Powered by Deep Web Technologies
Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geographical extrapolation of typical hourly weather data for energy calculation in buildings  

E-Print Network (OSTI)

differences between New York and Albany caused poorthe net- work (New York, Albany, Lakehurst, Philadelphia).for the stations New York, Albany, Philadelphia, and

Arens, Edward A; Flynn, Larry E; Nall, Daniel N; Ruberg, Kalev

1980-01-01T23:59:59.000Z

2

Problems in electromagnetic mass-difference calculations  

SciTech Connect

A brief discussion is given on the progress made thus far in calculating the electromagnetic mass differences of elementary particles. Some of the methods discussed include Feynman's method, Cottinghams method, the methods involving Bjorken scaling iunctions, and the formalism of Dashen and Frautschi. (LBS)

Majumdar, D.P.

1972-01-01T23:59:59.000Z

3

Fission Cross Section Calculation Using TALYS Based on Two Different Level Density Models  

Science Conference Proceedings (OSTI)

Fission cross sections in statistical model of fission are calculated using one of important parameter such as transmission coefficients. This parameter calculated using optical model parameter and level density. There are several models of level density that can be used to predict fission cross section. They are Constant Temperature Model, Fermi Gas Model, Back-Shifted Fermi Gas Model, and Generalized Superfluid Model. In this work, fission cross section would be calculated using two different model of level density, such as Constant Temperature Model Plus Fermi Gas and Generalized Superfluid Model on Th-232 (n,f) fission reaction. Calculation result from two different model then would be compared with experimental data from ENDF B/VI. Analysis of result would lead to the conclusion of spesific characteristic for each model in every fission cases. This work has became a preliminary study to calculate fission cross section using different set of level density models. Further work will be implemented to calculate similar fission cross section using level density parameter that approximated by Thermal wavelength [see 21].

Kurniadi, R.; Basar, K.; Waris, A. [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia); Perkasa, Yudha S. [Department of Physics, Jl. Ganesa 10 Bandung 40132 (Indonesia); Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia)

2010-06-22T23:59:59.000Z

4

Comparison of Photoneutron Yields in Tungsten Calculated by MCNPX Using Different Photonuclear Cross-Section Data for Typical Radiation Therapy Energies  

Science Conference Proceedings (OSTI)

Neutron Data / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Biology and Medicine

Bryan Bednarz; Bin Han; X. George Xu

5

Calculation of free-energy differences and potentials of mean force by a multi-energy gap method  

E-Print Network (OSTI)

Calculation of free-energy differences and potentials of mean force by a multi-energy gap method the convergence of free-energy calculations. It introduces a bias factor in Monte Carlo simulations or.e., the difference in energy function between two states, and is therefore specifically designed for calculating free-energy

Weston, Ken

6

Calculation of large ion densities under HVdc transmission lines by the finite difference method  

Science Conference Proceedings (OSTI)

A calculation method for large ion densities (charged aerosols) under HVdc transmission lines was developed considering both the charging mechanism of aerosols by small ions and the drifting process by wind. Large ion densities calculated by this method agreed well with the ones measured under the Shiobara HVdc test line on the lateral profiles at ground level up to about 70m downwind from the line. Measured values decreased more quickly than calculated ones farther downwind from the line. Considering the effect of point discharge from ground cover (earth corona) improved the agreement in the farther downwind region.

Suda, Tomotaka; Sunaga, Yoshitaka [Central Research Institute of Electrical Power Industry, Komae, Tokyo (Japan)

1995-10-01T23:59:59.000Z

7

Comparison of the calculated neutron noise using finite differences and the Analytical Nodal Method  

E-Print Network (OSTI)

noise in the frequency domain via the reactor transfer function using 2-group diffusion theory in 2 Viktor Larsson , Christophe Demazière Chalmers University of Technology, Department of Nuclear: Neutron noise ANM Finite differences 2-group theory a b s t r a c t In this paper, a comparison

Demazière, Christophe

8

Analysis of different methods to calculate electrochemical noise resistance using a three-electrode cell  

SciTech Connect

In a theoretical approach, the noise resistance parameter (R{sub n}) (in time domain) was deduced from an electric equivalent model proposed by Bertocci and coworkers for a cell with three identical electrodes. The voltage and current were measured. The R{sub n} and resistance of spectral noise (R{sub sn} and R{sub snO} [defined elsewhere]) were estimated for mild steel (MS) and stainless steel (SS) Type 304L (UNS S30403) electrodes immersed in four different solutions. The obtained results were converted into corrosion rate and finally compared with data measured with linear polarization resistance (LRP) and mass loss techniques. Electrochemical noise (EN) techniques had better agreement with other techniques in high corrosion rates. Furthermore, dispersed results were measured in low-activity systems.

Brusamarello, V.; Lago, A.; Franco, C.V.

2000-03-01T23:59:59.000Z

9

Energy conservation in typical Asian countries  

SciTech Connect

Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

Yang, M. [International Inst. for Energy Conservation, Bangkok (Thailand); Rumsey, P. [Supersymmetry USA, Berkeley, CA (United States)

1997-06-01T23:59:59.000Z

10

Algorithms Used in Heterogeneous Dose Calculations Show Systematic Differences as Measured With the Radiological Physics Center's Anthropomorphic Thorax Phantom Used for RTOG Credentialing  

SciTech Connect

Purpose: To determine the impact of treatment planning algorithm on the accuracy of heterogeneous dose calculations in the Radiological Physics Center (RPC) thorax phantom. Methods and Materials: We retrospectively analyzed the results of 304 irradiations of the RPC thorax phantom at 221 different institutions as part of credentialing for Radiation Therapy Oncology Group clinical trials; the irradiations were all done using 6-MV beams. Treatment plans included those for intensity-modulated radiation therapy (IMRT) as well as 3-dimensional conformal therapy (3D-CRT). Heterogeneous plans were developed using Monte Carlo (MC), convolution/superposition (CS), and the anisotropic analytic algorithm (AAA), as well as pencil beam (PB) algorithms. For each plan and delivery, the absolute dose measured in the center of a lung target was compared to the calculated dose, as was the planar dose in 3 orthogonal planes. The difference between measured and calculated dose was examined as a function of planning algorithm as well as use of IMRT. Results: PB algorithms overestimated the dose delivered to the center of the target by 4.9% on average. Surprisingly, CS algorithms and AAA also showed a systematic overestimation of the dose to the center of the target, by 3.7% on average. In contrast, the MC algorithm dose calculations agreed with measurement within 0.6% on average. There was no difference observed between IMRT and 3D CRT calculation accuracy. Conclusion: Unexpectedly, advanced treatment planning systems (those using CS and AAA algorithms) overestimated the dose that was delivered to the lung target. This issue requires attention in terms of heterogeneity calculations and potentially in terms of clinical practice.

Kry, Stephen F., E-mail: sfkry@mdanderson.org [Radiological Physics Center, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Alvarez, Paola; Molineu, Andrea; Amador, Carrie [Radiological Physics Center, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Radiological Physics Center, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Galvin, James [American College of Radiology/Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States)] [American College of Radiology/Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Followill, David S. [Radiological Physics Center, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Radiological Physics Center, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

2013-01-01T23:59:59.000Z

11

Model-Calculated Seasonal Transport Variations through the Florida Straits: A Comparison Using Different Wind-Stress Climatologies  

Science Conference Proceedings (OSTI)

A linear, barotropic model of the North Atlantic at 1 1 resolution is employed to investigate the effect of using different wind-stress climatologies on the model response at the Florida Straits. The wind-stress climatologies are those of da ...

Augustus F. Fanning; Richard J. Greatbatch; Arlindo M. Da Silva; Sydney Levitus

1994-01-01T23:59:59.000Z

12

Signatures of Heating and Cooling Energy Consumption for Typical AHUs  

E-Print Network (OSTI)

An analysis is performed to investigate the signatures of different parameters on the heating and cooling energy consumption of typical air handling units (AHUs). The results are presented in graphic format. HVAC simulation engineers can use these graphs to make quick and rational decisions during the model calibration, identify faulty parameters, and develop optimized operation and control schedules. An application example is given as well in the paper.

Wei, G.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

13

Sensitivity of aerosol radiative forcing calculations to spectral resolution  

DOE Green Energy (OSTI)

Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

Grant, K.E.

1996-10-01T23:59:59.000Z

14

Production and Handling Slide 42: Typical Depleted Cylinder Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Typical Depleted Cylinder Storage Yard Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Typical Depleted Cylinder Storage Yard...

15

Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD  

DOE Green Energy (OSTI)

An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.

1997-09-01T23:59:59.000Z

16

Geographical extrapolation of typical hourly weather data for energy calculation in buildings  

E-Print Network (OSTI)

FOR REAL 1951 YEARS PASSIVE HOUSES DAILY LOADS FOR REAL 1951Requirements for Real Year Passive Houses DAILY LOADS FORranch house of 112 m^ (1,200 ft^), a more massive passive

Arens, Edward A; Flynn, Larry E; Nall, Daniel N; Ruberg, Kalev

1980-01-01T23:59:59.000Z

17

Footprint Calculator?  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

18

A generalized window energy rating system for typical office buildings  

Science Conference Proceedings (OSTI)

Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

2010-07-15T23:59:59.000Z

19

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

20

An Integrated Strategy for Whole Ecological Utilization of Typical ...  

Science Conference Proceedings (OSTI)

... of typical industrial solid wastes, such as titanium-bearing blast furnace slag, high-silicon iron tailing and boron-enriched slag as well as oil shale.

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear outages back within typical range since July following ...  

U.S. Energy Information Administration (EIA)

U.S. nuclear generator outages were above the levels of the previous four years in the second quarter of 2011 but have returned to more typical ...

22

Typicality ranking via semi-supervised multiple-instance learning  

Science Conference Proceedings (OSTI)

Most of the existing methods for natural scene categorization only consider whether a sample is relevant or irrelevant to a particular concept. However, for the samples relevant to a certain concept, their typicalities or relevancy scores to the concept ... Keywords: multiple-instance learning, natural scene categorization, semi-supervised learning, typicality ranking

Jinhui Tang; Xian-Sheng Hua; Guo-Jun Qi; Xiuqing Wu

2007-09-01T23:59:59.000Z

23

Energy Use Savings for a Typical New Residential Dwelling Unit...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL-88603 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012...

24

Modification of the Monte Carlo method for calculation of the influence of unknown placement of solid radioactive waste on the uncertainty of dose fields at different overall container dimensions  

Science Conference Proceedings (OSTI)

An approach to estimating the uncertainty of initial data in calculations by the Monte Carlo method is considered. The relative geometrical position of parts of the analyzed system is assumed to be unknown. The influence of different approximations in the description of the geometrical shape of system objects is studied. The effect of unknown location and approximate shape description of solid radioactive waste in the container on the magnitude of dose fields is considered for photon transport problems.

Androsenko, P. A.; Kolganov, K. M., E-mail: smilodonam@yandex.ru; Mogulyan, V. G. [National Research Nuclear University MEPhI, Obninsk Institute for Nuclear Power Engineering (Russian Federation)

2012-12-15T23:59:59.000Z

25

Energy-Efficient Lighting The typical American family spends more  

E-Print Network (OSTI)

fluorescent light bulbs (CFLs) saves you money in the long run with lower energy bills. CFLs are significant Typical incandescent 75-watt light bulb Compact Fluorescent 18-watt light bulb Purchase cost $0.60 $ 5 that incandescent bulbs use becomes heat while only 10 percent becomes light. CFLs create less heat because more

26

On Rayleigh Optical Depth Calculations  

Science Conference Proceedings (OSTI)

Many different techniques are used for the calculation of Rayleigh optical depth in the atmosphere. In some cases differences among these techniques can be important, especially in the UV region of the spectrum and under clean atmospheric ...

Barry A. Bodhaine; Norman B. Wood; Ellsworth G. Dutton; James R. Slusser

1999-11-01T23:59:59.000Z

27

Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint  

DOE Green Energy (OSTI)

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

2012-07-01T23:59:59.000Z

28

Photo of the Week: Not Your Typical Jet Engine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Your Typical Jet Engine Not Your Typical Jet Engine Photo of the Week: Not Your Typical Jet Engine November 23, 2012 - 11:57am Addthis As part of the Aircraft Nuclear Propulsion Program, the U.S. conducted extensive research showing that nuclear fission could power an aircraft. The research involved a series of Heat Transfer Reactor Experiments (HTREs), which tested if different types of jet engines could be run by nuclear power. In 1955, however, the project was cancelled, and a safe, operational prototype aircraft was never developed. In this 1988 photo, the two HTRE reactors are shown in transport to Idaho National Laboratory's EBR-1 visitor center, where they remain today. | Photo courtesy of Idaho National Laboratory. As part of the Aircraft Nuclear Propulsion Program, the U.S. conducted

29

Tunnel closure calculations  

SciTech Connect

When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

Moran, B.; Attia, A.

1995-07-01T23:59:59.000Z

30

Is the Sun Embedded in a Typical Interstellar Cloud?  

E-Print Network (OSTI)

The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.

P. C. Frisch

2008-04-23T23:59:59.000Z

31

Meteorology: typical meteorological data for selected stations in Ghana  

Open Energy Info (EERE)

data for selected stations in Ghana data for selected stations in Ghana from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations> (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

32

Meteorology: typical meteorological year data for selected stations in Sri  

Open Energy Info (EERE)

Sri Sri Lanka from NREL Dataset Summary Description (Abstract): A data set of hourly values of solar radiation and meteorological elements for a 1-year period. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

33

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

34

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions

35

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

36

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

37

The Particle Adventure | How do we interpret our data? | Typical detector  

NLE Websites -- All DOE Office Websites (Extended Search)

Typical detector components Typical detector components The reason that detectors are divided into many components is that each component tests for a special set of particle properties. These components are stacked so that all particles will go through the different layers sequentially. A particle will not be evident until it either interacts with the detector in a measurable fashion, or decays into detectable particles. The interaction of various particles with the different components of a detector: *Neutrinos are not shown on this chart because they rarely interact with matter, and can only be detected by missing matter and energy. Just so you know, the pion ( ) is a charged meson.* A few important things to note: Charged particles, like electrons and protons, are detected both in the tracking chamber and the electromagnetic calorimeter.

38

The Sun. A typical star in the solar neighborhood?  

E-Print Network (OSTI)

The Sun is used as the fundamental standard in chemical abundance studies, thus it is important to know whether the solar abundance pattern is representative of the solar neighborhood. Albeit at low precision (0.05 - 0.10 dex) the Sun seems to be a typical solar-metallicity disk star, at high precision (0.01 dex) its abundance pattern seems abnormal when compared to solar twins. The Sun shows a deficiency of refractory elements that could be due to the formation of terrestrial planets. The formation of giant planets may also introduce a signature in the chemical composition of stars. We discuss both planet signatures and also the enhancement of neutron-capture elements in the solar twin 18 Sco.

Melendez, Jorge

2013-01-01T23:59:59.000Z

39

Determination of selected elements in SRM 1548a typical diet  

Science Conference Proceedings (OSTI)

Neutron activation analysis (NAA), including instrumental NAA (INAA) and radiochemical NAA, is one of the primary analytical techniques used for the certification of elemental content in biological standard reference materials (SRMs) at the National Institute of Standards and Technology (NIST). SRM 1548a, which is a freeze-dried mixture of typical diet composite based on foods consumed in the United States was analyzed for aluminum, calcium, chlorine, potassium, manganese, and sodium by INAA. This analysis is a part of an ongoing effort to improve the quality of the SRMs by understanding and minimizing all known sources of errors or interferences in NAA. To perform highly accurate INAA, the system was calibrated using multiple primary standards. Homogeneity was also measured for these six elements in 12 samples of SRM 1548a in 250-mg sample sizes. The control samples were used to internally evaluate and cross-check the NAA method.

Tandon, L. [North American Scientific, North Hollywood, CA (United States); Garrity, K.M.; Becker, D.A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-12-31T23:59:59.000Z

40

My Trip Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator Trip Calculator Benefits Why is fuel economy important? Climate Change Oil Dependence Costs Sustainability Save Money Vehicles produce about half of the...

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ETTM - Heat Transfer Calculations Version 1.0  

Science Conference Proceedings (OSTI)

ETTM Heat Transfer Calculations is a computer based training module that allows users to access training when desired and review it at their own pace. It provides graphics and limited interactive features to enhance learning. This module reviews the basic engineering principles used to calculate heat transfer and how to apply these principles to typical nuclear plant applications. The calculation of heat transfer in plant systems is an important element of many engineering calculations. Students should r...

2010-09-27T23:59:59.000Z

42

R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Wall Systems Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs. The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details

43

Comparative Calculations of Solubility Equilibria  

Science Conference Proceedings (OSTI)

The uncertainties in calculated solubilities in the Na-F-PO{sub 4}-HPO{sub 4}-OH system. at 25 C for NaOH concentrations up to 5 mol/kg were assessed. These uncertainties were based on an evaluation of the range of values for the Gibbs energies of the solids. Comparative calculations using the Environmental Simulation Program (ESP) and SOLGASMIX indicated that the variation in activity coefficients with NaOH concentration is much greater in the ESP code than in SOLGASMIX. This resulted in ESP calculating a higher solubility in water and a lower solubility in NaOH concentrations above 1 mol/kg: There was a marked discrepancy in the solubilities of the pure components sodium fluoride and trisodium phosphate predicted by ESP and SOLGASMIX. In addition, different solubilities for these components were obtained using different options in ESP. Because of these observations, a Best Practices Guide for ESP will be assembled.

Beahm, E.C.

2000-07-25T23:59:59.000Z

44

NREL: PVWatts - PVWatts Grid Data Calculator (Version 2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Data Calculator (Version 2) Grid Data Calculator (Version 2) PVWattsTM Grid Data calculator allows users to select a photovoltaic (PV) system location in the United States from an interactive map. The Grid Data calculator uses hourly typical meteorological year weather data and a PV performance model to estimate annual energy production and cost savings for a crystalline silicon PV system. It allows users to create estimated performance data for any location in the United States or its territories by selecting a site on a 40-km gridded map. The 40-km Grid Data calculator considers data from a climatologically similar typical meteorological year data station and site-specific solar resource and maximum temperature information to provide PV performance estimation. In this version, performance is first calculated for the the nearest TMY2

45

Top-k typicality queries and efficient query answering methods on large databases  

Science Conference Proceedings (OSTI)

Finding typical instances is an effective approach to understand and analyze large data sets. In this paper, we apply the idea of typicality analysis from psychology and cognitive science to database query answering, and study the novel problem of answering ... Keywords: Efficient query answering, Top-k query, Typicality analysis

Ming Hua; Jian Pei; Ada W. Fu; Xuemin Lin; Ho-Fung Leung

2009-06-01T23:59:59.000Z

46

Multiphase flow calculation software  

DOE Patents (OSTI)

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

47

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full recipe that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

48

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

49

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

50

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... The first calculation will take the longest because the program has to download ... will take a few seconds as the database of isotopes is downloaded ...

51

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

52

MODIFIED ZONE METHOD CALCULATOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Zone Method is recommended for R-value calculations in steel stud walls by the 1997 ASHRAE Handbook of Fundamentals ASHRAE 1997. The Modified Zone Method is similar to the...

53

Source and replica calculations  

Science Conference Proceedings (OSTI)

The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

Whalen, P.P.

1994-02-01T23:59:59.000Z

54

A study of the effects of well and fracture design in a typical Marcellus shale well.  

E-Print Network (OSTI)

??The problem with typical Marcellus shale wells is the lack of information that has beenaccumulated and the amount of information that is commercially available to (more)

Schweitzer, Ross T.

2009-01-01T23:59:59.000Z

55

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

56

TVDG LET Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

To The B N L Tandem Van de Graaff Accelerator To The B N L Tandem Van de Graaff Accelerator TVDG LET Calculator This program calculates the Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target. Select the Target Material from the dropdown list. Select the Ion Specie from the dropdown list. Enter the Total Ion Energy in the text box. This is equal to the Atomic Mass times the Energy/Nucleon. Click the 'Calculate' button or press the 'Enter' key. The Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target will be returned. Select your Target from the list Air Aluminum Oxide Carbon Copper Gallium Arsenide Gold Polyester Polyethylene Silicon Silicon Dioxide Skin Soda Lime Glass Sodium Iodide Water Select your Ion from the list

57

Solar Reflectance Index Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflectance Index Calculator Reflectance Index Calculator ASTM Designation: E 1980-01 Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Wind Speed (mph) Wind Speed (m/s) Please input both the SR and the TE and the convection coeficient and surface temperature will be calculated

58

Spin resonance strength calculations  

SciTech Connect

In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

Courant,E.D.

2008-10-06T23:59:59.000Z

59

Mitigation Efforts Calculator (MEC)  

Science Conference Proceedings (OSTI)

The Mitigation Efforts Calculator (MEC) has been developed by the International Institute for Applied Systems Analysis (IIASA) as an online tool to compare greenhouse gas (GHG) mitigation proposals by various countries for the year 2020. In this paper, ... Keywords: Business intelligence, Cost curves, Decision model, Interactive system, Optimisation

Thanh Binh Nguyen; Lena Hoeglund-Isaksson; Fabian Wagner; Wolfgang Schoepp

2013-04-01T23:59:59.000Z

60

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

62

Steep Slope Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Steep Slope Calculator Steep Slope Calculator Estimates Cooling and Heating Savings for Residential Roofs with Non-Black Surfaces Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Click to see Data for All 243 Locations Roof Inputs: R-value(Btu-in/(hr ft2 oF):

63

To Look or Not to Look? Typical and Atypical Development of Oculomotor Control  

Science Conference Proceedings (OSTI)

The ability to inhibit saccades toward suddenly appearing peripheral stimuli (prosaccades) and direct them to contralateral locations instead (antisaccades) is a crucial marker of eye movement control. Typically developing infants as young as 4-month-olds ...

Gaia Scerif; Annette Karmiloff-smith; Ruth Campos; Mayada Elsabbagh; Jon Driver; Kim Cornish

2005-04-01T23:59:59.000Z

64

Calculation of the nucleon axial charge in lattice QCD  

SciTech Connect

Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.

D. B. Renner; R. G. Edwards; G. Fleming; Ph. Hagler; J. W. Negele; K. Orginos; A. V. Pochinsky; D. G. Richards; W. Schroers

2006-09-01T23:59:59.000Z

65

NREL: PVWatts Site Specific Data Calculator (Version 1)  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Specific Data Calculator (Version 1) Site Specific Data Calculator (Version 1) PVWattsTM Site Specific Data calculator allows users to select a photovoltaic (PV) system location from a defined list of options. For locations within the United States and its territories, users select a location from a map of 239 options. For international locations, users select a location from a drop-down menu of options. The PVWatts Site Specific Data calculator uses hourly typical meteorological year (TMY) weather data and a PV performance model to estimate annual energy production and cost savings for a crystalline silicon PV system. For locations in the United States and its territories, the PVWatts Version 1 calculator uses NREL TMY data. For other locations, it uses TMY data from the Solar and Wind Energy Resource Assessment

66

BTRIC - Tools & Calculators - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculators Calculators Attic Radiant Barrier Calculator Low-Slope Roof Calculator for Commercial Buildings (6/05) - estimates annual energy cost savings Moisture Control for Low-Slope Roofing (5/04) - determine if a roof design needs a vapor retarder or if the roofing system can be modified to enhance its tolerance for small leaks Modified Zone Method Roof Savings Calculator (12/12) - for commerical and residential buildings using whole-building energy simulations Solar Reflectance Index (SRI) Calculator (6/06) Steep-Slope Roof Calculator on Residential Buildings (6/05) - estimate annual energy cost savings Whole-Wall R-Value Calculator 2.0 (10/06) ZIP-Code R-Value Recommendation Calculator (1/08) Roofs/Attics Attic Radiant Barrier Fact Sheet (Jan 2011) Cool Roofs Will Revolutionize the Building Industry Fact Sheet

67

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

planting programme in California. Urban Forestry & UrbanCEC PV Calculator 2.3. California Energy Commission. Onlinecalculator.html CPRC. 2008. California Public Resources Code

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

68

BS in General Science, with various specializations possible Typical Program of Study1 4 year  

E-Print Network (OSTI)

BS in General Science, with various specializations possible Typical Program of Study1 ­ 4 year Fall Quarter Winter Quarter Spring Quarter Freshman Science (5) Science (5) Science (5) Math (5) Math (5) Core (5) Core (5)2 Core (5) Core (5) Sophomore Science (5) Science (5) Science (5) Science (5

Carter, John

69

2050 Calculator | Open Energy Information  

Open Energy Info (EERE)

0 Calculator 0 Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2050 Calculator Agency/Company /Organization: United Kingdom Department of Energy and Climate Change (DECC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, Buildings - Commercial, Buildings - Residential, Economic Development, Geothermal, Greenhouse Gas, Multi-model Integration, Multi-sector Impact Evaluation, Solar, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Analysis Tools, Pathways analysis Resource Type: Online calculator User Interface: Spreadsheet, Website Complexity/Ease of Use: Not Available Website: www.gov.uk/2050-pathways-analysis Country: United Kingdom Web Application Link: 2050-calculator-tool.decc.gov.uk/pathways/1111111111111111111111111111

70

HRA Calculator v. 5.0 BETA  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes ...

2013-04-19T23:59:59.000Z

71

EPRI HRA Calculator Version 5.0  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes ...

2013-09-30T23:59:59.000Z

72

Evaluation of the typical meteorological years for solar heating and cooling system studies. Final report  

DOE Green Energy (OSTI)

This report is a summary of an evaluation of the weather data set, generated at Sandia Laboratories, known as the Typical Meteorological Year (TMY) Data. The purpose of the evaluation is to determine how well the TMY data represent actual long-term weather data in affecting the performance of solar heating and cooling systems. The two data sets are compared through detailed SHAC simulation.

Freeman, T. L.

1979-12-01T23:59:59.000Z

73

Effects of internal gain assumptions in building energy calculations  

DOE Green Energy (OSTI)

The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results of this study indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

Christensen, C.; Perkins, R.

1981-01-01T23:59:59.000Z

74

A Look Inside the Cash Flow Opportunity Calculator: Calculations and  

NLE Websites -- All DOE Office Websites (Extended Search)

A Look Inside the Cash Flow Opportunity Calculator: Calculations A Look Inside the Cash Flow Opportunity Calculator: Calculations and Methodology Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

75

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Dmitri G. Fedorov Speaker(s) Title: National Institute of Advanced Industrial Science and Technology (AIST) Host: Yuri Alexeev Our approach to large scale calculations is based on fragmenting a molecular system into pieces, and performing quantum-mechanical calculations of these fragments and their pairs in the fragment molecular orbital method (FMO). After a brief summary of the methodology, some typical applications to protein-ligand complexes, chemical reactions in explicit solvent, and nanomaterials (silicon nanowires, zeolites.

76

Energy Cost Calculator for Urinals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urinals Urinals Energy Cost Calculator for Urinals October 8, 2013 - 2:38pm Addthis Vary water cost, frequency of operation, and /or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with 10 years of life remaining for existing fixture. Input the following data (if any parameter is missing, calculator will set to default value). Defaults Water Saving Product Urinal Urinal Gallons per Flush gpf 1.0 gpf Quantity to be Purchased 1 Water Cost (including waste water charges) $/1000 gal $4/1000 gal Flushes per Day flushes 30 flushes Days per Year days 260 days Calculate Reset OUTPUT SECTION Performance per Your Choice Typical Existing Unit Recommended Level (New Unit) Best Available

77

Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2013-01-15T23:59:59.000Z

78

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

79

SHORT CIRCUIT CALCULATION (TEMPORARY POWER)  

SciTech Connect

The purpose and objective of this calculation is to determine the momentary and interrupting duty on the breakers, for 69kV temporary power only.

Yuri Shane

1995-07-24T23:59:59.000Z

80

Computerized Energy and Treatment Cost Calculations  

E-Print Network (OSTI)

A computer program has been developed that quickly calculates blowdown heat loss as a function of makeup water, boiler water chemistry, and blowdown recovery equipment. By inputting water analysis, basic system parameters, and type of fuel, the cost of heat loss in the blowdown can be quickly and accurately determined. Present operating systems can quickly be evaluated as to potential cost savings on the addition of a blowdown flash tank and/or a recovery heat exchanger. Proposed systems can be engineered from the start with an eye to decreasing energy loss and saving money. In addition, the proper internal treatment is recommended along with appropriate products. Cost of energy lost in the blowdown is calculated based on different levels of blowdown heat recovery. Accurate calculations are readily available to make more intelligent decisions on the purchase of recovery equipment, rather than depending on very tedious, potentially inaccurate determinations by long hand.

Trace, W. L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NUCLEAR CALCULATIONS FOR THE PNPF  

SciTech Connect

The reactivity of the Piqua Nuclear Power Facility (PNPF) was calculated at various loadings using a oneregion (with reflector savings), four-group diffusion equation. These calculations were checked with a two-region, four- group FOG calculation. The thermal group constants were obtained with the TEMPEST II-S/sub 4/ procedure, the fast group constants with FORM. The U/sup 238/ resonance integral was adjusted to make the calculations for the critical assembly fit the measurements and the adjusted parameter was used for the PNPF calculations. The minimum critical loading at 360 deg F was calculated to be 20.4 elements, with and excess reactivity of 0.22% (31 cents) for the minimum critical loading of 21 elements. The excess reactivity wss calculated for core loadings of 19, 37, 61, and 85 elements, which result as the outer rings of element positions are filled consecutively. The isothermal temperature coefficient of reactivity was estimated for several core loadings by using the calculated reactivities at 325 deg F and 585 deg F. The values of the coefficient for 21- and 61-element loadings are --4.6 and --4.9 x 10/sup -5/ delta k/ deg F, respectively. The largest coefficient is --5.0 x 10/sup -6/ delta k/ deg F at a loading of 38 elements. The kinetics parameters 1 and BETA /sub eff/ were calculated using the PERT program. The lifetime is 5.23 x 10/sup -5/ seconds at 325 deg F and 5.67 x 10/sup -6/ at 585 deg F. Beta effective ranged from 0.00689 for and 85-element loading at 325 deg F to 0.00728 for a 19-element loading at 585 deg F. A value of 0.0070 was chosen for kinetics calculations. (auth)

Mountford, L.A.; Hume, J.R.

1963-06-24T23:59:59.000Z

82

Mean K-R Relationships: Practical Results for Typical Weather Radar Wavelengths  

Science Conference Proceedings (OSTI)

Total attenuation cross sections of raindrops derived from the Mie theory for wavelengths of 3.2, 5.6, and 10 cm and temperatures of ?10, 0, 10, and 20C have been calculated and compared to the results of the Rayleigh approximation. The ...

G. Delrieu; J. D. Creutin; I. Saint-Andre

1991-08-01T23:59:59.000Z

83

Alaska Village Electric Load Calculator  

DOE Green Energy (OSTI)

As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

Devine, M.; Baring-Gould, E. I.

2004-10-01T23:59:59.000Z

84

Typical Consultants/Vendors used by EOTA for Subject Matter Expert and  

NLE Websites -- All DOE Office Websites (Extended Search)

Consultants/Vendors used by EOTA for Subject Matter Expert and Consultants/Vendors used by EOTA for Subject Matter Expert and operatioal support Typical Consultants/Vendors used by EOTA for Subject Matter Expert and operatioal support Vendor's Name Contact/Rep Address Work Phone 615 Music Productions, Inc. Steve Hayes or Laura Palmer 1030 16th Ave. South, Nashville, TN 37212 616-244-6515 Adams, James F. James Adams 1217 Brookshire Dr., Bedford, TX 76021 214-674-6868 Adobe Systems Inc. N/A 2750 Barrett Lakes Blvd., Kennesaw, GA 30144 800-833-6687 Atlantech Resellers Inc, DBA CablesAndKits.com Craig Haynie 4555 Atwater Ct Ste ! Buford, GA 21075 877-633-2629 Albuquerque Printing Co Albert Padilla 3838 Bogan Ave.NE, Albq. 87109 505-872-2200 AlphaTRAC, Inc. John Ciolek 8670 Wolff Ct Ste 120 Westminster, CO 80031 303-428-5670 Amazon.com CSR

85

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

86

Improved Calculation of Thermal Fission Energy  

E-Print Network (OSTI)

Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. One is more recent input data acquired from updated nuclear databases. the second one is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The last one is more carefully calculation of the average energy taken away by antineutrinos in thermal fission with the comparison of antineutrino spectrum from different models. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.32%, and the uncertainties of the new values are about 50% smaller.

X. B. Ma; W. L. Zhong; L. Z. Wang; Y. X. Chen; J. Cao

2012-12-29T23:59:59.000Z

87

Impact of Alternative Energy Prices, Tenure Arrangements and Irrigation Technologies on a Typical Texas High Plains Farm  

E-Print Network (OSTI)

Irrigation is a major contributing factor in crop production on the Texas High Plains. It is responsible for greatly increasing crop production and farm income for the region. Two factors, a declining groundwater supply and increasing production costs, are of primary concern because they impact on farm operations and producer economic viability. A recursive linear programming model for a typical Texas High Plains irrigated farm was developed to evaluate expected impact of price changes, tenure and new technology. The model includes a Fortran sub-routine that adjusts irrigation factors each year based on the linear programming solution of the previous year. After calculating new pumping energy requirements, well yield, and pumping lift, the Fortran component updates the linear programming model. This procedure continues automatically to the end of a specified planning period or to economic exhaustion of the groundwater, whichever occurs first. Static applications of the model, in a deep water situation, showed that a natural gas price increase from $1.50 to $2.20 per thousand cubic feet (mcf) would result in reductions in irrigation levels. Irrigation was terminated when the price of natural gas reached about $7.00 per mcf. In a shallow water situation, much higher natural gas prices were reached ($3.60 per mcf) before short-run adjustments in farm organization began to occur. Under furrow irrigation, irrigation was terminated when the natural gas price reached $7.00 per mcf. Increased natural gas prices impact heavily on returns above variable costs (up to 15 percent reductions) for a 60 percent natural gas price increase. The effects of rising natural gas prices over a longer period of time were more significant. Annual returns (above variable and fixed costs) were reduced by as much as 30 percent, and the present value of returns to water was reduced by as much as 80 percent as the natural gas price was increased annually by $0.25 per mcf (from $1.50 per mcf). The economic life of deep groundwater was shortened by as much as 18 years. Renter-operators are even more vulnerable to rising natural gas prices than are owner-operators. With rising natural gas prices, profitability over time for the renter is low. As natural gas prices continue to increase, the greater will be the incentives for renter-operators to seek more favorable rental terms such as a sharing of irrigation costs. With the problem of a declining groundwater supply and rising natural gas prices, an economic incentive exists for producers to find new technologies that will enable them to make more efficient use of remaining groundwater and of natural gas. Substantial economic gains appear feasible through improved pump efficiency. Increasing pump efficiency from 50 to 75 percent will not increase the economic life of the water supply, but can improve farm profits over time; e.g., the present value of groundwater was increased 33 percent for a typical farm with an aquifer containing 250 feet of saturated thickness and 15 percent for 75 feet of saturated thickness. Improved irrigation distribution systems can help conserve water and reduce irrigation costs. Results indicate that irrigation can be extended by 11 or more years with 50 percent improved distribution efficiency. In addition, the increase in present value of groundwater on the 1.69 million irrigated acres of the Texas High Plains was estimated to be $995 million with 50 percent improved efficiency. Limitations in borrowing can substantially reduce annual net returns. This analysis suggests that the farmer can economically justify very high costs of borrowing rather than a limitation of funds available for operating expenses.

Petty, J. A.; Lacewell, R. D.; Hardin, D. C.; Whitson, R. E.

1980-05-01T23:59:59.000Z

88

Calculation of Kinetics Parameters for the NBSR  

Science Conference Proceedings (OSTI)

The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.

Hanson A. L.; Diamond D.

2012-03-06T23:59:59.000Z

89

Asymptotic normalization coefficients from ab initio calculations.  

Science Conference Proceedings (OSTI)

We present calculations of asymptotic normalization coefficients (ANCs) for one-nucleon removals from nuclear states of mass numbers 3 {le} A {le} 9. Our ANCs were computed from variational Monte Carlo solutions to the many-body Schroedinger equation with the combined Argonne v{sub 18} two-nucleon and Urbana IX three-nucleon potentials. Instead of computing explicit overlap integrals, we applied a Green function method that is insensitive to the difficulties of constructing and Monte Carlo sampling the long-range tails of the variational wave functions. This method also allows computation of the ANC at the physical separation energy, even when it differs from the separation energy for the Hamiltonian. We compare our results, which for most nuclei are the first ab initio calculations of ANCs, with existing experimental and theoretical results and discuss further possible applications of the technique.

Nollett, K. M.; Wiringa, R. B. (Physics)

2011-04-13T23:59:59.000Z

90

Calculated and Measured Air and Soil Freeze-Thaw Frequencies  

Science Conference Proceedings (OSTI)

Freeze-thaw frequencies calculated by eight different counting methods were compared using daily maximum and minimum temperatures from eight north-central United States National Weather Service (NWS) stations. These frequencies were also compared ...

Donald G. Baker; David L. Ruschy

1995-10-01T23:59:59.000Z

91

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

92

Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings  

E-Print Network (OSTI)

The effects of bend-twist coupling on typical commercial airplane wings are evaluated. An analytical formulation of the orthotropic box beam bending stiffness matrix is derived by combining Euler-Bernoulli beam theory and ...

Gauthier Perron, Sbastien

2012-01-01T23:59:59.000Z

93

Calculation of emission from hydrogenic ions in super liquid density plasmas  

DOE Green Energy (OSTI)

Previous calculations of line emission were extended to higher density, lower temperature plasmas, typical of those expected in early ablative compression experiments. Emission from Ne-seeded fuel was analyzed in order to diagnose the density and temperature of the compressed core. The Stark/Doppler broadened emission profile is calculated for the H-like Ne resonance line. The observable lineshape is then obtained by time-averaging over expected density and temperature profiles and by including the effects of radiative transfer.

Bailey, D.S.; Valeo, E.J.

1976-11-15T23:59:59.000Z

94

AGING FACILITY CRITICALITY SAFETY CALCULATIONS  

Science Conference Proceedings (OSTI)

The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

C.E. Sanders

2004-09-10T23:59:59.000Z

95

Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Frauke Gra1ter,, Sonja M. Schwarzl,, Annick Dejaegere,| Stefan Fischer,*, and  

E-Print Network (OSTI)

Protein/Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular Mechanics Frauke of the complexes are predicted (the "docking" problem) as well as in how the free energy is calculated from)solvation during the binding process.3 Typically, binding free energies calculated with these methods have average

Gräter, Frauke

96

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS  

NLE Websites -- All DOE Office Websites (Extended Search)

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS S. H. Kim January 8, 2001 1. Introduction and Summary The ceramic beam chambers in the sections of the kicker magnets for the beam injection and extraction in the Advanced Photon Source (APS) are made of alumina. The inner surface of the ceramic chamber is coated with a conductive paste. The choice of coating thickness is intended to reduce the shielding of the pulsed kicker magnetic field while containing the electromagnetic fields due to the beam bunches inside the chamber, and minimize the Ohmic heating due to the fields on the chamber [1]. The thin coating generally does not give a uniform surface resistivity for typical dimensions of the ceramic chambers in use. The chamber cross section is a circular or

97

B49: Typical Microstructures of Flash-Sintered 8 Mol % YSZ  

Science Conference Proceedings (OSTI)

A16: Analysis of Surface Physic-Chemical Properties of Titanium Heat Treated A17: Morphology Variations of GaN Nanowires and Devices ... A21: Synthesis and Characterization of ?-Tricalcium Phosphate / Glutamic acid ... B13: Ionic Conductivity of Doped Ceria Thin Films Using Different Electrode Configurations.

98

Agriculture-related radiation dose calculations  

SciTech Connect

Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

Furr, J.M.; Mayberry, J.J.; Waite, D.A.

1987-10-01T23:59:59.000Z

99

Prokaryotic Gene Finding Based on Physicochemical Characteristics of Codons Calculated from Molecular Dynamics Simulations  

E-Print Network (OSTI)

calculated solvation energies and flexibility of codon sequences as well as codon usage in genes and amino are typically very small in prokaryotic genomes. Usage of a genome-specific plane as opposed to a common energy, the base pair stacking energy, and an index of the propensity of a codon for protein-nucleic acid

Jayaram, Bhyravabotla

100

NERSC Calculations Provide Independent Confirmation of Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901...

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Federal Energy Management Program: Energy Savings Calculator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator for Commercial Boilers (Closed Loop, Space Heating Applications Only) This cost calculator is a screening tool that estimates a product's lifetime energy cost...

102

Hybrid Car Calculator | Open Energy Information  

Open Energy Info (EERE)

Hybrid Car Calculator Jump to: navigation, search Tool Summary Name: Hybrid Car Calculator AgencyCompany Organization: New American Dream Phase: "Evaluate Options and Determine...

103

Sensitivity of PDR Calculations to Microphysical Details  

E-Print Network (OSTI)

Our understanding of physical processes in Photodissociation regions or Photon Dominated Regions (PDRs) largely depends on the ability of spectral synthesis codes to reproduce the observed infrared emission-line spectrum. In this paper, we explore the sensitivity of a single PDR model to microphysical details. Our calculations use the Cloudy spectral synthesis code, recently modified to include a wealth of PDR physical processes. We show how the chemical/thermal structure of a PDR, along with the calculated spectrum, changes when the treatment of physical processes such as grain physics and atomic/molecular rates are varied. We find a significant variation in the intensities of PDR emission lines, depending on different treatments of the grain physics. We also show how different combinations of the cosmic-ray ionization rate, inclusion of grain-atom/ion charge transfer, and the grain size distribution can lead to very similar results for the chemical structure. Additionally, our results show the utility of Cloudy for the spectral modeling of molecular environments.

N. P. Abel; P. A. M. van Hoof; G. Shaw; G. J. Ferland; T. Elwert

2008-08-19T23:59:59.000Z

104

Detailed Burnup Calculations for Testing Nuclear Data  

Science Conference Proceedings (OSTI)

A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross-section data for burnup calculations, using some of the main available evaluated nuclear data files (ENDF-B-VI-Rel.8, JEFF-3.0, JENDL-3.3), on an isotope-by-isotope basis as much as possible. The selected experimental burnup benchmarks are reference cases for LWR and HWR reactors, with analysis of isotopic composition as a function of burnup. For LWR (H2O-moderated uranium oxide lattices) four benchmarks are included: ATM-104 NEA Burnup credit criticality benchmark; Yankee-Rowe Core V; H.B.Robinson Unit 2 and Turkey Point Unit 3. For HWR (D2O-moderated uranium oxide cluster lattices), three benchmarks were selected: NPD-19-rod Fuel Clusters; Pickering-28-rod Fuel Clusters; and Bruce-37-rod Fuel Clusters. The isotopes with experimental concentration data included in these benchmarks are: Se-79, Sr90, Tc99, Ru106, Sn126, Sb125,1129, Cs133-137, Nd143, 145, Sm149-150, 152, Eul53-155, U234-235, 238, Np237, Pu238-242, Am241-243, and Cm242-248. Results and analysis of differences between calculated and measured absolute and/or relative concentrations of these isotopes for the seven benchmarks are included in this work.

Leszczynski, F. [Centro Atomico Bariloche (CNEA), 8400 S.C.de Bariloche (Argentina)

2005-05-24T23:59:59.000Z

105

Adjoint-Based Uncertainty Quantification and Sensitivity Analysis for Reactor Depletion Calculations  

E-Print Network (OSTI)

Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.

Stripling, Hayes Franklin

2013-08-01T23:59:59.000Z

106

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

107

A single TLD dose algorithm to satisfy federal standards and typical field conditions  

Science Conference Proceedings (OSTI)

Modern whole-body dosimeters are often required to accurately measure the absorbed dose in a wide range of radiation fields. While programs are commonly developed around the fields tested as part of the National Voluntary Accreditation Program (NVLAP), the actual fields of application may be significantly different. Dose algorithms designed to meet the NVLAP standard, which emphasizes photons and high-energy beta radiation, may not be capable of the beta-energy discrimination necessary for accurate assessment of absorbed dose in the work environment. To address this problem, some processors use one algorithm for NVLAP testing and one or more different algorithms for the work environments. After several years of experience with a multiple algorithm approach, the Dosimetry Services Group of Yankee Atomic Electric Company (YAEC) developed a one-algorithm system for use with a four-element TLD badge using Li2B4O7 and CaSO4 phosphors. The design of the dosimeter allows the measurement of the effective energies of both photon and beta components of the radiation field, resulting in excellent mixed-field capability. The algorithm was successfully tested in all of the NVLAP photon and beta fields, as well as several non-NVLAP fields representative of the work environment. The work environment fields, including low- and medium-energy beta radiation and mixed fields of low-energy photons and beta particles, are often more demanding than the NVLAP fields. This paper discusses the development of the algorithm as well as some results of the system testing including: mixed-field irradiations, angular response, and a unique test to demonstrate the stability of the algorithm. An analysis of the uncertainty of the reported doses under various irradiation conditions is also presented.

Stanford, N.; McCurdy, D.E. (Yankee Atomic Electric Company, Bolton, MA (USA))

1990-06-01T23:59:59.000Z

108

Approach for Calculating OE Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reliability Reliability U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 2007 Electricity Delivery and Energy Reliability Joe Paladino October 29, 2007 Approach for Calculating OE Benefits Challenges * Established benefits methodologies (e.g., NEMS and MARKAL) do not address some of the major benefits that OE's program will provide (e.g. reliability). * Much of OE's program is about transforming the way the T&D infrastructure operates rather than replacing components: - Some technologies need a high penetration or must be deployed as an entire system to yield benefits (e.g. PMUs or Distribution Automation). - Some programs within OE are not developing "widgets" that can be easily counted. - OE is developing tools/methodologies or funding demonstrations that

109

Shielding calculations at dismantled synchrocyclotron  

SciTech Connect

The Space Radiation Effects Laboratory located in Newport News, Virginia, was operated by the College of William and Mary for the National Aeronautics and Space Administration. A synchrocyclotron which was formerly in operation in this building was removed in 1980. At several locations, the scattered radiation caused an induced radioactivity within the walls of the cyclotron room. A radiological survey has been performed to determine the amount of residual radioactivity on the walls. Calculations were performed to determine the thickness of the concrete walls and floor for shielding the residual radiation in the cyclotron room. Recommendations are made to minimize exposures from the residual radioactivity on the walls and floor of the cyclotron room to potential occupants working in the building. 19 refs., 1 fig., 2 tabs.

Yalcintas, M.G.

1987-01-01T23:59:59.000Z

110

Power Line Calculator for DOS  

Science Conference Proceedings (OSTI)

The Power Line Calculator (PLC) for DOS, version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates under PC/MS-DOS version 3.3 or later, and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-11-01T23:59:59.000Z

111

FLAG-SGH Sedov calculations  

SciTech Connect

We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).

Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

112

NERSC Calculations Provide Independent Confirmation of Global Land Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculations Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 | Tags: Climate Research, Hopper Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by the computer model, the results show interesting differences in some regions such as the midwestern United States, Argentina and eastern Brazil. The differences may be due previously unrecognized issues with the pressure observations, variations in land use and land cover over time,

113

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

Interruption Cost Estimate Calculator Interruption Cost Estimate Calculator Jump to: navigation, search Tool Summary Name: Interruption Cost Estimate (ICE) Calculator Agency/Company /Organization: Freeman, Sullivan & Co. Sector: Energy Focus Area: Grid Assessment and Integration, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: icecalculator.com/ Country: United States Cost: Free Northern America References: [1] Logo: Interruption Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements. About The Interruption Cost Estimate (ICE) Calculator is an electric reliability

114

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

115

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

116

HRA Calculator Version 4.2  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes a 8220toolboxapproach that uses a variety of HRA methods. The PRA Tools / HRA Calculator User Group was formed in 2000 to address the industryneed for HRA tools and to encourage consistency in HRA results. Version 4.2 adds value by expanding the HRA Calculator methods applied, overcoming past limitations on particular parameters, improving the dependency analysis features, ...

2010-11-19T23:59:59.000Z

117

HRA Calculator, Version 4.21 DEMO  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes a toolbox approach that uses a variety of HRA methods. The PRA Tools / HRA Calculator User Group was formed in 2000 to address the industrys need for HRA tools and to encourage consistency in HRA results. Version 4.21 adds value by expanding the HRA Calculator methods applied, overcoming past limitations on particular parameters, improving the ...

2013-03-07T23:59:59.000Z

118

Verification of the SIMULATE-3 pin power distribution calculation  

SciTech Connect

The advanced nodal code SIMULATE-3 includes the capability to generate detailed pin-by-pin power distributions. An extensive series of benchmark calculations have been performed to verify the accuracy of this capability. Fuel depletion and fuel depletion after shuffling applications were examined. Comparisons were made among SIMULATE-3, higher order transport theory calculations, and calculations performed using fine-mesh finite difference diffusion theory. Detailed pin power data from multiassembly (colorsets) and quarter-core geometries were compared. The results demonstrate the accuracy of SIMULATE-3 relative to currently accepted methods of generating pin power data.

DiGiovine, A.S.; Gorski, J.P.; Tremblay, M.A. (Yankee Atomic Electric Co., Boston, MA (USA))

1989-12-01T23:59:59.000Z

119

Simulation of Control Options for HVAC Management of a Typical Office Julien CAILLET julien.caillet@mines-paristech.fr  

E-Print Network (OSTI)

Simulation of Control Options for HVAC Management of a Typical Office Building. Julien CAILLET thermal comfort and to reduce energy consumption of buildings. Among defect correction, HVAC control appears as a way of significant improvement. HVAC control is examined by using a dynamic simulation

Paris-Sud XI, Université de

120

Building Energy Software Tools Directory: Duct Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Calculator Duct Calculator Duct Calculator logo. Provides access to duct calculation and sizing capabilities either as a standalone Windows program or from within the Autodesk Building Mechanical, the new HVAC-oriented version of AutoCAD. Based on the engineering data and procedures outlined in the ASHRAE Fundamentals Handbook Calculation Methods, Duct Calculator features an advanced and fully interactive user interface. Slide controls for air flow, velocity, friction and duct size provide real-time, interactive feedback; as you spin one, the others dynamically respond in real time. When used with Autodesk Building Mechanical, Duct Calculator streamlines the design process by automatically re-sizing whole branches of ductwork. Screen Shots Keywords duct-sizing, design, engineering, calculation

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

122

Systematic Tendency Error in Budget Calculations  

Science Conference Proceedings (OSTI)

Atmospheric budget calculations suffer from various observational and numerical errors. This paper demonstrates that all budget calculations applied to a large number of samples suffer from additional errors originating from systematic tendency ...

Masao Kanamitsu; Suranjana Saha

1996-06-01T23:59:59.000Z

123

SPC/E Water Reference Calculations  

Science Conference Proceedings (OSTI)

SPC/E Water Reference Calculations - Ewald Summation. In ... 5. Sample Configurations of SPC/E Water Molecules. Four ...

2013-09-16T23:59:59.000Z

124

Asymptotic of the largest and typical dimensions of isotypic components of tensor representations of the symmetric group  

E-Print Network (OSTI)

Vershik and Kerov in \\cite{VK85} gave asymptotical bounds for the maximal and typical dimensions of the irreducible representations of the symmetric group. It was conjectured by Grigori Olshanski that the maximal and typical dimensions of the isotypical components of the representations in the base of Schur-Weyl duality accept similar asymptotical bounds. Using the method of Vershik and Kerov the conjecture of Grigori Olshanski is proven in this paper. More precisely, consider the tensor representation of the symmetric group on $N$ letters on the space $(C^r)^{\\tensor N}$. The isotypical components of this representation are parametrized by Young diagrams with $N$ cells and at most $r$ rows, and the relative dimensions of these components give rise to a measure on the set of such Young diagrams. Philippe Biane in \\cite{Biane2001} found the limit shape of a typical Young diagram with respect to this measure in the limit when $N$ grows and $\\sqrt{N}/r$ converges to a constant. By showing that this limit shape i...

Mkrtchyan, Sevak

2010-01-01T23:59:59.000Z

125

Status Report of NNLO QCD Calculations  

Science Conference Proceedings (OSTI)

We review recent progress in next-to-next-to-leading order (NNLO) perturbative QCD calculations with special emphasis on results ready for phenomenological applications. Important examples are new results on structure functions and jet or Higgs boson production. In addition, we describe new calculational techniques based on twistors and their potential for efficient calculations of multiparticle amplitudes.

Klasen, Michael [Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, WA 98195-1550 (United States)

2005-10-06T23:59:59.000Z

126

Interaction potentials for water from accurate cluster calculations  

DOE Green Energy (OSTI)

The abundance of water in nature, its function as a universal solvent and its role in many chemical and biological processes that are responsible for sustaining life on earth is the driving force behind the need for understanding its behavior under different conditions, and in various environments. The availability of models that describe the properties of either pure water/ice or its mixtures with a variety of solutes ranging from simple chemical species to complex biological molecules and environmental interfaces is therefore crucial in order to be able to develop predictive paradigms that attempt to model solvation and reaction and transport in aqueous environments. In attempting to develop these models the question naturally arises 'is water different/more complex than other hydrogen bonded liquids'. This proposition has been suggested based on the 'anomalous' behavior of its macroscopic properties such as the density maximum at 4 C, the non-monotonic behavior of its compressibility with temperature, the anomalous behavior of its relaxation time below typical temperatures of the human body, the large value and non-monotonic dependence below 35 C of the specific heat of constant pressure, the smaller than expected value of the coefficient of thermal expansion. This suggestion infers that simple models used to describe the relevant inter- and intra-molecular interactions will not suffice in order to reproduce the behavior of these properties under a wide temperature range. To this end, explicit microscopic level detailed information needs to be incorporated into the models in order to capture the appropriate physics at the molecular level. From the simple model of Bernal and Fowler, which was the first attempt to develop an empirical model for water back in 1933, this process has yielded ca. 50 different models to date. A recent review provides a nearly complete account of this effort coupled to the milestones in the area of molecular simulations such as the first computer simulation of liquid water by Barker and Watts and Rahman and Stillinger, the first parametrization of a pair potential for water from ab-initio calculations by Clementi and co-workers and the first simulation of liquid water from first principles by Parrinello and Carr. Many of the empirical pair potentials for water that are used widely even nowadays were developed in the early 1980's. These early models were mainly parameterized in order to reproduce measured thermodynamic bulk properties due to the fact that molecular level information for small water clusters was limited or even nonexisting at that time. Subsequent attempts have focused in introducing self-consistent polarization as a means of explicitly accounting for the magnitude of the non-additive many-body effects via an induction scheme. Again the lack of accurate experimental or theoretical water cluster energetic information has prevented the assessment of the accuracy of those models.

Xantheas, Sotiris S.

2006-03-15T23:59:59.000Z

127

Definition: Interchange Distribution Calculator | Open Energy Information  

Open Energy Info (EERE)

Distribution Calculator Distribution Calculator Jump to: navigation, search Dictionary.png Interchange Distribution Calculator The mechanism used by Reliability Coordinators in the Eastern Interconnection to calculate the distribution of Interchange Transactions over specific Flowgates. It includes a database of all Interchange Transactions and a matrix of the Distribution Factors for the Eastern Interconnection.[1] Related Terms Reliability Coordinator, Interchange Transaction References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Distribution_Calculator&oldid=480261" Categories: Definitions

128

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to

129

Harmonic Analysis Errors in Calculating Dipole,  

NLE Websites -- All DOE Office Websites (Extended Search)

Harmonic Analysis Errors in Calculating Dipole, Harmonic Analysis Errors in Calculating Dipole, Quadrupole, and Sextupole Magnets using POISSON Ro be rt J. La ri<::::R~ i. September 10, 1985 Introduction LS-32 The computer program POISSON was used to calculate the dipole, quadru- pole, and sextupole magnets of the 6 GeV electron storage ring. A trinagular mesh must first be generated by LATTICE. The triangle size is varied over the "universe" at the discretion of the user. This note describes a series of test calculations that were made to help the user decide on the size of the mesh to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular mesh used to calculate a "perfect" dipole magnet is shown in

130

Chalmers Climate Calculator | Open Energy Information  

Open Energy Info (EERE)

Chalmers Climate Calculator Chalmers Climate Calculator Jump to: navigation, search Tool Summary Name: Chalmers Climate Calculator Agency/Company /Organization: Chalmers University of Technology Sector: Energy, Land Topics: Baseline projection, Co-benefits assessment, GHG inventory, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Website: dhcp2-pc011134.fy.chalmers.se Cost: Free Chalmers Climate Calculator Screenshot References: Chalmers Climate Calculator[1] Logo: Chalmers Climate Calculator " In the Chalmers Climate Calculator the user can decide on when and how fast emissions of CO2 are reduced and what this emissions scenario implies in terms of CO2 concentration and global average surface temperature change. The climate sensitivity and the net aerosol forcing in year 2005

131

Contaminant distributions at typical U.S. uranium milling facilities and their effect on remedial action decisions  

SciTech Connect

Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.

Hamp, S. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Jackson, T.J. [Geraghty and Miller, Inc., Albuquerque, NM (United States); Dotson, P.W. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

132

CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS  

SciTech Connect

Type IIn supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well-observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that object selection was not influenced by target SN properties. Therefore, these events are representative of the observed population of SNe IIn. We find that a narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous feature of SNe IIn. Our light curves show a relatively long rise time (>20 days) followed by a slow decline stage (0.01-0.15 mag day{sup -1}), and a typical V-band peak magnitude of M{sub V} = -18.4 {+-} 1.0 mag. We measure the progenitor star wind velocities (600-1400 km s{sup -1}) for the SNe in our sample and derive pre-explosion mass-loss rates (0.026-0.12 M{sub Sun} yr{sup -1}). We compile similar data for SNe IIn from the literature and discuss our results in the context of this larger sample. Our results indicate that typical SNe IIn arise from progenitor stars that undergo luminous-blue-variable-like mass loss shortly before they explode.

Kiewe, Michael; Gal-Yam, Avishay; Arcavi, Iair [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, Douglas C.; Emilio Enriquez, J. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Bradley Cenko, S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J.; Soderberg, Alicia M., E-mail: avishay.gal-yam@weizmann.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-01-01T23:59:59.000Z

133

Application of Phase Diagram Calculation to Accelerated ...  

Science Conference Proceedings (OSTI)

Presentation Title, Application of Phase Diagram Calculation to Accelerated Development of Mo-Si-B Based Alloys. Author(s), Ying Yang, H Bei, Shuanglin...

134

Multilevel acceleration of neutron transport calculations.  

E-Print Network (OSTI)

??Nuclear reactor design requires the calculation of integral core parameters and power and radiation profiles. These physical parameters are obtained by the solution of the (more)

Marquez Damian, Jose Ignacio

2007-01-01T23:59:59.000Z

135

NREL: Power Technologies Energy Data Book - Calculators  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Calculators Renewable Energy Conversion...

136

Using Bayes' Theorem for Free Energy Calculations.  

E-Print Network (OSTI)

??Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scaleevents. Although Bayes theorem has generally been recognized as providing key guiding principals for setup (more)

Rogers, David M.

2009-01-01T23:59:59.000Z

137

Drag calculations improve efficiency of hydraulic jars  

Science Conference Proceedings (OSTI)

Using drag calculations helps accurately determine the maximum hook load for optimal over-pull force during jarring operations. The driller then has a better chance of freeing stuck pipe on the first jarring attempt. Several operational situations demonstrate how these calculations allow the over pull force on the jar during operation to be increased by 40 % compared to calculations involving the weight of the drillstring only. The drag calculation method significantly increases the probability of successful jarring operations. This article concentrates on upward jarring; the results and procedures are applicable, however, for downward jarring as well.

Aarrestad, T.V. (Den norske stats oljeselskap AS, Statoil (Norway))

1993-03-29T23:59:59.000Z

138

Lennard-Jones Fluid Reference Calculations  

Science Conference Proceedings (OSTI)

... The definition of these energetic terms are given ... calculations given here, the following definitions are relevant: ... D. The pair internal energy is given ...

2013-07-12T23:59:59.000Z

139

Design Calculations For APS Safety Shutters  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Design Calculations for the Advanced Photon Source Safety Shutters P. K. Job, Advanced Photon Source B. J. Micklich, Intense Pulsed Neutron Source Argonne National Laboratory,...

140

Building Technologies Office: 179D DOE Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information. What is the 179D DOE Calculator? The...

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Materials Project: Combining Quantum Chemistry Calculations...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery Speaker(s): Anubhav Jain Date: December 18, 2012 - 12:00pm...

142

MatCalc - The Materials Calculator  

Science Conference Proceedings (OSTI)

Oct 12, 2007 ... MatCalc is supported on Windows, Linux, and Mac OSX systems. Citation: " MatCalc - The Materials Calculator." MatCalc (2008).

143

Building Technologies Office: Qualified Software for Calculating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit...

144

Calculating Cyclotomic Polynomials - CECM - Simon Fraser University  

E-Print Network (OSTI)

algorithm calculates ?n(z) as a quotient of products of sparse power series. ... polynomials and their coefficients available at the Sloane On-Line Encyclopedia ...

145

A Scheme for Calculation of the Liquid Fraction in Mixed-Phase Stratiform Clouds in Large-Scale Models  

Science Conference Proceedings (OSTI)

A scheme for calculation of the liquid fraction fl in mixed-phase stratiform clouds has been developed for use in large-scale models. An advantage of the scheme, compared to the interpolation in temperature that is typically used, is that it ...

Leon D. Rotstayn; Brian F. Ryan; Jack J. Katzfey

2000-04-01T23:59:59.000Z

146

Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion  

Science Conference Proceedings (OSTI)

The objective of this calculation is twofold. First, to determine whether or not separation of interlocking drip shield (DS) segments occurs during vibratory ground motion. Second, if DS separation does not occur, to estimate the area of the DS for which the residual 1st principal stress exceeds a certain limit. (The area of DS plate-1 and DS plate-2 [see Attachment I] where the residual 1st principal stress exceeds a certain limit will be, for brevity, referred to as ''the damaged area'' throughout this document; also, DS plate-1 and DS plate-2 will be referred to, for brevity, as ''DS plates'' henceforth.) The stress limit used throughout this document is defined as 50 percent of yield strength of the DS plate material, Titanium Grade 7 (Ti-7) (SB-265 R52400), at temperature of 150 C. A set of 15 calculations is performed at two different annual frequencies of occurrence (annual exceedance frequency): 10{sup -6} per year (1/yr) and 10{sup -7} 1/yr . (Note: Due to computational problems only five realizations at 10{sup -7} 1/yr are presented in this document.) Additionally, one calculation is performed at the annual frequency of occurrence of 5 {center_dot} 10{sup -4} 1/yr. The scope of this document is limited to reporting whether or not the DS separation occurs. If the DS separation does not occur the scope is limited to reporting the calculation results in terms of the damaged area. All these results are evaluated for the DS plates. This calculation is intended for use in support of the Total System Performance Assessment-License Application seismicity modeling. This calculation is associated with the DS design and was performed by the Waste Package Design group. AP-3.12Q, ''Design Calculations and Analyses'' (Ref. 1) is used to perform the calculation and develop the document. The DS is classified as Quality Level 1 (Ref. 5, p. 7). Therefore, this calculation is subject to the Quality Assurance Requirements and Description (Ref. 4). The information provided by Attachment I is that of the potential design of the type of DS considered in this calculation, and provides the potential dimensions and materials for the DS design. Designs of the 21-PWR (Pressurized Water Reactor) waste package (WP) and emplacement pallet (pallet, for brevity, throughout the document) used in this calculation are those defined in References 24 and 22, respectively. All obtained results are valid for these designs only.

S. Mastilovic

2003-06-16T23:59:59.000Z

147

Visual Analytics for Roof Savings Calculator Ensembles  

SciTech Connect

The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.

Jones, Chad [University of California, Davis; New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Ma, Kwan-Liu [University of California, Davis

2012-01-01T23:59:59.000Z

148

Calculation methods of the nuclear characteristics  

E-Print Network (OSTI)

In the book the mathematical methods of nuclear cross sections and phases of elastic scattering, energy and characteristics of bound states in two- and three-particle nuclear systems, when the potentials of interaction contain not only central, but also tensor component, are presented. Are given the descriptions of the mathematical numerical calculation methods and computer programs in the algorithmic language "BASIC" for "Turbo Basic" of firm "Borland" for the computers of the type IBM PC AT. For the numerical solutions of the initial Schroedinger equations are used finite- difference and variational methods, and also method of Runge-Kutta with the automatic calling sequence on the assigned accuracy of results for the scattering phase shifts and binding energy. Is given the description not of the standard methods of solving the system of equations of Schroedinger to the bound states and the alternative to Schmidt's method, method of solution of the generalized matrix problem at the eigenvalues. The developed programs make it possible to determine the wave functions of relative motion of nuclear fragments, calibrated to the correct asymptotic behavior taking into account Coulomb interaction. The programs of the extraction of nuclear phases (phase shift analysis) from the differential elastic cross sections are given. The book can be used as the textbook according to the numerical mathematical methods for the students and the graduate students of the physical and mathematical specialties of higher educational institutions. This Book is written in Russian, but will perhaps present certain interest.

S. B. Dubovichenko

2010-06-25T23:59:59.000Z

149

Recent PQCD calculations of heavy quark production  

E-Print Network (OSTI)

We summarize the results of a recent study of heavy quark production and attenuation in cold nuclear matter. In p+p collisions, we investigate the relative contribution of partonic sub-processes to $D$ meson production and $D$ meson-triggered inclusive di-hadrons to lowest order in perturbative QCD. While gluon fusion dominates the creation of large angle $D\\bar{D}$ pairs, charm on light parton scattering determines the yield of single inclusive $D$ mesons. The distinctly different non-perturbative fragmentation of $c$ quarks into $D$ mesons versus the fragmentation of quarks and gluons into light hadrons results in a strong transverse momentum dependence of anticharm content of the away-side charm-triggered jet. In p+A reactions, we calculate and resum the coherent nuclear-enhanced power corrections from the final-state partonic scattering in the medium. We find that single and double inclusive open charm production can be suppressed as much as the yield of neutral pions from dynamical high-twist shadowing. Effects of energy loss in p+A collisions are also investigated in the incoherent Bertsch-Gunion limit and may lead to significantly weaker transverse momentum dependence of the nuclear attenuation.

Ivan Vitev

2006-05-30T23:59:59.000Z

150

Data base to compare calculations and observations  

Science Conference Proceedings (OSTI)

Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed. (PSB)

Tichler, J.L.

1985-01-01T23:59:59.000Z

151

PVWatts (R) Calculator India (Fact Sheet)  

SciTech Connect

The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.

Not Available

2014-01-01T23:59:59.000Z

152

Numerical Object Oriented Quantum Field Theory Calculations  

E-Print Network (OSTI)

The qft++ package is a library of C++ classes that facilitate numerical (not algebraic) quantum field theory calculations. Mathematical objects such as matrices, tensors, Dirac spinors, polarization and orbital angular momentum tensors, etc. are represented as C++ objects in qft++. The package permits construction of code which closely resembles quantum field theory expressions, allowing for quick and reliable calculations.

M. Williams

2008-05-19T23:59:59.000Z

153

Proper Orthogonal Decomposition for Flow Calculations  

E-Print Network (OSTI)

Proper Orthogonal Decomposition for Flow Calculations and Optimal Control in a Horizontal CVD calculations are discussed. AMS Subject Classification: 76N10, 65K10, 49J20 & 35C10 \\Lambda This research a chemical reaction in the gas phase above the surface of the film to deposit desired materials onto

154

Validating analysis methodologies used in burnup credit criticality calculations  

Science Conference Proceedings (OSTI)

The concept of allowing reactivity credit for the depleted (or burned) state of pressurized water reactor fuel in the licensing of spent fuel facilities introduces a new challenge to members of the nuclear criticality community. The primary difference in this analysis approach is the technical ability to calculate spent fuel compositions (or inventories) and to predict their effect on the system multiplication factor. Isotopic prediction codes are used routinely for in-core physics calculations and the prediction of radiation source terms for both thermal and shielding analyses, but represent an innovation for criticality specialists. This paper discusses two methodologies currently being developed to specifically evaluate isotopic composition and reactivity for the burnup credit concept. A comprehensive approach to benchmarking and validating the methods is also presented. This approach involves the analysis of commercial reactor critical data, fuel storage critical experiments, chemical assay isotopic data, and numerical benchmark calculations.

Brady, M.C. [Oak Ridge National Lab., TN (United States); Napolitano, D.G. [Yankee Atomic Electric Co., Boston, MA (United States)

1992-02-01T23:59:59.000Z

155

Calculation of complex DNA damage induced by ions  

SciTech Connect

This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion's path. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. A comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

Surdutovich, Eugene [Department of Physics, Oakland University, Rochester, Michigan 48309 (United States); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany); Gallagher, David C. [Department of Physics, Oakland University, Rochester, Michigan 48309 (United States); Solov'yov, Andrey V. [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany)

2011-11-15T23:59:59.000Z

156

Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations  

SciTech Connect

This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

Wagner, J.C.; DeHart, M.D.

2000-03-01T23:59:59.000Z

157

China 2050 Pathways Calculator | Open Energy Information  

Open Energy Info (EERE)

China 2050 Pathways Calculator China 2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator Agency/Company /Organization: China's Energy Research Institute (ERI), UK Department of Energy and Climate Change (DECC), UK Foreign and Commonwealth Office (FCO) Focus Area: Non-renewable Energy, Renewable Energy Phase: Evaluate Options, Prepare a Plan Topics: Low-carbon plans/TNAs/NAMAs, Resource assessment, Pathways analysis Resource Type: Guide/manual, Training materials, Lessons learned/best practices, Online calculator User Interface: Website Website: china-en.2050calculator.net/pathways/111011011011101101011010111101101 Country: China OpenEI Keyword(s): International Eastern Asia Language: English References: Global Energy Governance Reform, 3 October 2012[1]

158

CUFR Tree Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

CUFR Tree Carbon Calculator CUFR Tree Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CUFR Tree Carbon Calculator Agency/Company /Organization: United States Forest Service Sector: Climate, Land Focus Area: Forestry Phase: Determine Baseline, Evaluate Options Topics: GHG inventory, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/ccrc/topics/urban-forests/ctcc/ Cost: Free Language: English References: CUFR Tree Carbon Calculator[1] Overview "The CUFR Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information

159

Campus Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Campus Carbon Calculator Campus Carbon Calculator Jump to: navigation, search Tool Summary Name: Campus Carbon Calculator Agency/Company /Organization: Clean Air-Cool Planet Phase: Create a Vision, Determine Baseline, Develop Goals User Interface: Spreadsheet Website: www.cleanair-coolplanet.org/toolkit/inv-calculator.php The Campus Carbon Calculator(tm), Version 6.4, is now available for download. Version 6.4 includes new features, updates and corrections - including greatly expanded projection and solutions modules, designed to aid schools that have completed greenhouse gas inventories in developing long term, comprehensive climate action plans based on those inventories. The new modules facilitate analysis of carbon reduction options, determining project payback times, net present value, cost per ton reduced,

160

Foodborne Illness Cost Calculator | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Foodborne Illness Cost Calculator Foodborne Illness Cost Calculator Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Foodborne Illness Cost Calculator Dataset Summary Description The calculator provides information on the assumptions behind foodborne illness cost estimates and gives you a chance to make your own assumptions and calculate your own cost estimates. This interactive web-based tool allows users to estimate the cost of illness due to specific foodborne pathogens. The updated ERS cost estimate for Shiga-toxin producing E. coli O157 (STEC O157) was added to the Calculator in spring, 2008. Calculator users can now review and change the assumptions behind the ERS cost estimates for either STEC O157 or Salmonella. The assumptions that can be modified include the annual number of cases, the distribution of cases by severity, the use or costs of medical care, the amount or value of time lost from work, the costs of premature death, and the disutility costs for nonfatal cases. Users can also update the cost estimate for inflation for any year from 1997 to 2007.

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiation-damage calculations with NJOY  

SciTech Connect

Atomic displacement, gas production, transmutation, and nuclear heating can all be calculated with the NJOY nuclear data processing system using evaluated data in ENDF/B format. Using NJOY helps assure consistency between damage cross sections and those used for transport, and NJOY provides convenient interface formats for linking data to application codes. Unique features of the damage calculation include a simple momentum balance treatment for radiative capture and a new model for (n, particle) reactions based on statistical model calculations. Sample results for iron and nickel are given and compared with the results of other methods.

MacFarlane, R.E.; Muir, D.W.; Mann, F.W.

1983-01-01T23:59:59.000Z

162

Calculating the Diffuse Responsivity of Solar Pyranometers  

DOE Green Energy (OSTI)

Pyranometers are used to measure the global and diffuse components of solar irradiance. One of the methods to calculate the unshade (global) responsivity of a pyranometer is the standard shading method, described in the Annual Book of ASTM Standards, section 14, volume 14.02. In this paper, the standard method is used to calculate the shade (diffuse) responsivity of a pyranometer by accounting for the zenith and azimuth response of the pyranometer. A discussion of the effect of pyranometer offset on the calculated responsivity is also presented.

Reda, I.; Myers, D.

1999-08-16T23:59:59.000Z

163

Calculations of fission rates for r-process nucleosynthesis  

E-Print Network (OSTI)

Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that nevertheless fission leads to the termination of the r-process. Furthermore, it is discussed that the probability of triple fission could be high for $A>260$ and have an effect on the formation of the abundances of heavy nuclei. Fission after beta-delayed neutron emission is discussed as well as different aspects of the influence of fission upon r-process calculations.

I. V. Panov; E. Kolbe; B. Pfeiffer; T. Rauscher; K. -L. Kratz; F. -K. Thielemann

2004-12-29T23:59:59.000Z

164

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

165

What is the GREET Fleet Footprint Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GREET Fleet Calculator can estimate petroleum and carbon GREET Fleet Calculator can estimate petroleum and carbon footprints of both on-road vehicles and off-road equipment. What is the GREET Fleet Footprint Calculator? As early adopters of new vehicle technologies, fleets are vital to the success of alternative fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on the AFVs that will best help them meet a variety of organizational goals and legal requirements, including reducing their petroleum use and greenhouse gas (GHG) emissions. Currently, the United States imports nearly half of its oil. 1 Because the United States uses about 70% of its oil for transportation, decreasing petroleum consumption in vehicles can substantially

166

Historical river flow rates for dose calculations  

Science Conference Proceedings (OSTI)

Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

Carlton, W.H.

1991-06-10T23:59:59.000Z

167

Molecular dynamics calculation of free energy  

Science Conference Proceedings (OSTI)

The results of a systematic study of a recently proposed method by Frenkel and Ladd for calculating free energies via molecular dynamics are reported. Internal measures of the error

J. F. Lutsko; D. Wolf; S. Yip

1988-01-01T23:59:59.000Z

168

Why first-principles calculations for alloys  

Science Conference Proceedings (OSTI)

A brief non-technical overview of first-principles calculations is presented, with emphasis on prediction of phase equilibria. Merits and drawbacks of various methods are briefly discussed.

de Fontaine, D.

1991-10-01T23:59:59.000Z

169

Why first-principles calculations for alloys?  

Science Conference Proceedings (OSTI)

A brief non-technical overview of first-principles calculations is presented, with emphasis on prediction of phase equilibria. Merits and drawbacks of various methods are briefly discussed.

de Fontaine, D.

1991-10-01T23:59:59.000Z

170

Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4  

SciTech Connect

This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

Bailey, J.W.

1998-07-24T23:59:59.000Z

171

Sliding Window Technique for Calculating System LOLP Contributions of Wind Power Plants  

DOE Green Energy (OSTI)

Conventional electric power generation models do not typically recognize the probabilistic nature of the power variations from wind plants. Most models allow for an accurate hourly representation of wind power output, but do not incorporate any probabilistic assessment of whether the given level of wind power will vary from its expected value. The technique presented in this paper uses this variation to calculate an effective forced-outage rate for wind power plants (EFORW). Depending on the type of wind regime undergoing evaluation, the length and diurnal characteristics of a sliding time window can be adjusted so that the EFORW is based on an appropriate time scale. The algorithm allows us to calculate the loss-of-load probability (LOLP) on an hourly basis, fully incorporating the variability of the wind resource into the calculation. This makes it possible to obtain a more accurate assessment of reliability of systems that include wind generation when system reliability is a concern .

Milligan, M. R.

2001-09-18T23:59:59.000Z

172

GROA AIRBORNE RELEASE DISPERSION FACTOR CALCULATION  

Science Conference Proceedings (OSTI)

The purpose of this document is to calculate airborne release dispersion factors ({chi}/Q) for the surface and subsurface facilities at the Geological Repository Operations Area (GROA). The calculated {chi}/Q values may be used to estimate radiological consequences to workers for potential releases from normal operations and event sequences for License Application. The scope of this document is to provide estimates of {chi}/Q values at potential onsite receptors from facility releases, under normal operating conditions and event sequences.

J. Wang

2005-03-21T23:59:59.000Z

173

Users enlist consultants to calculate costs, savings  

SciTech Connect

Consultants who calculate payback provide expertise and a second opinion to back up energy managers' proposals. They can lower the costs of an energy-management investment by making complex comparisons of systems and recommending the best system for a specific application. Examples of payback calculations include simple payback for a school system, a university, and a Disneyland hotel, as well as internal rate of return for a corporate office building and a chain of clothing stores. (DCK)

1982-05-24T23:59:59.000Z

174

HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT  

E-Print Network (OSTI)

LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES . . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED

Hall, W.G.

2012-01-01T23:59:59.000Z

175

Tool and Calculator (Transit, Fuel) | Open Energy Information  

Open Energy Info (EERE)

This webside provide Tools & Calculators like Public Transit In Your Community, Fuel Saving Calculator, Carbon saving calculator, Transit Savings Report and transit benefits...

176

Calculators for Estimating Greenhouse Gas Emissions from Public  

NLE Websites -- All DOE Office Websites (Extended Search)

CALCULATORS Tables 1 and 2 list the GHG emissions calculators found by a literature search of published sources. The literature search for calculators was conducted through...

177

Neutronics calculation, dosimetry analysis and gas measurements of the first SINQ target irradiation experiment, STIP-I  

SciTech Connect

To precisely determine the damage, helium and hydrogen production in the specimens irradiated in SINQ Target-3, calculations with MCNPX code, dosimetry analysis and helium/hydrogen measurements have been performed. The MCNPX calculations agree well the former calculations with the LAHET code. The preliminary analysis of dosimetry foils demonstrates that the unfolded proton and neutron spectra at limited positions are close to calculated values. In general the measured He concentrations are consistent with the calculated values. Some discrepancy between the measured and the calculated is believed due to the actual proton beam geometry is different from that used for the calculation. The hydrogen concentration measured in samples irradiated at<~100C is close to the calculated. The differences between the measured and calculated values for samples irradiated at higher temperatures can be attributed largely to the effects of hydrogen diffusion. The results indicate that at>~250C, only small amount of hydrogen remains in the samples.

Dai, Yong (Paul Scherrer Institute); Foucher, Y (Paul Scherrer Institute, Switzerland); James, M R. (Los Alamos National Laboratory); Oliver, Brian M. (BATTELLE (PACIFIC NW LAB))

2003-05-15T23:59:59.000Z

178

RESFEN 3.0: Program Description - a PC program for calculating the heating and cooling energy use of windows in residential buildings  

SciTech Connect

Today`s energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for their residence. They are typically given window properties such as U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on the site and building specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation the window will be used in. Knowing the energy and associated cost implications of different windows will help consumers and builders make the best decision for their particular application, whether it is a new home, an addition, or a window replacement. A computer tool such as RESFEN can help consumers and builders pick the most energy-efficient and cost-effective window for a given application. It calculates the heating and cooling energy use and associated costs as well as the peak heating and cooling demand for specific window products. Users define a problem by specifying the house type (single story or two story), geographic location, orientation, electricity and gas cost, and building configuration details (such as wall type, floor type, and HVAC systems). Window options are defined by specifying the window`s size, shading, and thermal properties: U-factor, Solar Heat Gain Coefficient, and air leakage rate. RESFEN calculates the energy and cost implications of the windows compared to insulated walls. The relative energy and cost impacts of two different windows can be compared against each other. RESFEN 3.0 is a major improvement over previous versions of RESFEN because it performs hourly calculations using a version of the DOE 2.1E energy analysis simulation program.

Huang, J.; Sullivan, R.; Arasteh, D.; Mitchell, R.

1997-12-01T23:59:59.000Z

179

Statistical verification of neutron-physics programs for calculations in support of nuclear safety  

Science Conference Proceedings (OSTI)

An algorithm for statistical verification of the XT26 code contained in the SAPHIRE-2006 code system is described. The results of conservative estimation of the calculation error in the K{sub eff} calculations for different types of benchmark experiments are presented. The results of the statistical analysis of deviations from the experimental values are compared with the corresponding parameters obtained from the set of calculations performed using other codes.

Tebin, V. V., E-mail: tebin@vver.kiae.ru [Russian Research Centre Kurchatov Institute (Russian Federation)

2012-12-15T23:59:59.000Z

180

DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the specific design chosen (see Assumption 3.4). A more current design will be included in the next revision of the criticality calculations for the Aging Facility. In addition, this calculation is valid for the current design as provided in Attachment III of the DTF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document.

C.E. Sanders

2005-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Computationally efficient implementation of combustion chemistry in parallel PDF calculations  

SciTech Connect

In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling, 1 (1997) 41-63; L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, Journal of Computational Physics 228 (2009) 361-386] substantially speeds up the chemistry calculations on each processor. To improve the parallel efficiency of large ensembles of such calculations in parallel computations, in this work, the ISAT algorithm is extended to the multi-processor environment, with the aim of minimizing the wall clock time required for the whole ensemble. Parallel ISAT strategies are developed by combining the existing serial ISAT algorithm with different distribution strategies, namely purely local processing (PLP), uniformly random distribution (URAN), and preferential distribution (PREF). The distribution strategies enable the queued load redistribution of chemistry calculations among processors using message passing. They are implemented in the software x2f{sub m}pi, which is a Fortran 95 library for facilitating many parallel evaluations of a general vector function. The relative performance of the parallel ISAT strategies is investigated in different computational regimes via the PDF calculations of multiple partially stirred reactors burning methane/air mixtures. The results show that the performance of ISAT with a fixed distribution strategy strongly depends on certain computational regimes, based on how much memory is available and how much overlap exists between tabulated information on different processors. No one fixed strategy consistently achieves good performance in all the regimes. Therefore, an adaptive distribution strategy, which blends PLP, URAN and PREF, is devised and implemented. It yields consistently good performance in all regimes. In the adaptive parallel ISAT strategy, the type and extent of redistribution is determined 'on the fly' based on the prediction of future simulation time. Compared to the PLP/ISAT strategy where chemistry calculations are essentially serial, a speed-up factor of up to 30 is achieved. The study also demonstrates that the adaptive strategy has acceptable parallel scalability.

Lu Liuyan [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall 245, Ithaca, NY 14853 (United States)], E-mail: lu.liuyan@gmail.com; Lantz, Steven R. [Center for Advanced Computing, Cornell University, Ithaca, NY 14853 (United States); Ren Zhuyin; Pope, Stephen B. [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall 245, Ithaca, NY 14853 (United States)

2009-08-20T23:59:59.000Z

182

Selection of models to calculate the LLW source term  

Science Conference Proceedings (OSTI)

Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab.

Sullivan, T.M. (Brookhaven National Lab., Upton, NY (United States))

1991-10-01T23:59:59.000Z

183

Neutron measurements and radiation damage calculations for fusion materials studies  

SciTech Connect

Fusion reactors will generate intense neutron fields, especially at the inner surfaces of containment vessels. With a typical wall loading of 1 MW/m/sup 2/, the yearly neutron fluence will be about 10/sup 26/ n/m/sup 2/. In a material like stainless steel this irradiation will produce about 10 atomic displacements-per-atom (DPA), 100 appM helium, 500 appM hydrogen, and various other transmutations. The gas-to-DPA ratios are very high compared to fission reactors due to the 14 MeV neutrons from the d-t fusion reaction. No existing neutron source can produce both the high fluence and high gas rates needed to simulate fusion damage. Consequently, fusion material studies are underway in a variety of facilities including fission reactors and accelerator-based neutron sources. A Subtask Group has been created by DOE to characterize these diverse facilities in terms of neutron flux and energy spectrum and to calculate DPA and transmutation for specific irradiations. Material property changes can then be correlated between facilities and extrapolated to fusion reactor conditions.

Greenwood, L.R.

1983-01-01T23:59:59.000Z

184

Eddy-Current-Induced Multipole Field Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Eddy-Current-Induced Multipole Field Calculations Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current-Induced Multipole Field Calculations Nicholas S. Sereno, Suk H. Kim 1.0 Abstract Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents in turn act to produce various multi- pole fields that act on the beam. These fields must be taken into account when doing a lat- tice design. In the APS booster, the relatively long dipole magnets (3 meters) are linearly ramped to accelerate the injected 325 MeV beam to 7 GeV. Substantial dipole and sextu- pole fields are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas for the induced dipole and sextupole fields are derived for elliptical and rectangular vacuum chambers for a time-varying dipole field. A discussion is given

185

Healthcare Energy Impact Calculator | Open Energy Information  

Open Energy Info (EERE)

Healthcare Energy Impact Calculator Healthcare Energy Impact Calculator Jump to: navigation, search Tool Summary Name: Healthcare Energy Impact Calculator Agency/Company /Organization: Practice Greenhealth Sector: Climate User Interface: Website Complexity/Ease of Use: Simple Website: www.eichealth.org/ Cost: Free Related Tools UNEP-Bioenergy Decision Support Tool Global Relationship Assessment to Protect the Environment (GRAPE) World Induced Technical Change Hybrid (WITCH) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An online tool based on U.S. Environmental Protection Agency (EPA) analysis of health impacts of power plant emissions of sulfur dioxide, nitrogen oxides, and mercury, this tool estimates premature deaths, chronic bronchitis, asthma attacks, emergency room visits, and more, by kWh/year.

186

Building Technologies Office: 179D DOE Calculator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

179D DOE Calculator 179D DOE Calculator EERE » Building Technologies Office » 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the Federal Tax Code provides a tax deduction for energy efficiency improvements to commercial buildings. A building may qualify for a tax deduction under Section 179D not to exceed $1.80/ft² for whole building performance or $0.60/ft² for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify with a reduced installed lighting power under the interim lighting rule. Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information.

187

Improved Calculation of Thermal Fission Energy  

E-Print Network (OSTI)

Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

Ma, X B; Wang, L Z; Chen, Y X; Cao, J

2013-01-01T23:59:59.000Z

188

Numerical calculation of thermal field distribution in oil immersed power transformer: a comparison of methods  

Science Conference Proceedings (OSTI)

This paper summarise a few computational methods and engineering models proposed for transformer thermal analysis and the accurate prediction of transformer thermal characteristics. The paper presents different approach for numerical calculation of thermal ... Keywords: hot-spot temperature, numerical calculation, power transformer, thermal field

Vlado Madzarevic; Izudin Kapetanovic; Majda Tesanovic; Mensur Kasumovic

2011-02-01T23:59:59.000Z

189

Statistical Uncertainty Analysis Applied to Criticality Calculation  

Science Conference Proceedings (OSTI)

In this paper, we present an uncertainty methodology based on a statistical approach, for assessing uncertainties in criticality prediction using monte carlo method due to uncertainties in the isotopic composition of the fuel. The methodology has been applied to criticality calculations with MCNP5 with additional stochastic input of the isotopic fuel composition. The stochastic input were generated using the latin hypercube sampling method based one the probability density function of each nuclide composition. The automatic passing of the stochastic input to the MCNP and the repeated criticality calculation is made possible by using a python script to link the MCNP and our latin hypercube sampling code.

Hartini, Entin; Andiwijayakusuma, Dinan; Susmikanti, Mike; Nursinta, A. W. [Centre for Nuclear Informatics Development, National Nuclear Energy Agency of Indonesia (Indonesia)

2010-06-22T23:59:59.000Z

190

Radiological Dose Calculations for Fusion Facilities  

Science Conference Proceedings (OSTI)

This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

Michael L. Abbott; Lee C. Cadwallader; David A. Petti

2003-04-01T23:59:59.000Z

191

Precision benchmark calculations for four particles at unitarity  

E-Print Network (OSTI)

The unitarity limit describes interacting particles where the range of the interaction is zero and the scattering length is infinite. We present precision benchmark calculations for two-component fermions at unitarity using three different ab initio methods: Hamiltonian lattice formalism using iterated eigenvector methods, Euclidean lattice formalism with auxiliary-field projection Monte Carlo, and continuum diffusion Monte Carlo with fixed and released nodes. We have calculated the ground state energy of the unpolarized four-particle system in a periodic cube as a dimensionless fraction of the ground state energy for the non-interacting system. We obtain values 0.211(2) and 0.210(2) using two different Hamiltonian lattice representations, 0.206(9) using Euclidean lattice, and an upper bound of 0.212(2) from fixed-node diffusion Monte Carlo. Released-node calculations starting from the fixed-node result yield a decrease of less than 0.002 over a propagation of 0.4/E_F in Euclidean time, where E_F is the Fermi energy. We find good agreement among all three ab initio methods.

Shahin Bour; Xin Li; Dean Lee; Ulf-G. Meiner; Lubos Mitas

2011-04-12T23:59:59.000Z

192

Procedure for calculating interior daylight illumination with a programmable hand calculator  

DOE Green Energy (OSTI)

A procedure is described for calculating interior daylight illumination using an inexpensive programmable hand calculator. The proposed procedure calculates illumination at any point within a room utilizing sky luminance distribution functions that are consistent with the CIE (Commission Internationale de l'Eclairage) Overcast and Clear Sky functions. This procedure separates the light reaching the point being considered into three components, these being (a) light directly from the sky, (b) light after being reflected from external, and (c) internal surfaces. Finally, two examples are presented in order to demonstrate the proposed procedure and indicate the speed with which the calculations may be performed.

Bryan, H.J.; Clear, R.D.

1980-10-01T23:59:59.000Z

193

HP-67 CALCULATOR PROGRAMS FOR THERMODYNAMIC DATA AND PHASE DIAGRAM CALCULATIONS  

E-Print Network (OSTI)

Selected Values of the Thermodynamic Properties of theI-, Estimation of Thermodynamic D.ata and Phase Diagrams. ,CALCULATOR PROGRAMS FOR THERMODYNAMIC DATA AND PHASE DIAGRAM

Brewer, Leo

2010-01-01T23:59:59.000Z

194

Calculation of exchange energies using algebraic perturbation theory  

Science Conference Proceedings (OSTI)

An algebraic perturbation theory is presented for efficient calculations of localized states and hence of exchange energies, which are the differences between low-lying states of the valence electron of a molecule, formed by the collision of an ion Y{sup +} with an atom X. For the case of a homonuclear molecule these are the gerade and ungerade states and the exchange energy is an exponentially decreasing function of the internuclear distance. For such homonuclear systems the theory is used in conjunction with the Herring-Holstein technique to give accurate exchange energies for a range of intermolecular separations R. Since the perturbation parameter is essentially 1/R, this method is suitable for large R. In particular, exchange energies are calculated for X{sub 2}{sup +} systems, where X is H, Li, Na, K, Rb, or Cs.

Burrows, B. L. [Mathematics Section Faculty of Computing, Engineering and Technology Staffordshire University, Beaconside, Stafford ST18 0DG (United Kingdom); Dalgarno, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Cohen, M. [Department of Physical Chemistry, Hebrew University of Jerusalem, Jerusalem IL-91904 (Israel)

2010-04-15T23:59:59.000Z

195

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Multipole Electrostatics in Hydration Free Energy Calculations  

E-Print Network (OSTI)

Multipole Electrostatics in Hydration Free Energy Calculations YUE SHI,1 CHUANJIE WU,2 JAY W. PONDER,2 PENGYU REN1 1 Department of Biomedical Engineering, The University of Texas, Austin, Texas 78712: Hydration free energy (HFE) is generally used for evaluating molecular solubility, which is an important

Ponder, Jay

197

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network (OSTI)

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PI?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO (EFRC) proposes to license, construct, and operate a conventional acid leach uranium and vanadium mill storage pad, and access roads. The mill is designed to process ore containing uranium and vanadium

198

Application of the adjoint method in atmospheric radiative transfer calculations  

DOE Green Energy (OSTI)

The transfer of solar radiation through a standard mid-latitude summer atmosphere including different amounts of aerosols (from clear to hazy) has been computed. The discrete-ordinates (S/sub N/) method, which has been developed to a high degree of computational efficiency and accuracy primarily for nuclear radiation shielding applications, is employed in a forward as well as adjoint mode. In the adjoint mode the result of a transfer calculation is an importance function (adjoint intensity) which allows the calculation of transmitted fluxes, or other radiative responses, for any arbitrary source distribution. The theory of the adjoint method is outlined in detail and physical interpretations are developed for the adjoint intensity. If, for example, the downward directed solar flux at ground level, F/sub lambda/ (z = 0), is desired for N different solar zenith angles, a regular (forward) radiative transfer calculation must be repeated for each solar zenith angle. In contrast, only 1 adjoint transfer calculation gives F/sub lambda/ (z = 0) for all solar zenith angles in a hazy aerosol atmosphere, for 1 wavelength interval, in 2.3 seconds on a CDC-7600 computer. A total of 155 altitude zones were employed between 0 and 70 km, and the convergence criterion for the ratio of fluxes from successive iterations was set at 2 x 10/sup -3/. Our results demonstrate not only the applicability of the highly efficient modern S/sub N/ codes, but indicate also conceptual and computational advantages when the adjoint formulation of the radiative transfer equation is used.

Gerstl, S.A.W.

1979-01-01T23:59:59.000Z

199

Comparison of Three Methods for Calculating the Standard Deviation of the Wind Direction  

Science Conference Proceedings (OSTI)

Three methods to calculate wind direction standard deviation are evaluated. Although eight hours of wind data show no significant differences between the methods, synthetically generated data having standard deviations near the maximum possible ...

D. Bruce Turner

1986-05-01T23:59:59.000Z

200

The effect of polarization energy on the free energy perturbation calculations  

Science Conference Proceedings (OSTI)

A detailed implementation of the polarization energy and its derivatives into a molecular dynamics program is described. In order to examine the effect of the polarization energy on the calculated free energy differences

K. Ramnarayan; B. G. Rao; U. C. Singh

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Interpolation of LES Cloud Surfaces for Use in Direct Calculations of Entrainment and Detrainment  

Science Conference Proceedings (OSTI)

Direct calculations of the entrainment and detrainment of air into and out of clouds require knowledge of the relative velocity difference between the air and the cloud surface. However, a discrete numerical model grid forces the distance moved ...

Jordan T. Dawe; Philip H. Austin

2011-02-01T23:59:59.000Z

202

Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: A discussion in the context of diagnostics and dosimetry  

Science Conference Proceedings (OSTI)

Purpose: There are a range of genetic and nongenetic factors influencing the elemental composition of different human tissues. The elemental composition of cancerous tissues frequently differs from healthy tissue of the same organ, particularly in high-Z trace element concentrations. For this reason, one could suggest that this may be exploited in diagnostics and perhaps even influence dosimetry. Methods: In this work, for the first time, effective atomic numbers are computed for common cancerous and healthy tissues using a robust, energy-dependent approach between 10 keV and 100 MeV. These are then quantitatively compared within the context of diagnostics and dosimetry. Results: Differences between effective atomic numbers of healthy and diseased tissues are found to be typically less than 10%. Fibrotic tissues and calcifications of the breast exhibit substantial (tens to hundreds of percent) differences to healthy tissue. Expectedly, differences are most pronounced in the photoelectric regime and consequently most relevant for kV imaging/therapy and radionuclides with prominent low-energy peaks. Cancerous tissue of the testes and stomach have lower effective atomic numbers than corresponding healthy tissues, while diseased tissues of the other organ sites typically have higher values. Conclusions: As dose calculation approaches improve in accuracy, there may be an argument for the explicit inclusion of pathologies. This is more the case for breast, penile, prostate, nasopharyngeal, and stomach cancer, less so for testicular and kidney cancer. The calculated data suggest dual-energy computed tomography could potentially improve lesion identification in the aforementioned organs (with the exception of testicular cancer), with most import in breast imaging. Ultimately, however, the differences are very small. It is likely that the assumption of a generic 'tissue ramp' in planning will be sufficient for the foreseeable future, and that the Z differences do not notably aid lesion detection beyond that already facilitated by differences in mass density.

Taylor, M. L. [School of Applied Sciences and Health Innovation Research Institute, RMIT University, Melbourne 3000 (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3001 (Australia) and Medical Physics, WBRC, Alfred Hospital, Melbourne 3000 (Australia)

2012-09-15T23:59:59.000Z

203

B-spline one-center method for molecular Hartree-Fock calculations  

E-Print Network (OSTI)

We introduce one-center method in spherical coordinates to carry out Hartree-Fock calculations. Both the radial wave function and the angular wave function are expanded by B-splines, and the radial knots and angular knots are adjusted to deal with cusps properly, resulting in the significant improvement of convergence for several typical closed-shell diatomic molecules. B-splines could represent both the bound state and continuum state wave function properly, and the present approach has been applied to investigating ionization dynamics for H$_2$ in the intense laser field adopting single-active-electron model.

Hu, Shi-lin; Shi, Ting-yun

2013-01-01T23:59:59.000Z

204

(beta beta)_{0 nu}-decay: a possible test of the nuclear matrix element calculations  

E-Print Network (OSTI)

The existing calculations of the nuclear matrix elements of the neutrinoless double beta-decay differ by about a factor three. This uncertainty prevents quantative interpretation of the results of experiments searching for this process. We suggest here that the observation of the neutrinoless double beta-decay of several nuclei in future experiments of could allow to test different calculations of the nuclear matrix elements through the direct comparison of them with the experimental data.

S. M. Bilenky; J. A. Grifols

2002-07-23T23:59:59.000Z

205

The possible test of the calculations of nuclear matrix elements of the $(??)_{0?}$-decay  

E-Print Network (OSTI)

The existing calculations of the nuclear matrix elements of the neutrinoless double $\\beta$-decay differ by about a factor three. This uncertainty prevents quantitative interpretation of the results of experiments searching for this process. We suggest here that the observation of the neutrinoless double $\\beta$-decay of {\\em several} nuclei could allow to test calculations of the nuclear matrix elements through the comparison of the ratios of the calculated lifetimes with experimental data. It is shown that the ratio of the lifetimes is very sensitive to different models.

S. M. Bilenky; J. A. Grifols

2002-11-07T23:59:59.000Z

206

Calculations of slurry pump jet impingement loads  

SciTech Connect

This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented.

Wu, T.T.

1996-03-04T23:59:59.000Z

207

Validation of Dose Calculation Codes for Clearance  

SciTech Connect

Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale.

Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.

2003-02-27T23:59:59.000Z

208

CFD calculations of S809 aerodynamic characteristics  

DOE Green Energy (OSTI)

Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States)

1997-01-01T23:59:59.000Z

209

Steam Generator Management Program: Flaw Handbook Calculator  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook v1.0 defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated Microsoft Excelspreadsheet which cal...

2010-04-20T23:59:59.000Z

210

Bases for pump pit requirements calculations  

DOE Green Energy (OSTI)

A task team is preparing the Process Requirements for the interarea transfer pump pits at the Defense Waste Process Facility (DWPF). The team is developing requirements to prevent flammable mixtures from forming and requires values to use on the generation of various components such as benzene, hydrogen, and N20. The purpose of this memorandum is to document values to be used and to provide sample calculations using these values. There are no recommendations contained in this document.

Jacobs, R.A.

1992-02-13T23:59:59.000Z

211

Free Energy Calculation in MD Simulation  

E-Print Network (OSTI)

Free Energy Calculation in MD Simulation #12;Basic Thermodynamics Helmoholtz free energy A = U ­ TS + i Ni dA = wrev (reversible, const N V T) eq (22.9) McQuarrie & Simon Gibbs free energy G = U;Implication of Free Energy A B Keq = [A]/[B] Keq = exp (-G0 /RT) G0 = -RT ln Keq G = G0 + RT ln Q G > 0

Nielsen, Steven O.

212

Vestibule and Cask Preparation Mechanical Handling Calculation  

SciTech Connect

The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.

N. Ambre

2004-05-26T23:59:59.000Z

213

A simplified method for calculating the substation grounding grid resistance  

SciTech Connect

A simple and accurate formula for calculating the grounding grid resistance is proposed in this paper. This method is based on a theoretical manipulation of the numerical moment method and of the current image. The formula is dependent on the substation grounding grid design, such as grid depth, grid size, number of meshes, grid-conductor diameter, etc. A comparison study is performed to check the accuracy of the proposed formula with respect to six different formulas and methods in the literature. An excellent agreement was found between the results of this formula and the results of a sophisticated computerized method.

Chow, Y.L.; Salama, M.M.A. (Univ. of Waterloo, Ontario (Canada). Computer Engineering)

1994-04-01T23:59:59.000Z

214

Calculation of wake power losses in a two-level array: a simple case study  

DOE Green Energy (OSTI)

One method of adding capacity is to install another array of turbines whose hub height is above the existing array. This report estimates the wake interference that could be expected in a two-level array. Interference is estimated for a typical situation that may be encountered by a wind farm developer. A modified Lissaman array model is used to make the wake interference calculations. The model calculations show that the wake interference between the two levels is small for the turbine characteristics and turbine layouts considered. (The windwise spacings are about 5.4 and 10.8D for the lower and upper levels of turbines, respectively.) Power losses are about 5% or less at rated speed. Thus, two-level arrays may be a viable way of increasing the generating capacity of existing wind farms.

Barnard, J.C.

1985-12-01T23:59:59.000Z

215

Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90  

SciTech Connect

The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

Hughes, P.S.; Rigdon, L.D.

1980-02-01T23:59:59.000Z

216

Calculations of nonspherically averaged charge densities for subtitutionally disordered alloys  

Science Conference Proceedings (OSTI)

Based on screening transformations of muffin-tin orbitals introduced by Andersen et al. [Phys. Rev. Lett. 53, 2571 (1984)], we have developed a formalism for calculating the non-spherically averaged charge densities of substitutionally disordered alloys using the Korringa-Kohn-Rostoker coherent potential approximation (KKR CPA) method in the atomic-sphere approximation (ASA). We have validated our method by calculating charge densities for ordered structures, where we find that our approach yields charge densities that are essentially indistinguishable from the results of full-potential methods. For substitutionally disordered alloys, where full-potential methods have not been implemented so far, our approach can be used to calculate reliable non-spherically averaged charge densities from spherically symmetric one-electron potentials obtained from the KKR-ASA CPA. We report on our study of differences in charge denisty between ordered AlLi in L1{sub o} phase and substitutionally disordered Al{sub 0.5}Li{sub 0.5} on face-centered cubic lattice.

Singh, P.P.; Gonis, A.

1994-02-01T23:59:59.000Z

217

Calculation of Extreme Wave Loads on Coastal Highway Bridges  

E-Print Network (OSTI)

Coastal bridges are exposed to severe wave, current and wind forces during a hurricane. Most coastal bridges are not designed to resist wave loads in such extreme situations, and there are no existing analytical methods to calculate wave loads on coastal highway bridges. This study focuses on developing a new scheme to estimate the extreme wave loads on bridges for designing purpose. In order to do this, a 2D wave velocity potential model (2D Model) is set up for the deterministic analysis of wave force on bridge decks. 2D Model is a linear wave model, which has the capability of calculating wave velocity potential components in time domain based on wave parameters such as wave height, wave period and water depth, and complex structural geometries. 2D Model has Laplace equation as general equation. The free surface boundary, incoming and outgoing wave boundary conditions are linearized, decomposed first, and then solved by the finite difference method. Maximum wave forces results calculated by the linear 2D Model are compared with results from CFD software Flow3D that is using Navier Stokes theory up to the 5th order; and 2D Model is validated by comparing results with experiment data. A case study is conducted for calculating extreme wave forces on I-10 Bridge across Escambia Bay, Florida during Hurricane Ivan in September 2004.SWAN model is adapted to investigate the parameters of wave heights and wave periods around bridge sites. SWAN model has the capability of predicting or hindcasting significant wave heights and wave periods as long as the domain and input parameters are given. The predicted significant wave heights are compared with measurements by Buoy Station 42039 and 42040 nearest to Escambia Bay. A new prediction equation of maximum uplift wave forces on bridge decks is developed in terms of wave height, wave period, water depth, bridge width, water clearance and over top water load. To develop the equations, the relationship is investigated between maximum uplift wave forces and wave parameters, water clearance, green water effects and bridge width. 2D Model is used for up to 1886 cases with difference parameters. Flow3D model is adopted to determine coefficients of water clearance and green water effects, which cannot be calculated by 2D Model.

Meng, Bo

2008-12-01T23:59:59.000Z

218

Gasoline Price Differences Caused by:  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: While my agency cannot be expert in every local gasoline market in the United States, we are familiar with a number of factors that can account for significant differences in prices between markets: Proximity of supply - distance from the refineries supplying the local market. Additionally, the proximity of those refineries to crude oil supplies can be a factor, as well as shipping logistics, including pipeline or waterborne, from refinery to market. Cost of supply - including crude oil, refinery operating, and transportation costs. Supply/demand balance - some regions are typically in excess or short supply, while others may vary seasonally, or when supply interruptions (such as refinery shutdowns) occur. Competitive environment - including the number of suppliers, and the

219

Data acquisition and processing with a HP 9825 desk top calculator controlled instrumentation system in the Los Alamos solar mobile/modular home  

DOE Green Energy (OSTI)

Data have been taken in the solar Mobile/Modular Home with a Hewlett Packard 9825 calculator from October 1976 until the present. The data system and data reduction techniques are described and some of the typical results obtained are presented.

Hedstrom, J.C.

1978-01-01T23:59:59.000Z

220

Energy Efficiency CO2 Intensity Calculator (EE-CO2 Intensity Calculator) Version 3.0  

Science Conference Proceedings (OSTI)

This spreadsheet calculator will allow members to quantify the impact of their energy efficiency savings and fuel displacement on carbon-dioxide emissions, specific to their region and the end-uses ...

2012-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Using EnergyPlus for California Title-24 compliance calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Using EnergyPlus for California Title-24 compliance calculations Title Using EnergyPlus for California Title-24 compliance calculations Publication Type Conference Paper LBNL...

222

Energy Department Report Calculates Emissions and Costs of Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power...

223

Illustrative Calculation of Economics for Heat Pump and "Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

224

Introduction to the Cash Flow Opportunity Calculator Spreadsheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculator is an interactive calculator that helps quantify the cost of delaying investment in upgrades by addressing three critical questions: How much new energy efficiency...

225

Documentation of Calculation Methodology, Input Data, and Infrastructu...  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Title Documentation of Calculation Methodology, Input Data, and...

226

FEMP Solar Hot Water Calculator | Open Energy Information  

Open Energy Info (EERE)

Solar Hot Water Calculator Jump to: navigation, search Name FEMP Solar Hot Water Calculator Abstract Online tool to help Federal agencies meet Energy Independence and Security Act...

227

Simplified scheme or radioactive plume calculations  

SciTech Connect

A simplified mathematical scheme to estimate external whole-body $gamma$ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and $gamma$ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred. (auth)

Gibson, T.A.; Montan, D.N.

1976-11-21T23:59:59.000Z

228

Quantum mechanical cluster calculations of critical scintillationprocesses  

SciTech Connect

This paper describes the use of commercial quantum chemistrycodes to simu-late several critical scintillation processes. The crystalis modeled as a cluster of typically 50 atoms embedded in an array oftypically 5,000 point charges designed to reproduce the electrostaticfield of the infinite crystal. The Schrodinger equation is solved for theground, ionized, and excited states of the system to determine the energyand electron wavefunction. Computational methods for the followingcritical processes are described: (1) the formation and diffusion ofrelaxed holes, (2) the formation of excitons, (3) the trapping ofelectrons and holes by activator atoms, (4) the excitation of activatoratoms, and (5) thermal quenching. Examples include hole diffusion in CsI,the exciton in CsI, the excited state of CsI:Tl, the energy barrier forthe diffusion of relaxed holes in CaF2 and PbF2, and prompt hole trappingby activator atoms in CaF2:Eu and CdS:Te leading to an ultra-fast (<50ps) scintillation risetime.

Derenzo, Stephen E.; Klintenberg, Mattias K.; Weber, Marvin J.

2000-02-22T23:59:59.000Z

229

Calculation of explosive rock breakage: oil shale  

SciTech Connect

Improved efficiency in explosive rock breakage becomes increasingly important as mining costs and the need to tap underground resources continue to grow. Industry has recognized this need for many years and has done a great deal in developing new products and new blasting techniques, generally by purely empirical means. One particular application that has received added attention within the past several years, and one that lends itself to a more objective theoretical study, is explosive fracture of oil shale for conventional and in situ fossil energy recovery. Numerical calculation of oil shale fracturization with commercial explosives has the potential to add to an objective understanding of the breakage process. Often, in such numerical studies, only one or two parts of the total problem are addressed with any degree of sophistication or completeness. Here an attempt is made to treat the entire problem, i.e., explosive characterization, constitutive behavior of intact rock, and a mathematical description of rock fracture. The final results are two-dimensional calculations of explosively induced fracture damage in oil shale.

Johnson, J.N.

1979-01-01T23:59:59.000Z

230

Nomogram calculates power plant coal use  

SciTech Connect

The number of tons of coal burned annually by a generating unit can be calculated by the following formula: Q = 43.8 (MW) (HR) (CF/HV)/10/sup 6/ where: Q = Annual usage, million tons MW = Unit capacity, MW HR = Unit heat rate, Btu/kWh CF = Annual unit capacity factor, % HV = Heating value of coal, Btu/lb The nomogram solves this equation and permits annual coal usage to be estimated quickly for various combinations of the other variables. The nomogram also can be used in reverse to determine such things as the annual capacity factor that a certain coal usage could sustain. Example: An 840-MW unit has an average heat rate of 10,000 Btu/kWh and burns coal with a heating value of 8600 Btu/lb. The annual capacity factor is 60%. Calculate the annual coal usage. Solution: (A) Align 840 on MW scale with 8600 on HV scale and mark intersection with CF scale; (B) align this marked point with 10,000 on HR scale and mark intersection with Reference Line; (C) align this point with 60 on CF scale and extend to Q scale. Read answer as approximately 2.6 million tons/year.

McAlister, J.

1984-05-01T23:59:59.000Z

231

Method for calculating strontium sulfate solubility  

SciTech Connect

This paper presents a method of predicting the tendency of brines to deposit strontium sulfate scale. Strontium sulfate solubility product constants were determined in the laboratory at temperatures of 50, 75, 122 and 156/sup 0/F and ionic strengths of sodium chloride solutions from 0.1 to 5.25. Solid strontium sulfate was prepared and tagged with radioactive sulfur-35. Excess of this strontium sulfate was added to the sodium chloride solutions and shaken at the various temperatures until equilibrium was reached. The filtrate was analyzed for sulfate ion using a liquid scintillation counter and for strontium ion using an atomic absorption spectrophotometer. The solubility products were expressed graphically as K/sub sp/ versus ionic strength at various temperatures. A series of synthetic brines containing various amounts of sodium, magnesium, calcium, strontium and chloride ions was prepared. The solubilities of strontium sulfate in these brines were calculated using the known ionic strengths and solubility data obtained from the experiments with the sodium chloride solutions. These calculated values were compared with actual values determined in the same manner as those from the sodium chloride values.

Fletcher, G.E.; French, T.R.; Collins, A.G.

1981-04-01T23:59:59.000Z

232

Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012 IECC as Compared to the 2006 IECC  

Science Conference Proceedings (OSTI)

The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.

Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya

2012-06-01T23:59:59.000Z

233

Performance measurement of magnetohydrodynamic code for space plasma on typical scalar-type supercomputer systems with a large number of cores  

Science Conference Proceedings (OSTI)

The computational performance of magnetohydrodynamic (MHD) code is evaluated on two typical scalar-type supercomputer systems. We have carried out performance tuning of a three-dimensional MHD code for space plasma simulations on the HA8000 (with 8192 ... Keywords: magnetohydrodynamics simulation, parallel computing, performance evaluation, scalar massively computer system

Keiichiro Fukazawa; Takayuki Umeda

2012-08-01T23:59:59.000Z

234

Nowadays, a large spectrum of knowledge is required from PhD students working within the area of Energy Conversion Systems. Nevertheless, typical PhD  

E-Print Network (OSTI)

of Energy Conversion Systems. Nevertheless, typical PhD comptetences are often restricted to their fieldTech Summer School « Integrated Approach to Energy Systems » is to make up for those lacks, bring out the main challenges and provide methodological approaches to address multi-disciplinary energy-related challenges

235

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

236

Information about the Greenhouse Gas Emission Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Greenhouse Gas Emissions Calculator To estimate your CO2 emissions rates and generate the bar graph, we used the following sources and assumptions. Your CO2 Emissions Rates Tailpipe (grams CO2/mile) This is the tailpipe CO2 emissions rate for combined city and highway driving that is shown on the fuel economy and environment label for the vehicle model you selected. It is the same regardless of where you live. Total (grams CO2/mile) This includes the vehicle's tailpipe emissions and emissions associated with the production of electricity used to charge the vehicle. For plug-in hybrid electric vehicles, it also includes emissions associated with the production of gasoline. It is estimated using the sources and assumptions below, and will vary based on where you live.

237

Monte Carlo calculations of channeling radiation  

Science Conference Proceedings (OSTI)

Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of ..gamma../sup 1/ /sup 5/, ..gamma../sup 1/ /sup 7/, and ..gamma../sup 2/ /sup 5/ respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on ..gamma.. does not yet exist.

Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.

1981-01-01T23:59:59.000Z

238

Dynamical Collective Calculation of Supernova Neutrino Signals  

SciTech Connect

We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C. [Institut de Physique Nucleaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

2009-08-14T23:59:59.000Z

239

Power Line Calculator for Windows[trademark  

SciTech Connect

The Power Line Calculator (PLC) for Windows [trademark], version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates through a graphical user interface provided by Microsoft[reg sign] Windows [trademark] (version 3.1 or higher required), and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-12-01T23:59:59.000Z

240

LMR thermal hydraulics calculations in the US  

SciTech Connect

A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.

Dunn, F.E.; Malloy, D.J.; Mohr, D.

1987-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on AddThis.com...

242

Federal Energy Management Program: Energy Savings Calculator for Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Savings Energy Savings Calculator for Commercial Boilers to someone by E-mail Share Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Facebook Tweet about Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Twitter Bookmark Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Google Bookmark Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Delicious Rank Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Digg Find More places to share Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

243

CDM Emission Reductions Calculation Sheet Series | Open Energy Information  

Open Energy Info (EERE)

CDM Emission Reductions Calculation Sheet Series CDM Emission Reductions Calculation Sheet Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CDM Emission Reductions Calculation Sheet Series Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy, Water Focus Area: Agriculture, Greenhouse Gas Topics: Baseline projection, GHG inventory Resource Type: Online calculator User Interface: Spreadsheet Website: www.iges.or.jp/en/cdm/report_ers.html Cost: Free CDM Emission Reductions Calculation Sheet Series Screenshot References: CDM Emission Reductions Calculation Sheet Series[1] "IGES ERs Calculation Sheet aims at providing a simplified spreadsheet for demonstrating emission reductions based on the approved methodologies corresponding to eligible project activities. The sheet will provide you

244

Medical physics calculations with MCNP: a primer  

E-Print Network (OSTI)

The rising desire for individualized medical physics models has sparked a transition from the use of tangible phantoms toward the employment of computational software for medical physics applications. One such computational software for radiation transport modeling is the Monte Carlo N-Particle (MCNP) radiation transport code. However, no comprehensive document has been written to introduce the use of the MCNP code for simulating medical physics applications. This document, a primer, addresses this need by leading the medical physics user through the basic use of MCNP and its particular application to the medical physics field. This primer is designed to teach by example, with the aim that each example will illustrate a practical use of particular features in MCNP that are useful in medical physics applications. These examples along with the instructions for reproducing them are the results of this thesis research. These results include simulations of: dose from Tc-99m diagnostic therapy, calculation of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also included are a set of appendices that include useful reference data, code syntax, and a database of input decks including the examples in the primer. The sections in conjunction with the appendices should provide a foundation of knowledge regarding the MCNP commands and their uses as well as enable users to utilize the MCNP manual effectively for situations not specifically addressed by the primer.

Lazarine, Alexis D

2006-08-01T23:59:59.000Z

245

HRA Calculator 4.1.1, Human Reliability Analysis  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes a 8220toolboxapproach that uses a variety of HRA methods. The PRA Tools / HRA Calculator User Group was formed in 2000 to address the industryneed for HRA tools and to encourage consistency in HRA results. Version 4.1.1 adds value by expanding the HRA Calculator methods applied, overcoming past limitations on particular parameters, improving the dependency analysis features...

2009-10-29T23:59:59.000Z

246

Human Reliability Analysis (HRA) Calculator Version 4.21  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes a 8220toolboxapproach that uses a variety of HRA methods. The PRA Tools / HRA Calculator User Group was formed in 2000 to address the industryneed for HRA tools and to encourage consistency in HRA results. Version 4.21 adds value by expanding the HRA Calculator methods applied, overcoming past limitations on particular parameters, improving the dependency analysis features,...

2011-06-07T23:59:59.000Z

247

Calculating Chiller Emissions and Source Energy Use: Commercial Cooling Update: Issue 12, November 1995  

Science Conference Proceedings (OSTI)

Refrigerant phaseouts are raising questions about the environmental impacts of different types of chillers. This Update introduces a hand-calculation method for estimating the emissions and source energy use (i.e., fossil fuel use) of gas and electric chillers. The update also reviews the two methods of chiller systems emissions production: refrigerant losses and fossil fuel combustion; discusses meeting NOx regulations; use of source energy; and examines existing calculation approaches as opposed to a s...

1995-12-07T23:59:59.000Z

248

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

249

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Desjarlais, Andre Omer [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

250

Comparison of Lanczos and subspace iterations for hyperspherical reaction path calculations  

Science Conference Proceedings (OSTI)

In an accurate treatment of 3-dimensional reactive scattering using Adiabatically-adjusting, Principal axes Hyperspherical (APH) coordinates, we obtain a 2-dimensional Schr/umlt o/dinger equation defined on the surface of a hypersphere. The surface Hamiltonian, which depends parametrically on the sector hyperradius /rho//sub h/, must be diagonalized for many (100/endash/200) values of /rho//sub h/. The surface (eigen)functions are expanded in a finite element basis, where a non-uniform finite element mesh is allowed to adjust for each /rho//sub h/. Projection of the finite element basis onto the surface Hamiltonian yields a generalized eigenvalue problem. Typically of the lowest 50/endash/100 eigenvalues and eigenfunctions are required at each /rho//sub h/. Since the calculation of the surface functions is currently the expensive step for our reactive scattering procedure, it is necessary to calculate these functions as efficiently as possible. In this paper, we use both the subspace iteration and block Lanczos (with selective orthogonalization) methods to calculate the surface functions. Using both solution methods, we diagonalize the finite element matrices (of order = 1729 and of half bandwidth = 109) constructed for the LiH + F in equilibrium Li + HF system. CPU timings for both methods are examined as a function of the number of converged eigenvalues. Since we can generate a good initial subspace form the eigenvectors calculated at the previous value of /rho//sub h/, we find that the subspace iteration is competitive with the block Lanczos method when many (90) eigenvalues are calculated. 20 refs., 6 figs., 1 tab.

Kress, J.D.; Parker, G.A.; Pack, R.T.; Archer, B.J.

1988-01-01T23:59:59.000Z

251

A COMPARISON OF MEASURED AND CALCULATED GAMMA RAY ATTENUATION FOR A COMMON COUNTING GEOMETRY  

Science Conference Proceedings (OSTI)

In order to perform quantitative gamma spectroscopy, it is necessary to know the sample-specific detection efficiency for photons as a function of energy. The detection efficiency, along with the branching ratio for the isotope and gamma ray of interest, is used to convert observed counts/second to actual disintegrations/second, and, hence, has a large effect on the accuracy of the measurement. In cases where the geometry of the source is simple and reproducible, such as a point source, small vial of solid, or jar of liquid, geometry-specific standards may be counted to determine the detection efficiency. In cases where the samples are large, irregular, or unique, this method generally cannot be used. For example, it is impossible to obtain a NIST-traceable standard glovebox or 55-gallon drum. In these cases, a combination of measured absolute detector efficiency and calculated sample-specific correction factors is commonly used. The correction factors may be calculated via Monte Carlo simulation of the item (the method used by Canberra's ISOCS system), or via semi-empirical calculation of matrix and container attenuations based on the thickness and composition of the container and radioactive matrix (ISOTOPIC by EG&G Ortec uses this method). The accuracy of these correction factors for specific geometries is often of vital interest when assessing the quality of gamma spectroscopy data. During the Building 251 Risk-Reduction Project, over 100 samples of high activity actinides will be characterized via gamma spectroscopy, typically without removing the material from the current storage containers. Most of the radioactive materials in B-251 are stored in cylindrical stainless steel canisters (called USV containers, after the Underground Storage Vaults they are commonly stored in), 13 cm in diameter, by 28 cm high, with walls that are 1.8 mm thick. While the actual samples have a variety of configurations inside the USV container, a very common configuration is the material (usually as an oxide powder pellet of approximately 2 cm diameter by {approx}2 mm thick) in a squat glass jar, with the jar placed in a thin steel food-pack can, which is then placed in the bottom of the USV canister. During data acquisition, the USV containers are typically rotated at approximately 4 rpm on a turntable to eliminate errors due to the material not being centered in the can, or attenuation not being isotropic. An aluminum plate is placed over the container, secured by three vertical rods, to securely hold the container. Pictures of both the containers, and this typical counting configuration are shown below.

Gaylord, R F

2004-02-26T23:59:59.000Z

252

Handbook of Industrial Engineering Equations, Formulas, and Calculations  

SciTech Connect

The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?

Badiru, Adedeji B [ORNL; Omitaomu, Olufemi A [ORNL

2011-01-01T23:59:59.000Z

253

The Acoustic Properties of Different Noise Sources  

Science Conference Proceedings (OSTI)

This paper discusses a method to find the acoustic properties of different types of background noise: highway, airport, subway, restaurant, rain, inside a car, and inside a train. Four parameters are calculated using the Auto Correlation Function (ACF). ... Keywords: Environmental noise, noise classification

Jidong Yang; Buket D. Barkana

2009-04-01T23:59:59.000Z

254

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION  

E-Print Network (OSTI)

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D- Original RTSM.......................................................153 4.4.1 RTSM Peak Design Cooling Load

255

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Calculator for Air-Cooled Electric Chillers to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Air-Cooled Electric Chillers on...

256

SUPPORTING CALCULATIONS FOR SUBMERGED BED SCRUBBER CONDENSATE DISPOSAL PRECONCEPTUAL STUDY  

Science Conference Proceedings (OSTI)

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Pre conceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

PAJUNEN AL; TEDESCHI AR

2012-09-18T23:59:59.000Z

257

New Mariners and a Massive Map: Berkeley Computers Calculate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariners and a Massive Map: Berkeley Computers Calculate What's in the Sky New Mariners and a Massive Map: Berkeley Computers Calculate What's in the Sky February 2, 2012 - 12:08pm...

258

Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study  

SciTech Connect

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

Pajunen, A. J.; Tedeschi, A. R.

2012-09-18T23:59:59.000Z

259

EPRI Energy Efficiency CO2 Intensity Calculator, 2010  

Science Conference Proceedings (OSTI)

This spreadsheet calculator will allow members to quantify the impact of their energy efficiency savings on carbon-dioxide emissions, specific to their region and the end-uses for which the savings emanate. This user-friendly COintensity calculator is a Microsoft Excel application to help utility staff calculate the impact of their actual or planned energy efficiency programs on emissions of CO8322. The calculator will access a database of load dispatch simulation runs of the EPRI National Electric Syste...

2010-12-01T23:59:59.000Z

260

Improved nuclear matter calculations from chiral low-momentum interactions  

Science Conference Proceedings (OSTI)

We present nuclear matter calculations based on low-momentum interactions derived from chiral effective field theory potentials. The current calculations use an improved treatment of the three-nucleon force (3NF) contribution that includes a corrected combinatorial factor beyond Hartree-Fock that was omitted in previous nuclear matter calculations. We find realistic saturation properties using parameters fit only to few-body data, but with larger uncertainty estimates from cutoff dependence and the 3NF parametrization than in previous calculations.

Hebeler, K. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Bogner, S. K. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48844 (United States); Furnstahl, R. J. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Nogga, A. [Institute for Advanced Simulations, Institut fuer Kernphysik and Juelich Centre for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Schwenk, A. [ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Portable programmable calculator programs for HVAC noise applications  

Science Conference Proceedings (OSTI)

Several RPN programs suitable for HP?97 and ?41C calculator use are briefly described in terms of their applications

David A. Conant

1981-01-01T23:59:59.000Z

262

Portable programmable calculator programs for HVAC noise applications  

Science Conference Proceedings (OSTI)

Seven RPN programs suitable for HP?97 and 41?C calculator use are briefly described in terms of their applications

David A. Conant

1981-01-01T23:59:59.000Z

263

Handbook on Material and Energy Balance Calculations in ...  

Science Conference Proceedings (OSTI)

Jul 1, 1998 ... Handbook on Material and Energy Balance Calculations in Metallurgical Processes by H. Alan ... Extraction and Processing; Fundamentals;...

264

TDHF fusion calculations for spherical+deformed systems  

E-Print Network (OSTI)

We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.

A. S. Umar; V. E. Oberacker

2006-04-04T23:59:59.000Z

265

Oblique shock wave calculations for detonation waves in brass confined and bare PBXN-111 cylindrical charges  

SciTech Connect

Shock polar theory is used to calculate the angles detonation fronts make with the cylinder wall for brass cased and bare PBXN-111 cylinders. Two extrapolated unreacted PBXN-111 Hugoniot curves are used to calculate these angles. Measured and calculated angles for bare PBXN-111 cylinders are in good agreement for one of the unreacted PBXN-111 Hugoniots. Except for the 100 mm diameter charge, the differences between calculated and measured angles for brass cased charges are beyond experimental error. Limited data suggests that the wave front curvature exhibits a large change right at the brass wall and the resolution in the experiments may not be fine enough to show it clearly. {copyright} {ital 1998 American Institute of Physics.}

Lemar, E.R. [Naval Surface Warfare Center, Indian Head Division, Indian Head, Maryland 20640 (United States); Forbes, J.W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Cowperthwaite, M. [Enig Associates, Inc., Silver Spring, Maryland 20904 (United States)

1998-07-01T23:59:59.000Z

266

Calculation of SY tank annulus continuous air monitor readings after postulated leak scenarios  

Science Conference Proceedings (OSTI)

The objective of this work was to determine whether or not a continuous air monitor (CAM) monitoring the annulus of one of the SY Tanks would be expected to alarm after three postulated leak scenarios. Using data and references provided by Lockheed Martin`s Tank Farm personnel, estimated CAM readings were calculated at specific times after the postulated scenarios might have occurred. Potential CAM readings above background at different times were calculated for the following leak scenarios: Leak rate of 0.01 gal/min; Leak rate of 0.03 gal/min (best estimate of the maximum probable leak rate from a single-shell tank); and Leak of 73 gal (equivalent to a {1/4}-in. leak on the floor of the annulus). The equation used to make the calculations along with descriptions and/or explanations of the terms are included, as is a list of the assumptions and/or values used for the calculations.

Kenoyer, J.L.

1998-08-01T23:59:59.000Z

267

Parametric HECTR calculations of hydrogen transport and combustion at N Reactor  

DOE Green Energy (OSTI)

This report describes a limited number of parametric calculations of hydrogen transport and combustion in the N Reactor confinement for selected accident sequences. The calculations are performed using the HECTR computer code, which is a lumped-parameter code developed specifically for evaluating hydrogen behavior in reactor containments. A number of parameters are evaluated in this study, including hydrogen source rate, spray effects, and source location. The calculations indicate that mixing within major compartments tends to occur fairly rapidly, but that mixing between compartments can be inhibited in certain situations, resulting in the formation of flammable mixtures. These results are being compared to calculations performed with other computer codes, including a code that uses finite-difference models. United Nuclear Corporation will present the results of these code comparisons in future reports.

Payne, A.C. Jr.; Camp, A.L.

1987-06-01T23:59:59.000Z

268

Graphical Representation of SUSY and C-Program Calculation  

E-Print Network (OSTI)

We present a graphical representation of the supersymmetry and a C-program for the graphical calculation. Calculation is demonstrated for 4D Wess-Zumino model and for Super QED. The chiral operators are graphically expressed in an illuminating way. The tedious part of SUSY calculation, due to manipulating chiral suffixes, reduces considerably. The application is diverse.

Shoichi Ichinose

2006-03-28T23:59:59.000Z

269

Examinations of electron temperature calculation methods in Thomson scattering diagnostics  

Science Conference Proceedings (OSTI)

Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. {chi}-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the {chi}-square test are examined and scale factor test is proposed as an alternative method.

Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin [National Fusion Research Institute, 113 Gwahangno, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

2012-10-15T23:59:59.000Z

270

Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide  

Science Conference Proceedings (OSTI)

We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using in situ ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized {pi} states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

Lee, Younjoo; Lee, Hyunbok; Park, Soohyung; Yi, Yeonjin [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of)

2012-12-03T23:59:59.000Z

271

BENCHMARKING UPGRADED HOTSPOT DOSE CALCULATIONS AGAINST MACCS2 RESULTS  

Science Conference Proceedings (OSTI)

The radiological consequence of interest for a documented safety analysis (DSA) is the centerline Total Effective Dose Equivalent (TEDE) incurred by the Maximally Exposed Offsite Individual (MOI) evaluated at the 95th percentile consequence level. An upgraded version of HotSpot (Version 2.07) has been developed with the capabilities to read site meteorological data and perform the necessary statistical calculations to determine the 95th percentile consequence result. These capabilities should allow HotSpot to join MACCS2 (Version 1.13.1) and GENII (Version 1.485) as radiological consequence toolbox codes in the Department of Energy (DOE) Safety Software Central Registry. Using the same meteorological data file, scenarios involving a one curie release of {sup 239}Pu were modeled in both HotSpot and MACCS2. Several sets of release conditions were modeled, and the results compared. In each case, input parameter specifications for each code were chosen to match one another as much as the codes would allow. The results from the two codes are in excellent agreement. Slight differences observed in results are explained by algorithm differences.

Brotherton, Kevin

2009-04-30T23:59:59.000Z

272

Improved Numerical Method for Calculation of 4-Body Transition Amplitudes  

E-Print Network (OSTI)

In order to study 4-body atomic collisions such as excitation-ionization, transfer with target excitation, and double electron capture, the calculation of a nine-dimensional numerical integral is often required. This calculation can become computationally expensive, especially when calculating fully differential cross sections (FDCS), where the positions and momenta of all the particles are known. We have developed a new technique for calculating FDCS using fewer computing hours, but more memory. This new technique allows for much more efficient calculations and the use of many fewer resources.

Harris, A L

2013-01-01T23:59:59.000Z

273

Calculation of the impact sensitivity characteristics of solid explosives  

Science Conference Proceedings (OSTI)

A method is proposed for calculating the critical impact initiation parameters of solid explosive in connection with fall-hammer sensitivity tests using a Kholevo No. 2 instrument. Tables present the initial data for calculating the critical initiation parameters of a series of common explosives, and the results of the calculations. Also shown are the results of calculating p and delta as functions of the composition of an ammonium perchlorate-Plexiglas mixture. The experimental data on the sensitivity of this mixture are consistent with the calculations made on the assumption of a chemical reaction between the ammonium-perchlorate and the Plexiglas (or their thermal decomposition products) on impact.

Dubovik, A.V.

1986-07-01T23:59:59.000Z

274

CRC handbook of nuclear reactors calculations. Vol. III  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.

Ronen, Y.

1986-01-01T23:59:59.000Z

275

Calculation of dose to soft tisse from implanted beta sources  

E-Print Network (OSTI)

Treatment of Arterio-Venous Malformation (AVM) requires the occlusion of the unwanted arteries. Irradiation of a blood vessel wall with beta particles causes it to be permanently blocked by multiplication of the endothelial cells. For this purpose, spherical radioactive particles are injected into these arteries. This study deals with the development of BRAIN-DOSES, a computer code based on VARSKIN MOD2 and SADDE MOD2, which evaluates gamma and beta dose distributions for radioactive sources with five different geometries: point, line, shell cylinder, solid cylinder and solid sphere. Since the particles injected into the blood vessels can be modeled as a line of spheres, this work focuses on the development of a computational method for estimating the spatial distribution of absorbed dose around a line of spheres. BRAIN-DOSES uses integration of Berger point kernels over the source volume, employing the scaled point kernels tabulated by Berger in 1971. This method requires calculation of the beta particle path within the two media crossed, tissue and source material. Consequently, besides the computational approach, this study describes a detailed geometrical approach of the problem. Results obtained from calculations with BRAIN-DOSES have been used to evaluate the beta dose distribution in the capillary walls of the rete of pigs, a vascular system which may model an AVM. The source was a 418 CI line of spheres made of a mixture of 42.8% hydrated polyacrylonitrile (PAN), 49.8% powdered Pt-197 and 7.4% powdered Pr-142 (in weight percentage). The sphere diameters were from 150 to 350 gm.

Dauffy, Lucile

1998-01-01T23:59:59.000Z

276

Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006  

SciTech Connect

This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

George, K.; Schweizer, T.

2008-01-01T23:59:59.000Z

277

Federal Energy Management Program: Energy Cost Calculator for Electric and  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Cost Energy Cost Calculator for Electric and Gas Water Heaters to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on AddThis.com...

278

Fast closed-form calculation of THz field enhancement in a metal nanoslit  

SciTech Connect

Strong electric field enhancement in a metal nanoslit with THz field illumination is hardly calculated using the standard simulation packages. It is explained by the considerable difference of the values of nano sizes of the slit and the wavelength of the incident radiation (up to 10000 times). Therefore, significant computational resources or/and the home-made simulation code is needed. We offer the simple single-parameter model as an alternative to the time consuming calculations. The single parameter can be calculated either from the experimental or simulation data (one reference point is necessary to determine one parameter). Then we can find the field enhancement for different slit geometries and light wavelengths.

Novitsky, A. V. [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Orsteds pl., Bld. 343, DK-2800 Kgs. Lyngby (Denmark); Department of Theoretical Physics, Belarusian State University, Nezavisimosti Avenue 4, 220030 Minsk (Belarus); Lavrinenko, A. V. [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Orsteds pl., Bld. 343, DK-2800 Kgs. Lyngby (Denmark)

2010-10-07T23:59:59.000Z

279

MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

2009-03-01T23:59:59.000Z

280

Window nighttime U-values: A comparison between computer calculations and MoWiTT measurements  

SciTech Connect

The proper specification of window U-values has been a controversial area for many years, and current attempts to incorporate more careful treatment of windows into building standards and utility conservation programs and to define window energy labels has heightened the controversy. In a previous paper (Klems 1979) it was argued that current calculation techniques, as embodied in the computer program WINDOW, accurately represented field-measured window U-values, provided frame corrections and surface heat transfer coefficients were correctly estimated, and that in most cases the calculations were also consistent with test laboratory measurements on the same windows. This means that the calculation could serve both as a standard for deriving calculated U-values and as a method of comparing measurements made under different conditions to determine their consistency. This work has now been extended to form a joint US/Canadian collaborative effort to test current computer programs. For six windows the U-values measured with the MoWiTT under field conditions are compared with detailed U-value calculations for the same conditions using the programs WINDOW and ANSYS. There is good agreement between measurements and calculations. 7 refs., 3 figs., 4 tabs.

Klems, J.H.; Reilly, S.

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Linear scaling 3D fragment method for large-scale electronic structure calculations  

Science Conference Proceedings (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39% of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFT calculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N{sup 3}) methods, and the potential for petascale computation using the LS3DF method.

Wang, Lin-Wang; Wang, Lin-Wang; Lee, Byounghak; Shan, HongZhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David

2008-07-11T23:59:59.000Z

282

Home Energy Score Calculation Methodology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Score Calculation Methodology Home Energy Score Calculation Methodology Home Energy Score Calculation Methodology A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home Energy Scoring Tool to estimate the home's energy use. The Scoring Tool converts it into a Score and develops recommendations for energy improvements. All the data required to calculate the Home Energy Score is listed in the Data Collection Sheet. The calculation method holds a number of variables constant. For example, it assumes, that the thermostat is set at specific levels at various points of the year, and that homeowners use appliances in a standard way. By holding these other variables constant, the Home Energy Score allows

283

Federal Energy Management Program: Energy Cost Calculator for Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Cost Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Digg Find More places to share Federal Energy Management Program: Energy

284

Building Energy Software Tools Directory: Cool Roof Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Cool Roof Calculator logo. Many reflective roof coatings and membranes are now available for low-slope roofs. These coatings help to reduce summer air-conditioning loads, but can also increase the winter heating load. The Cool Roof Calculator will estimate both how much energy you'll save in the summer and how much extra energy you'll need in the winter. Cool Roof Calculator provides answers on a 'per square foot' basis, so you can then multiply by the area of your roof to find out your net savings each year. Keywords reflective roof, roofing membrane, low-slope roof Validation/Testing The Radiation Control Fact Sheet describes both the analytical and experimental results that went into the calculator's development. Expertise Required

285

Federal Energy Management Program: Energy Cost Calculator for Compact  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Fluorescent Lamps to someone by E-mail Compact Fluorescent Lamps to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

286

Investigation of materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

materials performances in high moisture materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines Gerald Meier, Frederick Pettit and Keeyoung Department of Materials Science and Engineering, Jung University of Pittsburgh Pittsburgh, PA 15260 Peer review Workshop III UTSR Project 04 01 SR116 October 18-20, 2005 Project Approach Task I Selection and Preparation of Specimens Task II Selection of Test Conditions Specimens : GTD111+CoNiCrAlY and Pt Aluminides, N5+Pt Aluminides Deposit : No Deposit, CaO, CaSO 4 , Na 2 SO 4 1150℃ Dry 1150℃ Wet 950℃ Wet 750℃ SO 3 950℃ Dry Selection of Test Temperature, T 1 , Gas Environment and Deposit Composition, D

287

Impacts of Static Pressure Reset on VAV System Air Leakage, Fan Power and Thermal Energy - Part 2: Case Demonstration for a Typical Climate System  

E-Print Network (OSTI)

In Part 1 of this paper, the theoretical models, integrating the fan airflow, fan head, air leakage factors, are developed to analyze the impacts of the static pressure reset on both pressure dependent and pressure independent terminal boxes. In this part, a simulated air handling unit (AHU) system in Omaha NE is used to demonstrate the energy savings performance in one typical climate year. This AHU system has a static pressure reset system and two constant static pressure systems, one having pressure dependent terminal boxes and one having pressure independent terminal boxes. These simulated systems were compared mainly on the basis of fan power energy consumption and thermal energy consumption in totally a year. The example presents a good agreement with the theoretical model and simulation results. It was also shown that static pressure reset provides a promising and challenging way for the energy performance in VAV system.

Liu, M.; Zheng, K.; Wu, L.; Wang, Z.; Johnson, C.

2007-01-01T23:59:59.000Z

288

A Cosmology Calculator for the World Wide Web  

E-Print Network (OSTI)

A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.

Edward L. Wright

2006-09-20T23:59:59.000Z

289

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Calculator For Solid Waste IGES GHG Calculator For Solid Waste Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary Name: IGES GHG Calculator For Solid Waste Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Complexity/Ease of Use: Simple Cost: Free Related Tools Energy Development Index (EDI) Harmonized Emissions Analysis Tool (HEAT) Electricity Markets Analysis (EMA) Model ... further results A simple spreadsheet model for calculating greenhouse gas emissions from existing waste management practices (transportation, composting, anaerobic digestion, mechanical biological treatment, recycling, landfilling) in

290

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

291

Property Libraries for Working Fluids for Calculating Heat ...  

Science Conference Proceedings (OSTI)

... properties of working fluids can be used for the daily work of an engineer who calculates heat cycles, steam or gas turbines, boilers, heat pumps or ...

2006-07-20T23:59:59.000Z

292

Atomic Reference Data for Electronic Structure Calculations - TMS  

Science Conference Proceedings (OSTI)

Feb 7, 2007 ... For this resource, data have been generated for atomic electronic structure calculations, to provide a standard reference for results of specified...

293

Appendix I. Using PANDAT to Calculate Phase Diagrams  

Science Conference Proceedings (OSTI)

After installing the software PANDAT in a personal computer (PC) and loading a thermodynamic database of interest, we can start to calculate phase diagrams.

294

CFD Calculation of Nitrogen Gas Quenching for Steel Ring Gears  

Science Conference Proceedings (OSTI)

In this study, we present CFD calculations of gas quenching process during the ... Exercise on Thermal and Thermosolutal Natural Convection in Liquid Alloys.

295

A Look Inside the Cash Flow Opportunity Calculator FINAL  

NLE Websites -- All DOE Office Websites (Extended Search)

Cash Flow Opportunity (CFO) Calculator was developed to address the "we don't have the money" objection that many organizations face when trying to implement energy efficiency...

296

Building Energy Software Tools Directory: Czech National Calculation...  

NLE Websites -- All DOE Office Websites (Extended Search)

to the energy demands); the calculation of the energy required by the energy systems (boilers, AHU units, DHW systems, lighting, etc.) needed to provide the necessary heating or...

297

Energy Star Building Upgrade Value Calculator | Open Energy Information  

Open Energy Info (EERE)

Energy Star Building Upgrade Value Calculator Energy Star Building Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) Agency/Company /Organization: ENERGY STAR Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Spreadsheet Website: www.energystar.gov/index.cfm?c=comm_real_estate.building_upgrade_value The Building Upgrade Value Calculator allows practitioners to analyze the

298

First Principles Calculations of Uranium and Uranium-Zirconium Alloys  

Science Conference Proceedings (OSTI)

Presentation Title, First Principles Calculations of Uranium and Uranium- Zirconium Alloys. Author(s), Benjamin Good, Benjamin Beeler, Chaitanya Deo, Sergey...

299

Building Energy Software Tools Directory: Raymaps Solar Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

energy requirement of a household and based upon that calculates the number of solar panels and batteries required by the solar system. The application contains the default...

300

Heating Fuel Comparision Calculator - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

HEAT CONTENT PRICES INSTRUCTIONS CALCULATOR Fuel Heat Content Per Unit (Btu) Fuel Type Electricity Propane Kerosene Gallon Cord Ton AFUE Natural Gas COP Geothermal ...

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Handbook on Material and Energy Balance Calculations in ...  

Science Conference Proceedings (OSTI)

12/31/2012 - Handbook on Material and Energy Balance Calculations in Materials Processing, Third Edition (2011), by Arthur E. Morris, Gordon H. Geiger, and...

302

Calculate returns on energy efficiency investments | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculate returns on energy efficiency investments Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial...

303

??dynamics: A new approach to free energy calculations  

Science Conference Proceedings (OSTI)

We present a novel and efficient method for performing free energy calculations. Treating the conventional ? variables associated with the progress in the chemical coordinates dynamically

Xianjun Kong; Charles L. Brooks III

1996-01-01T23:59:59.000Z

304

One-shot free energy calculations for crystalline materials.  

E-Print Network (OSTI)

??Current methods for free energy calculations in materials science are either computationally expensive, as lambda-integration, or based on the harmonic approximation and thus only applicable (more)

Andersson, Tommy

2012-01-01T23:59:59.000Z

305

The Materials Project: Combining Density Functional Theory Calculation...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project The Materials Project: Combining Density Functional Theory Calculations with Supercomputing Centers for New Materials Discovery May 2, 2013 jain2 Anubhav Jain...

306

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Urinals to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Urinals on Facebook Tweet about Federal Energy Management Program: Energy Cost...

307

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Unitary Air Conditioner (Rooftops) to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Commercial Unitary Air Conditioner (Rooftops)...

308

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Faucets and Showerheads to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Faucets and Showerheads on Facebook Tweet about Federal Energy...

309

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERIST...  

National Nuclear Security Administration (NNSA)

1 Session 12: Engineering and Criticality Experimental And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing 237 Np + 239 Pu(98%) in The Core...

310

Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations.  

E-Print Network (OSTI)

??Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these (more)

Boyd, Steven J

2006-01-01T23:59:59.000Z

311

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

(RTUs). Learn more about the High Performance Rooftop Unit Challenge. To calculate the energy and money you could save with an efficient commercial air conditioner, use the cost...

312

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Urinals Vary water cost, frequency of operation, and or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with...

313

Neutronics and radiation damage calculations for fusion reactors  

DOE Green Energy (OSTI)

Some of the neutronics calculations that have been carried out at the Oak Ridge National Laboratory to assess radiation damage problems in fusion reactors are presented and discussed.

Alsmiller, R.G. Jr.; Gabriel, T.A.; Santoro, R.T.

1977-01-01T23:59:59.000Z

314

Calculation of tunneling rates across a barrier with continuous potential  

E-Print Network (OSTI)

Here, approximate, but accurate expressions for calculation of wavefunctions and tunneling rates are obtained using the method of uniform asymptotic expansion.

Sina Khorasani

2011-04-10T23:59:59.000Z

315

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm...

316

The Efficient Numerical Calculation of Condensational Cloud Drop Growth  

Science Conference Proceedings (OSTI)

A modified Runge-Kutta integration technique is applied to condensational cloud droplet growth calculations, and the use of variable time steps is discussed.

Norman F. Robinson

1984-02-01T23:59:59.000Z

317

CALCULATIONS OF THE ELECTRON DAMPING FORCE ON MOVING EDGE DISLOCATIONS  

E-Print Network (OSTI)

APPENDIX. B) 1II-2-2. Electrical Resistivity By making useobtained above, electrical resistivity is calculated. Thenext chapter IV- Electrical resistivity (conductivity) is

Mohri, T.

2010-01-01T23:59:59.000Z

318

Comparison of magnetostatic field calculation methods on 2-D ...  

Science Conference Proceedings (OSTI)

... of calculating the in-plane components of magnetostatic ... the remanent state is symmetric about the ... a small component of the magnetization appears ...

319

Illustrative Calculation of Economics for Heat Pump and "Grid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rate discount calculation for DR WH.pdf More Documents & Publications Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges EA-1352: Final Environmental...

320

Benchmark Calculations for Standard and DUPIC CANDU Fuel Lattices Compared with the MCNP-4B Code  

SciTech Connect

Cell-code benchmark calculations have been performed for the standard CANDU and DUPIC CANDU fuel lattices compared with the MCNP-4B code. To consider the full isotopic composition and the temperature effect, new MCNP libraries have been generated from ENDF/B-VI release 3 and validated for typical benchmark problems. The lattice codes WIMS-AECL and HELIOS were then benchmarked by the MCNP code for the major physics parameters such as burnup reactivity, coolant void reactivity, fuel temperature coefficient, etc. The calculations have shown that the physics parameters estimated by the lattice codes are consistent with those by MCNP. However, there is a tendency that the error increases slightly when the fuel burnup is high. This study has shown that the WIMS-AECL produces reliable results for CANDU fuel analysis. However, it is recommended that the cross-section library be updated to be used for the high-burnup fuels even though the current results are generally acceptable. This study has also shown that the HELIOS code has the potential to be used for CANDU fuel lattice analysis in the future.

Roh, Gyuhong; Choi, Hangbok [Korea Atomic Energy Research Institute (Korea, Republic of)

2000-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL  

SciTech Connect

The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kolmogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein elucidate three regimes of turbulent burning. In the simplest case, large-scale turbulence folds and deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately by the speed of turbulent fluctuations on the integral scale, U{sub L} , This is the regime where the supernova explosion begins and where most of its pre-detonation burning occurs. As the density declines, turbulence starts to tear the individual flamelets, making broader structures that move faster. For a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of a flame brush moving with an overall speed of U{sub L} remains valid. However, the typical width of the individual flamelets, which is given by the condition that their turnover time equals their burning time, continues to increase as the density declines. Eventually, mixed regions almost as large as the integral scale itself are transiently formed. At that point, a transition to detonation can occur. The conditions for such a transition are explored numerically and it is estimated that the transition will occur for densities near 1 x 10{sup 7} g cm{sup -3}, provided the turbulent speed on the integral scale exceeds about 20% sonic. An example calculation shows the details of a detonation actually developing.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R.; Sankaran, V. [Combustion Research Facility, Sandia National Laboratory, Livermore, CA 94551 (United States); Aspden, A. J. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Roepke, F. K., E-mail: woosley@ucolick.or, E-mail: arkerst@sandia.go, E-mail: AJAspden@lbl.go, E-mail: fritz@mpa-Garching.mpg.d [Max Planck Institut fuer Astrophysik, Garching (Germany)

2009-10-10T23:59:59.000Z

322

An Exact Calculation of Electron-Ion Energy Splitting in a Hot Plasma  

SciTech Connect

In this brief report, I summarize the rather involved recent work of Brown, Preston, and Singleton (BPS). In Refs. [2] and [3], BPS calculate the energy partition into ions and electrons as a charged particle traverses a non-equilibrium two-temperature plasma. These results are exact to leading and next-to-leading order in the plasma coupling g, and are therefore extremely accurate in a weakly coupled plasma. The new BPS calculations are compared with the more standard work of Fraley et al. [12]. The results differ substantially at higher temperature when T{sub I} {ne} T{sub e}.

Singleton, Robert L [Los Alamos National Laboratory

2012-09-10T23:59:59.000Z

323

Calculation of the charge-carrier mobility in diamond at low temperatures  

Science Conference Proceedings (OSTI)

The discrepancies between the quasi-elastic and inelastic approaches to the calculation of the electron and hole mobilities in diamond at low temperatures when the carrier scattering from acoustic phonons becomes significantly inelastic have been numerically estimated. The calculations showed that the mobility described by a close-to-equilibrium distribution function differs several times from that obtained within the quasi-elastic approach even at 20 K. The results obtained are important for interpreting the low-temperature electrical experiments on high-purity diamond single crystals.

Baturin, A. S.; Gorelkin, V. N.; Soloviev, V. R.; Chernousov, I. V., E-mail: ichernousov@inbox.ru [Moscow Institute of Physics and Technology (Russian Federation)

2010-07-15T23:59:59.000Z

324

Greenhouse Gas Emissions for Different Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

325

EXPLANATION OF SIGNIFICANT DIFFERENCES  

Office of Legacy Management (LM)

EXPLANATION OF SIGNIFICANT DIFFERENCES EXPLANATION OF SIGNIFICANT DIFFERENCES WELDON SPRING SITE February 2005 U.S. Department of Energy Office of Legacy Management FINAL: ESD Weldon Spring Site February 2005 1 EXPLANATION OF SIGNIFICANT DIFFERENCES WELDON SPRING SITE I Introduction This document is an Explanation of Significant Differences (ESD) for three Records of Decision (RODs) for the Weldon Spring site located in St. Charles County, Missouri. These RODs were signed by the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). The RODs addressed by this ESD are the following: * Chemical Plant Operable Unit (CPOU) ROD, signed in September 1993. This ROD

326

AC-DC Difference  

Science Conference Proceedings (OSTI)

... The NIST ac-dc Difference Project provides US industry with the essential link between ac ... Facilities/Tools Used: ... NIST CNST Nanofabrication facility. ...

2012-08-09T23:59:59.000Z

327

The Edwards School of Business is once again taking proposals for consulting projects to be completed by MBA students. Accepted projects will cost $2,500 depending on scope, plus expenses, which typically run between $500  

E-Print Network (OSTI)

to be completed by MBA students. Accepted projects will cost $2,500 depending on scope, plus expenses, whichThe Edwards School of Business is once again taking proposals for consulting projects typically run between $500 and $1,000. Though you are not limited to these, typically projects fall within

Saskatchewan, University of

328

Processus communicants Communication synchrone CSP/CCS/-calcul  

E-Print Network (OSTI)

Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation

Grigoras, .Romulus

329

Calculating the nuclear mass at finite angular momenta  

E-Print Network (OSTI)

Mean field methods to calculate the nuclear mass are extended into the high spin regime to calculate the nuclear binding energy as a function of proton number, neutron number and angular momentum. Comparing the trend as a function of mass number for a selection of high-spin states, a similar agreement between theory and experiment is obtained as for ground state masses.

B. G. Carlsson; I. Ragnarsson

2005-03-30T23:59:59.000Z

330

Monte-carlo calculations for some problems of quantum mechanics  

Science Conference Proceedings (OSTI)

The Monte-Carlo technique for the calculations of functional integral in two one-dimensional quantum-mechanical problems had been applied. The energies of the bound states in some potential wells were obtained using this method. Also some peculiarities in the calculation of the kinetic energy in the ground state had been studied.

Novoselov, A. A., E-mail: novoselov@goa.bog.msu.ru; Pavlovsky, O. V.; Ulybyshev, M. V. [Moscow State University (Russian Federation)

2012-09-15T23:59:59.000Z

331

Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation  

E-Print Network (OSTI)

1 Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation Romain Ravaud, Guy and the rotor of an ironless permanent magnet motor. The calculations are carried out without using any, torque, magnetic field, PM Synchronous motors ! 1 INTRODUCTION IRONLESS electrical machines are generally

Paris-Sud XI, Université de

332

PERSPECTIVE Automated protein structure calculation from NMR data  

E-Print Network (OSTI)

PERSPECTIVE Automated protein structure calculation from NMR data Mike P. Williamson ? C. Jeremy completely automatic structure determination of small pro- teins of\\15 kDa, from NMR spectra to structure, particu- larly by structural genomics consortia. Keywords NMR structure calculation of proteins Á

Craven, Jeremy

333

Computationally efficient implementation of combustion chemistry in parallel PDF calculations  

Science Conference Proceedings (OSTI)

In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion ... Keywords: 07.05.Mh, 46.15.-x, 47.11.-j, Combustion chemistry, Distribution strategy, ISAT, Load balance, Parallel calculation

Liuyan Lu; Steven R. Lantz; Zhuyin Ren; Stephen B. Pope

2009-08-01T23:59:59.000Z

334

Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4  

DOE Green Energy (OSTI)

Ab initio total-energy density functional theory is used to investigate the low temperature (LT) monoclinic form of Mg2NiH4. The calculated minimum energy geometry of LT Mg2NiH4 is close to that determined from neutron diffraction data, and the NiH4 complex is close to a regular tetrahedron. The enthalpies of the phase change to high temperature (HT) pseudo-cubic Mg2NiH4 and of hydrogen absorption by Mg2Ni are calculated and compared with experimental values. LT Mg2NiH4 is found to be a semiconductor with an indirect band gap of 1.4 eV. The optical dielectric function of LT Mg2NiH4 differs somewhat from that of the HT phase. A calculated thin film transmittance spectrum is consistent with an experimental spectrum.

Myers, W.R.; Richardson, T.J.; Rubin, M.D.; Wang, L-W.

2001-10-01T23:59:59.000Z

335

Building Energy Software Tools Directory: Popolo Utility Load Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Popolo Utility Load Calculation Popolo Utility Load Calculation Popolo Utility Load Calculation is a collection of classes for calculating various heat transfer phenomena. The routines have been written from scratch in C#, and present a modern Applications Programming Interface (API) for .NET Framework programmers, allowing wrappers to be written for very high level languages. It contains classes to calculate solid conduction, convective heat transfer near wall surfaces, air ventilation, radiative heat balance of wall surfaces, transmitted solar radiation through a window, and so on. Users should build up these classes to simulate a whole complex building system. A sample source code to build test cases of BESTEST are provided. Since all the source code is distributed under the GNU General Public License, they can be freely

336

NREL: Energy Analysis - Levelized Cost of Energy Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Levelized Cost of Energy Calculator Levelized Cost of Energy Calculator Transparent Cost Database Button The levelized cost of energy (LCOE) calculator provides a simple calculator for both utility-scale and distributed generation (DG) renewable energy technologies that compares the combination of capital costs, operations and maintenance (O&M), performance, and fuel costs. Note that this does not include financing issues, discount issues, future replacement, or degradation costs. Each of these would need to be included for a thorough analysis. To estimate simple cost of energy, use the slider controls or enter values directly to adjust the values. The calculator will return the LCOE expressed in cents per kilowatt-hour (kWh). The U.S. Department of Energy (DOE) Federal Energy Management Program

337

Ab-initio Reaction Calculations for Carbon-12 | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Ab-initio Reaction Calculations for Carbon-12 Ab-initio Reaction Calculations for Carbon-12 The calculated density (red dots) is in excellent agreement with experimental data (solid curve). Steven Pieper Ab-initio Reaction Calculations for Carbon-12 PI Name: Steven C Pieper PI Email: spieper@anl.gov Institution: ANL Allocation Program: ESP Allocation Hours at ALCF: 110 Million Year: 2010 to 2013 Research Domain: Physics Researchers will calculate several fundamental properties of the 12C nucleus: the imaginary-time response, the one-body density matrix, and transition matrix elements between isospin- 0 and -1 states. These are needed to be able to reliably compute neutrino-12C scattering, which is needed for neutrino detector calibrations; quasi-elastic electron scattering, which is currently being measured at Jefferson Lab (JLab); and

338

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

339

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) | Open  

Open Energy Info (EERE)

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Jump to: navigation, search Tool Summary Name: EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climateleaders/index.html Cost: Free The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop an annual GHG inventory based on the EPA Climate Leaders Greenhouse Gas Inventory Protocol. Overview The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop

340

PRIMARY SHIELDING CALCULATIONS ON THE IBM 650 (ROC CODES)  

SciTech Connect

Four programs written for the IBM 650 to calculate the gamma dose rates in the primary shielding of thermal reactors are described. Their functions are outlined as follows: Program 651-calculates the core attenuation coefficient and equivalent core gamma volumetric source values for a specific core. Program 652- calculates the activation gamma source data in the shield and prepares tabular data in machine storage for Programs 653 and 654. Program 653- calculates the gamma dose rates in the shield due to gammas arising from activation of shield materials. Program 654calculates the gamma dose rates in the shield due to gammas arising in the core. Gamma photo source values are obtained on the basis of two group neutron flux distributions throughout the reactor core and shield. (W.D.M.)

Rosen, S.S.; Oby, P.V.; Caton, R.L.

1958-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations  

Science Conference Proceedings (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

2008-07-01T23:59:59.000Z

342

Molecular dynamics simulation of montmorillonite and mechanical and thermodynamic properties calculations  

E-Print Network (OSTI)

Nanocomposites refer to the materials in which the defining characteristic size of inclusions is in the order of 10-100nm. There are several types of nanoparticle inclusions with different structures: metal clusters, fullerenes particles and molybdenum selenide, Our research focus is on polymer nanocomposites with inorganic clay particles as inclusions, in particular we used sodium montmorillonite polymer nanocomposite. In our study, modeling and simulations of sodium montmorillonite (Na+-MMT) is currently being investigated as an inorganic nanocomposite material. Na+-MMT clay consists of platelets, one nanometer thick with large lateral dimensions, which can be used to achieve efficient reinforcement of polymer matrices. This nanocomposite has different applications such as a binder of animal feed, a plasticizing agent in cement, brick and ceramic, and a thickener and stabilizer of latex and rubber adhesives. In this study, sodium montmorillonite called Na+-MMT structure is built with the bulk system and the layered system which includes from 1 to 12 layers by using Crystal Builder of Cerius2. An isothermal and isobaric ensemble is used for calculation of thermodynamic properties such as specific heat capacities and isothermal expansion coefficients of Na+-MMT. A canonical ensemble which holds a fixed temperature, volume and number of molecules is used for defining exfoliation kinetics of layered structures and surface formation energies for Na+-MMT layered structures are calculated by using a canonical ensemble. Mechanical properties are used to help characterize and identify the Na+-MMT structure. Several elastic properties such as compliance and stiffness matrices, Young's, shear, and bulk modulus, volume compressibility, Poisson's ratios, Lam constants, and velocities of sound are calculated in specified directions. Another calculation method is the Vienna Ab-initio Simulation Package (VASP). VASP is a complex package for performing ab-initio quantum-mechanical calculations and molecular dynamic (MD) simulations using pseudopotentials and a plane wave basis set. Cut off energy is optimized for the unit cell of Na+-MMT by using different cut off energy values. Experimental and theoretical cell parameters are compared by using cell shape and volume optimization and root mean square (RMS) coordinate difference is calculated for variation of cell parameters. Cell shape and volume optimization are done for calculating optimum expansion or compression constant.

Atilhan, Selma

2007-05-01T23:59:59.000Z

343

Variations in gear fatigue life for different wind turbine braking strategies  

SciTech Connect

A large number of gearbox failures have occurred in the wind industry in a relatively short period, many because service loads were underestimated. High-torque transients that occur during starting and stopping are difficult to predict and may be overlooked in specifying gearbox design. Although these events comprise a small portion of total load cycles, they can be the most damaging. The severity of these loads varies dramatically with the specific configuration of the wind turbine. The large number of failures in Danish-designed Micon 65 wind turbines prompted this investigation. The high-speed and low-speed shaft torques were measured on a two-stage helical gearbox of a single Micon 65 turbine. Transient events and normal running loads were combined statistically to obtain a typical annual load spectrum. The pitting and bending fatigue lives of the gear teeth were calculated by using Miner's rule for four different high-speed shaft brake configurations. Each breaking scenario was run for both a high- and a low-turbulence normal operating load spectrum. The analysis showed increases in gear life by up to a factor of 25 when the standard high-speed shaft brake is replaced with a dynamic brake or modified with a damper. 9 refs., 9 figs., 3 tabs.

McNiff, B.P. (Second Wind, Inc., Somerville, MA (USA)); Musial, W.D. (Solar Energy Research Inst., Golden, CO (USA)); Errichello, R. (GEARTECH, Albany, CA (USA))

1991-06-01T23:59:59.000Z

344

Variations in gear fatigue life for different wind turbine braking strategies  

DOE Green Energy (OSTI)

A large number of gearbox failures have occurred in the wind industry in a relatively short period, many because service loads were underestimated. High-torque transients that occur during starting and stopping are difficult to predict and may be overlooked in specifying gearbox design. Although these events comprise a small portion of total load cycles, they can be the most damaging. The severity of these loads varies dramatically with the specific configuration of the wind turbine. The large number of failures in Danish-designed Micon 65 wind turbines prompted this investigation. The high-speed and low-speed shaft torques were measured on a two-stage helical gearbox of a single Micon 65 turbine. Transient events and normal running loads were combined statistically to obtain a typical annual load spectrum. The pitting and bending fatigue lives of the gear teeth were calculated by using Miner's rule for four different high-speed shaft brake configurations. Each breaking scenario was run for both a high- and a low-turbulence normal operating load spectrum. The analysis showed increases in gear life by up to a factor of 25 when the standard high-speed shaft brake is replaced with a dynamic brake or modified with a damper. 9 refs., 9 figs., 3 tabs.

McNiff, B.P. (Second Wind, Inc., Somerville, MA (USA)); Musial, W.D. (Solar Energy Research Inst., Golden, CO (USA)); Errichello, R. (GEARTECH, Albany, CA (USA))

1991-06-01T23:59:59.000Z

345

MCHF calculations of isotope shifts; I program implementation and test runs II large-scale active space calculations  

Science Conference Proceedings (OSTI)

A new isotope shift program, part of the MCHF atomic structure package, has been written and tested. The program calculates the isotope shift of an atomic level from MCHF or CI wave functions. The program is specially designed to be used with very large CI expansions, for which angular data cannot be stored on disk. To explore the capacity of the program, large-scale isotope shift calculations have been performed for a number of low lying levels in B I and B II. From the isotope shifts of these levels the transition isotope shift have been calculated for the resonance transitions in B I and B II. The calculated transition isotope shifts in B I are in very good agreement with experimental shifts, and compare favourably with shifts obtained from a many-body perturbation calculation.

Joensson, P. [Lund Institute of Technology, Lund (Sweden); Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States)

1994-03-30T23:59:59.000Z

346

Equilibrium cycle pin by pin transport depletion calculations with DeCART  

SciTech Connect

As the Advanced Fuel Cycle Initiative (AFCI) program has matured it has become more important to utilize more advanced simulation methods. The work reported here was performed as part of the AFCI fellowship program to develop and demonstrate the capability of performing high fidelity equilibrium cycle calculations. As part of the work here, a new multi-cycle analysis capability was implemented in the DeCART code which included modifying the depletion modules to perform nuclide decay calculations, implementing an assembly shuffling pattern description, and modifying iteration schemes. During the work, stability issues were uncovered with respect to converging simultaneously the neutron flux, isotopics, and fluid density and temperature distributions in 3-D. Relaxation factors were implemented which considerably improved the stability of the convergence. To demonstrate the capability two core designs were utilized, a reference UOX core and a CORAIL core. Full core equilibrium cycle calculations were performed on both cores and the discharge isotopics were compared. From this comparison it was noted that the improved modeling capability was not drastically different in its prediction of the discharge isotopics when compared to 2-D single assembly or 2-D core models. For fissile isotopes such as U-235, Pu-239, and Pu-241 the relative differences were 1.91%, 1.88%, and 0.59%), respectively. While this difference may not seem large it translates to mass differences on the order of tens of grams per assembly, which may be significant for the purposes of accounting of special nuclear material. (authors)

Kochunas, B.; Downar, T. [Dept. of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Taiwo, T. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

347

WINDOW 4.0: Documentation of calculation procedures  

Science Conference Proceedings (OSTI)

WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Building Technologies Group at the Lawrence Berkeley Laboratory for calculating the thermal and optical properties necessary for heat transfer analyses of fenestration products. This report explains the calculation methods used in WINDOW 4.0 and is meant as a tool for those interested in understanding the procedures contained in WINDOW 4.0. All the calculations are discussed in the International System of units (SI). WINDOW 4.0 is the latest in a series of programs released by the Lawrence Berkeley Laboratory. The WINDOW program has its roots in a paper detailing a method for calculating heat transfer through windows [Rubin, 1982]. WINDOW 4.0 replaces the widely used 3.1 version. Although WINDOW 4.0 is a major revision, many of the algorithms used in WINDOW 4.0 build upon those previously documented [Arasteh, 1989b], [Furler, 1991]. This report documents the calculations that are unchanged from WINDOW 3.1, as well as those calculations that are new to WINDOW 4.0. This report uses the organization of the WINDOW 4.0 program. Results displayed on a WINDOW 4.0 screen are discussed in a section describing that screen. In the conclusion the aspects of the calculation method currently slated for revision are discussed. A glossary of variables used throughout the report is found in Section 11.

Finlayson, E.U.; Arasteh, D.K.; Huizenga, C.; Rubin, M.D. [Lawrence Berkeley Lab., CA (United States); Reilly, M.S. [Enermodal Engineering, Inc., Denver, CO (United States)

1993-07-01T23:59:59.000Z

348

Calculation of heating values for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)

Peterson, J.; Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States)

2012-07-01T23:59:59.000Z

349

Calculation of Heating Values for the High Flux Isotope Reactor  

SciTech Connect

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

Peterson, Joshua L [ORNL; Ilas, Germina [ORNL

2012-01-01T23:59:59.000Z

350

Analysis of drilling fluid rheology and tool joint effect to reduce errors in hydraulics calculations  

E-Print Network (OSTI)

This study presents a simplified and accurate procedure for selecting the rheological model which best fits the rheological properties of a given non- Newtonian fluid and introduces five new approaches to correct for tool joint losses from expansion and contraction when hydraulics is calculated. The new approaches are enlargement and contraction (E&C), equivalent diameter (ED), two different (2IDs), enlargement and contraction plus equivalent diameter (E&C+ED), and enlargement and contraction plus two different IDs (E&C+2IDs). In addition to the Newtonian model, seven major non-Newtonian rheological models (Bingham plastic, Power law, API, Herschel-Bulkley, Unified, Robertson and Stiff, and Casson) provide alternatives for selecting the model that most accurately represents the shear-stress/shear-rate relationship for a given non- Newtonian fluid. The project assumes that the model which gives the lowest absolute average percent error (EAAP) between the measured and calculated shear stresses is the best one for a given non-Newtonian fluid. The results are of great importance in achieving correct results for pressure drop and hydraulics calculations and the results are that the API rheological model (RP 13D) provides, in general, the best prediction of rheological behavior for the mud samples considered (EAAP=1.51), followed by the Herschel-Bulkley, Robertson and Stiff, and Unified models. Results also show that corrections with E&C+2IDs and API hydraulics calculation give a good approximation to measured pump pressure with 9% of difference between measured and calculated data.

Viloria Ochoa, Marilyn

2006-08-01T23:59:59.000Z

351

Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah  

Science Conference Proceedings (OSTI)

For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.

Alharbi, N. D.; Mayhoub, A. B. [Physics Dept., Sciences Faculty for Girls, King Abdulaziz University Jeddah (Saudi Arabia)

2011-12-26T23:59:59.000Z

352

Differences of Random Variables  

E-Print Network (OSTI)

of woodscrews containing a variety of sizes for a local DIY store. The weight W (in kilograms) of boxes happen if the DIY store bought in similar products from different manufacturers. Before we can solve

Vickers, James

353

Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131  

Science Conference Proceedings (OSTI)

A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

Ikenberry, T.A.; Napier, B.A.

1992-12-01T23:59:59.000Z

354

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained During the Spectral Radiance Experiment Y. Han, J. B. Snider, and E. R. Westwater National Oceanic and Atmospheric Administration Environmental Research Laboratories/Environmental Technology Laboratory Boulder, Colorado S. H. Melfi National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland R. A. Ferrare Hughes STX Corporation Lanham, Maryland Introduction In radiometric remote sensing of the atmosphere, the ability to calculate radiances from underlying state variables is fundamental. To infer temperature and water vapor profiles from satellite- or ground-based radiometers, one must determine cloud-free regions and then calculate clear-sky radiance emerging from the top of the earth's

355

A versatile procedure for calculating heat transfer through windows  

SciTech Connect

Advances in window technologies and the desire to standardize the reporting of standard window heat transfer indices have necessitated the development of a comprehensive analytical procedure for calculating heat transfer through windows. This paper shows how complete window heat transfer can be considered as the area-weighted sum of the three window component areas: the center-of-glass area, the edge-of-glass area, and the frame area. Algorithms for calculating heat transfer through each of these areas and for combining these to calculate total window indices are presented. 36 refs., 5 figs., 6 tabs.

Arasteh, D.K.; Reilly, M.S.; Rubin, M.D.

1989-05-01T23:59:59.000Z

356

AIM: Web-Based, Residential Energy Calculator for Homeowners  

E-Print Network (OSTI)

This paper discusses AIM, or Assess, Improve, Measure. AIM is an energy efficiency calculator for existing residences that has been developed to provide homeowners, realtors and builders with a method to rate the energy efficiency of an existing house using a minimum number of inputs. To accomplish this, AIM uses DOE-2 loads simulations and a simplified systems model. To simplify the use of the calculator, parameters such as window U-factor, roof and wall insulation, which are normally required for simulations in existing homes, are automatically provided using statistical tables. This allows homeowners to use the calculator with information commonly available during a real estate transaction.

Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.

2010-08-01T23:59:59.000Z

357

Contract B590089: Technical Evaluation of the Pu Cluster Calculations  

Science Conference Proceedings (OSTI)

Using Synchrotron-Radiation-based Photoelectron Spectroscopy and X-ray Absorption Spectroscopy, the theoretical results within recent progress reports supplied under Contract B590089 have been evaluated. Three appendices are included: A is from Progress Report I; B is from Progress Report II; and C is from an earlier calculation by M. Ryzhkov. The comparisons between the LLNL experimental data and the Russian calculations are quite favorable. The Cluster calculations may represent a new and useful avenue to address unresolved questions within the field of actinide electron structure, particularly that of Pu.

Tobin, J G; Ryzhkov, M; Mirmelstein, A

2011-11-18T23:59:59.000Z

358

CRC handbook of nuclear reactors calculations. Vol. II  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.

Ronen, Y.

1986-01-01T23:59:59.000Z

359

FAST CALCULATION OF THE LOMB-SCARGLE PERIODOGRAM USING GRAPHICS PROCESSING UNITS  

Science Conference Proceedings (OSTI)

I introduce a new code for fast calculation of the Lomb-Scargle periodogram that leverages the computing power of graphics processing units (GPUs). After establishing a background to the newly emergent field of GPU computing, I discuss the code design and narrate key parts of its source. Benchmarking calculations indicate no significant differences in accuracy compared to an equivalent CPU-based code. However, the differences in performance are pronounced; running on a low-end GPU, the code can match eight CPU cores, and on a high-end GPU it is faster by a factor approaching 30. Applications of the code include analysis of long photometric time series obtained by ongoing satellite missions and upcoming ground-based monitoring facilities, and Monte Carlo simulation of periodogram statistical properties.

Townsend, R. H. D., E-mail: townsend@astro.wisc.ed [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

2010-12-15T23:59:59.000Z

360

Shielding Calculations for the Hard X-Rays Generated by LCLS Mec Laser System  

Science Conference Proceedings (OSTI)

Linac Coherent Light Source (LCLS) Matter in Extreme Conditions (MEC) Instrument is an X-ray instrument that will be able to create and diagnose High Energy Density (HED) matter. The MEC laser system can generate hard X-ray due to the interaction of the laser and the plasma. This paper summarizes results of the shielding calculations performed to evaluate the radiation hazards induced by this hard X-ray source with Monte Carlo code FLUKA. The dose rates and photon spectra due to this X-ray source are calculated at different locations with different shielding. The influence of the electron temperature on the source terms and the shielding effectiveness was also investigated.

Not Available

2011-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Energy Software Tools Directory: Construction R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction R-value Calculator Construction R-value Calculator This online calculator calculates the R-value of a large number of common wall and roof constructions given a specified level of insulation. It uses the isothermal planes method to account for thermal bridging of framing material. Keywords R-value, thermal bridging Validation/Testing N/A Expertise Required Basic understanding of construction details is required. Users Approximately 15,000 web hits per month, mainly from New Zealand. Audience Designers and architects, researchers, officials dealing with building regulations Input The user selects the appropriate wall and roof design details from a number of drop-down boxes and enters the R-value of the installed insulation product. Output The program displays the R-value achieved by the wall or roof construction

362

Calculating CO2 Emissions from Mobile Sources | Open Energy Information  

Open Energy Info (EERE)

Calculating CO2 Emissions from Mobile Sources Calculating CO2 Emissions from Mobile Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Calculating CO2 Emissions from Mobile Sources,GHG Protocol Agency/Company /Organization: Aether, Environmental Data Services, Aether, Environmental Data Services Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials & Scenarios Resource Type: Guide/manual Complexity/Ease of Use: Not Available Website: cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20 Cost: Free References: http://cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20and%20Infrastructure%20Planning/Climate%20Change/Guidance_for_mobile_emissions_GHG_protocol.pdf Related Tools Tool and Calculator (Transit, Fuel)

363

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

364

Powered by 500 Trillion Calculations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations April 15, 2011 - 5:31pm Addthis Blood flow visualization | Photo Courtesy of Argonne National Laboratory Blood flow visualization | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications. With the power of 500 trillion calculations per second, a team of scientists from the Department of Energy's Argonne National Laboratory (ANL) and Brown University are mapping the movement of red blood cells -- hoping this will lead to better diagnoses and treatments for patients with

365

Flexible Fuel vehicle cost calculator | Open Energy Information  

Open Energy Info (EERE)

Flexible Fuel vehicle cost calculator Flexible Fuel vehicle cost calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Flexible Fuel Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/progs/cost_anal.php?0/E85 Calculate the cost to drive a flex-fueled vehicle (one that can run on either E85 Ethanol or gasoline) on each fuel type.

366

Calculating Properties of Materials from First Principles-A Tool...  

NLE Websites -- All DOE Office Websites (Extended Search)

more than 20,000 compounds, as well as a materials explorer, a reaction calculator, a phase diagram application, a lithium battery explorer, a crystal toolkit, and a structure...

367

AOAC-Basic Calculations for Chemical and Biological Analyses  

Science Conference Proceedings (OSTI)

Completely revised, this 2nd Edition contains many more examples and three new chapters. Each chapter includes concise descriptions and definitions for the basic principles; derivation of basic equations or concepts used for calculations; relevant techniqu

368

Calculation of the Energy Budget for Heterogeneous Land Surfaces  

Science Conference Proceedings (OSTI)

In this paper a scheme is presented for calculating the land surface energy budget based on the first law of thermodynamics. It takes into account the effects of water multiphase changes and hydrologic process. The enthalpy expression for a ...

Zhengqiu Zhang; Xiuji Zhou; Weiliang Li; Michael Sparrow

2003-01-01T23:59:59.000Z

369

Parallel fault backtracing for calculation of fault coverage  

Science Conference Proceedings (OSTI)

A new improved method for calculation of fault coverage with parallel fault backtracing in combinational circuits is proposed. The method is based on structurally synthesized BDDs (SSBDD) which represent gate-level circuits at higher, macro level where ...

Raimund Ubar; Sergei Devadze; Jaan Raik; Artur Jutman

2008-01-01T23:59:59.000Z

370

Heat transport in silicon from first-principles calculations  

E-Print Network (OSTI)

Using harmonic and anharmonic force constants extracted from density functional calculations within a supercell, we have developed a relatively simple but general method to compute thermodynamic and thermal properties of ...

Esfarjani, Keivan

371

A Look Inside the Cash Flow Opportunity Calculator FINAL  

NLE Websites -- All DOE Office Websites (Extended Search)

A Look Inside the Cash Flow Opportunity (CFO) Calculator: A Look Inside the Cash Flow Opportunity (CFO) Calculator: Calculations and Methodology Background The Cash Flow Opportunity (CFO) Calculator was developed to address the "we don't have the money" objection that many organizations face when trying to implement energy efficiency projects, and to help facility managers translate energy savings into "financial speak." It is the result of proven field experiences that have been used to sell energy efficiency projects to decision-makers around the country. It uses simple financial arguments familiar to all financial managers. This document was prepared in response to numerous requests by users to show the calulations at work behind the worksheets. It will explain the logic behind each worksheet and the reason why the worksheet is included in the package.

372

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Cost Calculator Natural Gas Vehicle Cost Calculator Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/vehicles/natural_gas_calculator.html Determine the costs to acquire and use a Natural Gas Vehicle (Honda Civic GX) as compared to a conventional vehicle.

373

Photovoltaics Economic Calculator (United States) | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Economic Calculator (United States) Photovoltaics Economic Calculator (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application Design Website: instance.celadonapps.com/insolation/insolation.html Equivalent URI: cleanenergysolutions.org/content/photovoltaics-economic-calculator-uni Web-based tool that allows users to describe their solar system in detail and provides a detailed breakdown of power production and system economics. It uses the TMY2 solar data from the United States National Renewable Energy Laboratory's Renewable Resource Data Center. This model is appropriate for U.S.-based users, but it could also serve as an adaptable model example for other countries. References

374

Low Dose Radiation Research Program: Low-LET Microdosimetry Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-LET Microdosimetry Calculations Low-LET Microdosimetry Calculations Authors: W.E. Wilson, J.H. Miller, D.J. Lynch, R.R. Lewis and M. Batdorf Institutions: Washington State University, Richland, WA, USA Liquid Model Calculations of low-linear-transfer (LET) microdosimetry have been extended to condensed phase by introducing new modules into the PITS code suite. Probability tables for inelastic interactions are constructed using the Dingfelder-GSF model for liquid-water cross-sections. Dingfelder et al. 1 re-evaluated low-energy electron interactions in liquid water in terms of five excitation and five ionization channels, and without assuming any collective interactions (plasmons). We use Dingfelder’s algorithms to calculate differential energy-loss distributions for the ten channels; by

375

Qualified Software for Calculating Commercial Building Tax Deducations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Software for Calculating Commercial Building Tax Qualified Software for Calculating Commercial Building Tax Deducations Qualified Software for Calculating Commercial Building Tax Deducations On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

376

Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator |  

Open Energy Info (EERE)

Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Focus Area: Renewable Energy Topics: Policy Impacts Website: rael.berkeley.edu/greenjobs Equivalent URI: cleanenergysolutions.org/content/renewable-and-appropriate-energy-labo Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool is an analytical job calculator for the U.S. power sector. It can be used to estimate how many jobs energy efficiency, renewable energy, and other low-carbon energy options, such as nuclear power and carbon capture and sequestration (CCS), will generate depending on proposed energy

377

Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations  

Science Conference Proceedings (OSTI)

State-of-the-art radiative transfer models can calculate outgoing infrared (IR) irradiance at the top of the atmosphere (F) to an accuracy suitable for climate modeling given the proper atmospheric profiles of temperature and absorbing gases and ...

Starley L. Thompson; Stephen G. Warren

1982-12-01T23:59:59.000Z

378

First Principles Calculations of the Electronic and Atomic Structure of ...  

Science Conference Proceedings (OSTI)

Abstract Scope, U(Pu)O2 solid solution is widely used as nuclear fuel, ... The ground state properties and formation energies of various defects under Pu- or O- rich conditions are calculated. The two ... Uranium Localization in Alpha- Plutonium...

379

Protein Thermostability Calculations Using Alchemical Free Energy Simulations  

E-Print Network (OSTI)

Protein Thermostability Calculations Using Alchemical Free Energy Simulations Daniel Seeliger by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem- ical free energy simulations, such as free energy perturbation or thermodynamic integration

de Groot, Bert

380

A Moist Benchmark Calculation for Atmospheric General Circulation Models  

Science Conference Proceedings (OSTI)

A benchmark calculation is designed to compare the climate and climate sensitivity of atmospheric general circulation models (AGCMs). The experimental setup basically follows that of the aquaplanet experiment (APE) proposed by Neale and Hoskins, ...

Myong-In Lee; Max J. Suarez; In-Sik Kang; Isaac M. Held; Daehyun Kim

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A computer program for HVDC converter station RF noise calculations  

SciTech Connect

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

382

Field Data and Model Calculations for the Hydroxyl Radical  

Science Conference Proceedings (OSTI)

Locally measured tropospheric OH concentrations are compared with model calculations to study the influence of chemical precursors and sunlight. The chemical scheme was taken from the gas phase reaction mechanism of the Regional Acid Deposition ...

D. Poppe; J. Zimmermann; H. P. Dorn

1995-10-01T23:59:59.000Z

383

Singular Vector Calculations with an Analysis Error Variance Metric  

Science Conference Proceedings (OSTI)

Singular vectors of the navy's global forecast model are calculated using an initial norm consistent with an estimate of analysis error variance provided by the Naval Research Laboratory's (NRL) Atmospheric Variational Data Assimilation System (...

Ronald Gelaro; Thomas Rosmond; Roger Daley

2002-05-01T23:59:59.000Z

384

Trajectory Calculations for Spherical Geodesic Grids in Cartesian Space  

Science Conference Proceedings (OSTI)

This paper shows how to obtain accurate and efficient trajectory calculations for spherical geodesic grids in Cartesian space. Determination of the departure points is essential to characteristic-based methods that trace the value of a function ...

Francis X. Giraldo

1999-07-01T23:59:59.000Z

385

Measurements and model calculations of radiative fluxes for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

are compared with calculations made with a state-of-the art radiative transfer model (Modtran). The model is driven by measurements that give an as accurate as possible...

386

Parallel Fission Bank Algorithms in Monte Carlo Criticality Calculations  

E-Print Network (OSTI)

In this work we describe a new method for parallelizing the source iterations in a Monte Carlo criticality calculation. Instead of having one global fission bank that needs to be synchronized, as is traditionally done, our ...

Romano, Paul Kollath

387

EPRI Energy Efficiency CO2 Intensity Calculator, 2013 Edition  

Science Conference Proceedings (OSTI)

This spreadsheet calculator will allow members to quantify the impact of their energy efficiency savings and fuel displacement on carbon-dioxide emissions, specific to their region and the end-uses ...

2013-12-16T23:59:59.000Z

388

A Computer Program for Calculating Tetroon Inflation-Factor Nomographs  

Science Conference Proceedings (OSTI)

A slow but steady increase in the use of tetroons for tracing atmospheric air trajectories has prompted the development of an automatic method for calculating accurate tetroon inflation factors to float tetroons at desired elevations. The ...

Walter H. Hoecker

1981-08-01T23:59:59.000Z

389

Energy and Cost Savings Calculators for Energy-Efficient Products  

Energy.gov (U.S. Department of Energy (DOE))

The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products....

390

Draft paper on calculations related to prompt burst reactors (SUPO)  

SciTech Connect

This report provides reactor physics calculations for prompt burst reactors similar to the Los Alamos SUPO reactor. A discussion of the water boiler runaway at Hanford on November 15, 1951 is also provided.

1964-07-21T23:59:59.000Z

391

Comparisons of the Calculations Using Different Codes Implemented in MCNPX Monte Carlo Transport Code for Accelerator Driven System Target  

Science Conference Proceedings (OSTI)

Modeling and Simulations / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Basar Sarer; Smer Sahin; Mehtap Gnay; Yurdunaz elik

392

CRC handbook of nuclear reactors calculations. Vol. I  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described.

Ronen, Y.

1986-01-01T23:59:59.000Z

393

Strategy Guideline: Accurate Heating and Cooling Load Calculations  

SciTech Connect

This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

Burdick, A.

2011-06-01T23:59:59.000Z

394

Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55  

E-Print Network (OSTI)

and calculation according to ASHRAE Standard 55 U.S. Greenand calculation according to ASHRAE Standard 55and calculation according to ASHRAE Standard 55 Stefano

Schiavon, Stefano; Hoyt, Tyler; Piccioli, Alberto

2013-01-01T23:59:59.000Z

395

The Use of Graphics Calculator in a Matriculation Statistics Classroom: A Malaysian Perspective  

E-Print Network (OSTI)

mathematics: Why graphics calculator? Proceedings of the 2Learning statistics with graphics calculator: A case study.Learning statistics with graphics calculator: Students

Krishnan, Saras; Idris, Noraini

2013-01-01T23:59:59.000Z

396

Valence calculation of the electric polarizability on nHYP-Clover ensembles  

E-Print Network (OSTI)

We present preliminary calculations for the electric polarizability of the neutral pion and neutron on three dynamically generated nHYP-Clover ensembles. We use two different pion masses ($m_{\\pi} \\simeq 300$ and 220 MeV) to gauge the chiral behavior. The effects of partial quenching are analyzed by computing a string of partial quenched valence masses for each ensemble. We also analyzed the volume dependence using elongated lattices, where the elongation is in the direction of the electric field.

Michael Lujan; Andrei Alexandru; Walter Freeman; Frank Lee

2013-10-16T23:59:59.000Z

397

Continuum discretization methods in a composite-particle scattering off a nucleus: the benchmark calculations  

E-Print Network (OSTI)

The direct comparison of two different continuum discretization methods towards the solution of a composite particle scattering off a nucleus is presented. The first approach -- the Continumm-Discretized Coupled Channel method -- is based on the differential equation formalism, while the second one -- the Wave-Packet Continuum Discretization method -- uses the integral equation formulation for the composite-particle scattering problem. As benchmark calculations we have chosen the deuteron off \

O. A. Rubtsova; V. I. Kukulin; A. M. Moro

2008-06-13T23:59:59.000Z

398

A Comparison Between Calculated and Measured SHGC For Complex Fenestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison Between Calculated and Measured SHGC For Complex Fenestration Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Title A Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Publication Type Conference Paper LBNL Report Number LBL-37037 Year of Publication 1995 Authors Klems, Joseph H., Jeffrey L. Warner, and Guy O. Kelley Conference Name ASHRAE Transactions Volume 102, Part 1 Date Published 02/1996 Conference Location Atlanta, GA Call Number LBL-37037 Abstract Calorimetric measurements of the dynamic net heat flow through a complex fenestration system consisting of a buff venetian blind inside clear double glazing are used to derive the direction-dependent beam SHGC of the fenestration. These measurements are compared with calculations according to a proposed general method for deriving complex fenestration system SHGCs from bidirectional layer optical properties and generic calorimetric properties. Previously published optical measurements of the same venetian blind and generic inward-flowing fraction measurements are used in the calculation. The authors find satisfactory agreement between the SHGC measurements and the calculation.

399

FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION  

SciTech Connect

The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

B. SZALEWSKI

2005-03-22T23:59:59.000Z

400

Iterative acceleration methods for Monte Carlo and deterministic criticality calculations  

Science Conference Proceedings (OSTI)

If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

Urbatsch, T.J.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of New Calculation Method for Toxicological Sums-of-Fractions for Hanford Tank Wastes  

SciTech Connect

The toxicological source terms used for potential accident assessment in the Tank Farms DSA are based on toxicological sums-of-fractions (SOFs) that were calculated in fiscal years 2002 and 2003 based on the Best Basis Inventory (BBI) from May 2002, using the method described by Cowley et al. (2003). The present report describes a modified SOF-calculation method that is to be used in future toxicological updates and assessments and compares its results (for the 2002 BBI) to those of the old method. The new method generally calculated different (usually larger) SOFs than the old. The dominant reason was the more conservative way in which the new method represents concentration variability, in that it uses the waste layer with the maximum SOF to represent the tank SOF. The old method had used a tank-average waste composition and SOF. Differences between thermodynamically modeled and BBI solubilities were the next most common reason for differences between old (modeled) and new (BBI) SOFs, particularly in the liquid phase. The solubility-related changes in SOF were roughly equally distributed between increases and decreases. Changes in the effective toxicities of TOC and lead, which resulted from changes in the compounds in which these analytes were considered to be present, were the third most common reason. These toxicity changes increased SOFs and therefore were in a conservative direction.

Mahoney, Lenna A.

2006-09-26T23:59:59.000Z

402

Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, Phase II Report - Identified Relevant Data Sets, Methods, and Variability Analysis  

E-Print Network (OSTI)

This is the second report of the ASHRAE 1093-RP project that reports on the progress during the scheduled Phase II effort. In this report, we present: (1) the data sets identified and acquired required for the analysis; (2) the method adopted for classifying the Office building categories; (3) the relevant methods for daytyping necessary for creating the typical load shapes for energy and cooling load calculation; (4) the relevant robust variability (uncertainty) analysis; (5) typical load shapes reported in the literature; (6) a test to assure the non-weather dependency (seasonal variation) of the lighting and equipment data sets; and (7) a proposed occupancy surrogate variable. The results obtained during Phase II will enable us to proceed with Phase III, as planned. Phase III will cover: (1) developing the typical load shapes for the acquired data sets, using the proposed method, for both energy and cooling load calculations; (2) developing the tool-kit for deriving the new diversity factors and general guidelines for their use; and (3) developing illustrative examples of the use of the diversity factors in the DOE-2 and BLAST simulation programs.

Abushakra, B.; Haberl, J. S.; Claridge, D. E.

1999-01-01T23:59:59.000Z

403

Solar Reflectance Index Calculation Worksheet Instructions The purpose of this calculator is to enable contractors and homeowners to quickly and accurately  

E-Print Network (OSTI)

Solar Reflectance Index Calculation Worksheet Instructions Usage: The purpose of this calculator is to enable contractors and homeowners to quickly and accurately calculate the solar reflectance product exceeds the Building Energy Efficiency Standards requirement for either the aged solar

404

Benchmark calculations for elastic fermion-dimer scattering  

E-Print Network (OSTI)

We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.

Shahin Bour; H. -W. Hammer; Dean Lee; Ulf-G. Meiner

2012-06-08T23:59:59.000Z

405

EXTERNAL CRITICALITY CALCULATION FOR DOE SNF CODISPOSAL WASTE PACKAGES  

SciTech Connect

The purpose of this document is to evaluate the potential for criticality for the fissile material that could accumulate in the near-field (invert) and in the far-field (host rock) beneath the U.S. Department of Energy (DOE) spent nuclear fuel (SNF) codisposal waste packages (WPs) as they degrade in the proposed monitored geologic repository at Yucca Mountain. The scope of this calculation is limited to the following DOE SNF types: Shippingport Pressurized Water Reactor (PWR), Enrico Fermi, Fast Flux Test Facility (FFTF), Fort St. Vrain, Melt and Dilute, Shippingport Light Water Breeder Reactor (LWBR), N-Reactor, and Training, Research, Isotope, General Atomics reactor (TRIGA). The results of this calculation are intended to be used for estimating the probability of criticality in the near-field and in the far-field. There are no limitations on use of the results of this calculation. The calculation is associated with the waste package design and was developed in accordance with the technical work plan, ''Technical Work Plan for: Department of Energy Spent Nuclear Fuel and Plutonium Disposition Work Packages'' (Bechtel SAIC Company, LLC [BSC], 2002a). This calculation is subject to the Quality Assurance Requirements and Description (QARD) per the activity evaluation under work package number P6212310Ml in the technical work plan TWP-MGR-MD-0000 10 REV 01 (BSC 2002a).

H. Radulescu

2002-10-18T23:59:59.000Z

406

Interaction of loading pattern and nuclear data uncertainties in reactor core calculations  

Science Conference Proceedings (OSTI)

Along with best-estimate calculations for design and safety analysis, understanding uncertainties is important to determine appropriate design margins. In this framework, nuclear data uncertainties and their propagation to full core calculations are a critical issue. To deal with this task, different error propagation techniques, deterministic and stochastic are currently developed to evaluate the uncertainties in the output quantities. Among these is the sampling based uncertainty and sensitivity software XSUSA which is able to quantify the influence of nuclear data covariance on reactor core calculations. In the present work, this software is used to investigate systematically the uncertainties in the power distributions of two PWR core loadings specified in the OECD UAM-Benchmark suite. With help of a statistical sensitivity analysis, the main contributors to the uncertainty are determined. Using this information a method is studied with which loading patterns of reactor cores can be optimized with regard to minimizing power distribution uncertainties. It is shown that this technique is able to halve the calculation uncertainties of a MOX/UOX core configuration. (authors)

Klein, M.; Gallner, L.; Krzykacz-Hausmann, B.; Pautz, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS MbH, Boltzmannstr. 14, D- 85748 Garching b. Muenchen (Germany)

2012-07-01T23:59:59.000Z

407

Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard  

SciTech Connect

Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D{sub 90} parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.

Carrier, Jean-Francois [Departement de Radio-Oncologie, et Centre de Recherche du CHUM, Hopital Notre-Dame du CHUM, Montreal, Quebec (Canada) and Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de Universite Laval, CHUQ Pavillon Hotel-Dieu de Quebec, Quebec (Canada)]. E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca; D' Amours, Michel [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de Universite Laval, CHUQ Pavillon Hotel-Dieu de Quebec, Quebec (Canada); Verhaegen, Frank [Medical Physics Unit, McGill University, Montreal, Quebec (Canada); Reniers, Brigitte [Medical Physics Unit, McGill University, Montreal, Quebec (Canada); Martin, Andre-Guy [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de Universite Laval, CHUQ Pavillon Hotel-Dieu de Quebec, Quebec (Canada); Vigneault, Eric [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de Universite Laval, CHUQ Pavillon Hotel-Dieu de Quebec, Quebec (Canada); Beaulieu, Luc [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de Universite Laval, CHUQ Pavillon Hotel-Dieu de Quebec, Quebec (Canada)

2007-07-15T23:59:59.000Z

408

Blind Benchmark Calculations for Melt Spreading in the ECOSTAR Project  

SciTech Connect

The Project ECOSTAR (5. EC Framework Programme) on Ex-Vessel Core Melt Stabilisation Research is oriented towards the analysis and mitigation of severe accident sequences that could occur in the ex-vessel phase of a postulated core melt accident. Spreading of the corium melt on the available basement surface is an important process, which defines the initial conditions for concrete attack and for the efficiency of cooling in case of water contact, respectively. The transfer and spreading of the melt on the basement is one of the major issues in ECOSTAR. This is addressed here by a spreading code benchmark involving a large-scale spreading experiment that is used for the validation of the existing spreading codes. The corium melt is simulated by a mixture of Al{sub 2}O{sub 3}, SiO{sub 2}, CaO and FeO with a sufficiently wide freezing interval. In the 3-dim benchmark test ECOKATS-1 170 litres of oxide melt are poured onto a 3 m by 4 m concrete surface with a low flow rate of about 2 l/s. From the results of an additional 2-dim channel experiment some basic rheological data (e.g. initial viscosity) are obtained in order to minimise the uncertainty in material properties of the melt. The participating spreading codes CORFLOW (Framatome ANP/FZK), LAVA (GRS), and THEMA (CEA) differ from each other by their focus of modelling and the assumptions made to simplify the relevant transport equations. In a first step both experiments (3-dim/2-dim) are calculated blindly by the participating codes. This serves for an overall assessment of the codes capabilities to predict the spreading of a melt with rather unknown material properties. In a second step the 3-dim experiment ECOKATS-1 is recalculated by the codes with the more precise knowledge of the rheological behaviour of the oxide melt in the 2-dim experiment. This, in addition, serves for the validation of the codes' capabilities to predict the spreading of a melt with well-known material properties. Based on the benchmark results and taking the specific validation process for each of the three codes applied into account, it is recommended that the spreading issue for reactor safety research be considered closed. (authors)

Spengler, C.; Allelein, H.J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Schwertnergasse 1, 50667 Cologne (Germany); Foit, J.J.; Alsmeyer, H. [Forschungszentrum Karlsruhe, P.O. Box 36 40, 76021 Karlsruhe (Germany); Spindler, B.; Veteau, J.M. [CEA, 17, rue des Martyrs, 38054 Grenoble (France); Artnik, J.; Fischer, M. [Framatome ANP, P.O. Box 32 20, 91050 Erlangen (Germany)

2004-07-01T23:59:59.000Z

409

Calculating the vulnerability of synthetic polymers to autoignition during nuclear flash. Final report  

SciTech Connect

The purpose of our investigation was to determine if the rapid progression of fire to flashover conditions in a furnished room, observed in a 1953 nuclear weapons test at the Nevada Test Site (the Encore Event), might be typical behavior rather than an aberration. If flashover under such conditions is indeed likely, this phenomenon is worth pursuing in view of the increased threat to buildings and human life from possible large-scale fires. We placed special emphasis on fires that occurred in modern rooms, i.e., ones furnished with upholstery and drapery materials made from synthetic polymers. Examination of photochemical processes showed them to be an unlikely explanation, either in Encore or in the future. Our calculation of rapid radiant-heating behavior of a few materials demonstrated that fabrics and fabric-covered foams would exceed their autoignition temperature when exposed to a 25-cal/cm/sup 2/ fluence from a 1-Mt air burst weapon. Because synthetic polymers have higher heating values and release heat faster during combustion than do the cellulosics used in the Encore experiment, early flashover should not be unexpected in contemporary households. However, the far-field thermal fluence required would be higher because of the absorption of thermal energy by windows and window coverings. Because of the complexity of the problem, carefully planned, full-scale experiments will be needed to finally answer the question. 39 refs., 9 figs., 8 tabs.

Hickman, R.; Reitter, T.

1985-01-01T23:59:59.000Z

410

Energy Cost Calculator for Faucets and Showerheads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Faucets and Showerheads Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads October 8, 2013 - 2:35pm Addthis Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06 $/kWh 0.06 $/kWh Minutes per Day of Operation minutes 30 minutes 20 minutes Days per Year of Operation days 260 days 365 days Quantity to be Purchased unit(s) 1 unit 1 unit Calculate Reset

411

Load Balancing Of Parallel Monte Carlo Transport Calculations  

National Nuclear Security Administration (NNSA)

Load Balancing Of Parallel Load Balancing Of Parallel Monte Carlo Transport Calculations R.J. Procassini, M. J. O'Brien and J.M. Taylor Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, each cycle this algorithm determines if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality

412

UC Berkley Green Jobs Calculator | Open Energy Information  

Open Energy Info (EERE)

UC Berkley Green Jobs Calculator UC Berkley Green Jobs Calculator Jump to: navigation, search Tool Summary Name: UC Berkeley Green Jobs Calculator Agency/Company /Organization: UC Berkeley Renewable and Appropriate Energy Laboratory Phase: Create a Vision, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., "Perpare a Plan" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

413

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

414

Energy Cost Calculator for Commercial Ice Machines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ice Machines Ice Machines Energy Cost Calculator for Commercial Ice Machines October 8, 2013 - 2:25pm Addthis Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy Consumption (per 100 lbs. of ice) kWh 5.5 kWh Quantity of ice machines to be purchased 1 Energy Cost $/kWh 0.06 $/kWh Annual Hours of Operation hrs. 3000 hrs. Calculate Reset OUTPUT SECTION Performance per Ice Cube Machine Your

415

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

416

NREL-Levelized Cost of Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

NREL-Levelized Cost of Energy Calculator NREL-Levelized Cost of Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Cost of Energy Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Non-renewable Energy, Biomass, Geothermal, Hydrogen, Solar, Water Power, Wind Phase: Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Create Early Successes, Evaluate Effectiveness and Revise as Needed Topics: Finance, Market analysis, Technology characterizations Resource Type: Software/modeling tools User Interface: Website Website: www.nrel.gov/analysis/tech_lcoe.html Web Application Link: www.nrel.gov/analysis/tech_lcoe.html OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools

417

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compact Fluorescent Lamps Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps October 8, 2013 - 2:18pm Addthis This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 $/kWh Relamper labor costs $/hr Time taken to retrofit all lamps in this project min Time taken to relamp one lamp min Type of Relamping Practiced: Group Relamping: Calculate Simple Payback Period months

418

Building Technologies Office: Qualified Software for Calculating Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified Software for Calculating Commercial Building Tax Deductions Qualified Software for Calculating Commercial Building Tax Deductions On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

419

Federal Energy Management Program: Energy and Cost Savings Calculators for  

NLE Websites -- All DOE Office Websites (Extended Search)

and Cost Savings Calculators for Energy-Efficient Products and Cost Savings Calculators for Energy-Efficient Products The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products. Some are Web-based tools; others are Excel spreadsheets provided by ENERGY STAR® for download. Lighting Compact Fluorescent Lamps Exit Signs Commercial and Industrial Equipment Commercial Unitary Air Conditioners Air-Cooled Chillers Commercial Heat Pumps Boilers Food Service Equipment Dishwashers Freezers Fryers Griddles Hot Food Holding Cabinets Ovens Refrigerators Steam Cookers Ice Machines Office Equipment Computers, Monitors, and Imaging Equipment Appliances Dishwashers Clothes Washers Residential Equipment Central Air Conditioners

420

Solar EUV Spectrum Calculated for Quiet Sun Conditions  

E-Print Network (OSTI)

We present spectral synthesis calculations of the solar extreme UV (EUV) in spherical symmetry carried out with the 'Solar Modeling in 3D' code. The calculations are based on one-dimensional atmospheric structures that represent a temporal and spatial mean of the chromosphere, transition region, and corona. The synthetic irradiance spectra are compared with the recent calibration spectrum taken with the EUV Variability Experiment during the Whole Heliospheric Interval. The good agreement between the synthetic and observed quiet Sun spectrum shows that the employed atmospheric structures are suitable for irradiance calculations. The validation of the quiet Sun spectrum for the present solar minimum is the first step towards the modeling of the EUV variations.

Haberreiter, Margit

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

TRIGA FUEL PHASE I AND II CRITICALITY CALCULATION  

SciTech Connect

The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside a five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation. This calculation will support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository (MGR).

L. Angers

1999-11-23T23:59:59.000Z

422

Calculating nonlocal optical properties of structures with arbitrary shape.  

SciTech Connect

In a recent Letter [J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.

McMahon, J. M.; Gray, S. K.; Schatz, G. C.; Northwestern Univ.

2010-07-16T23:59:59.000Z

423

Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Vyacheslav S. Bryantsev, Mamadou S. Diallo,, and William A. Goddard III*,  

E-Print Network (OSTI)

Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models methodologies make systematic errors in the computed free energies because of the incorrect accounting consideration. We analyze two different thermodynamic cycles for calculating the solvation free energies

Goddard III, William A.

424

Financial Value Calculator | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Value Calculator Financial Value Calculator Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

425

Introduction to the Cash Flow Opportunity Calculator Spreadsheet | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

the Cash Flow Opportunity Calculator Spreadsheet the Cash Flow Opportunity Calculator Spreadsheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

426

Passive solar design calculations with the DOE-2 computer program  

DOE Green Energy (OSTI)

The DOE-2 computer program has been modified to improve modeling of passive-solar buildings by the addition of the custom weighting-factor method. The thermal-load and air-temperature calculation procedure in DOE-2 are described. Assumptions inherent in the use of American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) precalculated and the custom weighting factors are discussed. Calculated results from DOE-2 are compared with measured heat-extraction rates and air temperatures for four buildings. These comparisons indicate that DOE-2 can accurately model direct-gain passive buildings and can treat night-ventilative cooling and water walls in an approximate manner.

Kerrisk, J.F.; Moore, J.E.; Schnurr, N.M.; Hunn, B.D.

1980-01-01T23:59:59.000Z

427

LE JOURNAL DE PHYSIQUE CALCUL APPROCH DE QUELQUES FRQUENCES PROPRES  

E-Print Network (OSTI)

'isopentane, du méthyl-3-pentane, du méthyl-~, . 3-butane et du tétraméthyl-22 . 33-butane. Tous les radicaux résultats du calcul à ceux des expériences. 3. D$méthyl-2.3-butane. - Le système en ?, est Posons L résul- tats du calcul aux résultats expérimentaux. 4. Tétraméthyl- 2 2. 3 3-butane. - Avec le modèle

Paris-Sud XI, Université de

428

Excited State Effects in Nucleon Matrix Element Calculations  

SciTech Connect

We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

2011-12-01T23:59:59.000Z

429

Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion  

Science Conference Proceedings (OSTI)

The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.

M. Gross

2004-09-01T23:59:59.000Z

430

Calculations to assist in a new Hiroshima yield estimate. Final report, August 19-December 31, 1983  

Science Conference Proceedings (OSTI)

This report describes calculations and analysis performed in an attempt to provide a new estimate for the yield of the Hiroshima weapon. Newly discovered meteorological data was adapted for use in one- and two-dimensional hydrodynamic codes, and a series of calculations was then run for different values of yield. The objective was to determine what yield produced an overpressure record which could best be correlated with an actual trace measured at a parachute-dropped canister. Altitude of the bomb and canister-carrying aircraft at drop time was also a variable parameter. The analysis provides an estimate of 16.6 + 0.3 kt for the yield of the Hiroshima weapon. A drop altitude of near 35,500 feet is shown to be consistent with the signal time-of-arrival. This yield value is within the range of other estimates, but the drop altitude is higher than that previously assumed to be reasonable.

Kennedy, L.W.; Roth, L.A.; Needham, C.E.

1984-06-15T23:59:59.000Z

431

Calculation of electric field and audible noise from transmission lines with non-parallel conductors  

Science Conference Proceedings (OSTI)

In order to investigate the feasibility of using new transmission line configurations with non-parallel conductors, for managing magnetic field in critical areas, techniques are needed to assess the effects of different three-dimensional line arrangements on other important design parameters. A new method for calculation of electric field and corona-generated audible noise from non-parallel conductors is described and implemented as a computer tool. This method uses linearly varying line charges to simulate charge distribution along the axial direction of the transmission line. New algorithms are developed for calculating electric field and audible noise due to non-uniform line charges and illustrated by examples of low magnetic field transmission line designs.

Liu, Y. [Virginia Tech, Blacksburg, VA (United States); Zaffanella, L.E. [Enertech Consultants, Lee, MA (United States)

1996-07-01T23:59:59.000Z

432

Substance abuse differences among students receiving special ...  

Science Conference Proceedings (OSTI)

abilities to cope with daily pressures and extended social environ- ments like schools. Typically, children and youth receiving special ed- ucation school services...

433

Calculating Horsepower Requirements and Sizing Supply Pipelines for Irrigation  

E-Print Network (OSTI)

Pumping costs are often one of the largest single expenses in irrigated agriculture. This publication explains how to lower pumping costs by calculating horsepower requirements and sizing supply pipelines correctly. Examples take the reader through a step-by-step process. A special section deals with selecting PVC pipe.

Fipps, Guy

1995-09-05T23:59:59.000Z

434

Load calculation and system evaluation for electric vehicle climate control  

DOE Green Energy (OSTI)

This paper presents an analysis of the applicability of alternative systems for electric vehicle (EV) heating and air conditioning (HVAC). The paper consists of two parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can provide the desired cooling and heating in EVs. These systems are ranked according to their overall weight The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation. The system with the minimum overall weight is considered to be the best, because minimum vehicle weight decreases the energy required for propulsion, and therefore increases the vehicle range. Three systems are considered as the best choices for EV HVAC. These are, vapor compression, ice storage and adsorption systems. These systems are evaluated, including calculations of system weight, system volume, and COP. The paper also includes a calculation on how the battery energy storage capacity affects the overall system weights and the selection of the optimum system. The results indicate that, at the conditions analyzed in this paper, an ice storage system has the minimum weight of all the systems considered. Vapor compression air conditioners become the system with the minimum weight for battery storage capacities above 230 kJ/kg.

Aceves, S.M.; Comfort, W.J. III

1994-09-12T23:59:59.000Z

435

Relativistic three-body calculation of $pi$d scattering  

SciTech Connect

We present a unitary, Lorentz-invariant three-body calculation of pion- deuteron elastic scattering, based upon the idea of quasiparticle-dominated two- body interactions. We make detailed comparisons of these results with those of a conventional fixed-scatterer approach and find that the fixed-nucleon calculation does not adequately reproduce the three-body results; this finding demonstrates the importance of properly treating the three-body kinematics (i.e., of including nucleon recoil and isobar propagation). The multiple scattering expansion converges much more rapidly in the three-body approach than in the fixed- scatterer calculation. Intermediate nucleon-nucleon interactions play an important role, giving contributions to the scattering amplitude of the same order as those given by pion multiple scattering; these effects are especially significant for back-angle scattering. Finally, we compare our results with the available experimental data for the $pi$d total and integrated elastic cross sections and obtain good agreement. Nucleon spin is neglected in all calculations. (AIP)

Woloshyn, R.M.; Moniz, E.J.; Aaron, R.

1976-01-01T23:59:59.000Z

436

RZ calculations for self shielded multigroup cross sections  

Science Conference Proceedings (OSTI)

A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)

Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z. [Commissariat a l'Energie Atomique CEA, Direction de l'Energie Nucleaire, DEN/DM2S/SERMA/LENR, 91191 Gif-sur-Yvette Cedex (France)

2006-07-01T23:59:59.000Z

437

Edmund G. Brown, Jr. TEST METHOD FOR CALCULATING  

E-Print Network (OSTI)

-VOLTAGE EXTERNAL AC-DC POWER SUPPLIES PIERFINALREPORT Prepared For: California Energy Commission Public InterestEdmund G. Brown, Jr. Governor TEST METHOD FOR CALCULATING THE ENERGY EFFICIENCY OF SINGLE Energy Research Program Prepared By: Ecos Power Electronics Application Center July 2011 CEC-500

438

Calculation of fusion product angular correlation coefficients for fusion plasmas  

SciTech Connect

The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

Murphy, T.J.

1987-08-01T23:59:59.000Z

439

NORTH PORTAL-HOT WATER CALCULATION-SHOP BUILDING #5006  

SciTech Connect

The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main for the Shop Building No.5006 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and the U.S. Department of Energy, Order 6430.1A-1540 (Section 4.4.2).

R. Blackstone

2006-01-25T23:59:59.000Z

440

NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY #5008  

SciTech Connect

The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and US Department of Energy Order 6430.1A-1540 (Section 4.4.2).

S. Mastilovic

2000-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

^y&jj ( Second Edition) Calculation ofPlate Temperatures  

E-Print Network (OSTI)

calculations. 8 4. The D.O temperature rise by passing through the cooling channels 10 5. The total thermoV/fission The total energy absorption in the fuel tubes is consequently estimated at 175,9 MeV per fission, which. The flow distribution between the S cooling channels i

442

Microscopic Calculation of Fusion: Light to Heavy Systems  

E-Print Network (OSTI)

The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy neutron-rich systems.

A. S. Umar; V. E. Oberacker; J. A. Maruhn; R. Keser

2013-10-02T23:59:59.000Z

443

Exact Semiclassical Calculations of Translational-Vibrational Energy Transfer  

SciTech Connect

We present "exact" calculations, by the semiclassical method, of vibrational excitation of a harmonic diatomic molecule A-B, in its ground vibrational state, upon collinear collision with an atom C. Results are compared with those of first-order quantum mechanical time dependent perturbation methods and those of purely classical methods.

Kelley, J. Daniel; Wolfsberg, Max

1966-07-22T23:59:59.000Z

444

Numerical calculation of the moments of the population balance equation  

Science Conference Proceedings (OSTI)

The combined CFD-PBM (population balance models) are computationally intensive, so a possibility is to calculate only a few moments of the probability density function (PDF) of the PBM minimizing the computational costs. However, this formulation results ... Keywords: least squares method, population balance equation, quadrature approximation

C. A. Dorao; H. A. Jakobsen

2006-11-01T23:59:59.000Z

445

Relationship between different channel light curves of gamma-ray burst pulses shown in aspects other than the pulse width  

E-Print Network (OSTI)

In this paper, we employ the peak count rate{\\bf \\}$C_p$ and the total count $C_{total}$ of light curves to study in the corresponding aspects the relationship between different channel light curves. To make a direct comparison between count rates of different channel light curves we introduce a plot of $C(\\tau)$ versus $C_H(\\tau)$, where $C(\\tau)$ is the count rate of a channel and $C_H(\\tau)$ is the count rate of a definite cannel, channel H (see the text). According to the plot we define $\\Delta C_{\\max}$ as the maximum deviation of the two count rate values of $C(\\tau)$ associated with a same count rate value of $% C_H(\\tau)$ and define $\\Delta S$ as the area confined by the close curve of $C(\\tau)$ in the plot to measure the difference of the rising and decaying portions of a light curve relative to the count rate of channel H. Under the assumption that some GRBs observed are in the stage of fireballs which expand relativistically, predictions on the relationships between the four quantities{\\bf (}$C_p$, $C_{total}$, $\\Delta C_{\\max}$, and $\\Delta S$) and energy within a wide band, calculated with different rest frame radiation forms and two typical Lorentz factors ($\\Gamma =20$ and 200), are made and presented, which would make the test of our model with the coming Swift data easier. Interpretations to the relationships within the mechanism of fireballs are also presented.

Yi-Ping Qin

2004-11-13T23:59:59.000Z

446

Validity of approximations applied in calculations of single-wall metallic carbon nanotube current-voltage characteristics  

Science Conference Proceedings (OSTI)

The calculation results of dependencies of electric current in the infinitely long single-wall metallic carbon nanotubes of armchair type with different diameter values on the strength of constant and uniform longitudinal electric field applied to them ... Keywords: Boltzmann equation, Current---voltage characteristic, Electron---phonon transport, Single-wall carbon nanotube

Dmitry Pozdnyakov

2012-12-01T23:59:59.000Z

447

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

DOE Green Energy (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

448

How Portfolio Manager calculates greenhouse gas emissions | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

How Portfolio Manager calculates greenhouse gas emissions How Portfolio Manager calculates greenhouse gas emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker

449

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

450

Validation of the Home Energy Saver Energy Calculation Methodology: Using  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of the Home Energy Saver Energy Calculation Methodology: Using Validation of the Home Energy Saver Energy Calculation Methodology: Using Empirical Data to Improve Simulation Speaker(s): Danny Parker Date: August 6, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Evan Mills The Home Energy Saver (HES) suite - developed by EETD researchers - offers popular online simulation tools that enable U.S. homeowners and energy professionals to rigorously evaluate home energy use and develop recommendations on how energy can be saved across all end uses. The underlying analytical system is also available as a web service to power third-party energy analysis tools. Given the system's diverse uses, it is important that the simulation is robust and accurate. While the HES engineering methods are extensively documented and subjected to peer

451

Variational calculations of the HT{sup +} rovibrational energies  

SciTech Connect

In this Brief Report, we use the exponential explicitly correlated variational basis set of the type exp(-{alpha}{sub n}R-{beta}{sub n}r{sub 1}-{gamma}{sub n}r{sub 2}) to calculate systematically the nonrelativistic bound-state energies for the hydrogen molecular ion HT{sup +}. We perform calculations for the states of the total orbital angular momentum L=0 and 1 with the complete set of vibrational quantum numbers v= 0-23, as well as for the states of L= 2-5 and v= 0-5. The E1 dipole transition moments, which are of importance for the planning of spectroscopic laser experiments, have been obtained as well.

Bekbaev, A. K. [Al Farabi Kazakh National University, 050012 Almaty (Kazakhstan); Korobov, V. I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dineykhan, M. [Al Farabi Kazakh National University, 050012 Almaty (Kazakhstan); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

2011-04-15T23:59:59.000Z

452

A new method for the calculation of photodissociation cross sections  

SciTech Connect

A time-independent quantum mechanical approach to the calculation of photodissociation cross sections is developed. The method is based on the use of a discrete variable representation (DVR) and the application of absorbing boundary conditions (ABC). Both total photodissociation cross sections and partial cross sections (hence product state distributions) are obtained using the same basic technique, but the calculation is particularly efficient when only the former quantity is required. The method is applied to the photodissociation of HCl[sup +] for which accurate potential energy curves and dipole moment functions are available, to the photodissociation of ClCN which is a direct process, involving a single excited electronic state, and to the photodissociation of ICN which involves several strongly coupled excited electronic states. The applicability of the suggested scheme to a variety of other field--matter interaction processes is pointed out.

Seideman, T. (Department of Chemistry, University of California, Berkeley, California 94720 (United States))

1993-02-01T23:59:59.000Z

453

CESAM: a free code for stellar evolution calculations  

E-Print Network (OSTI)

The Cesam code is a consistent set of programs and routines which perform calculations of 1D quasi-hydrostatic stellar evolution including microscopic diffusion of chemical species and diffusion of angular momentum. The solution of the quasi-static equilibrium is performed by a collocation method based on piecewise polynomials approximations projected on a B-spline basis; that allows stable and robust calculations, and the exact restitution of the solution, not only at grid points, even for the discontinuous variables. Other advantages are the monitoring by only one parameter of the accuracy and its improvement by super-convergence. An automatic mesh refinement has been designed for adjusting the localisations of grid points according to the changes of unknowns. For standard models, the evolution of the chemical composition is solved by stiffly stable schemes of orders up to four; in the convection zones mixing and evolution of chemical are simultaneous. The solution of the diffusion equation employs the Gale...

Morel, Pierre

2008-01-01T23:59:59.000Z

454

Semiclassical calculation of photon-stimulated Schwinger pair creation  

Science Conference Proceedings (OSTI)

We consider the electron-positron pair creation by a photon in an external constant electric field. The presented treatment is based on a purely quasiclassical calculation of the imaginary part of the on-shell photon polarization operator. By using this approach we find the pair production rate for photons with polarization parallel as well as orthogonal to the external electric field in the leading order in the parameter eE/m{sup 2}, which has been recently found by other methods. For the orthogonal polarization we also find a new contribution to the rate, which is leading in the ratio of the photon energy to the electron mass {omega}/m. We also reproduce by a purely geometrical calculation the exponential factor in the probability of the stimulated pair creation at arbitrary energy of the photon.

Monin, A.; Voloshin, M. B. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2010-04-15T23:59:59.000Z

455

Validation of Criticality Safety Calculations with SCALE 6.2  

SciTech Connect

SCALE 6.2 provides numerous updates in nuclear data, nuclear data processing, and computational tools utilized in the criticality safety calculational sequences relative to SCALE 6.1. A new 252-group ENDF/B-VII.0 multigroup neutron library, improved ENDF/B-VII.0 continuous energy data, as well as the previously deployed 238-group ENDF/B-VII.0 neutron library are included in SCALE 6.2 for criticality safety analysis. The performance of all three libraries for keff calculations is examined with a broad sampling of critical experiment models covering a range of fuels and moderators. Critical experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) that are available in the SCALE Verified, Archived Library of Inputs and Data (VALID) are used in this validation effort. Over 300 cases are used in the validation of KENO V.a, and a more limited set of approximately 50 configurations are used for KENO-VI validation. Additionally, some KENO V.a cases are converted to KENO-VI models so that an equivalent set of experiments can be used to validate both codes. For continuous-energy calculations, SCALE 6.2 provides improved performance relative to SCALE 6.1 in most areas with notable improvements in fuel pin lattice cases, particularly those with mixed oxide fuel. Multigroup calculations with the 252-group library also demonstrate improved performance for fuel lattices, uranium (high and intermediate enrichment) and plutonium metal experiments, and plutonium solution systems. Overall, SCALE 6.2 provides equivalent or smaller biases than SCALE 6.1, and the two versions of KENO provide similar results on the same suite of problems.

Marshall, William BJ J [ORNL; Wiarda, Dorothea [ORNL; Celik, Cihangir [ORNL; Rearden, Bradley T [ORNL

2013-01-01T23:59:59.000Z

456

Nuclear forces and ab initio calculations of atomic nuclei  

E-Print Network (OSTI)

Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.

Meiner, Ulf-G

2014-01-01T23:59:59.000Z

457

An alternative method for calculating the energy of gravitational waves  

E-Print Network (OSTI)

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

458

Benchmark calculations for electron collisions with zinc atoms  

SciTech Connect

We present results from R-matrix (close-coupling) calculations for elastic scattering and electron impact excitation of Zn. The overall agreement between the predictions from two independent models, using either a semiempirical core potential or a recently developed B-spline approach with nonorthogonal orbitals, is very satisfactory. The latter method, however, yields particularly good agreement with the few existing experimental benchmark data for resonances at low incident energies.

Zatsarinny, Oleg; Bartschat, Klaus [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States)

2005-02-01T23:59:59.000Z

459

Calculating Cycling Wear and Tear Costs: Methodology and Data Requirements  

Science Conference Proceedings (OSTI)

This interim report describes development of a methodology and database that utilities can use to calculate unit-specific incremental costs for cycling operation of fossil-fueled power plants. The three-level approach will allow users to choose an easy-to-use solution based on a pure "top-down" approach of peer-unit average values, a modified top-down approach, or a detailed "bottom-up" approach based on equipment condition assessment and engineering analysis.

1997-12-15T23:59:59.000Z

460

PTLOAD: Comparison of Calculation Results Against Transformer Loading Standards  

Science Conference Proceedings (OSTI)

Power transformers are one of the most expensive components of any transmission system. Energy companies need to maximize utilization of these assets, while at the same time protecting them from damage and ensuring system reliability. To assist utilities in planning transformer loading, PTLOAD implements calculation methods from Institute of Electrical and Electronics Engineers (IEEE) C57.91-1995, "Guide for Loading Mineral-Oil-Immersed Transformers," as well as the International Electrotechnical Commiss...

2011-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "difference calculation typically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

IER-163 Post-Experiment MCNP Calculations (U)  

Science Conference Proceedings (OSTI)

IER-163 has been modeled with high fidelity in MCNP6. The model k{sub eff} was high, as in other similar calculations. The fission ratio {sup 238}U(n,f)/{sup 235}U(n,f) was 12.6% too small compared with measurements; the ratio {sup 239}Pu(n,f)/{sup 235}U(n,f) was 11.5% too small compared with measurements; the iridium ratio {sup 193}Ir(n,n{prime})/{sup 191}Ir(n,{gamma}) was 16.4% too large; and the gold ratios {sup 197}Au(n,2n)/{sup 197}Au(n,{gamma}), {sup 197}Au(n,2n)/{sup 235}U(n,f), and {sup 197}Au(n,{gamma})/{sup 235}U(n,f) were within one standard deviation of the measured values. It is suggested that the calculated {sup 235}U fission rate is too large and the calculated {sup 238}U fission rate is too small.

Favorite, Jeffrey A. [Los Alamos National Laboratory

2012-06-04T23:59:59.000Z

462

Divya Energy Solar Panel Savings Calculator | Open Energy Information  

Open Energy Info (EERE)

Divya Energy Solar Panel Savings Calculator Divya Energy Solar Panel Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Divya Energy Solar Panel Savings Calculator Agency/Company /Organization: Boston Cleanweb Hackathon Resource Type: Application prototype User Interface: Website Website: hackerleague.org/hackathons/boston-cleanweb-hackathon/hacks/divya-ener Web Application Link: www.divyaenergy.com/cleanweb/ OpenEI Keyword(s): Cleanweb Hackathon, Boston, Community Generated Coordinates: 42.3490737°, -71.0481764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3490737,"lon":-71.0481764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

The calculation of satellite line structures in highly stripped plasmas  

SciTech Connect

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Recently developed high-resolution x-ray spectrographs have made it possible to measure satellite structures from various plasma sources with great detail. These lines are weak optically thin lines caused by the decay of dielectronic states and generally accompany the resonance lines of H-like and He-like ions. The Los Alamos atomic physics and kinetics codes provide a unique capability for calculating the position and intensities of such lines. These programs have been used to interpret such highly resolved spectral measurements from pulsed power devices and laser produced plasmas. Some of these experiments were performed at the LANL Bright Source and Trident laser facilities. The satellite structures are compared with calculations to diagnose temperatures and densities. The effect of non-thermal electron distributions of electrons on calculated spectra was also considered. Collaborations with Russian scientists have added tremendous value to this research die to their vast experience in x-ray spectroscopy.

Abdallah, J. Jr.; Kilcrease, D.P. [Los Alamos National Lab., NM (United States); Faenov, A.Ya.; Pikuz, T.A. [Multicharged Ion Spectra Data Center, Moscow (Russian Federation)

1998-11-01T23:59:59.000Z

464

A general higher-order remap algorithm for ALE calculations  

SciTech Connect

A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problems were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.

Chiravalle, Vincent P [Los Alamos National Laboratory

2011-01-05T23:59:59.000Z

465

Measured and calculated isotopes for a gadolinia lead test assembly  

Science Conference Proceedings (OSTI)

The US Department of Energy, Duke Power Company, and the B and W Fuel Company participated in an extended burnup project to develop, irradiate, and examine an advanced fuel assembly design for pressurized water reactors. The assembly uses a urania-gadolinia (UO[sub 2]-Gd[sub 2]O[sub 3]) burnable absorber fuel mixture along with other fuel performance and design features that enhance uranium utilization. Previous milestones in the gadolinia development of the extended burnup project include development and verification of a neutronics model, measurement of materials properties of gadolinia fuel, and a successful gadolinia lead test assembly (LTA) program. One LTA was discharged as planned after one cycle, four LTAs continued for two more cycles, and one LTA of these four underwent a fourth cycle and reached 58,310 MWd/ton U assembly-average burnup, a world record at the time. Hot-cell destructive examination of gadolinia and non-gadolinia fuel rods from the single-cycle LTA (406.2 effective full-power days irradiation) has been completed. The comparison of measured and calculated isotopics for this LTA is the subject of this paper. A comparison of measured and calculated power distributions is also given, because accurate prediction of core performance during power production is ultimately the most important test of a calculational model.

Hove, C.M.

1990-01-01T23:59:59.000Z

466

Application of nuclear models to neutron nuclear cross section calculations  

Science Conference Proceedings (OSTI)

Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

Young, P.G.

1982-01-01T23:59:59.000Z

467

Impact of the 235U Covariance Data in Benchmark Calculations  

SciTech Connect

The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems.

Leal, Luiz C [ORNL; Mueller, Don [ORNL; Arbanas, Goran [ORNL; Wiarda, Dorothea [ORNL; Derrien, Herve [ORNL

2008-01-01T23:59:59.000Z

468

Criticality calculations with MCNP{sup TM}: A primer  

SciTech Connect

The purpose of this Primer is to assist the nuclear criticality safety analyst to perform computer calculations using the Monte Carlo code MCNP. Because of the closure of many experimental facilities, reliance on computer simulation is increasing. Often the analyst has little experience with specific codes available at his/her facility. This Primer helps the analyst understand and use the MCNP Monte Carlo code for nuclear criticality analyses. It assumes no knowledge of or particular experience with Monte Carlo codes in general or with MCNP in particular. The document begins with a Quickstart chapter that introduces the basic concepts of using MCNP. The following chapters expand on those ideas, presenting a range of problems from simple cylinders to 3-dimensional lattices for calculating keff confidence intervals. Input files and results for all problems are included. The Primer can be used alone, but its best use is in conjunction with the MCNP4A manual. After completing the Primer, a criticality analyst should be capable of performing and understanding a majority of the calculations that will arise in the field of nuclear criticality safety.

Mendius, P.W. [ed.; Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.

1994-08-01T23:59:59.000Z

469

Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1  

Science Conference Proceedings (OSTI)

Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies.

Goodenow, T.C.; Shipman, R.L.; Holland, H.M. [Epoch Engineering, Inc., Gaithersburg, MD (United States)

1995-06-01T23:59:59.000Z

470

Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2  

Science Conference Proceedings (OSTI)

Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report.

Goodenow, T.C.; Shipman, R.L.; Holland, H.M. [Epoch Engineering, Inc., Gaithersburg, MD (United States)

1995-06-01T23:59:59.000Z

471

A survey of energy loss calculations for heavy ions between 1 and 100 keV  

E-Print Network (OSTI)

The original Lindhard-Scharff-Schitt (LSS) theory and the more recent Tilinin theory for calculating the nuclear and electronic stopping powers of slow heavy ions are compared with predictions from the SRIM code by Ziegler. While little discrepancies are present for the nuclear contribution to the energy loss, large differences are found in the electronic one. When full ion recoil cascade simulations are tested against the elastic neutron scattering data available in the literature, it can be concluded that the LSS theory is the more accurate.

J. Pinto Da Cunha A; P. Sona D

2007-01-01T23:59:59.000Z

472

Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations  

Science Conference Proceedings (OSTI)

The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.

Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL

2013-01-01T23:59:59.000Z

473

Thermal-hydraulic calculations for the conversion to LEU of a research reactor core  

SciTech Connect

The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection