation of the immediate successors calculation Cl´ement Gu´erin, Karell an effective Java imple- mentation of the concept immediate successors calculation. It is based on the lattice Java library, developed by K. Bertet and the Limited Objects Access algorithm, proposed by C. Demko [5
Processus communicants Communication synchrone CSP/CCS/-calcul
Grigoras, .Romulus
Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation
Milgram, Paul
Microfluidic device for bone cell mechanobiology study The use of microfluidics provides many microfluidics to investigate real-time interactions of different bone cells while undergoing physiologically
Relativistic mean field calculations in neutron-rich nuclei
Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)
2014-08-14
Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.
Microscopic Calculation of Heavy-Ion Potentials Based on TDHF
A. S. Umar; V. E. Oberacker; J. A. Maruhn; P. -G. Reinhard\\
2011-06-17
We discuss the implementation and results of a recently developed microscopic method for calculating ion-ion interaction potentials and fusion cross-sections. The method uses the TDHF evolution to obtain the instantaneous many-body collective state using a density constraint. The ion-ion potential as well as the coordinate dependent mass are calculated from these states. The method fully accounts for the dynamical processes present in the TDHF time-evolution and provides a parameter-free way of calculating fusion cross-sections.
Electromagnetic mass difference on the lattice
Yusuke Namekawa; Yoshio Kikukawa
2005-09-24
We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.
Energy savings estimates and cost benefit calculations for high performance relocatable classrooms
Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.
2003-01-01
Energy Savings Estimates and Cost Benefit Calculations forEnergy Savings Estimates and Cost Benefit Calculations forEnergy Savings Estimates and Cost Benefit Calculations for
Sader, Charles Avery
2015-01-01
Electronic Structure Theory Calculations and Molecular DynamicsElectronic Structure Theory Calculations and Molecular Dynamicsdynamics simulation requires identification of an electronic structure calculation
TOUSCHEK LIFETIME CALCULATIONS AND SIMULATIONS FOR NSLS-II
MONTAG,C.; BENGTSSON, J.; NASH, B.
2007-06-25
The beam lifetime in most medium energy synchrotron radiation sources is limited by the Touschek effect, which describes the momentum transfer from the transverse into the longitudinal direction due to binary collisions between electrons. While an analytical formula exists to calculate the resulting lifetime, the actual momentum acceptance necessary to perform this calculation can only be determined by tracking. This is especially the case in the presence of small vertical apertures at insertion devices. In this case, nonlinear betatron coupling leads to beam losses at these vertical aperture restrictions. In addition, a realistic model of the storage ring is necessary for calculation of equilibrium beam sizes (particularly in the vertical direction) which are important for a self-consistent lifetime calculation.
Ab initio Calculation of the np ? dy Radiative Capture Process
Beane, Silas R.
Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process np ? d?, and the photo-disintegration processes ?[superscript ...
AIM: Web-Based, Residential Energy Calculator for Homeowners
Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.
2010-01-01
This paper discusses AIM, or Assess, Improve, Measure. AIM is an energy efficiency calculator for existing residences that has been developed to provide homeowners, realtors and builders with a method to rate the energy efficiency of an existing...
Universal calculation formula and calibration method in Fourier transform profilometry
Wen Yongfu; Li Sikun; Cheng Haobo; Su Xianyu; Zhang Qican
2010-12-01
We propose a universal calculation formula of Fourier transform profilometry and give a strict theoretical analysis about the phase-height mapping relation. As the request on the experimental setup of the universal calculation formula is unconfined, the projector and the camera can be located arbitrarily to get better fringe information, which makes the operation flexible. The phase-height calibration method under the universal condition is proposed, which can avoid measuring the system parameters directly. It makes the system easy to manipulate and improves the measurement velocity. A computer simulation and experiment are conducted to verify its validity. The calculation formula and calibration method have been applied to measure an object of 22.00 mm maximal height. The relative error of the measurement result is only 0.59%. The experimental results prove that the three-dimensional shape of tested objects can be reconstructed exactly by using the calculation formula and calibration method, and the system has better universality.
Reactor physics calculation of BWR fuel bundles containing gadolinia
Morales, Diego
1977-01-01
A technique for the calculation of the neutronic behavior of BWR fuel bundles has been developed and applied to a Vermont Yankee fuel bundle. The technique is based on a diffusion theory treatment of the bundle, with ...
Automating journey fare calculation for transport for London
Maciejewski, Joshua J. (Joshua John)
2008-01-01
This thesis develops a method to automate journey fare calculation for Transport for London. Today, fares for every possible origin-destination station pair within the London Underground are prepared manually based on the ...
Automated higher-order calculations: Status and prospects
Giovanni Ossola
2015-08-08
In this presentation we review the current status in the automated evaluation of scattering amplitudes, with particular attention to the developments related with NLO calculations, which led to the construction of powerful multi-purpose computational tools. After a general overview, we will devote a short section to describe the GoSam framework for NLO calculations and its application to the production of Higgs boson plus jets. We will then briefly comment on the challenges presented by NNLO calculations, whose structure is considerably more complicated. Finally, we will describe some of the features of the integrand-reduction techniques beyond NLO, an alternative promising approach to multi-loop calculations which is currently under development.
Automated higher-order calculations: Status and prospects
Ossola, Giovanni
2015-01-01
In this presentation we review the current status in the automated evaluation of scattering amplitudes, with particular attention to the developments related with NLO calculations, which led to the construction of powerful multi-purpose computational tools. After a general overview, we will devote a short section to describe the GoSam framework for NLO calculations and its application to the production of Higgs boson plus jets. We will then briefly comment on the challenges presented by NNLO calculations, whose structure is considerably more complicated. Finally, we will describe some of the features of the integrand-reduction techniques beyond NLO, an alternative promising approach to multi-loop calculations which is currently under development.
Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...
Office of Scientific and Technical Information (OSTI)
Technical Report: Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239...
Sequential Voronoi diagram calculations using simple chemical reactions
Costello, Ben de Lacy; Adamatzky, Andy
2012-01-01
In our recent paper [de Lacy Costello et al. 2010] we described the formation of complex tessellations of the plane arising from the various reactions of metal salts with potassium ferricyanide and ferrocyanide loaded gels. In addition to producing colourful tessellations these reactions are naturally computing generalised Voronoi diagrams of the plane. The reactions reported previously were capable of the calculation of three distinct Voronoi diagrams of the plane. As diffusion coupled with a chemical reaction is responsible for the calculation then this is achieved in parallel. Thus an increase in the complexity of the data input does not utilise additional computational resource. Additional benefits of these chemical reactions is that a permanent record of the Voronoi diagram calculation (in the form of precipitate free bisectors) is achieved, so there is no requirement for further processing to extract the calculation results. Previously it was assumed that the permanence of the results was also a potenti...
Guidelines for the analysis of free energy calculations
Klimovich, PV; Shirts, MR; Mobley, DL; Mobley, DL
2015-01-01
Free energy calculations for Lennard-Jones systems and waterfree energy change is found as the negative of ?G waterenergy of hydrophobic hydration: A molecular dynam- ics study of noble gases in water.
Calculation of Extreme Wave Loads on Coastal Highway Bridges
Meng, Bo
2010-01-14
Coastal bridges are exposed to severe wave, current and wind forces during a hurricane. Most coastal bridges are not designed to resist wave loads in such extreme situations, and there are no existing analytical methods to calculate wave loads...
Dose Rate Calculations for Rotary Mode Core Sampling Exhauster
FOUST, D.J.
2000-10-26
This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.
Protein Thermostability Calculations Using Alchemical Free Energy Simulations
de Groot, Bert
Protein Thermostability Calculations Using Alchemical Free Energy Simulations Daniel Seeliger by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem- ical free energy simulations, such as free energy perturbation or thermodynamic integration
Is Ring breaking feasible in relative binding free energy calculations?
Liu, S; Wang, L; Mobley, DL
2015-01-01
Essex, J. W. Rigorous Free Energy Calculations in Structure-of Hydration Free Energies for SAMPL. J. Comput. -Aided Mol.Basic Ingredients of Free Energy Calcula- tions: A Review.
RESEARCH PAPER Calculating the effective permeability of sandstone with
Borja, Ronaldo I.
RESEARCH PAPER Calculating the effective permeability of sandstone with multiscale lattice microtomo- graphic images of a sandstone, with sample resolution of 3.34 lm. We discuss the predictive
Calculating the hyper--Wiener index of benzenoid hydrocarbons
Klavzar, Sandi
Calculating the hyper--Wiener index of benzenoid hydrocarbons Petra Å¸ Zigert 1 , Sandi KlavÅ¸ zar 1. (1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons
Calculating the hyperWiener index of benzenoid hydrocarbons
Klavzar, Sandi
Calculating the hyperÂWiener index of benzenoid hydrocarbons Petra Zigert1 , Sandi Klavzar1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons. Some time
Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs Received 8 May 2006; published 18 September 2006 We perform direct thermal emission calculations for three, implemented via a finite-difference time- domain algorithm. We demonstrate that emissivity and absorptivity
Goddard III, William A.
Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models methodologies make systematic errors in the computed free energies because of the incorrect accounting consideration. We analyze two different thermodynamic cycles for calculating the solvation free energies
Ab initio calculations of nuclear widths via an integral relation
Kenneth M. Nollett
2012-05-31
I describe the computation of energy widths of nuclear states using an integral over the interaction region of ab initio variational Monte Carlo wave functions, and I present calculated widths for many states. I begin by presenting relations that connect certain short-range integrals to widths. I then present predicted widths for 5 integral relation, I conclude that overlap calculations can diagnose cases in which computed widths should not be trusted.
Realistic Shell-Model Calculations for 208Pb Neighbors
L. Coraggio; A. Covello; A. Gargano
1998-12-17
We have performed a shell-model study of the two nuclei 210Po and 206Hg, having and lacking two protons with respect to doubly magic 208Pb. In our calculations we have employed realistic effective interactions derived from the Bonn A nucleon-nucleon potential. The calculated results are compared with the available experimental data are, however, very scanty for 206Hg. The very good agreement obtained for 210Po supports confidence in our predictions for 206Hg.
Scoping calculations of power sources for nuclear electric propulsion
Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)
1994-05-01
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.
Point kinetics calculations with fully coupled thermal fluids reactivity feedback
Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.
2013-07-01
The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)
Accurate calculation of thermal noise in multilayer coating
Alexey Gurkovsky; Sergey Vyatchanin
2010-05-18
We derive accurate formulas for thermal fluctuations in multilayer interferometric coating taking into account light propagation inside the coating. In particular, we calculate the reflected wave phase as a function of small displacements of the boundaries between the layers using transmission line model for interferometric coating and derive formula for spectral density of reflected phase in accordance with Fluctuation-Dissipation Theorem. We apply the developed approach for calculation of the spectral density of coating Brownian noise.
Strategy Guideline. Accurate Heating and Cooling Load Calculations
Burdick, Arlan
2011-06-01
This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.
Strategy Guideline: Accurate Heating and Cooling Load Calculations
Burdick, A.
2011-06-01
This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Influence of polarization and a source model for dose calculation in MRT
Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bräuer-Krisch, Elke
2014-04-15
Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartínez-Rovira et al. [“Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy,” Med. Phys. 39(1), 119–131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside the field center, increased beam width and center to center distance due to the beam propagation from the collimator to the phantom surface and imperfect absorption in the absorber material of the Multislit Collimator. These corrections have an effect of approximately 10% on the valley dose and suffice to describe doses in MRT within the measurement uncertainties of currently available dosimetry techniques. Conclusions: The source for the first clinical pet trials in MRT is characterized with respect to its phase space and the photon polarization. The results suggest the use of a presented simplified phase space model in dose calculations and hence pave the way for alternative and fast dose calculation algorithms. They also show that the polarization is of minor importance for the clinical important peak and valley doses inside the microbeam field.
Tahmasebi Birgani, Mohamad J.; Chegeni, Nahid; Zabihzadeh, Mansoor; Hamzian, Nima
2014-04-01
Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18 MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.
Reading, John F.; Fu, J.; Fitzpatrick, M. J.
2004-01-01
We present a different method of extracting the angular distribution of ejected electrons in an ion-atom collision from a two-centered finite Hilbert basis-set calculation. We obtain good agreement with experiment for a ...
Courtney, Christina Leigh
2014-08-31
of difference, the differential quotient, is determined. For the purposes of this dissertation, I calculated the reported achievement gaps between white and black fourth graders for the years 2005, 2007, and 2009 on the individual state reading and math...
Luminosity function of binary X-ray sources calculated using the Scenario Machine
A. I. Bogomazov; V. M. Lipunov
2007-05-20
Using the ``Scenario Machine'' we have carried out a population synthesis of X-ray binaries for the purpose of modelling of X-ray luminosity functions (XLFs) in different types of galaxies: star burst, spiral, and elliptical. This computer code allows to calculate, by using Monte Carlo simulations, the evolution of a large ensemble of binary systems, with proper accounting for the spin evolution of magnetized neutron stars. We show that the XLF has no universal type. It depends on the star formation rate in the galaxy. Also it is of importance to take into account the evolution of binary systems and life times of X-ray stages in theoretical models of such functions. We have calculated cumulative and differential XLFs for the galaxy with the constant star formation rate. Also we have calculated cumulative luminosity functions for different intervals of time after the star formation burst in the galaxy and curves depicting the evolution of the X-ray luminosity after the star formation burst in the galaxy.
Auxiliary Field Diffusion Monte Carlo calculation of ground state properties of neutron drops
Francesco Pederiva; A. Sarsa; K. E. Schmidt; S. Fantoni
2004-03-23
The Auxiliary Field Diffusion Monte Carlo method has been applied to simulate droplets of 7 and 8 neutrons. Results for realistic nucleon-nucleon interactions, which include tensor, spin--orbit and three--body forces, plus a standard one--body confining potential, have been compared with analogous calculations obtained with Green's Function Monte Carlo methods. We have studied the dependence of the binding energy, the one--body density and the spin--orbit splittings of $^7n$ on the depth of the confining potential. The results obtained show an overall agreement between the two quantum Monte Carlo methods, although there persist differences in the evaluation of spin--orbit forces, as previously indicated by bulk neutron matter calculations. Energy density functional models, largely used in astrophysical applications, seem to provide results significantly different from those of quantum simulations. Given its scaling behavior in the number of nucleons, the Auxiliary Field Diffusion Monte Carlo method seems to be one of the best candidate to perform {\\sl ab initio} calculations on neutron rich nuclei.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Chen, Y.; Li, X.; Zhang, Q.; Spitler, J.; Fisher, D.
2006-01-01
Conduction transfer functions (CTFs) are widely used to calculate conduction heat transfer in building cooling load and energy calculations. They can conveniently fit into any load and energy calculation techniques to perform conduction calculations...
Solar Reflectance Index Calculation Worksheet Instructions Usage: The purpose of this calculator is to enable contractors and homeowners to quickly and accurately calculate the solar reflectance product exceeds the Building Energy Efficiency Standards requirement for either the aged solar
The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG - this gas typically contains a high
Ping, Tan Ai; Hoe, Yeak Su
2014-07-10
Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.
Beryllium Wipe Sampling (differing methods - differing exposure potentials)
Kerr, Kent
2005-03-09
This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.
Benchmark calculations for elastic fermion-dimer scattering
Shahin Bour; H. -W. Hammer; Dean Lee; Ulf-G. Meißner
2012-06-08
We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.
Air ingression calculations for selected plant transients using MELCOR
Kmetyk, L.N.
1994-01-01
Two sets of MELCOR calculations have been completed studying the effects of air ingression on the consequences of various severe accident scenarios. One set of calculations analyzed a station blackout with surge line failure prior to vessel breach, starting from nominal operating conditions; the other set of calculations analyzed a station blackout occurring during shutdown (refueling) conditions. Both sets of analyses were for the Surry plant, a three-loop Westinghouse PWR. For both accident scenarios, a basecase calculation was done, and then repeated with air ingression from containment into the core region following core degradation and vessel failure. In addition to the two sets of analyses done for this program, a similar air-ingression sensitivity study was done as part of a low-power/shutdown PRA, with results summarized here; that PRA study also analyzed a station blackout occurring during shutdown (refueling) conditions, but for the Grand Gulf plant, a BWR/6 with Mark III containment. These studies help quantify the amount of air that would have to enter the core region to have a significant impact on the severe accident scenario, and demonstrate that one effect, of air ingression is substantial enhancement of ruthenium release. These calculations also show that, while the core clad temperatures rise more quickly due to oxidation with air rather than steam, the core also degrades and relocates more quickly, so that no sustained, enhanced core heatup is predicted to occur with air ingression.
Sun, Shih-Jye [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Ken-Huang; Li, Jia-Yun [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Ju, Shin-Pon, E-mail: jushin-pon@mail.nsysu.edu.tw [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)
2014-10-07
The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.
Benchmark data for validating irradiated fuel compositions used in criticality calculations
Bierman, S.R.; Talbert, R.J.
1994-10-01
To establish criticality safety margins utilizing burnup credit in the storage and transport of spent reactor fuels requires a knowledge of the uncertainty in the calculated fuel composition used in making the reactivity assessment. To provide data for validating such calculated burnup fuel compositions, radiochemical assays have been obtained as part of the United States Department of Energy From-Reactor Cask Development Program. Assay results and associated operating histories on the initial three samples analyzed in this effort are presented. The three samples were taken from different axial regions of a Pressurized Water Reactor fuel rod and represent radiation exposures of about 37, 27, and 44 GWd/MTU. The data are presented in a benchmark type format to facilitate identification/referencing and computer code input.
Ab-initio calculations on two-electron ions in strongly coupled plasma environment
Bhattacharyya, S; Mukherjee, T K
2015-01-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...
Calculations to assist in a new Hiroshima yield estimate. Final report, August 19-December 31, 1983
Kennedy, L.W.; Roth, L.A.; Needham, C.E.
1984-06-15
This report describes calculations and analysis performed in an attempt to provide a new estimate for the yield of the Hiroshima weapon. Newly discovered meteorological data was adapted for use in one- and two-dimensional hydrodynamic codes, and a series of calculations was then run for different values of yield. The objective was to determine what yield produced an overpressure record which could best be correlated with an actual trace measured at a parachute-dropped canister. Altitude of the bomb and canister-carrying aircraft at drop time was also a variable parameter. The analysis provides an estimate of 16.6 + 0.3 kt for the yield of the Hiroshima weapon. A drop altitude of near 35,500 feet is shown to be consistent with the signal time-of-arrival. This yield value is within the range of other estimates, but the drop altitude is higher than that previously assumed to be reasonable.
Production of the Weather Year for Energy Calculations Version 2 (WYEC2) data files
Stoffel, T.L.; Rymes, M.D. [National Renewable Energy Lab., Golden, CO (United States)
1998-12-31
Representative climate data are important for comparing computer simulations of building designs and their resultant energy needs. In 1969, recognizing a growing interest in such data, ASHRAE Technical Committee 4.2--Weather Information (TC4.2), commissioned development of hourly weather files. The resulting data for 51 locations in the US and Canada are called Weather Year for Energy Calculations (WYEC). In 1988, TC4.2 initiated a major revision of the WYEC files. This effort was limited to adding the 26 Typical Meteorological Year (TMY) hourly weather files to the original WYEC database and making many significant improvements and enhancements to the available data elements. Specifically, the need existed to use a consistent time convention, correct excessive solar radiation values, screen the meteorological data for physically impossible values, provide model estimates of additional solar irradiance and illuminance values, and include data quality indicators. The work of revising and improving the WYEC database was done at the National Renewable Energy Laboratory (NREL). The resulting set of 77 revised and corrected hourly weather files are known as WYEC Version 2 or WYEC2 files. This paper describes the NREL production of the WYEC2 data files for ASHRAE.
Why are Casimir energy differences so often finite?
Visser, Matt
2016-01-01
One of the very first applications of the quantum field theoretic vacuum state was in the development of the notion of Casimir energy. Now field theoretic Casimir energies, considered individually, are always infinite. But differences in Casimir energies are quite often finite --- a fortunate circumstance which luckily made some of the early calculations, (for instance, for parallel plates and hollow spheres), tolerably tractable. We shall explore the extent to which this observation can be systematised. For instance: What are necessary and sufficient conditions for Casimir energy differences to be finite? When the Casimir energy differences are not finite, can anything useful be said? We shall see that it is the difference in the first few Seeley-DeWitt coefficients that is central to answering these questions. In particular, for any collection of conductors (perfect or imperfect) and/or dielectrics, as long as one merely moves them around without changing shape or volume, then the Casimir energy difference ...
Heinzelman, K M; Mansfield, W G
2010-04-27
This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in the food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling
2014-06-01
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ?PBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ?PBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of ?{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.
Robust difference imaging of high surface brightness targets
Kerins, E; Duke, J P; Gould, A; Han, C; Newsam, A; Park, B -G; Street, R
2010-01-01
Over the last two decades the Andromeda Galaxy (M31) has been something of a test-bed for methods aimed at obtaining accurate time-domain relative photometry within highly crowded fields. Difference imaging methods, originally pioneered towards M31, have evolved into sophisticated methods, such as the Optimal Image Subtraction (OIS) method of Alard & Lupton (1998), that today are most widely used to survey variable stars, transients and microlensing events in our own Galaxy. We show that modern difference image (DIA) algorithms such as OIS, whilst spectacularly successful towards the Milky Way bulge, may perform badly towards high surface brightness targets such as the M31 bulge. Poor results typically occur in the presence of common data systematics that scale with image flux such as internal reflections, scattered light, flat field errors or fringing. Using data from the Angstrom Project microlensing survey of the M31 bulge, we show that very good results are usually obtainable by first performing caref...
Matching Fully Differential NNLO Calculations and Parton Showers
Simone Alioli; Christian W. Bauer; Calvin Berggren; Frank J. Tackmann; Jonathan R. Walsh; Saba Zuberi
2013-11-01
We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO$+$LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input "Monte Carlo cross sections" satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.
TEA: A Code for Calculating Thermochemical Equilibrium Abundances
Blecic, Jasmina; Bowman, M Oliver
2015-01-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...
-pressure argon arc plasma 4 . Like TPPS, the PCDFWM method is characterized by high spatial and tem- poral are calculated for high-density Ne 1021 m-3 plasma conditions and for different contributions of the Doppler are widely studied in astrophysics and laboratory plasma physics 1 . The measurements of the Stark profiles
Boyer, Edmond
Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure materials with different degrees of structural and electronic complexity, SrVO3 and BaVS3, are investigated calculations of strongly correlated materials F. Lechermann,1,2, * A. Georges,1 A. Poteryaev,1 S. Biermann,1 M
Fast spectral source integration in black hole perturbation calculations
Seth Hopper; Erik Forseth; Thomas Osburn; Charles R. Evans
2015-06-15
This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called \\emph{spectral source integration} (SSI), this method should see widespread future use in problems that entail (i) point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as $e \\simeq 0.7$. We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of three improvement in the overall speed. The primary initial application of SSI--for us its \\emph{raison d'\\^{e}tre}--is in an arbitrary precision \\emph{Mathematica} code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr, and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in solution of the geodesic orbital motion.
Mixed-Symmetry Shell-Model Calculations in Nuclear Physics
V. G. Gueorguiev
2010-02-17
We consider a novel approach to the nuclear shell model. The one-dimensional harmonic oscillator in a box is used to introduce the concept of an oblique-basis shell-model theory. By implementing the Lanczos method for diagonalization of large matrices, and the Cholesky algorithm for solving generalized eigenvalue problems, the method is applied to nuclei. The mixed-symmetry basis combines traditional spherical shell-model states with SU(3) collective configurations. We test the validity of this mixed-symmetry scheme on 24Mg and 44Ti. Results for 24Mg, obtained using the Wilthental USD intersection in a space that spans less than 10% of the full-space, reproduce the binding energy within 2% as well as an accurate reproduction of the low-energy spectrum and the structure of the states - 90% overlap with the exact eigenstates. In contrast, for an m-scheme calculation, one needs about 60% of the full space to obtain compatible results. Calculations for 44Ti support the mixed-mode scheme although the pure SU(3) calculations with few irreps are not as good as the standard m-scheme calculations. The strong breaking of the SU(3) symmetry results in relatively small enhancements within the combined basis. However, an oblique-basis calculation in 50% of the full pf-shell space is as good as a usual m-scheme calculation in 80% of the space. Results for the lower pf-shell nuclei 44-48Ti and 48Cr, using the Kuo-Brown-3 interaction, show that SU(3) symmetry breaking in this region is driven by the single-particle spin-orbit splitting. In our study we observe some interesting coherent structures, such as coherent mixing of basis states, quasi-perturbative behavior in the toy model, and enhanced B(E2) strengths close to the SU(3) limit even though SU(3) appears to be rather badly broken.
Calculation of anharmonic couplings and THz linewidths in crystalline PETN
Pereverzev, Andrey Sewell, Thomas D. Thompson, Donald L.
2014-03-14
We have developed a method for calculating the cubic anharmonic couplings in molecular crystals for normal modes with the zero wave vector in the framework of classical mechanics, and have applied it, combined with perturbation theory, to obtain the linewidths of all infrared absorption lines of crystalline pentaerythritol tetranitrate in the terahertz region (<100 cm{sup ?1}). Contributions of the up- and down-conversion processes to the total linewidth were calculated. The computed linewidths are in qualitative agreement with experimental data and the results of molecular dynamics simulations. Quantum corrections to the linewidths in the terahertz region are shown to be negligible.
Improved guidelines for RELAP4/MOD6 reflood calculations. [PWR
Chen, T.H.; Fletcher, C.D.
1980-01-01
Computer simulations were performed for an extensive selection of forced- and gravity-feed reflood experiments. This effort was a portion of the assessment procedure for the RELAP4/MOD6 thermal hydraulic computer code. A common set of guidelines, based on recommendations from the code developers, was used in determining the model and user-selected input options for each calculation. The comparison of code-calculated and experimental data was then used to assess the capability of the RELAP4/MOD6 code to model the reflood phenomena. As a result of the assessment, the guidelines for determining the user-selected input options were improved.
Additional nuclear criticality safety calculations for small-diameter containers
Hone, M.J.
1996-01-01
This report documents additional criticality safety analysis calculations for small diameter containers, which were originally documented in Reference 1. The results in Reference 1 indicated that some of the small diameter containers did not meet the criteria established for criticality safety at the Portsmouth facility (K{sub eff} +2{sigma}<.95) when modeled under various contingency assumptions of reflection and moderation. The calculations performed in this report reexamine those cases which did not meet the criticality safety criteria. In some cases, unnecessary conservatism is removed, and in other cases mass or assay limits are established for use with the respective containers.
RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT
D. Musat
2005-03-07
This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.
Quantum statistical calculation of cluster abundances in hot dense matter
Gerd Ropke
2014-07-01
The cluster abundances are calculated from a quantum statistical approach taking into account in-medium corrections. For arbitrary cluster size the self-energy and Pauli blocking shifts are considered. Exploratory calculations are performed for symmetric matter at temperature $T=5$ MeV and baryon density $\\varrho=0.0156$ fm$^{-3}$ to be compared with the solar element distribution. It is shown that the abundances of weakly bound nuclei with mass number $4
A Parallel Orbital-Updating Approach for Electronic Structure Calculations
Xiaoying Dai; Xingao Gong; Aihui Zhou; Jinwei Zhu
2014-11-05
In this paper, we propose an orbital iteration based parallel approach for electronic structure calculations. This approach is based on our understanding of the single-particle equations of independent particles that move in an effective potential. With this new approach, the solution of the single-particle equation is reduced to some solutions of independent linear algebraic systems and a small scale algebraic problem. It is demonstrated by our numerical experiments that this new approach is quite efficient for full-potential calculations for a class of molecular systems.
Using Faddeev Differential Equations to Calculate Three-Body Resonances
E. A. Kolganova; A. K. Motovilov
1998-03-19
Algorithm, based on explicit representations for analytic continuation of the T-matrix Faddeev components on unphysical sheets, is worked out for calculations of resonances in the three-body quantum problem. According to the representations, poles of T-matrix, scattering matrix and Green function on unphysical sheets, interpreted as resonances, coincide with those complex energy values where appropriate truncations of the scattering matrix have zero as eigenvalue. Scattering amplitudes on the physical sheet, necessary to construct scattering matrix, are calculated on the basis of the Faddeev differential equations. The algorithm developed is applied to search for the resonances in the $nnp$ system and in a model three-boson system.
Excited State Effects in Nucleon Matrix Element Calculations
Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner
2011-12-01
We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.
Analytic calculation of 1-jettiness in DIS at O (?s)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kang, Daekyoung; Los Alamos National Lab.; Lee, Christopher; Stewart, Iain W.
2014-11-24
We present an analytic O(?s) calculation of cross sections in deep inelastic scattering (DIS) dependent on an event shape, 1-jettiness, that probes final states with one jet plus initial state radiation. This is the first entirely analytic calculation for a DIS event shape cross section at this order. We present results for the differential and cumulative 1-jettiness cross sections, and express both in terms of structure functions dependent not only on the usual DIS variables x, Q 2 but also on the 1-jettiness ?. Combined with previous results for log resummation, predictions are obtained over the entire range of themore »1-jettiness distribution.« less
Calculation of the strange quark mass using domain wall fermions
Tom Blum; Amarjit Soni; Matthew Wingate
2000-09-18
We present a first calculation of the strange quark mass using domain wall fermions. This paper contains an overview of the domain wall discretization and a pedagogical presentation of the perturbative calculation necessary for computing the mass renormalization. We combine the latter with numerical simulations to estimate the strange quark mass. Our final result in the quenched approximation is 95(26) MeV in the ${\\bar{MS}}$ scheme at a scale of 2 GeV. We find that domain wall fermions have a small perturbative mass renormalization, similar to Wilson quarks, and exhibit good scaling behavior.
New approach to calculating the potential energy of colliding nuclei
Kurmanov, R. S., E-mail: kurmanovrs@mail.ru [Omsk State Transport University (Russian Federation); Kosenko, G. I., E-mail: kosenkophys@gmail.com [Omsk Tank Engineering Institute (Russian Federation)
2014-12-15
The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.
Comparison of TRAC calculations with experimental data. [PWR
Jackson, J.F.; Vigil, J.C.
1980-01-01
TRAC is an advanced best-estimate computer code for analyzing postulated accidents in light water reactors. This paper gives a brief description of the code followed by comparisons of TRAC calculations with data from a variety of separate-effects, system-effects, and integral experiments. Based on these comparisons, the capabilities and limitations of the early versions of TRAC are evaluated.
Semiclassical calculation of an induced decay of false vacuum
A. Monin; M. B. Voloshin
2010-04-12
We consider a model where a scalar field develops a metastable vacuum state and weakly interacts with another scalar field. In this situation we find the probability of decay of the false vacuum stimulated by the presence and collisions of particles of the second field. The discussed calculation is an illustration of the recently suggested thermal approach to treatment of induced semiclassical processes.
EQ6 Calculations for Chemical Degradation of Navy Waste Packages
S. LeStrange
1999-11-15
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.
Fuzzy-probabilistic calculations of water-balance uncertainty
Faybishenko, B.
2009-10-01
Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE
Su, Xiao
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY A LEARNING TOOL By a complete supply chain #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply
Calculation of the RayleighSommerfeld diffraction integral by exact
Calculation of the RayleighSommerfeld diffraction integral by exact integration of the fast of constant (possibly complex) index of refraction n. The method integrates the RayleighSommerfeld diffraction integral numerically. After an appropriate change of integration variables, the integrand
Vol.11,No.1,January-February 1995 Calculations
JOURNAL OF PROPULSION AND POWER Vol.11,No.1,January-February 1995 Calculations for Steady, and trailing oblique shock. The reaction strengthens the lead shock tothe extent that the far-field wave angle to balance the wave drag. Fora fixed heat release greater than a critical value, two steady propagation
CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE
Demazière, Christophe
CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE FISSION REACTORS CORE-BARREL VIBRATIONS-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZIÈRE, and IMRE PÁZSIT Chalmers University of Technology. 5 gives a self-contained description of the principles of fluctuation analysis for the diagnostics
2004 Compliance Recertification Application Performance Assessment Baseline Calculation
2004 Compliance Recertification Application Performance Assessment Baseline Calculation Revision O Sandia National Laboratories Waste Isolation Pilot Plant 2004 Compliance Recertification Application (2 ~"f, Date QA Review Mario Chavez Print WIPP: 1.4.1.1.:P A:QA-L:540232 lof153 #12;2004 Compliance
Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda
Stathopoulos, Andreas
Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda Y. Saad y , A the structural and electronic properties of complex systems is one of the outstanding problems in condensed external perturbations. For example, it may be desirable in certain cases to follow the dynamics of atoms/electrons
Patent Citation Analysis: Calculating Science linkage based on Citing Motivation
Menczer, Filippo
1 Patent Citation Analysis: Calculating Science linkage based on Citing Motivation Rui Li used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy
DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE
Shultis, J. Kenneth
DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE IRON, LEAD, AND WATER FOR PHOTONS AND NEUTRONS for the neutron albedo, and (3) the secondary-photon albedo for incident neutrons. Albedo data is provided for four materials: concrete, iron, lead, and water. Unlike previous compilations of albedo data, modern
Improving Cost Calculations for Global Constraints in Local Search
Rossi, Francesca
Improving Cost Calculations for Global Constraints in Local Search Markus Bohlin Swedish Institute- straint satisfaction is based on local minimization of a cost function, which is usually the number equivalent to a set of basic constraints but still contributes as little to the cost as a single basic
HOPF CALCULATIONS IN DELAYED CAR-FOLLOWING MODELS Gabor Stepan
Awtar, Shorya
HOPF CALCULATIONS IN DELAYED CAR-FOLLOWING MODELS G´abor St´ep´an and G´abor Orosz Department: A nonlinear car-following model that includes the reaction-time delay of drivers is considered. When, bistability 1. INTRODUCTION There are two important goals of traffic manage- ment when cars follow each other
Using Graphical Representations to Support the Calculation of Infusion Parameters
Subramanian, Sriram
Using Graphical Representations to Support the Calculation of Infusion Parameters Sandy J. J. Gould in which participants were asked to solve a num- ber of infusion parameter problems that were represented representations transfer to actual workplace settings. Keywords: Graphical reasoning, infusion pumps, re
Atomic Structure Calculations from the Los Alamos Atomic Physics Codes
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Cowan, R. D.
The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.
Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary
is valid, it produces a frequency-independent model that may be used to calculate losses for any set and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics of this work in other works must be obtained from the IEEE. #12;142 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL
Calculated Phonon Spectra of Plutonium at High Temperatures
Savrasov, Sergej Y.
Calculated Phonon Spectra of Plutonium at High Temperatures X. Dai,1 S. Y. Savrasov,2 * G. Kotliar dynamical proper- ties of plutonium using an electronic structure method, which incorporates correlation anharmonic and can be stabilized at high temperatures by its phonon entropy. Plutonium (Pu) is a material
Systematic perturbation calculation of integrals with applications to physics
Paolo Amore; Alfredo Aranda; Francisco M. Fernandez; Ricardo A. Saenz
2004-07-09
In this paper we generalize and improve a method for calculating the period of a classical oscillator and other integrals of physical interest, which was recently developed by some of the authors. We derive analytical expressions that prove to be more accurate than those commonly found in the literature, and test the convergence of the series produced by the approach.
ARCHITECTURAL PROGRAMMINGARCHITECTURAL PROGRAMMING Program Spreadsheet GSF, NSF, NOSF Calculation
Heller, Barbara
ARCHITECTURAL PROGRAMMINGARCHITECTURAL PROGRAMMING Program Spreadsheet GSF, NSF, NOSF Calculation? This is an estimate, based on: · Experience doing these types of layouts · Studying existing successful plans of similar projects (doing area take-offs) #12;To get NOSF* - Guidelines for adding circulation · % of space
Stress field at a sliding frictional contact: Experiments and calculations
Adda-Bedia, Mokhtar
Stress field at a sliding frictional contact: Experiments and calculations J. Scheibert Ã,1 , A and tangential stress fields at the base of a rough elastomer film in contact with a smooth glass cylinder in steady sliding. This geometry allows for a direct comparison between the stress profiles measured along
Subject Positions and Derivational Scope Calculation in Minimalist Syntax
Subject Positions and Derivational Scope Calculation in Minimalist Syntax: A Phase-Based Approach without any other special implement. 1 Introduction This paper explores the correlation between subject in subject positions across languages. We claim that unlike English Nominative Case, C, rather than
General calculations using graphics hardware, with application to interactive caustics
Stewart, James
General calculations using graphics hardware, with application to interactive caustics Chris Trendall and A. James Stewart iMAGIS--GRAVIR/IMAG and University of Toronto Abstract. Graphics hardware has been developed with image production in mind, but current hardware can be exploited for much more
RZ calculations for self shielded multigroup cross sections
Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z.
2006-07-01
A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)
Gas-storage calculations yield accurate cavern, inventory data
Mason, R.G. )
1990-07-02
This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.
ELECTROMOTION 2009 3D Analytical Calculation of Forces between
Paris-Sud XI, UniversitÃ© de
Co or NdFeB, the designers can use magnets owning a really rigid magnetization. They are the magnets whichELECTROMOTION 2009 1 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays H. Allag1,2 , J-P. Yonnet1 and M. E. H. Latreche2 1- Laboratoire de GÃ©nie Electrique de
Calculation Method of Permanent Magnet Pickups for Electric Guitars
Paris-Sud XI, UniversitÃ© de
in the 1930s, when Rickenbacker fitted out a guitar with a magnet and coils, thus designing the first magnetic to look at the types of magnetic circuit for the guitar pickups. We consider in this paper the most usual1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V
Submitted to Building and Environment UNCERTAINTY IN AIR FLOW CALCULATIONS
LBL-25415 Submitted to Building and Environment UNCERTAINTY IN AIR FLOW CALCULATIONS USING TRACER are becoming widely used to measure the ventilation rates in buildings. As more detailed information by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Systems
SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS
Goddard III, William A.
SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS Tahir Cagin Research and Development Center, Materials Labarotory, Polymer Branch, Wright Patterson AFB, Ohio 45433 geometries and energy band gaps of conjugated polymers. In this study, we used a modified version of semi
Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.
2011-01-01
Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.
Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada) and Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2011-04-15
Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE{sub preplan} for our edema model indicated underdosage in the calculation volume with a clear dependence on seed and calculation point positions, and increased with increasing values of {Delta} and T. Values of RE{sub preplan} were generally larger near the ends of the virtual prostate in the RPC phantom compared with more central locations. For edema characteristics similar to the population average values previously measured at our center, i.e., {Delta}=0.2 and T=28 d, mean values of RE{sub preplan} in an axial plane located 1.5 cm from the center of the seed distribution were 8.3% for {sup 131}Cs seeds, 7.5% for {sup 103}Pd seeds, and 2.2% for {sup 125}I seeds. Maximum values of RE{sub preplan} in the same plane were about 1.5 times greater. Note that detailed results strictly apply only for loose seed implants where the seeds are fixed in tissue and move in synchrony with that tissue. Conclusions: A dose calculation method for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema was developed for which cumulative dose can be written in closed form. The method yields values for RE{sub preplan} that differ from those for spatially isotropic edema. The method is suitable for calculating pre- and postimplant dosimetry correction factors for clinical seed configurations when edema characteristics can be measured or estimated.
Thermonuclear reaction rate of $^{18}$Ne($\\alpha$,$p$)$^{21}$Na from Monte-Carlo calculations
Mohr, P; Iliadis, C
2014-01-01
The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
Thermonuclear reaction rate of $^{18}$Ne($?$,$p$)$^{21}$Na from Monte-Carlo calculations
P. Mohr; R. Longland; C. Iliadis
2014-12-14
The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
Theoretical calculations and vibrational potential energy surface of 4-silaspiro(3,3)heptane
Ocola, Esther J.; Medders, Cross; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)] [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Meinander, Niklas [Department of Military Technology, Finnish National Defence University, P.O. Box 7, 00861 Helsinki (Finland)] [Department of Military Technology, Finnish National Defence University, P.O. Box 7, 00861 Helsinki (Finland)
2014-04-28
Theoretical computations have been carried out on 4-silaspiro(3,3)heptane (SSH) in order to calculate its molecular structure and conformational energies. The molecule has two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. Energy calculations were carried out for different conformations of SSH. These results allowed the generation of a two-dimensional ring-puckering potential energy surface (PES) of the form V = a(x{sub 1}{sup 4} + x{sub 2}{sup 4}) – b(x{sub 1}{sup 2} + x{sub 2}{sup 2}) + cx{sub 1}{sup 2}x{sub 2}{sup 2}, where x{sub 1} and x{sub 2} are the ring-puckering coordinates for the two rings. The presence of sufficiently high potential energy barriers prevents the molecule from undergoing pseudorotation. The quantum states, wave functions, and predicted spectra resulting from the PESs were calculated.
Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations
Perfetti, Christopher M [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL
2013-01-01
The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.
Munir, A.; Hensel, O. [Department of Agricultural Engineering,University of Kassel, Nordbahnhofstr. 1 a 37213 Witzenhausen (Germany); Scheffler, W. [Solar Bruecke G.v.Werdenbergstr.6 D-89344 Aislingen (Germany)
2010-08-15
Scheffler fixed focus concentrators are successfully used for medium temperature applications in different parts of the world. These concentrators are taken as lateral sections of paraboloids and provide fixed focus away from the path of incident beam radiations throughout the year. The paper presents a complete description about the design principle and construction details of an 8 m{sup 2} surface area Scheffler concentrator. The first part of the paper presents the mathematical calculations to design the reflector parabola curve and reflector elliptical frame with respect to equinox (solar declination = 0) by selecting a specific lateral part of a paraboloid. Crossbar equations and their ellipses, arc lengths and their radii are also calculated to form the required lateral section of the paraboloid. Thereafter, the seasonal parabola equations are calculated for two extreme positions of summer and winter in the northern hemisphere (standing reflectors). The slopes of the parabola equations for equinox (solar declination = 0), summer (solar declination = +23.5) and winter (solar declination = -23.5) for the Scheffler reflector (8 m{sup 2} surface area) are calculated to be 0.17, 0.28, and 0.13 respectively. The y-intercepts of the parabola equations for equinox, summer and winter are calculated as 0, 0.54, and -0.53 respectively. By comparing with the equinox parabola curve, the summer parabola is found to be smaller in size and uses the top part of the parabola curve while the winter parabola is bigger in size and uses the lower part of the parabola curve to give the fixed focus. For this purpose, the reflector assembly is composed of flexible crossbars and a frame to induce the required change of the parabola curves with the changing solar declination. The paper also presents the calculation procedure of seasonal parabola equations for standing reflectors in the southern hemisphere as well as for laying reflectors in the northern and southern hemispheres. Highly reflective aluminium sheets are used on the crossbar profiles to complete the concentrator. The reflector is installed at the required site by setting its axis of rotation at an angle equal to the latitude of the site. For daily tracking, these concentrators rotate along an axis parallel to the polar axis of the earth at an angular velocity of one revolution per day with the help of simpler and cheaper self-tracking devices. For seasonal tracking, the reflector rotates at half the solar declination angle with the help of a telescopic clamp mechanism. The design procedure is simple, flexible and does not need any special computational setup, thus offering the prospect of potential application in domestic as well as industrial configurations. (author)
Calculation of free energy landscapes: A Histogram Reweighted Metadynamics approach
Jens Smiatek; Andreas Heuer
2011-03-02
We present an efficient method for the calculation of free energy landscapes. Our approach involves a history dependent bias potential which is evaluated on a grid. The corresponding free energy landscape is constructed via a histogram reweighting procedure a posteriori. Due to the presence of the bias potential, it can be also used to accelerate rare events. In addition, the calculated free energy landscape is not restricted to the actual choice of collective variables and can in principle be extended to auxiliary variables of interest without further numerical effort. The applicability is shown for several examples. We present numerical results for the alanine dipeptide and the Met-Enkephalin in explicit solution to illustrate our approach. Furthermore we derive an empirical formula that allows the prediction of the computational cost for the ordinary metadynamics variant in comparison to our approach which is validated by a dimensionless representation.
Mesoscale polycrystal calculations of damage in spallation in metals
Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory
2010-01-01
The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.
HLW Canister and Can-In-Canister Drop Calculation
H. Marr
1999-09-15
The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver.
Energy levels of isoelectronic impurities by large scale LDA calculations
Li, Jingbo; Wang, Lin-Wang
2002-11-22
Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.
Quantum mechanical calculation of Rydberg-Rydberg Auger decay rates
Kiffner, Martin; Li, Wenhui; Jaksch, Dieter
2015-01-01
We present quantum mechanical calculations of the Auger decay rate $\\Gamma_A$ of two Rubidium Rydberg atoms with weakly overlapping electron clouds. The two-electron wavefunction is modelled by a single Slater determinant of $nd$ Rydberg orbitals with principal quantum number $n\\le35$. The dependence of $\\Gamma_A$ on the atom-atom separation $R$ is well described by a power law $\\Gamma_A \\propto R^{\\alpha}$ and we calculate the exponents $\\alpha$ for various initial states. For atomic separations equal to the size of the Rydberg electron wave function $R_n$ we find that $\\Gamma_A \\propto n^{-5}$. We discuss the importance of Auger decay compared to other contributions to the electron dynamics in the two Rydberg atom system.
Calculations of multiquark functions in effective models of strong interaction
Jafarov, R. G., E-mail: raufjafarov@bsu.az [Institute for Physical Problems of Baku State University (Azerbaijan); Rochev, V. E. [Institute of High Energy Physics, Theoretical Division (Russian Federation)] [Institute of High Energy Physics, Theoretical Division (Russian Federation)
2013-09-15
In this paper we present our results of the investigation of multiquark equations in the Nambu-Jona-Lasinio model with chiral symmetry of SU(2) group in the mean-field expansion. To formulate the mean-field expansion we have used an iteration scheme of solution of the Schwinger-Dyson equations with the fermion bilocal source. We have considered the equations for Green functions of the Nambu-Jona-Lasinio model up to third step for this iteration scheme. To calculate the high-order corrections to the mean-field approximation, we propose the method of the Legendre transformation with respect to the bilocal source, which allows effectively to take into account the symmetry constraints related with the chiral Ward identity. We discuss also the problem of calculating the multiquark functions in the mean-field expansion for Nambu-Jona-Lasinio-type models with other types of the multifermion sources.
Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment
Bacon, Diana H.; McGrail, B PETER.
2005-07-26
A set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. Two-dimensional simulations were run until the waste form release rates reached a quasi-stationary-state, usually after 2,000 to 4,000 yr. The primary difference between the waste form release simulations for the 2001 ILAW PA, and the simulations described herein, is the number of different materials considered. Whereas the previous PA considered only LAWABP1 glass, the current PA also describes radionuclide release from three different WTP glasses (LAWA44, LAWB45 and LAWC22), two different bulk vitrification glasses (6-tank composite and S-109), and three different grout waste forms (containing Silver Iodide, Barium Iodide and Barium Iodate). All WTP and bulk vitrification glasses perform well. However, the radionuclide release from the salt in the cast refractory surrounding the bulk vitrification waste packages is 2 to 170 times higher than the glass release rate, depending on the water recharge rate. Iodine-129 release from grouted waste forms is highly sensitive to the solubility of the iodine compound contained in the grout. The normalized iodine release rate from grout containing barium iodate is a factor of 10 higher than what the normalized release rate would be if the iodine were contained in LAWA44 glass.
Transport calculation of dilepton production at ultrarelativistic energies
C. Ernst; S. A. Bass; S. Soff; H. Stöcker; W. Greiner
1999-07-30
Dilepton spectra are calculated within the microscopic transport model UrQMD and compared to data from the CERES experiment. The invariant mass spectra in the region 300 MeV < M < 600 MeV depend strongly on the mass dependence of the $\\rho$ meson decay width which is not sufficiently determined by the Vector Meson Dominance model. A consistent explanation of both the recent Pb+Au data and the proton induced data can be given without additional medium effects.
Water coning calculations for vertical and horizontal wells
Yang, Weiping
1990-01-01
recovery of several wells coning water. Since their type curves are specific for the data they investigated, it can not serve as a general method of coning evaluation. Addington'2 developed a set of gas coning correlations for 3-D coarse grid... for predicting (1) critical coning rate, (2) breakthrough time, and (3) WOR after breakthrough in both vertical and horizontal wells. Two hand calculation methods had been developed in this study. Either of them applies to both vertical and horizontal wells...
Calculations of pair production by Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.
Statewide Air Emissions Calculations from Wind and Other Renewable
Haberl, Jeff; Baltazar, Juan Carlos; Bahman, Yazdani; Claridge, David; Mao, Chunliu; Sandeep, Kota
2013-01-01
be accomplished without many people’s help. Special thanks to Yih-huei Wan, senior engineer working in National Renewable Energy Laboratory (NREL) for providing 2011 ERCOT wind farm power generation data used to build daily model, and to Kevin Hansen... for providing 2012 ERCOT wind farm power generation data. Page July 2013 Energy Systems Laboratory, The Texas A&M University System 4 SUMMARY REPORT Statewide Air Emissions Calculations...
Quantum Monte Carlo calculations of neutron-alpha scattering
Kenneth M. Nollett; Steven C. Pieper; R. B. Wiringa; J. Carlson; G. M. Hale
2006-12-09
We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.
Validation of Criticality Safety Calculations with SCALE 6.2
Marshall, William BJ J [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL
2013-01-01
SCALE 6.2 provides numerous updates in nuclear data, nuclear data processing, and computational tools utilized in the criticality safety calculational sequences relative to SCALE 6.1. A new 252-group ENDF/B-VII.0 multigroup neutron library, improved ENDF/B-VII.0 continuous energy data, as well as the previously deployed 238-group ENDF/B-VII.0 neutron library are included in SCALE 6.2 for criticality safety analysis. The performance of all three libraries for keff calculations is examined with a broad sampling of critical experiment models covering a range of fuels and moderators. Critical experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) that are available in the SCALE Verified, Archived Library of Inputs and Data (VALID) are used in this validation effort. Over 300 cases are used in the validation of KENO V.a, and a more limited set of approximately 50 configurations are used for KENO-VI validation. Additionally, some KENO V.a cases are converted to KENO-VI models so that an equivalent set of experiments can be used to validate both codes. For continuous-energy calculations, SCALE 6.2 provides improved performance relative to SCALE 6.1 in most areas with notable improvements in fuel pin lattice cases, particularly those with mixed oxide fuel. Multigroup calculations with the 252-group library also demonstrate improved performance for fuel lattices, uranium (high and intermediate enrichment) and plutonium metal experiments, and plutonium solution systems. Overall, SCALE 6.2 provides equivalent or smaller biases than SCALE 6.1, and the two versions of KENO provide similar results on the same suite of problems.
An alternative method for calculating the energy of gravitational waves
Miroslav Sukenik; Jozef Sima
1999-09-21
In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.
Calculating the probability of detecting radio signals from alien civilizations
Horvat, Marko
2006-01-01
Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.
Calculating the probability of detecting radio signals from alien civilizations
Marko Horvat
2007-07-14
Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.
Stochastic Boundary, Diffusion, Emittance Growth and Lifetime calculation for the RHIC e-lens
Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.
2009-01-20
To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), a low energy electron beam with proper Gaussian transverse profiles was proposed to collide head-on with the proton beam. In this article, using a modified version of SixTrack [1], we investigate stability of the single particle in the presence of head-on beam-beam compensation. The Lyapunov exponent and action diffusion are calculated and compared between the cases without and with beam-beam compensation for two different working points and various bunch intensities. Using the action diffusion results the emittance growth rate and lifetime of the proton beam is also estimated for the different scenarios.
Exact-to-precision generalized perturbation for neutron transport calculation
Wang, C.; Abdel-Khalik, H. S. [North Carolina State University, 911 Oval Dr., Centennial Campus, Raleigh, NC 27606 (United States)
2013-07-01
This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)
Stress Field at a Sliding Frictional Contact: Experiments and Calculations
Julien Scheibert; Alexis Prevost; Georges Debrégeas; Eytan Katzav; Mohktar Adda-Bedia
2009-05-12
A MEMS-based sensing device is used to measure the normal and tangential stress fields at the base of a rough elastomer film in contact with a smooth glass cylinder in steady sliding. This geometry allows for a direct comparison between the stress profiles measured along the sliding direction and the predictions of an original \\textit{exact} bidimensional model of friction. The latter assumes Amontons' friction law, which implies that in steady sliding the interfacial tangential stress is equal to the normal stress times a pressure-independent dynamic friction coefficient $\\mu_d$, but makes no further assumption on the normal stress field. Discrepancy between the measured and calculated profiles is less than 14% over the range of loads explored. Comparison with a test model, based on the classical assumption that the normal stress field is unchanged upon tangential loading, shows that the exact model better reproduces the experimental profiles at high loads. However, significant deviations remain that are not accounted for by either calculations. In that regard, the relevance of two other assumptions made in the calculations, namely (i) the smoothness of the interface and (ii) the pressure-independence of $\\mu_d$ is briefly discussed.
An efficient basis set representation for calculating electrons in molecules
Jeremiah R. Jones; Francois-Henry Rouet; Keith V. Lawler; Eugene Vecharynski; Khaled Z. Ibrahim; Samuel Williams; Brant Abeln; Chao Yang; Daniel J. Haxton; C. William McCurdy; Xiaoye S. Li; Thomas N. Rescigno
2015-07-13
The method of McCurdy, Baertschy, and Rescigno, J. Phys. B, 37, R137 (2004) is generalized to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. The calculation of contracted two-electron matrix elements among orbitals requires only O(N log(N)) multiplication operations, not O(N^4), where N is the number of basis functions; N = n^3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionization potentials are reported for one- (He^+, H_2^+ ), two- (H_2, He), ten- (CH_4) and 56-electron (C_8H_8) systems.
Criticality calculations with MCNP{sup TM}: A primer
Mendius, P.W. [ed.; Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.
1994-08-01
The purpose of this Primer is to assist the nuclear criticality safety analyst to perform computer calculations using the Monte Carlo code MCNP. Because of the closure of many experimental facilities, reliance on computer simulation is increasing. Often the analyst has little experience with specific codes available at his/her facility. This Primer helps the analyst understand and use the MCNP Monte Carlo code for nuclear criticality analyses. It assumes no knowledge of or particular experience with Monte Carlo codes in general or with MCNP in particular. The document begins with a Quickstart chapter that introduces the basic concepts of using MCNP. The following chapters expand on those ideas, presenting a range of problems from simple cylinders to 3-dimensional lattices for calculating keff confidence intervals. Input files and results for all problems are included. The Primer can be used alone, but its best use is in conjunction with the MCNP4A manual. After completing the Primer, a criticality analyst should be capable of performing and understanding a majority of the calculations that will arise in the field of nuclear criticality safety.
Application of nuclear models to neutron nuclear cross section calculations
Young, P.G.
1982-01-01
Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).
WIPP Benchmark calculations with the large strain SPECTROM codes
Callahan, G.D.; DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)
1995-08-01
This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.
Materials Databases Infrastructure Constructed by First Principles Calculations: A Review
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lin, Lianshan
2015-10-13
The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hotmore »applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.« less
Impact of the 235U Covariance Data in Benchmark Calculations
Leal, Luiz C [ORNL] [ORNL; Mueller, Don [ORNL] [ORNL; Arbanas, Goran [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Derrien, Herve [ORNL] [ORNL
2008-01-01
The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems.
New quinternary selenides: Syntheses, characterizations, and electronic structure calculations
Chung, Ming-Yan; Lee, Chi-Shen, E-mail: chishen@mail.nctu.edu.tw
2013-06-01
Five quinternary selenides, Sr?.??Y?.??Ge?.??Sb?.??Se? (I), Sr?.??La?.??Ge?.??Sb?.??Se? (II), Sr?.??La?.??Sn?.??Bi?.??Se? (III), Ba?.?? La?.?? Sn?.??Sb?.??Se? (IV), and Ba?.?? La?.??Sn?.??Bi?.??Se? (V), were synthesized by solid-state reaction in fused silica tubes. These compounds are isostructural and crystallize in the Sr?GeSb?Se? structural-type, which belongs to the orthorhombic space group Pnma (no. 62). Three structural units, ^{1}_{?}[MSe?], ^{1}_{?}[M?Se??] (M=Tt, Pn) and M´ (M´=groups II and III element), comprise the entire one-dimensional structure, separated by M´. Measurements of electronic resistivity and diffused reflectance suggest that IV and V have semiconducting properties. Electronic structure calculations confirm the site preferences of Sr/La element discovered by crystal structure refinement. - Graphical abstract: Quinternary selenides Ae?.??M?.??Tt?.??Pn?.??Se? (Ae, M, Tt, Pn=Sr/Ba, Y/La, Ge/Sn, Sb/Bi) were synthesized and their site preferences were characterized by single-crystal X-ray diffraction and electronic structure calculation. Highlights: • Five new quinternary selenides were synthesized and characterized. • Structural units, ^{1}_{?}[MSe?] and ^{1}_{?}[M?Se??] (M=Tt, Pn), construct the one-dimensional structure. • Calculations of electronic structure confirm site preference of Sr/La sites.
Kirchhoff prestack depth migration in orthorhombic velocity models with differently rotated tensors
Cerveny, Vlastislav
Kirchhoff prestack depth migration in orthorhombic velocity models with differently rotated tensors use the ray-based Kirchhoff prestack depth migration to calculate migrated sections in simple with a differently rotated tensor of elastic moduli. We apply the Kirchhoff prestack depth migration to single
Pre-test CFD Calculations for a Bypass Flow Standard Problem
Rich Johnson
2011-11-01
The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.
Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR
Hanson, A.L.; Diamond, D.
2011-09-30
A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Previously, the design of the LEU fuel had been determined in order to provide the users of the NBSR with the same cycle length as exists for the current HEU fueled reactor. The fuel composition at different points within an equilibrium fuel cycle had also been determined. In the present study, neutronics parameters have been calculated for these times in the fuel cycle for both the existing HEU and the proposed LEU equilibrium cores. The results showed differences between the HEU and LEU cores that would not lead to any significant changes in the safety analysis for the converted core. In general the changes were reasonable except that the figure-of-merit for neutrons that can be used by experimentalists shows there will be a 10% reduction in performance. The calculations included kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions.
Multipole moments of water molecules in clusters and ice Ih from first principles calculations
Batista, E.R. [Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560 (United States)] [Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560 (United States); [Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States); Xantheas, S.S. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 906 Battelle Boulevard, PO Box 999, MS K8-91, Richland, Washington 99352 (United States)] [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 906 Battelle Boulevard, PO Box 999, MS K8-91, Richland, Washington 99352 (United States); Jonsson, H. [Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States)] [Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States)
1999-10-01
We have calculated {ital molecular} multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader{close_quote}s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. {copyright} {ital 1999 American Institute of Physics.}
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa; Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
TheRate: Program for Ab Initio Direct Dynamics Calculations of Thermal and
Truong, Thanh N.
, and the convergence of the rate constants with respect to the number of electronic structure calculations. 1998 John is that such limited potential energy information may be obtained from accurate electronic structure calculations-- --Dynamics Calculations of Thermal and Vibrational
Sex differences in intimate relationships
Palchykov, Vasyl; Kertész, János; Barabási, Albert-László; Dunbar, Robin I M
2012-01-01
Social networks have turned out to be of fundamental importance both for our understanding human sociality and for the design of digital communication technology. However, social networks are themselves based on dyadic relationships and we have little understanding of the dynamics of close relationships and how these change over time. Evolutionary theory suggests that, even in monogamous mating systems, the pattern of investment in close relationships should vary across the lifespan when post-weaning investment plays an important role in maximising fitness. Mobile phone data sets provide us with a unique window into the structure of relationships and the way these change across the lifespan. We here use data from a large national mobile phone dataset to demonstrate striking sex differences in the pattern in the gender-bias of preferred relationships that reflect the way the reproductive investment strategies of the two sexes change across the lifespan: these differences mainly reflect women's shifting pattern...
Papez, K.L.; Risher, D.H.
1983-05-01
The loss-of-main-feedwater transient without reactor trip (scram) has received particular attention in pressurized water reactor (PWR) anticipated transient without scram (ATWS) analysis primarily due to the potential for reactor coolant system over pressurization. To assist in the licensing of the U.K. PWR, Sizewell 'B', comparative calculations of a loss-of-feedwater ATWS have been performed using the Westinghouse-developed LOFTRAN loop analysis code and the Electric Power Research Institute/ Energy Incorporated-developed RETRAN-01 code. The calculations were performed with and without the emergency boration system (EBS), which is included in the Sizewell reference design. Initial results showed good agreement between the codes for the major features of the transient, but also a time shift in the transient profiles at the time of the pressurizer pressure peak. This was found to be due to differences in the steam generator modeling, which resulted in a difference in the onset of the very rapid degradation in heat transfer as the steam generators approach dryout. When the same model was used in both codes, very good agreement was obtained. Remaining differences in the results are attributed primarily to differences in the boron injection models, which resulted in an over-prediction of the core boron concentration in the RETRAN calculation. The results with an EBS indicate that the peak pressurizer pressure is relatively insensitive to variations in modeling.
New, Joshua Ryan; Levinson, Ronnen; Huang, Yu; Sanyal, Jibonananda; Miller, William A.; Mellot, Joe; Childs, Kenneth W.; Kriner, Scott
2014-06-01
The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNL studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.
Safety analysis of the MYRRHA facility with different core configurations
Arien, B.; Heusdains, S.; Alt Abderrahim, H.; Malambu, E. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)
2006-07-01
In the framework of the IAEA Coordinated Research Project on 'Studies of Innovative Reactor Technology Options for Effective Incineration of Radioactive Waste', a benchmark exercise was undertaken to analyse the behaviour of the MYRRHA facility in various accidental conditions. The transients were simulated by means of the RELAP and SITHER codes and the following set of accident scenarios was considered: loss of flow, loss of heat sink, overpower transient, overcooling and partial blockage of a subassembly. In addition, those accidents were simulated in two different situations depending on whether the proton beam is cut off (protected case) or not (unprotected case). In the IAEA benchmark two subcritical core configurations are considered: a typical core configuration composed only of (U-Pu)O{sub 2} MOX fuel assemblies and another one including additional U-free minor actinides fuel assemblies. The present paper summarized the main results obtained with the first core configuration. (authors)
J. -U. Nabi; H. V. Klapdor-Kleingrothaus
1999-07-27
Allowed weak interaction rates for sd-shell nuclei in stellar environment are calculated using a generalized form of proton-neutron quasiparticle RPA model with separable Gamow-Teller forces. Twelve different weak rates are calculated for each nucleus as a function of temperature and density. This project consists of calculation of weak rates for a total of 709 nuclei with masses ranging from A = 18 to 100. This paper contains calculated weak rates for sd-shell nuclei. The calculated capture and decay rates take into consideration the latest experimental energy levels and ft value compilations. The results are also compared with earlier works. Particle emission processes from excited states, previously ignored, are taken into account, and are found to significantly affect some beta decay rates.
Methods of calculating the post-closure performance of high-level waste repositories
Ross, B.
1989-02-01
This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.
Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150
Möller, Peter; Randrup, Jørgen
2015-04-01
Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ? 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ? 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹??Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹??Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ? Z ? 85 and 100 ? N ? 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.
COMPARISON OF CSS-CdTe AND PVD-CdTe WITH DIFFERENT ACTIVATION PROCESSES , G. Khrypunov2,4
Romeo, Alessandro
Energy Systems and Technology), Department of Electronic and Electrical Engineering, Loughborough) system at lower substrate temperatures (typically 300°C) has also provided solar cells with efficienciesCOMPARISON OF CSS-CdTe AND PVD-CdTe WITH DIFFERENT ACTIVATION PROCESSES A. Romeo1 , G. Khrypunov2
exhibit typical foliar injury symptoms when exposed to ambient ozone, making them useful as bioindicators ozone monitors are not available. Bioindicators are often introduced plant species known as sentinels. They are known to be sensitive to ozone and will respond rapidly if they are given special care to ensure ozone
Streamlined energy-savings calculations for heat-island reduction strategies
Akbari, Hashem; Konopacki, Steven J.
2003-01-01
Savings Calculations for Heat Island Reduction Strategies inNational Laboratory -- Heat Island Group Technical Note.Savings Calculations for Heat-Island Reduction Strategies
Bulut, Niyazi; K?os, Jacek; Roncero, Octavio
2015-06-07
We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1{sup 2}A? global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 ? 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.
Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)
1995-12-31
Several authors report the accuracy of the ASHRAE zone method of R-value calculation of metal frame walls as unsatisfactory. A series of more than 1,000 two-dimensional computer simulations was conducted for several metal frame wall configurations. Several wall design parameters, such as stud spacing, stud (depth) size, stud flange size, stud metal thickness, thermal resistance of cavity insulation, and thermal resistance of exterior sheathing, were considered during modeling. This allowed the influence of each above-mentioned designing parameter on metal frame wall thermal performance to be assessed. Wall R-values calculated by the ASHRAE zone method were compared with the results of the computer simulation. The comparison showed that the differences in the thermal calculations are caused by the metal stud zone area estimation. Based on results of finite-difference thermal modeling and regression analysis, a new, more precise technique of estimating zones of thermal anomalies caused by metal studs for metal frame walls was developed. The effects of several wall design parameters were calculated. An improved method of R-value predictions for metal frame walls is proposed.
Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations
Riendeau, C.D.; Moses, D.L.; Olson, A.P.
1998-11-01
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.
Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables
Haberl, J.; Yazdani, B.; Culp, C.
2008-01-01
Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period occurs during Ozone Season... Reductions from Wind Farms What issues did TCEQ ask ESL to resolve to calculate OSP NOx reductions from wind farms in the base year? Capacity Factors Using NOAA Daily Models 0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100...
The calculated rovibronic spectrum of scandium hydride, ScH
Lodi, Lorenzo; Tennyson\\, Jonathan
2015-01-01
The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.
Benchmark Test Calculation of a Four-Nucleon Bound State
H. Kamada; A. Nogga; W. Gloeckle; E. Hiyama; M. Kamimura; K. Varga; Y. Suzuki; M. Viviani; A. Kievsky; S. Rosati; J. Carlson; Steven C. Pieper; R. B. Wiringa; P. Navratil; B. R. Barrett; N. Barnea; W. Leidemann; G. Orlandini
2001-06-25
In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function Monte Carlo, the no-core shell model and the effective interaction hyperspherical harmonic methods. In this article we compare the energy eigenvalue results and some wave function properties using the realistic AV8' NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to calculate the four-nucleon bound state.
Divya Energy Solar Panel Savings Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,DepartmentCalculator JumpDitecDivya Energy Solar
Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,LocalEfficiency |< Back Eligibility<tool calculates
CDM Emission Reductions Calculation Sheet Series | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources JumpEmission Reductions Calculation
Calculating CO2 Emissions from Mobile Sources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED: A New Model(RedirectedCalculating
Webtrends Archives by Fiscal Year - Calculators | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics Â» USAJobs SearchAMERICA'S FUTURE.Projects atWe Wantin MakingCalculators Webtrends
Yamaguchi, Kizashi; Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka
2015-01-22
First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
Ono, T; Araki, F
2014-06-01
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.
Calculating the mass spectrum of primordial black holes
Sam Young; Christian T. Byrnes; Misao Sasaki
2015-03-04
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation $\\mathcal{R}_{c}$ in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, $\\Delta$, should be used instead as super-horizon modes are damped by a factor $k^{2}$. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.
SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS
, J; David Allison , D; John Mccord, J
2009-05-06
The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.
Improved initial guess for minimum energy path calculations
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
2014-06-07
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Adaptations in Electronic Structure Calculations in Heterogeneous Environments
Talamudupula, Sai
2011-11-29
Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e#14;ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti#12;c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi#12;cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di#11;erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.
Efficient Execution of Electronic Structure Calculations on SMP Clusters
Nurzhan Ustemirov
2006-05-01
Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.
Recent developments in no-core shell-model calculations
Petr Navratil; Sofia Quaglioni; Ionel Stetcu; Bruce R. Barrett
2009-04-02
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this approach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states, is given in the concluding part of the review.
Few-body calculations of $?$-nuclear quasibound states
N. Barnea; E. Friedman; A. Gal
2015-06-15
We report on precise hyperspherical-basis calculations of $\\eta NN$ and $\\eta NNN$ quasibound states, using energy dependent $\\eta N$ interaction potentials derived from coupled-channel models of the $S_{11}$ $N^{\\ast}(1535)$ nucleon resonance. The $\\eta N$ attraction generated in these models is too weak to generate a two-body bound state. No $\\eta NN$ bound-state solution was found in our calculations in models where Re $a_{\\eta N}\\lesssim 1$ fm, with $a_{\\eta N}$ the $\\eta N$ scattering length, covering thereby the majority of $N^{\\ast}(1535)$ resonance models. A near-threshold $\\eta NNN$ bound-state solution, with $\\eta$ separation energy of less than 1 MeV and width of about 15 MeV, was obtained in the 2005 Green-Wycech model where Re $a_{\\eta N}\\approx 1$ fm. The role of handling self consistently the subthreshold $\\eta N$ interaction is carefully studied.
Coupled-channels calculations of $^{16}$O+$^{16}$O fusion
H. Esbensen
2008-05-13
Fusion data for $^{16}$O+$^{16}$O are analyzed by coupled-channels calculations. It is shown that the calculated cross sections are sensitive to the couplings to the $2^+$ and $3^-$ excitation channels even at low energies, where these channels are closed. The sensitivity to the ion-ion potential is investigated by applying a conventional Woods-Saxon potential and the M3Y+repulsion potential, consisting of the M3Y double-folding potential and a repulsive term that simulates the effect of the nuclear incompressibility. The best overall fit to the data is obtained with a M3Y+repulsion potential which produces a shallow potential in the entrance channel. The stepwise increase in measured fusion cross sections at high energies is also consistent with such a shallow potential. The steps are correlated with overcoming the barriers for the angular momenta $L$ = 12, 14, 16, and 18. To improve the fit to the low-energy data requires a shallower potential and this causes a even stronger hindrance of fusion at low energies. It is therefore difficult, based on the existing fusion data, to make an accurate extrapolation to energies that are of interest to astrophysics.
Recent Developments in No-Core Shell-Model Calculations
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Calculation of a BWR partial ATWS using RAMONA-3B
Garber, D.I.; Diamond, D.J.; Cheng, H.S.
1982-01-01
The RAMONA-3B code has been used to simulate a boiling water reactor (BWR) transient initiated by the closure of the main steam line isolation valves in which all the control rods in one-half the core fail to scram after reactor trip. The modeling of the nuclear steam supply system included three-dimensional neutron kinetics and parallel hydraulic channels (including a bypass channel). The transient is characterized by an initial pressure spike and then by oscillations in the pressure due to the opening and closing of relief valves. These oscillations in turn affect all thermohydraulic properties in the vessel. The simulation was continued for 7 minutes of reactor time at which point boron began to accumulate in the core. The calculation demonstrates the importance of using three-dimensional neutron kinetics in conjunction with the modeling of the nuclear steam supply system for this type of transient. RAMONA-3B is unique in its ability to do this type of calculation.
TU-F-18A-03: Improving Tissue Segmentation for Monte Carlo Dose Calculation Using DECT Data
Di, Salvio A; Bedwani, S; Carrier, J
2014-06-15
Purpose: To develop a new segmentation technique using dual energy CT (DECT) to overcome limitations related to segmentation from a standard Hounsfield unit (HU) to electron density (ED) calibration curve. Both methods are compared with a Monte Carlo analysis of dose distribution. Methods: DECT allows a direct calculation of both ED and effective atomic number (EAN) within a given voxel. The EAN is here defined as a function of the total electron cross-section of a medium. These values can be effectively acquired using a calibrated method from scans at two different energies. A prior stoichiometric calibration on a Gammex RMI phantom allows us to find the parameters to calculate EAN and ED within a voxel. Scans from a Siemens SOMATOM Definition Flash dual source system provided the data for our study. A Monte Carlo analysis compares dose distribution simulated by dosxyz-nrc, considering a head phantom defined by both segmentation techniques. Results: Results from depth dose and dose profile calculations show that materials with different atomic compositions but similar EAN present differences of less than 1%. Therefore, it is possible to define a short list of basis materials from which density can be adapted to imitate interaction behavior of any tissue. Comparison of the dose distributions on both segmentations shows a difference of 50% in dose in areas surrounding bone at low energy. Conclusion: The presented segmentation technique allows a more accurate medium definition in each voxel, especially in areas of tissue transition. Since the behavior of human tissues is highly sensitive at low energies, this reduces the errors on calculated dose distribution. This method could be further developed to optimize the tissue characterization based on anatomic site.
Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types
Muir, B. R.; Rogers, D. W. O.
2014-11-01
Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.
Drover, Damion, Ryan
2011-12-01
One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.
E. Hiyama; M. Kamimura
2012-06-07
In a previous work [Phys. Rev. A 85, 022502 (2012)] we calculated, with the use of our Gaussian expansion method for few-body systems, the energy levels and spatial structure of the 4He trimer and tetramer ground and excited states using the LM2M2 potential, which has a very strong short-range repulsion. In this work, we calculate the same quantities using the presently most accurate 4He-4He potential [M. Przybytek et al., Phys. Rev. Lett. 104, 183003 (2010)] that includes the adiabatic, relativistic, QED and residual retardation corrections. Contributions of the corrections to the tetramer ground-(excited-)state energy, -573.90 (-132.70) mK, are found to be, respectively, -4.13 (-1.52) mK, +9.37 (+3.48) mK, -1.20 (-0.46) mK and +0.16 (+0.07) mK. Further including other realistic 4He potentials, we calculated the binding energies of the trimer and tetramer ground and excited states, B_3^(0), B_3^(1), B_4^(0) and B_4^(1), respectively. We found that the four kinds of the energies for the different potentials exhibit perfect linear correlations between any two of them over the range of binding energies relevant for 4He atoms (namely, six types of the generalized Tjon lines are given). The dimerlike-pair model for 4He clusters, proposed in the previous work, predicts a simple universal relation B_4^(1)/B_2 =B_3^(0)/B_2 + 2/3, which precisely explains the correlation between the tetramer excited-state energy and the trimer ground-state energy, with B_2 being the dimer binding energy.
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
Application of different nuclides in retrospective dosimetry
Konheiser, J.; Mittag, S.; Viehrig, H.W.; Gleisberg, B.
2011-07-01
The activities of nuclides produced via the neutron irradiation of reactor pressure vessel (RPV) steel are used to validate respective fluence calculations. Niobium, nickel, and technetium isotopes from RPV trepans of the decommissioned NPP Greifswald (VVER-440) have been analyzed. The activities were determined by TRAMO (Monte-Carlo) fluence calculations, newly applying 640 neutron-energy groups and ENDF/B7 data. Relative to earlier results, fluences up to 20% higher have been computed, leading to somewhat better agreement between measurement and calculation, particularly in the case of Tc-99. (authors)
Analytical calculation of neutral transport and its effect on ions
Calvin, M.D.; Hazeltine, R.D.; Valanju, P.M.; Solano, E.R. (Texas Univ., Austin, TX (USA). Inst. for Fusion Studies Texas Univ., Austin, TX (USA). Fusion Research Center)
1991-06-01
We analytically calculate the neutral particle distribution and its effects on ion heat and momentum transport in three-dimensional plasmas with arbitrary temperature and density profiles. A general variational principle taking advantage of the simplicity of the charge-exchange (CX) operator is derived to solve self-consistently the neutral-plasma interaction problem. To facilitate an extremal solution, we use the short CX mean-free-path ({lambda}{sub x}) ordering. Further, a non-variational, analytical solution providing a full set of transport coefficient is derived by making the realistic assumption that the product of the CX cross section with relative velocity is constant. The effects of neutrals on plasma energy loss and rotation appear in simple, sensible forms. We find that neutral viscosity dominates ion viscosity everywhere, and in the edge region by a large factor. 13 refs.
Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation
Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.
2014-05-19
The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.
Calculation of a fluctuating entropic force by phase space sampling
Waters, James T
2015-01-01
A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chain...
Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements
Mert Aybat, Ted Rogers, Alexey Prokudin
2012-06-01
In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.
Folding model calculations for 6He+12C Elastic Scattering
Awad A. Ibraheem
2015-11-02
In the framework of the double folding model, we used the {\\alpha}+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/nucleon. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.
Folding model calculations for 6He+12C Elastic Scattering
Ibraheem, Awad A
2015-01-01
In the framework of the double folding model, we used the {\\alpha}+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/nucleon. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.
Glueball matrix elements: a lattice calculation and applications
Harvey B. Meyer
2008-08-22
We compute the matrix elements of the energy-momentum tensor between glueball states and the vacuum in SU(3) lattice gauge theory and extrapolate them to the continuum. These matrix elements may play an important phenomenological role in identifying glue-rich mesons. Based on a relation derived long ago by the ITEP group for J/psi radiative decays, the scalar matrix element leads to a branching ratio for the glueball that is at least three times larger than the experimentally observed branching ratio for the f_0 mesons above 1GeV. This suggests that the glueball component must be diluted quite strongly among the known scalar mesons. Finally we review the current best continuum determination of the scalar and tensor glueball masses, the deconfining temperature, the string tension and the Lambda parameter, all in units of the Sommer reference scale, using calculations based on the Wilson action.
Jeffrey M. Dick
2008-12-01
[abridged] Background: The distribution of chemical species in an open system at metastable equilibrium can be expressed as a function of environmental variables which can include temperature, oxidation-reduction potential and others. Calculations of metastable equilibrium for various model systems were used to characterize chemical transformations among proteins and groups of proteins found in different compartments of yeast cells. Results: With increasing oxygen fugacity, the relative metastability fields of model proteins for major subcellular compartments go as mitochondrion, endoplasmic reticulum, cytoplasm, nucleus. In a metastable equilibrium setting at relatively high oxygen fugacity, proteins making up actin are predominant, but those constituting the microtubule occur with a low chemical activity. A reaction sequence involving the microtubule and spindle pole proteins was predicted by combining the known intercompartmental interactions with a hypothetical program of oxygen fugacity changes in the local environment. In further calculations, the most-abundant proteins within compartments generally occur in relative abundances that only weakly correspond to a metastable equilibrium distribution. However, physiological populations of proteins that form complexes often show an overall positive or negative correlation with the relative abundances of proteins in metastable assemblages. Conclusions: This study explored the outlines of a thermodynamic description of chemical transformations among interacting proteins in yeast cells. The results suggest that these methods can be used to measure the degree of departure of a natural biochemical process or population from a local minimum in Gibbs energy.
Oleg Achakovskiy; Sergei Kamerdzhiev; Victor Tselyaev; Mikhail Shitov
2015-11-03
The neutron capture cross sections and average radiative widths of neutron resonances for two double-magic nuclei 132Sn and 208Pb have been calculated using the microscopic photon strength functions, which were obtained within the microscopic self-consistent version of the extended theory of finite Fermi systems in the time blocking approximation. For the first time, the microscopic PSFs have been obtained within the fully self-consistent approach with exact accounting for the single particle continuum (for 208Pb). The approach includes phonon coupling effects in addition to the standard RPA approach. The known Skyrme force has been used. The calculations of nuclear reaction characteristics have been performed with the EMPIRE 3.1 nuclear reaction code. Here, three nuclear level density (NLD) models have been used: the so-called phenomenological GSM, the EMPIRE specific (or Enhanced GSM) and the microscopical combinatorial HFB NLD models. For both considered characteristics we found a significant disagreement between the results obtained with the GSM and HFB NLD models. For 208Pb, a reasonable agreement has been found with systematics for the average radiative widths values with HFB NLD and with the experimental data for the HFB NLD average resonance spacing D0, while for these two quantities the differences between the values obtained with GSM and HFB NLD are of several orders of magnitude. The discrepancies between the results with the phenomenological EGLO PSF and microscopic RPA or TBA are much less for the same NLD model.
Songjun, Hou; Zhi, Zeng
2015-01-01
The infuence of hydrogen on the generalized stacking fault (GSF) energy of the basal plane along the and directions in the hcp Zr were investigated by using the first-principles calculation method. The modification of the GSF energy were studied with respect to the different distances of H atoms away from the slip plane and hydrogen content there. The calculation results have shown that the GSF energy along the direction drastically reduces when H atoms locate nearby the slip plane. But H atoms slightly decrease the GSF barrier for the slipping case. Meanwhile, with the increase of hydrogen density around the slip plane, the GSF energies along both the shift directions further reduced. The physical origin of the reduction of GSF energy due to the existence of hydrogen atoms in Zr was analyzed based on the Bader charge method. It is interpreted by the Coulomb repulsion of the Zr atoms besides of the slip plane due to the charge transfer from Zr to H atoms.
A simplified spherical harmonic method for coupled electron-photon transport calculations
Josef, J.A.
1997-12-01
In this thesis the author has developed a simplified spherical harmonic method (SP{sub N} method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP{sub N} method has never before been applied to charged-particle transport. He has performed a first time Fourier analysis of the source iteration scheme and the P{sub 1} diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP{sub N} equations. The theoretical analyses indicate that the source iteration and P{sub 1} DSA schemes are as effective for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. In addition, he has applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well as for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. It has previously been shown for 1-D S{sub N} calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. The author has investigated the applicability of the SP{sub N} approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems.