Sample records for differ materially due

  1. difference between plants receiving different treatments. Furthermore, if any difference is detected, one cannot say for sure whether the difference is due to the water gradient or due

    E-Print Network [OSTI]

    Oyet, Alwell

    difference between plants receiving different treatments. Furthermore, if any difference is detected, one cannot say for sure whether the difference is due to the water gradient or due to the differences between treatment. Obviously, any conclusions reached from analyzing the data will be meaningless

  2. Differences in radar derived rainfall amounts due to sampling intervals

    E-Print Network [OSTI]

    Zdenek, David James

    1986-01-01T23:59:59.000Z

    DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1986 Major Subject: Meteorology DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Approved as to style and content by: eorge L. Huebner (Chairman of Committee) CP~ CG~& Robert C...

  3. PUBLISHED VERSION Extracted H ion current enhancement due to caesium seeding at different plasma grid

    E-Print Network [OSTI]

    grid bias Marthe Bacal, Roy McAdams, and Elizabeth Surrey © 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY to caesium seeding at different plasma grid biasa) Marthe Bacal, Roy McAdams, and Elizabeth Surrey Citation current enhancement due to caesium seeding at different plasma grid biasa) Marthe Bacal,1,b) Roy McAdams,2

  4. Strategic special nuclear material inventory differences. Semi-annual report

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    This report provides and explains the generally small differences between the amounts of nuclear materials charged to DOE facilities and the amounts that could be physically inventoried. These Inventory Differences, previously called Material Unaccounted For (MUF), are being publicly released on a semiannual basis. This report covers data for the period from October 1, 1978, through March 31, 1979, and includes accounting corrections for data from earlier periods.

  5. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    SciTech Connect (OSTI)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison, E-mail: webbjj@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton ON L8S 4M1 (Canada)

    2012-11-10T23:59:59.000Z

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  6. Mixing device for materials with large density differences

    DOE Patents [OSTI]

    Gregg, D.W.

    1994-08-16T23:59:59.000Z

    An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

  7. Mixing device for materials with large density differences

    DOE Patents [OSTI]

    Gregg, David W. (Moraga, CA)

    1994-01-01T23:59:59.000Z

    An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.

  8. Strategies for mitigating adverse environmental impacts due to structural building materials

    E-Print Network [OSTI]

    Chaturvedi, Swati, 1976-

    2004-01-01T23:59:59.000Z

    This thesis assesses the problem of adverse environmental impacts due to the use of Portland cement and structural steel in the construction industry. The thesis outlines three technology and policy strategies to mitigate ...

  9. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect (OSTI)

    Aguiar, Vitor A. P.; Medina, Nilberto H. [Instituto de Fisica, Universidade de Sao Paulo, SP (Brazil); Moreira, Ramon H.; Silveira, Marcilei A. G. [Departamento de Fisica, Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil)

    2010-05-21T23:59:59.000Z

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  10. Shock Initiation of Energetic Materials at Different Initial Temperatures

    SciTech Connect (OSTI)

    Urtiew, P A; Tarver, C M

    2005-01-14T23:59:59.000Z

    Shock initiation is one of the most important properties of energetic materials, which must transition to detonation exactly as intended when intentionally shocked and not detonate when accidentally shocked. The development of manganin pressure gauges that are placed inside the explosive charge and record the buildup of pressure upon shock impact has greatly increased the knowledge of these reactive flows. This experimental data, together with similar data from electromagnetic particle velocity gauges, has allowed us to formulate the Ignition and Growth model of shock initiation and detonation in hydrodynamic computer codes for predictions of shock initiation scenarios that cannot be tested experimentally. An important problem in shock initiation of solid explosives is the change in sensitivity that occurs upon heating (or cooling). Experimental manganin pressure gauge records and the corresponding Ignition and Growth model calculations are presented for two solid explosives, LX-17 (92.5 % triaminotrinitrobenzene (TATB) with 7.5 % Kel-F binder) and LX-04 (85 % octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) with 15 % Viton binder) at several initial temperatures.

  11. Water-thinnable polymers for durable coatings for different materials

    SciTech Connect (OSTI)

    Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)

    2014-05-15T23:59:59.000Z

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  12. High Temperature Expansion Due to Compression Test for the Determination of a Cladding Material Failure Criterion under RIA Loading Conditions

    SciTech Connect (OSTI)

    Le Saux, M.; Poussard, C.; Averty, X.; Sainte Catherine, C.; Carassou, S. [CEA-Saclay, DEN/DMN/SEMI, 91191 Gif-Sur-Yvette (France); Besson, J. [Centre des Materiaux, Mines Paris, CNRS UMR 7633, BP 87, 91003 Evry (France)

    2007-07-01T23:59:59.000Z

    This paper is mainly dedicated to the development of an out-of-pile test reproducing the thermo-mechanical loading conditions encountered during the first stage of a Reactivity Initiated Accidents (RIA) transient, dominated by Pellet Clad Mechanical Interaction (PCMI). In particular, the strain-controlled clad loading under high strain rate associated with temperatures up to 600 deg. C expected during the PCMI phase is simulated by an Expansion Due to Compression (EDC) test achievable at high temperature. The use of appropriate materials for the inner pellet made it possible to achieve the tests from 20 deg. C up to 900 deg. C. The interpretation of the test data is supported by Finite Element Analysis (FEA) including parameters tuned using an inverse method coupling FEA and tests results. A deformation model, identified upon the PROMETRA (Transient Mechanical Properties) experimental database and describing the anisotropic viscoplastic behavior of Cold-Worked Stress Relieved Zircaloy-4 cladding alloys under typical RIA loading conditions, is exploited. The combined analysis of experimental results and finite element simulations provides a deeper understanding of the deformation mode (near pure hoop tension) that arises during the tests. The failure mode appears to be representative of that obtained on tubes during the PCMI stage of RIA experiments. An appropriate device is currently developed in order to reach a bi-axiality of the loading path closer to that expected during the PCMI stage (between plane-strain and equal-biaxial tension). (authors)

  13. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

    2012-03-01T23:59:59.000Z

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  14. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOE Patents [OSTI]

    Peterson, Stephen C. (al of Salt Lake City, UT); Brimhall, Owen D. (al of Salt Lake City, UT); McLaughlin, Thomas J. (al of Salt Lake City, UT); Baker, Charles D. (Lehi, UT); Sparks, Sam L. (Alpine, UT)

    1991-01-01T23:59:59.000Z

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.

  15. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    E-Print Network [OSTI]

    Goyal, Deepak

    2009-05-15T23:59:59.000Z

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design...

  16. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOE Patents [OSTI]

    Peterson, Stephen C. (Salt Lake City, UT); Brimhall, Owen D. (Salt Lake City, UT); McLaughlin, Thomas J. (Salt Lake City, UT); Baker, Charles D. (Lehi, UT); Sparks, Sam L. (Alpine, UT)

    1988-01-01T23:59:59.000Z

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.

  17. ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.

    2013-06-19T23:59:59.000Z

    Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

  18. Differential cognitive processing due to a majority or minority influence of the same or a different task

    E-Print Network [OSTI]

    Coutant-Sassic, Dawna

    1991-01-01T23:59:59.000Z

    of Design Subjects Procedure Materials 13 13 13 13 15 RESULTS 19 Transformed Data 24 CONCLUSIONS REFERENCES 33 45 VITA 49 LIST OF FIGURES FIGURE Page 1 Example of a dot task 17 2 Transformed means of the creativity of responses...) and the cognitive processing time 22 Table 1 'ances reat v Res onses b a r' t Minorit o ue a Simila or s imilar Task Trial Group N Immediate Delayed Majority Similar Dissimilar Minority Similar Dissimilar Control 26 23 30 28 17, 722 23, 012 7...

  19. Annual report on strategic special nuclear material inventory differences, April 1, 1990--March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This report of unclassified Inventory Difference (ID's) covers the twelve months from April 1, 1990 through March 31, 1991 for all key Department of Energy (DOE) and DOE contractor operated facilities possessing strategic special nuclear materials. Classified information is not included in this report. This classified information includes data for the Rocky Flats and Y-12 nuclear weapons production facilities or facilities under ID investigation. However, classified ID data from such facilities receive the same scrutiny and analyses as the included data.

  20. Annual report on strategic special nuclear material inventory differences, April 1, 1990--March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This report of unclassified Inventory Difference (ID`s) covers the twelve months from April 1, 1990 through March 31, 1991 for all key Department of Energy (DOE) and DOE contractor operated facilities possessing strategic special nuclear materials. Classified information is not included in this report. This classified information includes data for the Rocky Flats and Y-12 nuclear weapons production facilities or facilities under ID investigation. However, classified ID data from such facilities receive the same scrutiny and analyses as the included data.

  1. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants

    SciTech Connect (OSTI)

    Adrados, A., E-mail: aitziber.adrados@ehu.es [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain); De Marco, I.; Lopez-Urionabarrenechea, A.; Caballero, B.M.; Laresgoiti, M.F. [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Study of the influence of materials in the pyrolysis of real plastic waste samples. Black-Right-Pointing-Pointer Inorganic compounds remain unaltered. Black-Right-Pointing-Pointer Cellulosic components give rise to an increase in char formation. Black-Right-Pointing-Pointer Cellulosic components promote the production of aqueous phase. Black-Right-Pointing-Pointer Cellulosic components increase CO and CO{sub 2} contents in the gases. - Abstract: In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm{sup 3} reactor, swept with 1 L min{sup -1} N{sub 2}, at 500 Degree-Sign C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg{sup -1}). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO{sub 2}; their HHV is in the range of 18-46 MJ kg{sup -1}. The amount of CO-CO{sub 2} increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  2. Irradiation hardening and loss of ductility of type 316L(N) stainless steel plate material due to neutron-irradiation

    SciTech Connect (OSTI)

    Horsten, M.G.; Vries, M.I. de [Netherlands Energy Research Foundation, Petten (Netherlands)

    1996-12-31T23:59:59.000Z

    Type 316 stainless steel is the primary candidate austenitic structural material for fusion first wall constructions. Here, type 316L(N) stainless steel plate material has been irradiated up to 10 dpa at temperatures of 80, 225, 325, and 425 C in the High Flux Reactor (HFR) of Petten. Tensile tests have been performed in the temperature range from RT to 575 C at a conventional strain rate of 5 {times} 10{sup {minus}4} s{sup {minus}1}. The results of the tensile tests are analyzed in terms of irradiation hardening and loss of ductility due to irradiation. Tensile properties saturate in the early stage (within 0.65 dpa) at the lowest applied irradiation temperature. It is indicated that the most severe degradation of tensile ductility occurs in the temperature range of 275 to 350 C. Comparison with literature data revealed a large scatter in irradiation hardening at irradiation temperatures above 325 C.

  3. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

  4. Decomposition of molybdate-hexamethylenetetramine complex: One single source route for different catalytic materials

    SciTech Connect (OSTI)

    Chouzier, Sandra [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France); Czeri, Tivadar; Roy-Auberger, Magalie; Pichon, Christophe [IFP Energies nouvelles, BP 3, 69390 Vernaison (France); Geantet, Christophe; Vrinat, Michel [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France); Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2011-10-15T23:59:59.000Z

    Decomposition of ammonium heptamolybdate-hexamethylentetramine (HMTA) complex (HMTA){sub 2}(NH{sub 4}){sub 4}Mo{sub 7}O{sub 24}.2H{sub 2}O was studied as a function of treatment conditions in the range 300-1173 K. The evolution of solid products during decomposition was studied by thermal analysis and in situ EXAFS. Depending on the nature of the gas used for treatment, single phases of highly dispersed nitrides Mo{sub 2}N, carbide Mo{sub 2}C, or oxide MoO{sub 2} can be obtained. The nature of the products obtained was explained by qualitative thermodynamical considerations. Morphology of the solids considerably depends on such preparation parameters as temperature and mass velocity of the gas flow. For the nitride-based materials, catalytic activity was evaluated in the model thiophene HDS reaction. It was demonstrated that NH{sub 3}-treated samples showed better catalytic activity than N{sub 2}-treated ones due to cleaner surface and better morphology. Transmission microscopy, XRD and XPS studies showed that MoS{sub 2} is formed on the surface during HDS reaction or sulfidation with H{sub 2}S. Optimized nitride-derived catalysts showed mass activity several times higher than unsupported MoS{sub 2} or MoS{sub 2}/Al{sub 2}O{sub 3} reference catalyst. - Graphical Abstract: Depending on the conditions, decomposition of molybdate-HTMA complex yields highly dispersed molybdenum nitride, carbide or oxide. Research Highlights: > Decomposition of molybdate-HTMA complex yields highly dispersed Mo{sub 2}N, Mo{sub 2}C or MoO{sub 2}. > In situ EXAFS shows formation of common amorphous product MoC{sub x}N{sub y}O{sub z} at 673 K. > Crystalline Mo{sub 2}N with surface area near 200 m{sup 2}/g was obtained at 823 K. > High mass activity in thiophene HDS was observed.

  5. Development, parameterization, and validation of a visco-plastic material model for sand with different

    E-Print Network [OSTI]

    Grujicic, Mica

    the detonation products, mine fragments and soil ejecta Corresponding author: Department of Mechanical Engineer of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA 2 Army Research Laboratory for sand with different levels of saturation tested mechanically at different strain rates.The model

  6. Voltage, Stability and Diffusion Barrier Differences between Sodium-ion and Lithium-ion Intercalation Materials

    E-Print Network [OSTI]

    Ong, Shyue Ping

    To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion ...

  7. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

  8. Internal neutronics-temperature coupling in Serpent 2 - Reactivity differences resulting from choice of material property correlations

    SciTech Connect (OSTI)

    Valtavirta, V. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2013-07-01T23:59:59.000Z

    This paper describes the unique way of simultaneously solving the power and temperature distributions of a nuclear system with the Monte Carlo neutron transport code Serpent 2. The coupled solution is achieved through the implementation of an internal temperature solver and material property correlations in the code. The program structure is reviewed concerning the temperature solver and the internal correlations as well as the internal coupling between these two and the neutron transport part. To estimate the reactivity differences resulting from correlation choices a simple pin-cell case has been calculated. It is established, that some correlation choices may result in difference in reactivity of approximately 100 pcm. (authors)

  9. Comparison of Different Upscaling Methods for Predicting Thermal Conductivity of Complex Heterogeneous Materials System: Application on Nuclear Waste Forms

    SciTech Connect (OSTI)

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-06-16T23:59:59.000Z

    To develop a strategy in thermal conductivity prediction of a complex heterogeneous materials system, loaded nuclear waste forms, the computational efficiency and accuracy of different upscaling methods have been evaluated. The effective thermal conductivity, obtained from microstructure information and local thermal conductivity of different components, is critical in predicting the life and performance of waste form during storage. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling method, were developed and implemented. Microstructure based finite element method (FEM) prediction results were used to as benchmark to determine the accuracy of the different upscaling methods. Micrographs from waste forms with varying waste loadings were used in the prediction of thermal conductivity in FEM and homogenization methods. Prediction results demonstrated that in term of efficiency, boundary models (e.g., Taylor model and Sachs model) are stronger than the self-consistent model, statistical upscaling method, and finite element method. However, when balancing computational efficiency and accuracy, statistical upscaling is a useful method in predicting effective thermal conductivity for nuclear waste forms.

  10. Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.; Booten, C.

    2012-07-01T23:59:59.000Z

    Phase change materials (PCMs) represent a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have the capability to simulate PCM but their accuracy has not been completely tested. This report summarizes NREL efforts to develop diagnostic tests cases to obtain accurate energy simulations when PCMs are modeled in residential buildings.

  11. Compressed Gas Cylinder Safety I. Background. Due to the nature

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Compressed Gas Cylinder Safety I. Background. Due to the nature of gas cylinders hazards of a ruptured cylinder. There are almost 200 different types of materials in gas cylinders, there are several general procedures to follow for safe storage and handling of a compressed gas cylinder: II

  12. Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions

    SciTech Connect (OSTI)

    Sellers, R. S. [Dept. of Engineering Physics, Univ. of Wisconsin - Madison (United States); 1500 Engineering Dr., Madison WI 53711 (United States); Cheng, W. J. [Dept. of Engineering Physics, Univ. of Wisconsin - Madison (United States); National Taiwan Univ. of Science and Technology, Taiwan (China); Anderson, M. H.; Sridharan, K.; Wang, C. J.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin - Madison (United States)

    2012-07-01T23:59:59.000Z

    Molten fluoride salts such as FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) have been proposed for use as secondary reactor coolants, media for transfer of high temperature process heat from nuclear reactors to chemical plants, and for concentrated solar power thermal energy storage. In molten fluoride salts, passive oxide films are chemically unstable, and corrosion is driven largely by the thermodynamically driven dissolution of alloying elements into the molten salt environment. Two alloys, Hastelloy{sup R} N and 316L stainless steel were exposed to molten FLiNaK salt in a 316L stainless steel crucible under argon cover gas for 1000 hours at 850 deg. C. Graphite was present in some of the crucibles with the goal of studying corrosion behavior of relevant reactor material combinations. In addition, a technique to reduce alloy corrosion through modification of the reduction-oxidation state was tested by the inclusion of zirconium to the system. Corrosion of 316L stainless steel was noted to occur primarily through surface depletion of chromium, an effect that was enhanced by the presence of graphite. Hastelloy{sup R} N experienced weight gain through electrochemical plating of corrosion products derived from the 316L stainless steel crucible. In the presence of zirconium, both alloys gained weight through plating of zirconium and as a result formed intermetallic layers. (authors)

  13. Surface loss probability of atomic hydrogen for different electrode cover materials investigated in H{sub 2}-Ar low-pressure plasmas

    SciTech Connect (OSTI)

    Sode, M., E-mail: maik.sode@ipp.mpg.de; Schwarz-Selinger, T.; Jacob, W. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Kersten, H. [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11-19, D-24098 Kiel (Germany)

    2014-07-07T23:59:59.000Z

    In an inductively coupled H{sub 2}-Ar plasma at a total pressure of 1.5?Pa, the influence of the electrode cover material on selected line intensities of H, H{sub 2}, and Ar are determined by optical emission spectroscopy and actinometry for the electrode cover materials stainless steel, copper, tungsten, Macor{sup ®}, and aluminum. Hydrogen dissociation degrees for the considered conditions are determined experimentally from the measured emission intensity ratios. The surface loss probability ?{sub H} of atomic hydrogen is correlated with the measured line intensities, and ?{sub H} values are determined for the considered materials. Without the knowledge of the atomic hydrogen temperature, ?{sub H} cannot be determined exactly. However, ratios of ?{sub H} values for different surface materials are in first order approximation independent of the atomic hydrogen temperature. Our results show that ?{sub H} of copper is equal to the value of stainless steel, ?{sub H} of Macor{sup ®} and tungsten is about 2 times smaller and ?{sub H} of aluminum about 5 times smaller compared with stainless steel. The latter ratio is in reasonable agreement with literature. The influence of the atomic hydrogen temperature T{sub H} on the absolute value is thoroughly discussed. For our assumption of T{sub H}?=?600?K, we determine a ?{sub H} for stainless steel of 0.39?±?0.13.

  14. Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions

    SciTech Connect (OSTI)

    Ruiz-Aguilar, G L; Fernandez-Sanchez, J M; Kane, S R; Kim, D; Alvarez, P J

    2003-10-06T23:59:59.000Z

    Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic hydrocarbon degradation under different electron-accepting conditions commonly found in contaminated sites experiencing natural attenuation. Response variability was investigated by using aquifer material from four sites with different exposure history. The lag phase prior to BTEX (benzene, toluene, ethylbenzene, and xylenes) and ethanol degradation was typically shorter in microcosms with previously contaminated aquifer material, although previous exposure did not always result in high degradation activity. Toluene was degraded in all aquifer materials and generally under a broader range of electron-accepting conditions compared to benzene, which was degraded only under aerobic conditions. MtBE was not degraded within 100 days under any condition, and it did not affect BTEX or ethanol degradation patterns. Ethanol was often degraded before BTEX compounds, and had a variable effect on BTEX degradation as a function of electron-accepting conditions and aquifer material source. An occasional enhancement of toluene degradation by ethanol occurred in denitrifying microcosms with unlimited nitrate; this may be attributable to the fortuitous growth of toluene-degrading bacteria during ethanol degradation. Nevertheless, experiments with flow-through aquifer columns showed that this beneficial effect could be eclipsed by an ethanol-driven depletion of electron acceptors, which significantly inhibited BTEX degradation and is probably the most important mechanism by which ethanol could hinder BTEX natural attenuation. A decrease in natural attenuation could increase the likelihood that BTEX compounds reach a receptor as well as the potential duration of exposure.

  15. 2014 ALCC Proposals Due

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCC Proposals Due February 3, 2014 2014 DOE ALCC Proposals Due February 3 December 23, 2013 by Francesca Verdier (0 Comments) DOE's 2014 call for its ASCR Leadership Computing...

  16. Chemomechanics of calcium leaching of cement-based materials at different scales : the role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures

    E-Print Network [OSTI]

    Heukamp, Franz H. (Franz Hoyte), 1973-

    2003-01-01T23:59:59.000Z

    Calcium leaching is a durability threat for cement-based materials employed in critical infrastructures, such as Nuclear Waste Storage Systems. This thesis presents a comprehensive study of the material and structural ...

  17. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  18. Measurement and characterization techniques for thermoelectric materials

    SciTech Connect (OSTI)

    Tritt, T.M.

    1997-07-01T23:59:59.000Z

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  19. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  20. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can...

  1. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRCOverviewLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can contribute to...

  2. Comparison of Hyperelastic Models for Granular Materials

    SciTech Connect (OSTI)

    Paul W. Humrickhouse; J. Phil Sharpe; Michael L. Corradini

    2010-01-01T23:59:59.000Z

    Three recently proposed hyperelastic models for granular materials are compared with experiment data. Though all three are formulated to give elastic moduli that are power law functions of the mean stress, they have rather different dependencies on individual stresses, and generally differ from well established experimental forms. Predicted static stress distributions are in qualitative agreement with experiments, but do not differ greatly from isotropic linear elasticity, and similarly fail to account for variability in experiment data that presumably occurs due to a preparation dependence of granular materials.

  3. E-Print Network 3.0 - amelogenesis imperfecta due Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science ; Biotechnology 58 Combining High-resolution Micro computed Tomography with Material Summary: in assessing bone volumetric density is severely limited due...

  4. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  5. Degrees in Metallurgy and Materials

    E-Print Network [OSTI]

    Birmingham, University of

    Degrees in Metallurgy and Materials Course outline School of Metallurgy and Materials Materials us? Dr Alessandro Mottura Undergraduate Admissions Tutor for Metallurgy and Materials What difference will you make? #12;Degrees in Metallurgy and Materials Understanding the properties of new materials

  6. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16T23:59:59.000Z

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  7. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  8. Announcement due to MSVE Department

    E-Print Network [OSTI]

    Announcement due to MSVE Department 2 weeks prior to defense Student revises Thesis GPD revises Thesis and returns to student Student revises Thesis Professional editor reviews Thesis original signatures on five copies Student revises Thesis Student takes final five copies to Registrar

  9. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14T23:59:59.000Z

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  10. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN) [Oak Ridge, TN; Walls, Claudia A. (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn A. (Oak Ridge, TN) [Oak Ridge, TN

    2010-02-23T23:59:59.000Z

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  11. Detecting fission from special nuclear material sources

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

    2012-06-05T23:59:59.000Z

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  12. weapons material

    National Nuclear Security Administration (NNSA)

    2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  13. High accuracy electronic material level sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-03-11T23:59:59.000Z

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  14. Mechanics of abrasive wear of elastomeric materials

    E-Print Network [OSTI]

    Qi, Hang, 1971-

    2003-01-01T23:59:59.000Z

    Elastomeric materials are widely used as tire and sealing materials due to their ability to undergo large deformations and conform to the mating surface. However, their applications often result in repeated contact with ...

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  20. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    material, determined by ACEM, with structural phenomena revealed using neutron beams, to elucidate storage mechanisms. * Commissioning of Vulcan has been delayed due to...

  1. ANSI Essential Requirements: Due process requirements for American

    E-Print Network [OSTI]

    ANSI Essential Requirements: Due process requirements for American National Standards Edition: January 2010 Copyright by the American National Standards Institute (ANSI), 25 West 43rd Street, 4th Floor, New York, New York 10036. This material may be copied without permission from ANSI only

  2. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  3. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01T23:59:59.000Z

    based materials are used as EDLC electrodes due to theiror “mirror” behavior. In an EDLC, the adsorption of ions on

  4. 2014 NERSC allocation requests due September 22

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC allocation requests due September 22 2014 NERSC allocation requests due September 22 August 13, 2013 by Francesca Verdier (0 Comments) NERSC's allocation submission system is...

  5. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  6. Complex Materials

    SciTech Connect (OSTI)

    Cooper, Valentino

    2014-04-17T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  7. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  8. Production and characterization of a composite insulation material from waste polyethylene teraphtalates

    SciTech Connect (OSTI)

    Kurtulmus, Erhan; Karaboyac?, Mustafa; Yigitarslan, Sibel [Chemical Engineering Department of Suleyman Demirel University, 32200, Isparta (Turkey)

    2013-12-16T23:59:59.000Z

    The pollution of polyethylene teraphtalate (PET) is in huge amounts due to the most widely usage as a packaging material in several industries. Regional pumice has several desirable characteristics such as porous structure, low-cost and light-weight. Considering the requirements approved by the Ministry of Public Works on isolation, composite insulation material consisting of PET and pumice was studied. Sheets of composites differing both in particle size of pumice and composition of polymer were produced by hot-molding technique. Characterization of new composite material was achieved by measuring its weight, density, flammability, endurance against both to common acids and bases, and to a force applied, heat insulation and water adsorption capacity. The results of the study showed that produced composite material is an alternative building material due to its desirable characteristics; low weight, capability of low heat conduction.

  9. Materializing Energy

    E-Print Network [OSTI]

    James Pierce; Eric Paulos

    Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

  10. Percolation and homogenization theories for heterogeneous materials

    E-Print Network [OSTI]

    Chen, Ying, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Most materials produced by Nature and by human beings are heterogeneous. They contain domains of different states, structures, compositions, or material phases. How these different domains are distributed in space, or in ...

  11. Behavior of structural and target materials irradiated in spallation neutron environments

    SciTech Connect (OSTI)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Engineering; Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Borden, M.; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1995-05-01T23:59:59.000Z

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  12. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  13. DERIVATIONS FOR HOOP STRESSES DUE TO SHOCK WAVES IN A TUBE

    SciTech Connect (OSTI)

    Leishear, R

    2007-04-30T23:59:59.000Z

    Equations describing the hoop stresses in a pipe due to water hammer have been presented in the literature in a series of papers, and this paper discusses the complete derivation of the pertinent equation. The derivation considers the pipe wall response to a water hammer induced shock wave moving along the inner wall of the pipe. Factors such as fluid properties, pipe wall materials, pipe dimensions, and damping are considered. These factors are combined to present a single, albeit rather complicated, equation to describe the pipe wall vibrations and hoop stresses as a function of time. This equation is also compared to another theoretical prediction for hoop stresses, which is also derived herein. Specifically, the two theories predict different maximum stresses, and the differences between these predictions are graphically displayed.

  14. Creep Behavior of High Density Polyethylene after Aging in Contact with Different Oil Derivates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Creep Behavior of High Density Polyethylene after Aging in Contact with Different Oil Derivates The creep behavior of a high density polyethylene (HDPE), currently used as raw material for pipe manu polyethylene (HDPE) is a natural choice due to its good properties, its large availability, and its reduced

  15. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A. [Los Alamos National Laboratory; Busby, Jeremy T. [ORNL

    2012-06-12T23:59:59.000Z

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  16. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE)...

  17. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, Bernard P. (Richland, WA)

    1994-01-01T23:59:59.000Z

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  18. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, B.P.

    1994-08-02T23:59:59.000Z

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  19. PARTICLES OF DIFFERENCE.

    SciTech Connect (OSTI)

    SCHWARTZ,S.E.

    2000-09-21T23:59:59.000Z

    It is no longer appropriate, if it ever was, to think of atmospheric aerosols as homogeneous spheres of uniform composition and size. Within the United States, and even more globally, not only the mass loading but also the composition, morphology, and size distribution of atmospheric aerosols are highly variable, as a function of location, and at a given location as a function of time. Particles of a given aerodynamic size may differ from one another, and even within individual particles material may be inhomogeneously distributed, as for example, carbon spherules imbedded in much larger sulfate particles. Some of the particulate matter is primary, that is, introduced into the atmosphere directly as particles, such as carbon particles in diesel exhaust. Some is secondary, that is, formed in the atmosphere by gas-to-particle conversion. Much of the material is inorganic, mainly sulfates and nitrates resulting mainly from energy-related emissions. Some of the material is carbonaceous, in part primary, in part secondary, and of this material some is anthropogenic and some biogenic. While the heterogeneity of atmospheric aerosols complicates the problem of understanding their loading and distribution, it may well be the key to its solution. By detailed examination of the materials comprising aerosols it is possible to infer the sources of these materials. It may be possible as well to identify specific health impairing agents. The heterogeneity of aerosol particles is thus the key to identifying their sources, to understanding the processes that govern their loading and properties, and to devising control strategies that are both effective and efficient. Future research must therefore take cognizance of differences among aerosol particles and use these differences to advantage.

  20. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14T23:59:59.000Z

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  1. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53Reference Materials There are a variety of

  2. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-RayMaterials

  3. Functionalized Materials From Elastomers to High Performance Thermoplastics

    SciTech Connect (OSTI)

    Laura Ann Salazar

    2003-05-31T23:59:59.000Z

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.

  4. Development of a research methodology to study lumber waste due to design causes in residential construction

    E-Print Network [OSTI]

    Vyas, Ashok Madhusudan

    2012-06-07T23:59:59.000Z

    Residential Construction faces problems regarding inefficiencies of material usage. Builders pay twice for the lumber that is wasted. Once when it is purchased and once when it is disposed. Part of the lumber waste is generated due to the design...

  5. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  6. Energy harvesting using a thermoelectric material

    DOE Patents [OSTI]

    Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

    2008-07-08T23:59:59.000Z

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  7. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  8. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  9. Correction due to finite speed of light in absolute gravimeters

    E-Print Network [OSTI]

    Nagornyi, V D; Zanimonskiy, Y Y

    2010-01-01T23:59:59.000Z

    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 $\\mu$Gal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we investigate the problem from several prospectives, find the corrections for different types of absolute gravimeters, and establish relationships between different ways of implement them. The obtained results enabled us to analyze and understand the discrepancies in the results of other authors. We found that the correction derived from the Doppler effect is accountable only for $\\tfrac{2}{3}$ of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models.

  10. Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography

    E-Print Network [OSTI]

    Zhu, Chun

    2013-01-01T23:59:59.000Z

    in materials science and nanoscience through the use ofin materials science and nanoscience has revived due to thescience, biology and nanoscience, they have their own

  11. Materials Science and Engineering A252 (1998) 117132 Optimization of 316 stainless steel/alumina functionally graded

    E-Print Network [OSTI]

    Grujicic, Mica

    . Introduction Due to differences of thermal and mechanical prop- erties in ceramics and metals, residual stresses develop in regions near the ceramic/metal interfaces during fabrication and under thermal/alumina functionally graded material for reduction of damage induced by thermal residual stresses M. Grujicic *, H

  12. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

    2014-06-16T23:59:59.000Z

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  13. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  14. Microsoft PowerPoint - Dirac Materials QDM Mar 2015 short

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Dirac Materials? *Similarities and differences between d-wave superconductors, Graphene and Topological Insulators: All are Dirac materials with some common features...

  15. Use of advanced composite materials for innovative building design solutions/

    E-Print Network [OSTI]

    Lau, Tak-bun, Denvid

    2009-01-01T23:59:59.000Z

    Advanced composite materials become popular in construction industry for the innovative building design solutions including strengthening and retrofitting of existing structures. The interface between different materials ...

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14T23:59:59.000Z

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  19. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  20. Material flow analysis of concrete in the United States

    E-Print Network [OSTI]

    Low, Man-Shi

    2005-01-01T23:59:59.000Z

    Concrete is the second most consumed material in the world after water. Due to the sheer mass of concrete consumed annually and its associated resource and environmental impacts, improving the materials management of ...

  1. 23: Poultry Judging registration due to state office 29: Doughnut Sale Forms due for Council Fundraiser

    E-Print Network [OSTI]

    Jawitz, James W.

    May 23: Poultry Judging registration due to state office 29: Doughnut Sale Forms due for Council 3: Just Kiddin' 4-H Club annual banquet 6: State Poultry Judging Contest, Registration at 9:15am

  2. Rapidly solidified magnesium: nickel alloys as hydrogen storage materials.

    E-Print Network [OSTI]

    Yi, Xiaodong

    2014-01-01T23:59:59.000Z

    ??Due to high hydrogen capacity, good reversibility and low cost, magnesium hydride is one of the most promising hydrogen storage materials. However, the high desorption… (more)

  3. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  4. Violent Wave Motion due to Impact Violent Wave Motion due to Impact

    E-Print Network [OSTI]

    Violent Wave Motion due to Impact Violent Wave Motion due to Impact Mark J. Cooker School of Mathematics, University of East Anglia, Norwich, England. m.cooker@uea.ac.uk Theory of Water Waves, Cambridge Motion due to Impact 2. Pressure-Impulse Theory 214 M.J. COOKER AND D.H. PEREGRINE Y; O: .-- I mpact zone

  5. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

  6. Develop & evaluate materials & additives that enhance thermal...

    Broader source: Energy.gov (indexed) [DOE]

    characteristics of different cell chemistries. Identify and develop more stable cell materials that will lead to more inherently abuse tolerant cell chemistries. Secure sufficient...

  7. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    of different cell chemistries. Identify and develop more stable cell materials that will lead to more inherently abuse tolerant cell chemistries. Secure...

  8. Advanced materials: Information and analysis needs

    SciTech Connect (OSTI)

    Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

    1990-09-01T23:59:59.000Z

    This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

  9. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  10. Reflection beamshifts of visible light due to graphene

    E-Print Network [OSTI]

    Hermosa, N

    2015-01-01T23:59:59.000Z

    I present theoretical calculations of reflection beamshifts, Goos-H\\"anchen and Imbert-Fedorov shifts, due to the presence of a monolayer graphene on a dielectric media when using a beam with wavelength in the visible range. Specifically, I look at beamshifts for different polarization states (p, s, $45^0$, $\\sigma^+$). The Goos-H\\"anchen shifts I calculated are in good agreement with results of a recent experiment. I will discuss other possible experimental routes to determine beamshifts in graphene.

  11. Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid

    E-Print Network [OSTI]

    Satish Karra; K. R. Rajagopal

    2010-07-21T23:59:59.000Z

    The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.

  12. Supplementary Material for "Emergent multicellular life cycles in filamentous bacteria due to density

    E-Print Network [OSTI]

    Barbour, Andrew

    not exceed 1000 cells. For a turnover one order of magnitude lower ( = 0.001), the peak of the average length+ . As for the linear case, the birth and rate functions in (1) and (2) satisfy (N c ) = (N c ) = . The pie charts, the trend is not very marked. On the other hand, the charts obtained with hyperbolic20 functions

  13. Quantifying precipitation suppression due to air Pollution

    E-Print Network [OSTI]

    Li, Zhanqing

    Quantifying precipitation suppression due to air Pollution First author: Amir Givati The Hebrew January 2004 #12;ABSTRACT: Urban and industrial air pollution has been shown qualitatively to suppress of the ratio of hill/coast precipitation during the 20th century in polluted areas in line with the increasing

  14. Is Hubble's Expansion due to Dark Energy

    E-Print Network [OSTI]

    R. C. Gupta; Anirudh Pradhan

    2010-10-19T23:59:59.000Z

    {\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark-energy' is (almost) exactly of same-form as `the acceleration formula from the Hubble's law'. Hence, it is concluded that: yes, `indeed it is the dark-energy responsible for the Hubble's expansion too, in-addition to the current on-going acceleration of the universe'.

  15. Cathode materials review

    SciTech Connect (OSTI)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16T23:59:59.000Z

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  16. Final Project Due: May 18, 2010

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    1 Geos 206 Final Project Due: May 18, 2010 Save the trees, and the music stands: An Energy: Monthly totals Total Electricity in kWh Average kWh per day Cost $.11/kWh Emissions .41 kg/kWh (unit in kg electricity bill, cost and emissions of the Bernhard/Chapin complex. 4 Figure 3: This graph provides a monthly

  17. Computation of multi-material interactions using point method

    SciTech Connect (OSTI)

    Zhang, Duan Z [Los Alamos National Laboratory; Ma, Xia [Los Alamos National Laboratory; Giguere, Paul T [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations. Numerical examples are given to demonstrate the new scheme.

  18. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  19. Flow enhancement in nanotubes of different materials and lengths

    SciTech Connect (OSTI)

    Ritos, Konstantinos, E-mail: konstantinos.ritos@strath.ac.uk [James Weir Fluids Lab, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)] [James Weir Fluids Lab, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Mattia, Davide [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)] [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Calabrň, Francesco [DIEI, Universitŕ di Cassino e del Lazio Meridionale, 03043 Cassino (Italy)] [DIEI, Universitŕ di Cassino e del Lazio Meridionale, 03043 Cassino (Italy); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-01-07T23:59:59.000Z

    The high water flow rates observed in carbon nanotubes (CNTs) have previously been attributed to the unfavorable energetic interaction between the liquid and the graphitic walls of the CNTs. This paper reports molecular dynamics simulations of water flow in carbon, boron nitride, and silicon carbide nanotubes that show the effect of the solid-liquid interactions on the fluid flow. Alongside an analytical model, these results show that the flow enhancement depends on the tube's geometric characteristics and the solid-liquid interactions.

  20. Evaluating different classes of porous materials for carbon capture |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP isTechnologies

  1. Evaluating different classes of porous materials for carbon capture |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP isTechnologiesCenter for Gas

  2. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2010-08-03T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  3. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect (OSTI)

    Prahl, D.; Shaffer, M.

    2014-11-01T23:59:59.000Z

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  4. Visualization Contest Applications due August 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visiblegov Materials|GuidelinesE

  5. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  6. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2003-05-06T23:59:59.000Z

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  7. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Hirano, Fumio [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-07-01T23:59:59.000Z

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  8. Materials for solid state lighting

    SciTech Connect (OSTI)

    Johnson, S.G.; Simmons, J.A.

    2002-03-26T23:59:59.000Z

    Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

  9. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  10. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  11. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

  12. Plasma Frequency Shift Due to a Slowly Rotating Compact Star

    E-Print Network [OSTI]

    Babur M. Mirza; Hamid Saleem

    2005-05-10T23:59:59.000Z

    We investigate the effects of a slowly rotating compact gravitational source on electron oscillations in a homogeneous electrically neutral plasma in the absence of an external electric or magnetic field. Neglecting the random thermal motion of the electrons we assume the gravitoelectromagnetic approximation to the general theory of relativity for the gravitational field. It is shown that there is a shift in the plasma frequency and hence in the dielectric constant of the plasma due to the gravitomagnetic force. We also give estimates for the difference in the frequency of radially transmitted electromagnetic signals for typical compact star candidates.

  13. Vacuum Compatibility of 3D-Printed Materials

    E-Print Network [OSTI]

    Povilus, A P; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2013-01-01T23:59:59.000Z

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials.

  14. Extreme events due to localisation of energy

    E-Print Network [OSTI]

    Colm Mulhern; Stephan Bialonski; Holger Kantz

    2015-01-09T23:59:59.000Z

    We study a one-dimensional chain of harmonically coupled units in an asymmetric anharmonic soft potential. Due to nonlinear localisation of energy, this system exhibits extreme events in the sense that individual elements of the chain show very large excitations. A detailed statistical analysis of extremes in this system reveals some unexpected properties, e.g., a pronounced pattern in the inter event interval statistics. We relate these statistical properties to underlying system dynamics, and notice that often when extreme events occur the system dynamics adopts (at least locally) an oscillatory behaviour, resulting in, for example, a quick succession of such events. The model therefore might serve as a paradigmatic model for the study of the interplay of nonlinearity, energy transport, and extreme events.

  15. Programming Assignment 1: Due Monday, Sept. 19

    E-Print Network [OSTI]

    Hall, Mary W.

    'm using vim. You may want to edit on a different machine and copy to water, but keep in mind that you'll need a fast edit-compile-execute path. Or you can try vim, too. 09/08/2011" CS4961" #12;

  16. Laser Plasma Material Interactions

    SciTech Connect (OSTI)

    Schaaf, Peter; Carpene, Ettore [Universitaet Goettingen, II. Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2004-12-01T23:59:59.000Z

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  17. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect (OSTI)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30T23:59:59.000Z

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waalâ??s forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have studied the effect of x-rays and Îł-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals â?? materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  18. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  19. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  20. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  1. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  2. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  3. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    : Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

  4. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  5. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20T23:59:59.000Z

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  6. Life Extinction Due To Neutron Star Mergers

    E-Print Network [OSTI]

    Arnon Dar; Ari Laor; Nir J. Shaviv

    1996-11-24T23:59:59.000Z

    Cosmic ray bursts (CRBs) from mergers or accretion induced collapse of neutron stars that hit an Earth-like planet closer than $\\sim 1 kpc$ from the explosion produce lethal fluxes of atmospheric muons at ground level, underground and underwater. These CRBs also destroy the ozone layer and radioactivate the environment. The mean rate of such life devastating CRBs is one in 100 million years (Myr), consistent with the observed 5 ``great'' extinctions in the past 600 Myr. Unlike the previously suggested extraterrestrial extinction mechanisms the CRBs explain massive life extinction on the ground, underground and underwater and the higher survival levels of radiation resistant species and of terrain sheltered species. More distant mergers can cause smaller extinctions. Biological mutations caused by ionizing radiation produced by the CRB may explain a fast appearance of new species after mass extinctions. The CRB extinction predicts detectable enrichment of rock layers which formed during the extinction periods with cosmogenically produced radioactive nucleides such as $^{129}$I, $^{146}$Sm, $^{205}$Pb with and $^{244}$Pu. Tracks of high energy particles in rock layers on Earth and on the moon may also contain records of intense CRBs. An early warning of future extinctions due to neutron star mergers can be obtained by identifying, mapping and timing all the nearby binary neutron stars systems. A final warning of an approaching CRB from a nearby neutron stars merger will be provided by a gamma ray burst a few days before the arrival of the CRB.

  7. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  8. Supporting Online Material Materials and Methods

    E-Print Network [OSTI]

    Wolfe, Cecily J.

    1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

  9. SUPPORTING ONLINE MATERIAL Materials and Methods

    E-Print Network [OSTI]

    Newsome, William

    SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

  10. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31T23:59:59.000Z

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  11. Investigation of Extractable Materials from

    E-Print Network [OSTI]

    unknown authors

    2012-01-01T23:59:59.000Z

    The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis.

  12. Material model library for explicit numerical codes

    SciTech Connect (OSTI)

    Hofmann, R.; Dial, B.W.

    1982-08-01T23:59:59.000Z

    A material model logic structure has been developed which is useful for most explicit finite-difference and explicit finite-element Lagrange computer codes. This structure has been implemented and tested in the STEALTH codes to provide an example for researchers who wish to implement it in generically similar codes. In parallel with these models, material parameter libraries have been created for the implemented models for materials which are often needed in DoD applications.

  13. Materials for breeding blankets

    SciTech Connect (OSTI)

    Mattas, R.F.; Billone, M.C.

    1995-09-01T23:59:59.000Z

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  14. Renewable Energy Loan Applications Due Today! | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Loan Applications Due Today Renewable Energy Loan Applications Due Today October 5, 2010 - 12:15pm Addthis Ebony Meeks Former Assistant Press Secretary, Office...

  15. SC11 Education Program Applications due July 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC11 Education Program Applications due July 31 SC11 Education Program Applications due July 31 June 9, 2011 by Francesca Verdier (0 Comments) Applications for the Education...

  16. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect (OSTI)

    J. H. Zhu

    2009-07-31T23:59:59.000Z

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

  17. Displacement cascades in diatomic materials

    SciTech Connect (OSTI)

    Parkin, D.M.; Coulter, C.A.

    1981-01-01T23:59:59.000Z

    A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al/sub 2/O/sub 3/ and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one.

  18. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01T23:59:59.000Z

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  19. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  20. Earth-Abundant Materials

    Broader source: Energy.gov [DOE]

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

  1. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31T23:59:59.000Z

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  3. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  4. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  5. Inadvertent Climate Modification Due to Anthropogenic Lead

    SciTech Connect (OSTI)

    Cziczo, Daniel J.; Stetzer, Olaf; Worringen, Annette; Ebert, Martin; Weinbruch, Stephan; Kamphus, M.; Gallavardin, S. J.; Curtius, J.; Borrmann, S.; Froyd, Karl D.; Mertes, S.; Mohler, Ottmar; Lohmann, U.

    2009-05-01T23:59:59.000Z

    The relationship between atmospheric particulate matter and the formation of clouds is among the most uncertain aspects of our current understanding of climate change1. One specific question that remains unanswered is how anthropogenic particulate emissions are affecting the nucleation of ice crystals. Satellites show ice clouds cover more than a third of the globe2 and models suggest that ice nucleation initiates the majority of terrestrial precipitation3. It is therefore not possible to adequately understand either climate change or the global water cycle without understanding ice nucleation. Here we show that lead-containing particles are among the most efficient ice nucleating substances commonly found in the atmosphere. Field observations were conducted with mass spectrometry and electron microscopy at two remote stations on different continents, far removed from local emissions. Laboratory studies within two cloud chambers using controlled experimental conditions support the field data. Because the dominate sources of particulate lead are anthropogenic emissions such as aviation fuel, power generation, smelting, and the re-suspension of residue from tetra-ethyl leaded gasoline4, it is likely that cloud formation and precipitation have been affected when compared to pre-industrial times. A global climate model comparing pre-industrial and anthropogenically perturbed conditions shows that lead-containing particles may be increasing the outgoing longwave radiation by 0.2 to 0.8 W m-2, thereby offsetting a portion of the warming attributed to greenhouse gases1.

  6. Sludge stabilization boat material test plan

    SciTech Connect (OSTI)

    De Vries, M.L.

    1995-04-05T23:59:59.000Z

    This document provides instructions for testing different types of potential boat materials in the HC-21C muffle furnace process. The boats must withstand corrosive environments at up to 1000 degrees C.

  7. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  8. Background Material Important Questions about Magnetism

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

  9. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  10. Magnetocaloric Materials Stinus Jeppesen

    E-Print Network [OSTI]

    Magnetocaloric Materials Stinus Jeppesen Risø-PhD-43(EN) Risø National Laboratory for Sustainable Jeppesen Title: Magnetocaloric Materials Division: Fuel Cells and Solid State Chemistry Division Risø.D. degree at The University of Copenhagen Abstract: New and improved magnetocaloric materials are one

  11. Radioactive Materials License Commitments

    E-Print Network [OSTI]

    Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

  12. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05T23:59:59.000Z

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to â??real-worldâ?ť materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  13. IEEE International Symposium on Sustainable Systems and Technologies, Washington D.C., May 16-19, 2010 Abstract--Interest in recycling has surged in recent years due

    E-Print Network [OSTI]

    Gutowski, Timothy

    featuring PET plastic and aluminum flake separation in the beverage container recycling industry. Index-19, 2010 Abstract--Interest in recycling has surged in recent years due to shifting material costs material recycling rates. In response, recycling systems are becoming more complex as increasing material

  14. Surface space : digital manufacturing techniques and emergent building material

    E-Print Network [OSTI]

    Ho, Joseph Chi-Chen, 1975-

    2002-01-01T23:59:59.000Z

    This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

  15. On the use of doped polyethylene as an insulating material for HVDC cables

    SciTech Connect (OSTI)

    Khalil, M.S. [Sultan Qaboos Univ., Muscat (Oman)

    1996-12-31T23:59:59.000Z

    The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Different aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.

  16. Asbestos-free brake-lining materials for hydrogenerators

    SciTech Connect (OSTI)

    Lalonde, S.; Lanteigne, J. [Hydro-Quebec, Varennes, Quebec (Canada)

    1995-11-01T23:59:59.000Z

    Three different asbestos-free materials currently considered as new lining materials for hydrogenerator brakes were tested and compared to the original asbestos lining. Results show that these substitutes not only vary greatly from the original material in terms of mechanical properties and physical characteristics but also exhibit significantly different performances in braking tests. Consequently, these new materials are not entirely suitable for the intended application.

  17. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  18. Active Printed Materials for Complex Self-Evolving Deformations

    E-Print Network [OSTI]

    Zhao, Wei

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated ...

  19. Method and apparatus for vibrating a substrate during material formation

    DOE Patents [OSTI]

    Bailey, Jeffrey A. (Richland, WA) [Richland, WA; Roger, Johnson N. (Richland, WA) [Richland, WA; John, Munley T. (Benton City, WA) [Benton City, WA; Walter, Park R. (Benton City, WA) [Benton City, WA

    2008-10-21T23:59:59.000Z

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  20. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07T23:59:59.000Z

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  1. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  2. Montani, Kohn, Smith and Schultz (2006), Supplemental Material Supplemental Material

    E-Print Network [OSTI]

    Smith, Matthew A.

    Montani, Kohn, Smith and Schultz (2006), Supplemental Material 1 Supplemental Material A. Entropy, Kohn, Smith and Schultz (2006), Supplemental Material 2 occupied, it is ambiguous whether

  3. Magnetic mesoporous materials for removal of environmental wastes

    SciTech Connect (OSTI)

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15T23:59:59.000Z

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

  4. SMERDON ET AL.: AUXILIARY MATERIAL Auxiliary Material

    E-Print Network [OSTI]

    Smerdon, Jason E.

    run [Ammann et al., 2007; hereinafter CCSM] and the GKSS ECHO-g ERIK2 run [González-Rouco et al., 2006; hereinafter ECHO-g]. The annual means of the modeled temperature fields are interpolated to 5° latitude;SMERDON ET AL.: AUXILIARY MATERIAL 2 ECHO-g simulations, respectively. The above conventions

  5. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. An Opto-electric Smart Material Detector with Wavelength-Dependent Bob Zheng,1

    E-Print Network [OSTI]

    GP-B-19 An Opto-electric Smart Material Detector with Wavelength-Dependent Logic Bob and Computer Engineering, Rice University, Houston, Texas, U.S.A. Smart materials are artificial materials, or the coherent, collective oscillations of conduction-band electrons, are ideal sensors for smart materials due

  7. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  8. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  9. Materials Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generation and detection, this approach naturally lends itself to in situ monitoring of material property evolution. The temporal laser pulse length and the corresponding...

  10. Webinar: Materials Genome Initative

    Broader source: Energy.gov [DOE]

    Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

  11. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  12. Geopolymer Sealing Materials

    Broader source: Energy.gov (indexed) [DOE]

    Geopolymer Sealing Materials PI : Dr. Tomas Butcher Presenter: Dr. Toshi Sugama Brookhaven National Laboratory May 18, 2010 This presentation does not contain any proprietary...

  13. Materials for MA 182.

    E-Print Network [OSTI]

    Materials for MA 182. INSTRUCTOR: Richard Penney. Office: MATH 822: Telephone: 494-1968: e-mail: rcp@math.purdue.edu: Office Hours: Mon, Tu, Fri,

  14. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  15. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  16. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  17. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  18. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23T23:59:59.000Z

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  19. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  20. JOINING ADVANCED MATERIALS BY PLASTIC FLOW PROVIDES SOLUTION FOR OXYGEN SENSOR APPLICATIONS

    E-Print Network [OSTI]

    Kemner, Ken

    JOINING ADVANCED MATERIALS BY PLASTIC FLOW PROVIDES SOLUTION FOR OXYGEN SENSOR APPLICATIONS's unique plastic deformation process. · Abilitytodeploymultipleoxygen sensors (due to their lower cost

  1. Computation of seismic attenuation and dispersion due to ...

    E-Print Network [OSTI]

    masson@localhost.localdomain (masson)

    2006-07-08T23:59:59.000Z

    Jun 23, 2006 ... Seismic attenuation and dispersion are numerically computed for synthetic porous materials that contain arbitrary amounts of mesoscopic-.

  2. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. “Electroviscoelastic Materials As Active Dampers”,Smart Structures and Materials, 4695:345-350. Biggerstaff,

  3. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01T23:59:59.000Z

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  4. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  5. Calculation of the reactivity feedback due to core-assembly bowing in LMFBRs

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    The nonuniformity of the temperature distribution in an LMFBR leads to differential thermal expansion of the walls of an assembly hexcan. These thermal expansion differentials cause the hexcan to distort or bow. Consequentially, the assembly experiences a spatial displacement, which results in a change in reactivity for the core. A computational model to calculate the reactivity feedback due to material displacements induced by assembly bowing effects has been developed.

  6. The Use of Energy Information in Plastic Scintillator Material

    SciTech Connect (OSTI)

    Ely, James H.; Anderson, Kevin K.; Bates, Derrick J.; Kouzes, Richard T.; Lopresti, Charles A.; Runkle, Robert C.; Siciliano, Edward R.; Weier, Dennis R.

    2008-06-15T23:59:59.000Z

    Plastic scintillator material is often used for gamma-ray detection in many applications due to its relatively good sensitivity and cost-effectiveness compared to other detection materials. However, due to the dominant Compton scattering interaction mechanism, full energy peaks are not observed in plastic scintillator spectra and isotopic identification is impossible. Typically plastic scintillator detectors are solely gross count detectors. In some safeguards and security applications, such as radiation portal monitors for vehicle screening, naturally-occurring radioactive material (NORM) often triggers radiation alarms and results in innocent or nuisance alarms. The limited energy information from plastic scintillator material can be used to discriminate the NORM from targeted materials and reduce the nuisance alarm rate. An overview of the utilization of the energy information from plastic scintillator material will be presented, with emphasis on the detection capabilities and potential limitations for safeguards and security applications. (PIET-43741-TM-490)

  7. Develop and Evaluate Materials and Additives that Enhance Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    protection 5 Recent Accomplishments and Progress SEI formation on different carbon anodes o Material investigated: MCMB-1028, 3 types of surface modified graphite from...

  8. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Broader source: Energy.gov (indexed) [DOE]

    of long cycle-life in half cells and expand the synthesis of sulfurcarbon composite materials of various sulfur loadings 2. Compare the performance for different...

  9. Develop and Evaluate Materials and Additives that Enhance Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    of different cell chemistries. Identify and develop more stable cell materials that will lead to more inherently abuse tolerant cell chemistries. Secure...

  10. The synthesis and characterization of porous, conductive, and ordered materials

    E-Print Network [OSTI]

    Narayan, Tarun Chandru

    2013-01-01T23:59:59.000Z

    Two different classes of polymers were pursued as candidates for materials possessing porosity, conductivity, and crystalline order. Attempts were made with hexaazatrinaphthylene- and dibenzotetrathiafulvalene-based ...

  11. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Broader source: Energy.gov (indexed) [DOE]

    chemical reactions, and to treat materials for increased hardness and resistance to corrosion. The activities are: Can sunlight break down different kinds of plastics? Can...

  12. Space Reflector Materials for Prometheus Application

    SciTech Connect (OSTI)

    J. Nash; V. Munne; LL Stimely

    2006-01-31T23:59:59.000Z

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require significant controls, handling of clean, finished products requires only modest controls. Neither material was initially considered to be viable as a structural material, however, based on improved understanding of its unirradiated properties, Be should be evaluated due to having potentially acceptable structural properties in the unirradiated condition, i. e., during launch, when loads might be most limiting. All three of the alternative materials are non-hazardous, and thus do not engender the ES&H concerns associated with use of Be or BeO. Aluminum oxide is a widely available ceramic material with well characterized physical properties and well developed processing practices. Although the densest (3.97 g/cm{sup 3} versus Be: 1.85, BeO: 3.01, MgO: 3.58, and MgAl{sub 2}O{sub 4}: 3.60, all theoretical density), and therefore the heaviest, of all the materials considered for this application, its ease of fabrication, mechanical properties, availability and neutronic characteristics warrant its evaluation. Similarly, MgO is widely used in the refractory materials industry and has a large established manufacturing base while being lighter than Al{sub 2}O{sub 3}. Most of the commercially available MgO products incorporate additives or a second phase to avoid the formation of Mg(OH){sub 2} due to spontaneous reaction with ambient humidity. The hygroscopicity of MgO makes it a more difficult material to work with than Al{sub 2}O{sub 3} or MgAl{sub 2}O{sub 4}. Magnesium aluminate spinel, although not as widely available as either Al{sub 2}O{sub 3} or MgO, has the advantage of a density almost as low as MgO without being hygroscopic, and shares comparable neutronic performance characteristics in the reflector application.

  13. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01T23:59:59.000Z

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  14. Impacted material placement plans

    SciTech Connect (OSTI)

    Hickey, M.J.

    1997-01-29T23:59:59.000Z

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility.

  15. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  16. Materials for Information Technology

    E-Print Network [OSTI]

    Tang, Ben Zhong

    on thin-film and nano-scale materials. The papers include content ranging from materials-related aspects for these fascinating and useful mate- rials. /jr Adv. Eng. Mater. 2009, 11, Issue 4 Colloidal Hollow Spheres Colloidal hollow spheres of conduct- ing polymers such as polypyrrole (PPy) or polyaniline (PAni) are produced

  17. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  18. Space Shielding Materials for Prometheus Application

    SciTech Connect (OSTI)

    R. Lewis

    2006-01-20T23:59:59.000Z

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and mitigate the risks in LiH development for a project with an aggressive schedule like JIMO, some background or advanced development effort for LiH should be considered for future space reactor projects.

  19. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  20. Renewing Music Library Materials Online Most checked out Music Library materials can be renewed through PantherCat

    E-Print Network [OSTI]

    Saldin, Dilano

    Renewing Music Library Materials Online Most checked out Music Library materials can be renewed://www.uwm.edu/Libraries/Music/about.html#loan. Please Note: Item loan periods are renewed from the date you renew them. If you renew an item one day full loan period you must wait to renew the item until its original due date. What can and cannot

  1. Materials of Gasification

    SciTech Connect (OSTI)

    None

    2005-09-15T23:59:59.000Z

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  2. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01T23:59:59.000Z

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  3. Reversal of Hugoniot locus for strong shocks due to radiation

    SciTech Connect (OSTI)

    Li Jiwei; Li Jinghong; Meng Guangwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2011-04-15T23:59:59.000Z

    Shock Hugoniot can be used to express the response of a material to shocks, and the compression ratio of the shock can be determined by the Hugoiot locus. When the shock is strong, it will become radiating, and the radiation will affect the Hugoniot. The role of radiation on the Hugoniot condition is studied in the paper. For the radiative flux-dominated shocks, the radiative flux if large enough may render the structure of the shock Hugoniot locus totally different with the case for the pure hydrodynamic shock: the two branches with one in quadrant I and the other in quadrant III are reversed into two in quadrants IV and II, respectively, correspondingly the compression ratio may be larger than the limiting value ({gamma}+1)/({gamma}-1) for ideal gases with index {gamma}. For the radiative shock in which the radiative heat wave propagates supersonically, a threshold value for the net radiative flux to the preshock is also defined which determines whether the Hugoniot locus is reversed and the compression ratio exceeds the limiting value. Numerical results also verify the reversal of the Hugoniot locus of the shocks if the net radiative flux to the preshock exceeds the threshold value.

  4. Application of Negligible Creep Criteria to Candidate Materials for HTGR Pressure Vessels

    SciTech Connect (OSTI)

    Jetter, Robert I [Consultant; Sham, Sam [ORNL; Swindeman, Robert W [Consultant

    2011-01-01T23:59:59.000Z

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel (RPV) during normal operation. This work addresses the criteria for negligible creep in Subsection NH, Division 1 of the ASME B&PV (Boiler and Pressure Vessel) Code, Section III, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by creep properties. In assessing the effect of localized cyclic stresses it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 2 Cr-1Mo, is illustrated and the relative advantages and disadvantages of the materials are discussed.

  5. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2000-11-21T23:59:59.000Z

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  6. Analysis of inventory difference using fuzzy controllers

    SciTech Connect (OSTI)

    Zardecki, A.

    1994-08-01T23:59:59.000Z

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.

  7. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  9. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  10. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  11. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  12. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01T23:59:59.000Z

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  13. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  14. Polyimide-based electrooptic materials

    SciTech Connect (OSTI)

    Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Labs., Albuquerque, NM (United States); Beuhler, A.J.; Wargowski, D.A. [Amoco Chemical Co., Naperville, IL (United States); Singer, K.D.; Kowalczyk, T.C.; Kosc, T.Z. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics

    1993-08-01T23:59:59.000Z

    The properties of new, high temperature optical materials based on dye-doped Ultradel{reg_sign} 9000D{sup 1} polyimides are presented. Ultradel 9000D is a soluble, pre-imidized, fluorinated polymer with properties optimized for integrated optical applications. When thermally or photochemically cross-linked, it has a Tg approaching 400{degree}C and retains excellent optical transparency as measured by both waveguide loss spectroscopy (WLS) and photothermal deflection spectroscopy (PDS). The agreement between WLS and PDS data indicates that losses in polyimides are due to absorption, not scattering. Two thermally stable, donor-acceptor oxazole-based dyes were designed, synthesized, and doped into the polyimide at concentrations up to 25 percent by weight. The Tg of the doped polymers decreased from the neat polymer, but remained above 300 {degree}C. The effects of doping on the dielectric constant, refractive index, and coefficient of thermal expansion of the polyamide are presented. The oxazoles also photobleach and thereby provide an additional means of photodefining waveguides in these materials.

  15. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01T23:59:59.000Z

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  16. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M. (Albuquerque, NM)

    1993-01-01T23:59:59.000Z

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  17. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, J.M.

    1993-04-20T23:59:59.000Z

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  18. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  19. Materials Science & Engineering

    E-Print Network [OSTI]

    . Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

  20. Microdrilling of Biocompatible Materials

    E-Print Network [OSTI]

    Mohanty, Sankalp

    2012-02-14T23:59:59.000Z

    This research studies microdrilling of biocompatible materials including commercially pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-T6. A microdrilling technique that uses progressive pecking and micromist...

  1. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07T23:59:59.000Z

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

  2. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  3. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  4. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26T23:59:59.000Z

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  5. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL Recovery of Critical Materials from Consumer Devices 3 3-2 3.2.6 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 McGuire, Michael ORNL...

  6. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL National Technology Roadmap for Critical Materials 4 4-3 4.3.3 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 Payne, Steve LLNL New Efficient...

  7. MATERIALS SCIENCE HEALTHCARE POLICY

    E-Print Network [OSTI]

    Falge, Eva

    for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

  8. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

    1993-01-01T23:59:59.000Z

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  9. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07T23:59:59.000Z

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  10. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

  11. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  12. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  13. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  14. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25T23:59:59.000Z

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  15. Piston actuated nastic materials

    E-Print Network [OSTI]

    Shah, Viral

    2009-05-15T23:59:59.000Z

    PISTON ACTUATED NASTIC MATERIALS A Thesis by VIRAL SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2008... Major Subject: Mechanical Engineering PISTON ACTUATED NASTIC MATERIALS A Thesis by VIRAL SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  16. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  17. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  18. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

  19. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15T23:59:59.000Z

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  20. attack damage due: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell damage extent due to irradiation with nanosecond laser pulses under cell culturing medium and dry environment Engineering Websites Summary: Autnoma de Mxico; Av....

  1. aplastic crisis due: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a crisis due to doubling of fertilizer, grain, and fuel costs. New and better forage management practices 4 Aloimmunity against HLA class I antigens in patients with...

  2. aqueduct stenosis due: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technology (POSTECH), Pohang 790-784, Republic Cambridge, University of 109 Probabilistic Naturalness Measure for Dipole Moments due to New Physics HEP - Phenomenology...

  3. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  4. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  5. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T. [and others

    2000-11-01T23:59:59.000Z

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  6. ESP – Data from Restarted Life Tests of Various Silicon Materials

    SciTech Connect (OSTI)

    Schneider, Jim

    2010-10-06T23:59:59.000Z

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  7. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31T23:59:59.000Z

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that, due to excessive wastage, certain tube samples needed to be removed and replaced in order to ensure that Test Sections B and C would have a chance of remaining in the boiler for their intended exposure period. These suspect tube samples were replaced and the two remaining test sections were put back into service. The tube samples that were removed from Test Sections B and C were set aside for later analysis at the end of the planned exposure period. Test Sections B and C were again examined approximately six months later. At that time, measured wall thickness losses raised concerns about additional tube samples. These suspect samples were also removed, set aside for later analysis, and replaced. The test sections then went back into service until the end of the second exposure period, which was concluded in May 2003 when, due to evidence of excessive wastage, the valves were opened increasing cooling steam flow and thereby effectively stopping corrosion. In August 2003, Test Sections B and C were removed for closer examination. Section C had experienced about 42 months of service at the desired team temperature set point with 28.5 months at temperature at full temperature. Additional suspect samples were removed from Test Section B, then, it was re-installed into the boiler (at the location originally occupied by Section C), where it remained in service until the end of the program. Due to this removal history, the samples from Test Section B had a total service duration that varied from a minimum of 15.5 months (for samples that performed poorly) to 37 months for samples the survived for the full intended service exposure for Section B. The figure below shows a schematic of Test Section B and indicates the length of service exposure for different locations. This report provides the results of the evaluation of Test Section B, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. This report also is intended to compare and summarize the results for all three test sections. The analysis of T

  8. Stability of vertical films of molten glass due to evaporation F. Pigeonneau,a

    E-Print Network [OSTI]

    Boyer, Edmond

    and the momentum conservations is numerically solved by an implicit time solver using a finite difference method. Consequently, if a large part of the bath surface is covered with foam, heat transfer, mainly radiative due can be a nuisance. Most of glass furnaces are heated by a combustion chamber above the glass bath

  9. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31T23:59:59.000Z

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  10. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10T23:59:59.000Z

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  11. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  12. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  13. Apparatus for dispensing material

    DOE Patents [OSTI]

    Sutter, Peter Werner (Beach, NY); Sutter, Eli Anguelova (Beach, NY)

    2011-07-05T23:59:59.000Z

    An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

  14. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  15. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01T23:59:59.000Z

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  16. Packaging and Transfer of Hazardous Materials and Materials of...

    Broader source: Energy.gov (indexed) [DOE]

    PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

  17. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect (OSTI)

    Pham, Chuyen V.; Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de, E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael [Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Weber, Stefan; Erdem, Emre, E-mail: michael.krueger@fmf.uni-freiburg.de, E-mail: emre.erdem@physchem.uni-freiburg.de [Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg (Germany)

    2014-03-31T23:59:59.000Z

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g?=?2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  18. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

    1998-01-01T23:59:59.000Z

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  19. Materials for geothermal production

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1992-01-01T23:59:59.000Z

    Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

  20. Materials Under Extremes | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Porous Materials

  1. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract ResearchMaterials andMaterials

  2. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract ResearchMaterialsMaterials for

  3. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30T23:59:59.000Z

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  4. Short courses in Composite Materials

    E-Print Network [OSTI]

    Davies, John N.

    Short courses in Composite Materials Overview The ability to tailor the material properties used. Combining the adaptability of composites with clear weight savings, whilst tailoring materials properties Airbus and Glyndr University, the Advanced Composites Training and Development Centre educates current

  5. \\\\due.uci.edu\\due\\Files\\SAC\\CIE\\STAFF\\Duties\\REGIONS.DOC ` 09/06/13 Staff Advisor Regions

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    \\\\due.uci.edu\\due\\Files\\SAC\\CIE\\STAFF\\Duties\\REGIONS.DOC ` 09/06/13 Staff Advisor Regions UCI Study.studyabroad.uci.edu Advisor Countries/Regions (EAP & IOP) EAP Countries Chrystal Fairbanks cfairban@uci.edu (949) 824

  6. XXI ICTAM, 1521 August 2004, Warsaw, Poland IMPACT FRACTURE OF ROCK MATERIALS DUE TO PERCUSSIVE DRILLING ACTION

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    DRILLING ACTION Anton M. Krivtsov, Ekaterina E. Pavlovskaia, Marian Wiercigroch St. Petersburg State fracture of rocks caused by percussive drilling is presented. The process is modeled using particle are investigated. INTRODUCTION Percussive drilling is proved to be superior when compared to a convention rotary

  7. Imprint in ferroelectric materials due to space charges: A theoretical M. B. Okatan and S. P. Alpaya

    E-Print Network [OSTI]

    Alpay, S. Pamir

    is a degradation mechanism in ferroelectrics that results in the displacement of the polarization hysteresis loop degradation mechanisms often observed in ferroelectrics is imprint. The most common characteristic of imprint such as electric field, elevated temperatures, and UV light.1­5 While the exact mechanisms of imprint are not known

  8. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16T23:59:59.000Z

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

  9. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    SciTech Connect (OSTI)

    Harrison, Alan K [Los Alamos National Laboratory; Shashkov, Mikhail J [Los Alamos National Laboratory; Fung, Jimmy [Los Alamos National Laboratory; Canfield, Thomas R [Los Alamos National Laboratory; Kamm, James R [SNLA

    2010-10-14T23:59:59.000Z

    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  10. Chemical Functionalization of Nanostructured Materials Using Supercritical Reaction Media

    SciTech Connect (OSTI)

    Zemanian, Thomas S.; Fryxell, Glen E.; Liu, Jun; Mattigod, Shas V.; Shin, Yongsoon; Franz, James A.; Ustyugov, Oleksiy A.; Nie, Zimin

    2001-12-15T23:59:59.000Z

    There exists a need for durable and thin functional coatings to utilize the afforded surface area of highly porous ceramic materials. Deposition of silane-based Self Assembled Monolayers (SAMs) has thus far been limited to maximum coverages of 4-5 molecules/nm2 and long processing times (up to 2 weeks), due to the restricted internal geometry of the substrates. Results are presented for SAMs deposited on high surface area silica from supercritical fluids (SCFs). The SAMs so produced display unprecedented coverages, high monolayer integrity, and extremely low surface defect density. Moreover, the depositions and subsequent removal of reaction byproducts are complete in a matter of minutes rather than days. Nuclear Magnetic Resonance (NMR) spectra of the surface modified silica are presented, demonstrating the SAM integrity and evolution over time. Sorption of aqueous metal ions is demonstrated, and results are given demonstrating the broad pH stability of the deposited SAMs. A chemical explanation for the enhanced deposition is posited, and the kinetics of mass transport into and out of the nanostructured spaces are discussed.Related experiments using zeolite substrates show deposition of thiol-terminated silanes to internal surfaces of 6? microporous material. After oxidation of the thiol functional group size selective chemistry was demonstrated using the produced catalyst, proving the efficacy of the supercritical reaction medium for installing functional coatings inside pores of similar diameters to the chain length of the deposited molecule[]. Comparisons are made between the response of the different substrates to the supercritical fluid-based processing, and remarks on the utility of SCF based processing of nanostructured materials are presented.

  11. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    the damping material and epoxy resin. The surface of theinfiltration of the epoxy resin into the damping materialthe damping material and resin (epoxy) is occurring and is

  12. Materials and Manufacturing

    E-Print Network [OSTI]

    Environmental Assurance Anne Meinhold Unprecedented Accomplishments in the Use of Aluminum-Lithium Alloy Preston is the solution. Other times, the design must accommodate the limitations of materials properties. The design requirements, and written procedures. Nondestructive testing depends on incident or input energy that interacts

  13. Supplemental Material Supplemental methods

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2009 #12;Computing counter and % ID/g calculated as (counts/weight tissue)/ total counts injected. Mass Spectrometry. To extract ACPPs to obtain electrospray (ESI) mass spectra, a solution of 9M guanidinium chloride (Gu

  14. Materials Safety Data Sheets

    E-Print Network [OSTI]

    Schweik, Charles M.

    Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

  15. NMR imaging of materials

    SciTech Connect (OSTI)

    Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

    1989-01-01T23:59:59.000Z

    Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

  16. Sustainable Materials Course Outline

    E-Print Network [OSTI]

    New South Wales, University of

    , embodied energy; environmental footprint, waste recycling and pollution minimization, life cycle assessment Science and Engineering (Building E8) Phone: 9385 5025 j.q.zhang@unsw.edu.au Consultation hours: by appointment To be advised School of Materials Science and Engineering (Building E8) Consultation hours

  17. Action Plan Materials Science

    E-Print Network [OSTI]

    Fitze, Patrick

    sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

  18. Yield criteria for quasibrittle and frictional materials

    E-Print Network [OSTI]

    Davide Bigoni; Andrea Piccolroaz

    2010-10-09T23:59:59.000Z

    A new yield/damage function is proposed for modelling the inelastic behaviour of a broad class of pressure-sensitive, frictional, ductile and brittle-cohesive materials. The yield function allows the possibility of describing a transition between the shape of a yield surface typical of a class of materials to that typical of another class of materals. This is a fundamental key to model the behaviour of materials which become cohesive during hardening (so that the shape of the yield surface evolves from that typical of a granular material to that typical of a dense material), or which decrease cohesion due to damage accumulation. The proposed yield function is shown to agree with a variety of experimental data relative to soil, concrete, rock, metallic and composite powders, metallic foams, porous metals, and polymers. The yield function represents a single, convex and smooth surface in stress space approaching as limit situations well-known criteria and the extreme limits of convexity in the deviatoric plane. The yield function is therefore a generalization of several criteria, including von Mises, Drucker-Prager, Tresca, modified Tresca, Coulomb-Mohr, modified Cam-clay, and --concerning the deviatoric section-- Rankine and Ottosen. Convexity of the function is proved by developing two general propositions relating convexity of the yield surface to convexity of the corresponding function. These propositions are general and therefore may be employed to generate other convex yield functions.

  19. United States Department of Energy Nuclear Materials Stewardship

    SciTech Connect (OSTI)

    Newton, J. W.

    2002-02-27T23:59:59.000Z

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

  20. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    SciTech Connect (OSTI)

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29T23:59:59.000Z

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of micron-sized particles; extension of the theory to account for these effects is also considered. A set of continuum models are proposed for use in the future dust transport modeling.

  1. Carrier pocket engineering applied to ``strained'' Si/Ge superlattices to design useful thermoelectric materials

    E-Print Network [OSTI]

    Cronin, Steve

    thermoelectric materials T. Koga,a) X. Sun, S. B. Cronin, and M. S. Dresselhausb) Department of Physics to provide a promising strategy for designing materials with a large thermoelectric figure of merit ZT is already a good thermoelectric material, 3 the reduction of the lattice ther- mal conductivity ph due

  2. Review on the EFDA programme on tungsten materials technology and science M. Rieth a,

    E-Print Network [OSTI]

    Nordlund, Kai

    Review on the EFDA programme on tungsten materials technology and science M. Rieth a, , J design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due structural as well as armor materials in combination with the necessary production and fab- rication

  3. Spedding entry closed due to falling debris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spedding entry closed due to falling debris Facilities and Engineering Services, with concurrence from ESH&A, has closed the front (north) entrance of Spedding Hall to all but...

  4. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495...

  5. Technology Solutions Case Study: Overcoming Comfort Issues Due...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues Due to Reduced Flow Room Air Mixing Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the heating, ventilating, and...

  6. Problems Of The Week Due March 26th

    E-Print Network [OSTI]

    Bigelow, Stephen

    Problems Of The Week Due March 26th Make sure to review the guidelines before you start! You can triangle are whole numbers. The perimeter of the triangle is 110 inches and one side has measure 29 inches

  7. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01T23:59:59.000Z

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  8. Paper Machine Is it the material

    E-Print Network [OSTI]

    Das, Suman

    (dezincification) 7. Erosion corrosion 8. Microbiologically influenced corrosion 9. Stress-corrosion cracking Forms ­ Galvanic corrosion is the principle behind all batteries ­ There is a potential difference (voltage) between dissimilar materials immersed in a conductive solution Alkaline batteries are copper and nickel

  9. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06T23:59:59.000Z

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  10. From Smart Materials to Cognitive Materials Requirements and Challenges

    E-Print Network [OSTI]

    Bremen, Universität

    From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz construction, production engineer- ing, or wearable computing. Smart and sensorial materials provide a variety this application than the material itself that can be considered being "smart". In this contribution, we proceed

  11. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOE Patents [OSTI]

    Cornelius, Christopher J. (Albuquerque, NM)

    2006-04-04T23:59:59.000Z

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  12. Calculation of material properties and ray tracing in transformation media

    E-Print Network [OSTI]

    Schurig, D; Smith, D R

    2006-01-01T23:59:59.000Z

    Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability.

  13. Graphene: Materially Better Carbon

    SciTech Connect (OSTI)

    Fuhrer, M. S.; Lau, C. N.; MacDonald, A. H.

    2010-01-01T23:59:59.000Z

    Graphene, a single atom–thick plane of carbon atoms arranged in a honeycomb lattice, has captivated the attention of physicists, materials scientists, and engineers alike over the five years following its experimental isolation. Graphene is a fundamentally new type of electronic material whose electrons are strictly confined to a two-dimensional plane and exhibit properties akin to those of ultrarelativistic particles. Graphene's two-dimensional form suggests compatibility with conventional wafer processing technology. Extraordinary physical properties, including exceedingly high charge carrier mobility, current-carrying capacity, mechanical strength, and thermal conductivity, make it an enticing candidate for new electronic technologies both within and beyond complementary metal oxide semiconductors (CMOS). Immediate graphene applications include high-speed analog electronics and highly conductive, flexible, transparent thin films for displays and optoelectronics. Currently, much graphene research is focused on generating and tuning a bandgap and on novel device structures that exploit graphene's extraordinary electrical, optical, and mechanical properties.

  14. Geothermal materials development activities

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1993-06-01T23:59:59.000Z

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  15. Webinar: Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

  16. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  17. Materials Department Annual Report 1992

    E-Print Network [OSTI]

    Materials Department Annual Report 1992 Published by the Materials Department Risø National and stone by Chr. Dahlgaard Larsen Materials Department Risø National Laboratory, Roskilde, Denmark Tel.: +45 46 77 46 77 Fax: +4542351173 #12;Abstract Selected activities ot the Materials Department at Riso

  18. Materials Department Annual Report 1991

    E-Print Network [OSTI]

    Materials Department Annual Report 1991 Published by the Materials Department Risø National, iron and stone by Chr. Dahlgaard Larsen Materials Department Risø National Laboratory, Roskilde, Denmark Tel.: +45 42 37 12 12 Fax: + 45 42 35 11 73 #12;Abstract Selected activities of the Materials

  19. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  20. George Smith, Department of Materials,

    E-Print Network [OSTI]

    Paxton, Anthony T.

    George Smith, Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH UK Email: george.smith@materials.ox.ac.uk URL: www.materials.ox.ac.uk The aims of the Department of Materials experienced one of the most successful years in its 46-year history, says head of department George Smith. Top

  1. Materials in design

    E-Print Network [OSTI]

    Perata, Alfredo Ferando

    1970-01-01T23:59:59.000Z

    the strength, hardness and wear resistance has been increased. S rin Materials Since in many cases equipment requires that springs have to operate properly at conditions of excessive vibration, corrosive environment, extremes temperatures. A great care has...) It is considered a good long wearing bearing metal where good bearing conditions are present once the design has been done very good. (Accurate filling, good oil clearance; good lubrication, non-corrosive oil). It can be used with hardened shafts. B ' g B Tin...

  2. Materials Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective: DevelopMaterials

  3. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective:11 DOEMaterials Materials

  4. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14T23:59:59.000Z

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  5. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material

  6. An Experiment to Tame the Plasma Material Interface

    SciTech Connect (OSTI)

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08T23:59:59.000Z

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  7. New demands on manufacturing of composite materials

    SciTech Connect (OSTI)

    Manson, J.A.E. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Technologie des Composites et Polymeres

    1994-12-31T23:59:59.000Z

    Traditionally the field of advanced composites has been dominated by the needs of the aerospace industry. This has strongly influenced the materials and processes developed. However, during the last few years, a shift of emphasis into other engineering areas has been obvious. Branches such as the mechanical industry, ground transportation, the building industry and the leisure industry are today defining many of the new areas of application for these materials. In these applications fiber-reinforced composites are not just used in large structures but also in crucial small complex-shaped elements of larger machinery in order to improve overall performance. To satisfy these new demands, it is essential to develop innovative material systems and processing techniques which enable the production of composite parts with complex geometries at reasonable cost and with high precision. Most likely the solution to this task lies in the closely integrated development of the material system and the manufacturing method. Several different approaches are today taken in order to reach this goal for composite materials. Furthermore, it is nowadays important that the introduction of any new material or application, especially for high volume production, be accompanied by a thorough life-cycle and environmental plan.

  8. Thermal decomposition of charring materials

    SciTech Connect (OSTI)

    Nurbakhsh, S.

    1989-01-01T23:59:59.000Z

    Experimental techniques and methods were developed to investigate the transient process of wood pyrolysis under different levels of external radiation, moisture content of the wood sample, and oxygen concentration of the ambient atmosphere. A unique small-scale combustion-wind tunnel was constructed to conduct the pyrolysis experiments and to obtain the time dependent gasification mass flux, surface and in-depth temperatures, and evolved products of pyrolysis (CO, CO{sub 2}, H{sub 2}O, and total hydrocarbons (THC)) for thermally thick samples of Douglas-fir. Experiments were performed both in inert atmosphere (nitrogen), and in air at several different heat fluxes and three different moisture contents of wood. Time dependent empirical chemical composition, char yield, and the heat of combustion of the pyrolysis products were determined. The experimental results indicate that the presence of moisture reduces the pyrolysis mass flux and delays the occurrence of its maxima. Presence of oxygen drastically increases the pyrolysis mass flux but its effect specially at lower temperatures depends on the experimental conditions such as the boundary layer thickness over the wood surface. Char yield, chemical composition of the volatiles, and the heat of combustion were found to vary during the pyrolysis process and with changes in the environmental conditions and wood moisture content. The pyrolysis temperature assumption often used for the simplified modeling of wood pyrolysis was examined in detail by considering two otherwise identical models; one with infinitely fast decomposition kinetics and the other with finite rate chemistry. It was concluded that the pyrolysis temperature is not a material property and different pyrolysis temperatures are needed for every problem.

  9. Material accountancy for metallic fuel pin casting

    SciTech Connect (OSTI)

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-08-01T23:59:59.000Z

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases.

  10. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  11. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  12. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, Donald G. (Bayport, NY); Davis, Mary S. (Wading River, NY)

    1990-01-01T23:59:59.000Z

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  13. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30T23:59:59.000Z

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  14. Materials Modification Under Ion Irradiation: JANNUS Project

    SciTech Connect (OSTI)

    Serruys, Y.; Trocellier, P. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Ruault, M.-O.; Henry, S.; Kaietasov, O. [CSNSM, Bat. 104, Orsay Campus (France); Trouslard, Ph. [INSTN, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2004-12-01T23:59:59.000Z

    JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM.

  15. Materials Research in the Information Age

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials...

  16. RFI: DOE Materials Strategy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RFI: DOE Materials Strategy RFI: DOE Materials Strategy DOE Materials Strategy - request for information RFI: DOE Materials Strategy More Documents & Publications Microsoft Word -...

  17. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-07-16T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  1. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21T23:59:59.000Z

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  2. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, Joseph B. (San Jose, CA)

    1984-01-01T23:59:59.000Z

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  3. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16T23:59:59.000Z

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  4. Construction Material And Method

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2006-02-21T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  5. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareers The Critical Materials Institute

  6. LANL: Materials Science Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2RecoveryBioenergy »0 Los1Materials

  7. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14 Sales of4)Delegations, andARM

  8. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14 Sales of4)Delegations, andARMWork

  9. Magnetic Materials (MM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L.FallU . S .ofFieldMagnetic Materials

  10. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86 4.77of PolarMaterial

  11. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86 4.77ofMaterial Safety

  12. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContractMaterials/Condensed Matter Print

  13. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContractMaterials/Condensed Matter

  14. Material efficiency in construction

    E-Print Network [OSTI]

    Moynihan, Muiris

    2014-10-07T23:59:59.000Z

    , this generation must change its use of energy and materials. 1.1 The need to reduce carbon dioxide emissions The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) states as #16;unequivocal#17; that the Earth's atmosphere and oceans... in order to save energy and carbon. University of Cambridge, Cambridge, UK. ISBN 978-0- 903428-32-3 3. Allwood, J.M., Cullen, J.M., Patel, A.C.H., Cooper, D.R.,Moynihan, M.C., Milford, R.L., Carruth, M.A. and McBrien, M. 2011. Prolonging our metal life #22...

  15. Parton energy loss due to synchrotron-like gluon emission

    E-Print Network [OSTI]

    B. G. Zakharov

    2008-09-03T23:59:59.000Z

    We develop a quasiclassical theory of the synchrotron-like gluon radiation. Our calculations show that the parton energy loss due to the synchrotron gluon emission may be important in the jet quenching phenomenon if the plasma instabilities generate a sufficiently strong chromomagnetic field. Our gluon spectrum disagrees with that obtained by Shuryak and Zahed within the Schwinger's proper time method.

  16. Four-nucleon potential due to exchange of pions

    SciTech Connect (OSTI)

    Robilotta, M.R.

    1985-03-01T23:59:59.000Z

    A four-body force due to the exchange of pions has been derived by means of It includes effects corresponding to pion-pion scattering, pion production, and pion-nucleon rescattering. The strength parameters of this four-body potential are typically one order of magnitude smaller than those of the two-pion-exchange three-body force.

  17. Math 110 Homework Assignment 21 due date: Mar. 18, 2013

    E-Print Network [OSTI]

    Roth, Mike

    Math 110 Homework Assignment 21 due date: Mar. 18, 2013 1. Consider a fish population with adult fish and young fish where the transition from one year's population to the next is 0.7 0.2 3 0 representing a 70% adult survival rate from year to year, a 20% survival rate for young fish, and the fact

  18. Plastic strain due to twinning in austenitic TWIP steels

    E-Print Network [OSTI]

    Cambridge, University of

    Plastic strain due to twinning in austenitic TWIP steels B. Qin and H. K. D. H. Bhadeshia* Twinning induced plasticity steels are austenitic alloys in which mechanical twinning is a prominent deformation, Twinning, Twinning induced plasticity, Automobiles Introduction Mechanical twinning is a plastic

  19. Left Lateralized Enhancement of Orofacial Somatosensory Processing Due

    E-Print Network [OSTI]

    JSLHR Supplement Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which

  20. Costs of Land Subsidence Due to Groundwater Withdrawal

    E-Print Network [OSTI]

    Warren, J. P.; Jones, L. L.; Griffin, W. L.; Lacewell, R. D.

    total. Of the $109.6 million, $53.2 million were incurred in 1973, principally due to a six foot tide. Probability of the occurrence of a six foot tide in any one year is 20 percent. Given five additional feet of subsidence in the study area...

  1. PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES Fabien FouiHen, INERIS, Parc. Reflections led on this accident have pushed to consider the phenomenon of tank pressurization as a potential initiating event of the fire ball observed. In concrete terms, when a fixed roof storage tank is surrounded

  2. atmospheric absorption due: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric absorption due First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The thermal infrared spectra...

  3. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  4. Discriminative Illumination: Per-Pixel Classification of Raw Materials based on Optimal Projections of Spectral BRDF

    E-Print Network [OSTI]

    Gu, Jinwei

    Discriminative Illumination: Per-Pixel Classification of Raw Materials based on Optimal Projections training samples, after projecting to which, the spectral reflectance of different materials are maximally--is learned from training samples, after projecting to which, the spectral BRDFs of different materials can

  5. Shock-induced chemistry in organic materials

    SciTech Connect (OSTI)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20T23:59:59.000Z

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  6. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16T23:59:59.000Z

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  7. ANALYTICAL NEUTRONIC STUDIES CORRELATING FAST NEUTRON FLUENCE TO MATERIAL DAMAGE IN CARBON, SILICON, AND SILICON CARBIDE

    SciTech Connect (OSTI)

    Jim Sterbentz

    2011-06-01T23:59:59.000Z

    This study evaluates how fast neutron fluence >0.1 MeV correlates to material damage (i.e., the total fluence spectrum folded with the respective material’s displacements-per- atom [dpa] damage response function) for the specific material fluence spectra encountered in Next Generation Nuclear Plant (NGNP) service and the irradiation tests conducted in material test reactors (MTRs) for the fuel materials addressed in the white paper. It also reports how the evaluated correlations of >0.1 MeV fluence to material damage vary between the different spectral conditions encountered in material service versus testing.

  8. Additive assembly of digital materials

    E-Print Network [OSTI]

    Ward, Jonathan (Jonathan Daniel)

    2010-01-01T23:59:59.000Z

    This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete ...

  9. STRUCTURAL ENGINEERING, MECHANICS AND MATERIALS

    E-Print Network [OSTI]

    Wang, Yuhang

    of companies worldwide; cladding effects on, and hybrid control of, the response of tall buildings Buildings · Masonry Structures · Nano/Microstructure of Cement-based Materials · Polymeric Composite Systems · Reliable Engineering Computing · Risk Analysis · Seismic Hazard Mitigation · Smart Materials

  10. DPC materials and corrosion environments

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Stephanie Teich-McGoldrick; Ernest Hardin

    2014-10-01T23:59:59.000Z

    This review focuses on the performance of basket materials that could be exposed to ground water over thousands of years, and prospective disposal overpack materials that could possibly be used to protect dual-purpose canisters (DPCs) in disposal environments.

  11. FURTHERING THE RECLAIMED MATERIALS EXPERIENCE

    E-Print Network [OSTI]

    Bartels, Robert A.

    2012-08-31T23:59:59.000Z

    A comprehensive study of the reclaimed materials industry and ways it could be improved from a management standpoint by working through a Design Management problem solving approach. Project Objectives: To improve the sourcing of reclaimed materials...

  12. DHS Internship Summary-Crystal Assembly at Different Length Scales

    SciTech Connect (OSTI)

    Mishchenko, L

    2009-08-06T23:59:59.000Z

    I was part of a project in which in situ atomic force microscopy (AFM) was used to monitor growth and dissolution of atomic and colloidal crystals. At both length scales, the chemical environment of the system greatly altered crystal growth and dissolution. Calcium phosphate was used as a model system for atomic crystals. A dissolution-reprecipitation reaction was observed in this first system, involving the conversion of brushite (DCPD) to octacalcium phosphate (OCP). In the second system, polymeric colloidal crystals were dissolved in an ionic solvent, revealing the underlying structure of the crystal. The dissolved crystal was then regrown through an evaporative step method. Recently, we have also found that colloids can be reversibly deposited in situ onto an ITO (indium tin oxide) substrate via an electrochemistry setup. The overall goal of this project was to develop an understanding of the mechanisms that control crystallization and order, so that these might be controlled during material synthesis. Controlled assembly of materials over a range of length scales from molecules to nanoparticles to colloids is critical for designing new materials. In particular, developing materials for sensor applications with tailorable properties and long range order is important. In this work, we examine two of these length scales: small molecule crystallization of calcium phosphate (whose crystal phases include DCPD, OCP, and HAP) and colloidal crystallization of Poly(methyl methacrylate) beads. Atomic Force Microscopy is ideal for this line of work because it allows for the possibility of observing non-conducting samples in fluid during growth with high resolution ({approx} 10 nm). In fact, during atomic crystal growth one can observe changes in atomic steps, and with colloidal crystals, one can monitor the individual building blocks of the crystal. Colloids and atoms crystallize under the influence of different forces acting at different length scales as seen in Table 1. In particular, molecular crystals, which are typically dominated by ionic and covalent bonding, are an order of magnitude more strongly bonded than colloidal crystals. In molecular crystals, ordering is driven by the interaction potentials between molecules. By contrast, colloidal assembly is a competition between the repulsive electrostatic forces that prevent aggregation in solution (due to surface charge), and short-range van der Waals and entropic forces that leads to ordering. Understanding atomic crystallization is fundamentally important for fabrication of tailorable crystalline materials, for example for biological or chemical sensors. The transformation of brushite to OCP not only serves as a model system for atomic crystal growth (applicable to many other crystal growth processes), but is also important in bone cements. Colloidal crystals have unique optical properties which respond to chemical and mechanical stimuli, making them very important for sensing applications. The mechanism of colloidal crystal assembly is thus fundamentally important. Our in situ dissolution and regrowth experiments are one good method of analyzing how these crystals pack under different conditions and how defect sites are formed and filled. In these experiments, a silica additive was used to strengthen the colloidal crystal during initial assembly (ex situ) and to increase domain size and long range order. Reversible electrodeposition of colloids onto a conductive substrate (ITO in our case) is another system which can further our knowledge of colloidal assembly. This experiment holds promise of allowing in situ observation of colloidal crystal growth and the influence of certain additives on crystal order. The ultimate goal would be to achieve long range order in these crystals by changing the surface charge or the growth environment.

  13. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30T23:59:59.000Z

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  14. Thermoelectric Materials, Devices and Systems:

    Broader source: Energy.gov (indexed) [DOE]

    -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

  15. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Materials Science, News, News & Events, Research & Capabilities, Solid-State Lighting Semiconductor nanowire lasers have attracted intense interest as...

  16. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  17. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  18. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-23T23:59:59.000Z

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  19. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1995-01-01T23:59:59.000Z

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  20. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1996-01-01T23:59:59.000Z

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  1. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07T23:59:59.000Z

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  2. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  3. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  4. Department of Advanced Materials Science

    E-Print Network [OSTI]

    Katsumoto, Shingo

    @k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

  5. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

    2011-09-07T23:59:59.000Z

    Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

  6. IMPACT OF NUCLEAR MATERIAL DISSOLUTION ON VESSEL CORROSION

    SciTech Connect (OSTI)

    Mickalonis, J.; Dunn, K.; Clifton, B.

    2012-10-01T23:59:59.000Z

    Different nuclear materials require different processing conditions. In order to maximize the dissolver vessel lifetime, corrosion testing was conducted for a range of chemistries and temperature used in fuel dissolution. Compositional ranges of elements regularly in the dissolver were evaluated for corrosion of 304L, the material of construction. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni.

  7. Mechanical properties of thermal protection system materials.

    SciTech Connect (OSTI)

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01T23:59:59.000Z

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  8. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect (OSTI)

    McDonald, D.K.

    2003-04-22T23:59:59.000Z

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy?s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles? Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  9. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08T23:59:59.000Z

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  10. Yield Stress Materials in Soft Condensed Matter

    E-Print Network [OSTI]

    Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville

    2015-02-18T23:59:59.000Z

    We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.

  11. EE 511 Problem Set 7 Due on 16 Nov 2007

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    is 11 MHz, sketch SXI (f), the power spectral density of the in-phase component of the band-pass process), the cross power spectral density of the in-phase and quadrature components of the band-pass processEE 511 Problem Set 7 Due on 16 Nov 2007 1. Let ^Xt be the Hilbert transform of the W.S.S. random

  12. ESA DUE GlobVapour water vapor products: Validation

    SciTech Connect (OSTI)

    Schneider, Nadine; Schroeder, Marc; Stengel, Martin [Deutscher Wetterdienst (DWD), KU22, Frankfurter Str. 135, 63067 Offenbach a. M (Germany); Lindstrot, Ramus; Preusker, Rene [Freie Universitaet Berlin (FUB), Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin (Germany); Collaboration: ESA DUE GlobVapour Consortium

    2013-05-10T23:59:59.000Z

    The main objective of the European Space Agency (ESA) Data User Element (DUE) GlobVapour project was the development of multi-annual global water vapor data sets. Since water vapour is a key climate variable it is important to have a good understanding of its behavior in the climate system. The ESA DUE GlobVapour project provides water vapor data, including error estimates, based on carefully calibrated and inter-calibrated satellite radiances in response to user requirements for long time series satellite observations. ESA DUE GlobVapour total columnar water vapor (TCWV) products derived from GOME/SCIA/GOME-2 (1996-2008) and SSM/I+MERIS (2003-2008) have been validated for the mentioned period, using satellite-based (AIRS, ATOVS) and ground-based measurements (radiosondes and microwave radiometer). The validation results are discussed in the following. The technical specifications on bias (1 kg/m{sup 2} for SSMI+MERIS and 2 kg/m{sup 2} for GOME/SCIA/GOME-2) are generally met. For more information, documents and data download follow the link: www.globvapour.info.

  13. Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using) solar energy conversion systems (or solar cells) are the most widely used power systems. However and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

  14. Radiation absorption properties of different plaster samples

    SciTech Connect (OSTI)

    Akkurt, Iskender; Guenoglu, Kadir; Mavi, Betuel; K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I ncarslan, Semsettin; Seven, Aysun [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Physics, Isparta (Turkey); Amasya University, Faculty of Arts and Sciences, Department of Physics, Amasya (Turkey); Suleyman Demirel University, Faculty of Technical Education, Department of Construction Education, Isparta (Turkey)

    2012-09-06T23:59:59.000Z

    Although the plaster is one of the oldest known synthetic building materials, nowadays, it is used as interior coating of walls and ceilings of buildings. Thus measuring its radiation shielding properties is vital. For this purpose, radiation absorption properties of different plaster samples in this study. The measurements have been performed using gamma spectrometer system which connected to 3'' Multiplication-Sign 3''NaI (TI) detector.

  15. Play and tolerance : notions of looseness in social and material assemblages

    E-Print Network [OSTI]

    Voorhees, Jeremy, 1978-

    2004-01-01T23:59:59.000Z

    The material scenario provides the most illustrative of entry points into this collection of evidence embodying the difference between play and tolerance. In a material assemblage, the looseness in a joint (expansion, pin, ...

  16. Mathematical modelings of smart materials and structures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mathematical modelings of smart materials and structures Christian Licht , Thibaut Weller mathematical models of smart materials and smart structures. Smart materials are materials which present perturbations methods, asymptotic analysis, plates and rods models. 1 Introduction Smart materials present

  17. Arctic sea ice modeling with the material-point method.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01T23:59:59.000Z

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  18. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  19. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  20. Material Standards for EHS for Engineered Nanoscale Materials Material Standards for

    E-Print Network [OSTI]

    Magee, Joseph W.

    #12;#12;Material Standards for EHS for Engineered Nanoscale Materials Material Standards of Standards and Technology, Gaithersburg, MD Workshop Co-Chairs and Principle Report Editors Dianne L. Poster, John A. Small, Michael T. Postek National Institute of Standards and Technology Sponsored by U

  1. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect (OSTI)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  2. Inversion of Scattered Waves for Material Properties in Fractured Rock

    SciTech Connect (OSTI)

    Gritto, Roland; Korneev, Valeri A.; Johnson, Lane R.

    1999-07-01T23:59:59.000Z

    The authors apply a recently developed low-frequency, non-linear inversion method which includes near and far field terms to a crosshole data set to determine the bulk and shear modulus, as well as the density for a fractured zone in a granitic rock mass. The method uses the scattered elastic wavefield which is extracted from the recorded data before the inversion is performed. The inversion result is appraised by investigating the resolution and standard deviation of the model estimates. The sensitivity of the three parameters to different features of the medium is revealed. While the bulk modulus appears to be sensitive to voids and welded contacts, the density is mostly affected by fractured zones. The shear modulus is least constrained due to the absence of S wave anisotropy information. It is shown that the three medium parameters are generally sensitive to other medium features than those determined by velocity inversions. Thus this method is viewed as a complimentary approach to travel time tomography which provides more insight into the material properties of inhomogeneous media.

  3. ARM - Different Climates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation DataDatastreamswacrspeccmaskcopolDatastreamsxsacrslrAlaskaDefensive Shotgun -ListDifferent Climates

  4. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-07-25T23:59:59.000Z

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  5. The effect of inhibitors on material and mechanical properties of oxidized carbon-carbon composites

    E-Print Network [OSTI]

    Elliott, Charles Howard

    1995-01-01T23:59:59.000Z

    approach examines the importance of fatigue crack formation due to expansion and contraction. Mass loss and material property degradation is assessed with subsequent exploratory nondestructive testing of rheometry and piezoelectric ultrasonic composite...

  6. Thermal Performance of Microencapsulated Phase Material (MPCM) Slurry in a Coaxial Heat Exchanger

    E-Print Network [OSTI]

    Yu, Kun

    2014-05-08T23:59:59.000Z

    Microencapsulated phase change material (MPCM) slurries and coil heat exchangers had been recently studied separately as enhancers of convective heat transfer processes. Due to the larger apparent heat related to the phase change process...

  7. Fundamental understanding and materials design approaches for lithium-oxygen electrochemical energy storage

    E-Print Network [OSTI]

    Gallant, Betar M. (Betar Maurkah)

    2013-01-01T23:59:59.000Z

    New strategies and materials are needed to increase the energy and power capabilities of lithium storage devices for electric vehicle and grid-scale applications. Systems based on oxygen electrochemistry are promising due ...

  8. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    E-Print Network [OSTI]

    Jung, Sung Mi

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology ...

  9. Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials

    E-Print Network [OSTI]

    Wang, Hongyun

    electronic circuits, and microscale low power freezers for biological single cell storage. Since 1990s, nano materials due to the distributed Peltier cooling compensating for the internal Joule heating.7,8 Essentially

  10. Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Failure in shear bands for granular materials: thermo-hydro-chemo- mechanical effects M. VEVEAKIS depends on the chemical reaction characteristics and that micro-inertia due to grain translations

  11. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    SciTech Connect (OSTI)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01T23:59:59.000Z

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  12. A study of temperature distributions due to conduction reservoir heating

    E-Print Network [OSTI]

    Connaughton, Charles Richard

    2012-06-07T23:59:59.000Z

    of thermal conductivity with temperature. He showed this effect could be very important in considering a material such as oil shale, where the conductivity of the raw shale may be five times as great as that of the spent shale. Neglecting this variation... conduction model to investigate the in place heating of oil shale by hot gases forced through a fracture. The heat injection rate he considered is much less than would normally be employed for steam injection into permeable reservoirs and is only about...

  13. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect (OSTI)

    Hornung, Thorsten, E-mail: thorsten.hornung@ise.fraunhofer.de; Nitz, Peter, E-mail: thorsten.hornung@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2014-09-26T23:59:59.000Z

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  14. Q-ball Instability due to U(1) Breaking

    E-Print Network [OSTI]

    Masahiro Kawasaki; Kenichiro Konya; Fuminobu Takahashi

    2005-05-24T23:59:59.000Z

    Q-ball is a non-topological soliton whose stability is ensured by global U(1) symmetry. We study a Q-ball which arises in the Affleck-Dine mechanism for baryogenesis and consider its possible instability due to U(1) breaking term ($A$-term) indispensable for successful baryogenesis. It is found that the instability destroys the Q-ball if its growth rate exceeds inverse of the typical relaxation time scale of the Q-ball. However, the instability is not so strong as it obstructs the cosmological formation of the Q-balls.

  15. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. Norby (2007)Rising Sea Levels Due to

  16. Directives Due for Review Before 9/30/2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSCDiesel pricesDirectionsDirectives Due for

  17. Directives Due for Review FY 2015 - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSCDiesel pricesDirectionsDirectives Due

  18. Due West, South Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII Wind Farm JumpDuPontDue

  19. ASCR Leadership Computing Challenge Requests for Time Due February 14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudget Advanced ScientificRequests for Time Due

  20. Sandia National Laboratories: Due Diligence on Lead Acid Battery Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BERPressure,Fernando Garzon JointDue

  1. Method for materials deposition by ablation transfer processing

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA)

    1996-01-01T23:59:59.000Z

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

  2. Fossil energy materials needs assessment

    SciTech Connect (OSTI)

    King, R.T.; Judkins, R.R. (comps.)

    1980-07-01T23:59:59.000Z

    An assessment of needs for materials of construction for fossil energy systems was prepared by ORNL staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing. The needs of these various disciplines are correlated with the emerging fossil energy technologies that require materials consideration. Greater emphasis is given to coal technology - particularly liquefaction, gasification, and fluidized bed combustion - than to oil and gas technologies because of the perceived inevitability of US dependence on coal conversion and utilization systems as a major part of our total energy production.

  3. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  4. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  5. The Materials Project:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentTheInforumLastProject: computing and

  6. The Filter Difference Spectrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2Different ImpactsTheRolling Stone"TheThe

  7. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect (OSTI)

    Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

    1998-08-01T23:59:59.000Z

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  8. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29T23:59:59.000Z

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  9. Seismic attenuation due to wave-induced flow

    SciTech Connect (OSTI)

    Pride, S.R.; Berryman, J.G.; Harris, J.M.

    2003-10-09T23:59:59.000Z

    Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.

  10. Mater. Res. Soc. Symp. Proc. Vol. 1408 2012 Materials Research Society DOI: 10.1557/opl.2012. 4

    E-Print Network [OSTI]

    Bowers, John

    of California, Santa Barbara, CA ABSTRACT Silicon nanowires (NWs) are promising thermoelectric materials. INTRODUCTION Bulk silicon is considered a poor thermoelectric material due to its high thermal conductivity, and T is the average temperature. Commercial thermoelectric materials such as Bi2Te3 typically have a ZT of ~1 at 300 K

  11. Effect of ion excape velocity and conversion surface material on H- production

    SciTech Connect (OSTI)

    Johnson, Kenneth F [Los Alamos National Laboratory; Tarvainen, Olli A [Los Alamos National Laboratory; Geros, E. [Los Alamos National Laboratory; Stelzer, J. [Los Alamos National Laboratory; Rouleau, G. [Los Alamos National Laboratory; Kalvas, T. [UNIV OF JYVASKYLA; Komppula, J. [UNIV OF JYASKYLA; Carmichael, J. [ORNL

    2010-10-05T23:59:59.000Z

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  12. Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid

    E-Print Network [OSTI]

    Karra, Satish

    2010-01-01T23:59:59.000Z

    The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentrati...

  13. A photoelastic investigation of the bending moment on a gear tooth due to a concentrated load

    E-Print Network [OSTI]

    Sun, Pu-Ning

    1960-01-01T23:59:59.000Z

    parallel to the X-Y plane was proportional to the stress CI on the X surface, or that ness, Mx, times the thickness of a slice, b, so that 12 Then M = M ~ b, or M M x ' x b 13 xmax 6M x h But since h = 1 in, for all models used in this research... AND LOADING . Material Mold . Casting Loading IV. ANALYSIS OF DATA r2 Orientation of Coordinate System. . . . . . . Determination of the Bending Moment, Mx, along the Fixed Edge Normal Stresses-Shear Difference Method . 12 12 l8 V. DISCUSSION...

  14. in-situ chemistry mapping of hydrogen storage materials by neutron diffraction

    SciTech Connect (OSTI)

    Payzant, E Andrew [ORNL] [ORNL; Bowman Jr, Robert C [ORNL] [ORNL; Johnson, Terry A [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Jorgensen, Scott W [GM R& D and Planning, Warren, Michigan] [GM R& D and Planning, Warren, Michigan

    2013-01-01T23:59:59.000Z

    Neutron diffraction was used to nondestructively study the microstructures for two hydrogen storage media systems. In the first case, sodium alanate based hydrogen storage is a vehicle-scale candidate system developed by Sandia/GM. Neutron scattering was used to determine the distribution of phases in the storage media at different hydrogen loading levels, to help understand the absorption/desorption of hydrogen in large-scale systems. This study also included a 3D neutron tomographic study of the microstructure. In the second case, tin-doped lanthanum nickel alloys have been studied at JPL for space-based applications, for which the gradual degradation of the material due to segregation and disproportionation of phases is a known problem. A regenerative process developed to restore the storage properties of these alloys was studied, using in-situ neutron diffraction to relate the microstructure to the thermodynamic simulations.

  15. Study of the stability of Z-pinch implosions with different initial density profiles

    SciTech Connect (OSTI)

    Rousskikh, A. G.; Zhigalin, A. S.; Labetskaya, N. A.; Chaikovsky, S. A.; Yushkov, G. Yu. [Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation)] [Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Oreshkin, V. I.; Batrakov, A. V. [Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation) [Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Baksht, R. B. [Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation) [Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Tel-Aviv University, Tel Aviv (Israel)

    2014-05-15T23:59:59.000Z

    Stability of metal-puff Z pinches was studied experimentally. Experiments were carried out on a facility producing a load current up to 450 kA with a rise time of 450?ns. In a metal-puff Z pinch, the plasma shell is produced due to evaporation of the electrode material during the operation of a vacuum arc. In the experiment to be reported, a single-shell and a shell-on-jet pinch load with magnesium electrodes were used. Two-dimensional, 3 ns gated, visible-light images were taken at different times during the implosion. When the shell was formed from a collimated plasma flow with small radial divergence, Rayleigh–Taylor (RT) instability typical of gas-puff implosions was recorded. The RT instability was completely suppressed in a mode where the initial density distribution of the shell approached a tailored density profile [A. L. Velikovich et al., Phys. Rev. Lett. 77, 853 (1996)].

  16. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lai Qiongyu, E-mail: laiqy5@hotmail.co [College of Chemistry, Sichuan University, Chengdu 610064 (China); Xu Xiaoyun [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2010-11-15T23:59:59.000Z

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  17. Material-based design computation

    E-Print Network [OSTI]

    Oxman, Neri

    2010-01-01T23:59:59.000Z

    The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

  18. MULTIDISCIPLINARY FREE MATERIAL OPTIMIZATION 1 ...

    E-Print Network [OSTI]

    2009-10-18T23:59:59.000Z

    Nonlinear Anal. and Mech., Pitman, London, pages 136–212, 1979. [22] R. Werner. Free Material Optimization. PhD thesis, Institute of Applied Mathematics II, ...

  19. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    on the Damping of Composite Laminates”, SPIE Proceedings onpublication to Journal of Composite Materials Biggerstaff,submitted for publication to Composites, Part A Biggerstaff,

  20. Toda Cathode Materials Production Facility

    Broader source: Energy.gov (indexed) [DOE]

    Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

  1. Nanostructured Electrode Materials for Supercapacitors

    E-Print Network [OSTI]

    Wu, Shin-Tson

    and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

  2. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with lightweight materials can directly reduce fuel consump-tion. It also allows cars to carry advanced emissions control equipment, safety devices, and integrated...

  3. Interim Management of Nuclear Materials

    Broader source: Energy.gov (indexed) [DOE]

    containing dissolved nuclear materials and recovered isotopes in stainless-steel tanks; and product and scrap forms of metals or oxides in containers (cans, drums, etc.)...

  4. Chemistry and Processing of Nanostructured Materials

    SciTech Connect (OSTI)

    Fox, G A; Baumann, T F; Hope-Weeks, L J; Vance, A L

    2002-01-18T23:59:59.000Z

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation of these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.

  5. NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS

    E-Print Network [OSTI]

    Farritor, Shane

    NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT Graphene Colloquium

  6. Materials and Methods Strain construction, materials, and Net1 mutagenesis

    E-Print Network [OSTI]

    Shou, Wenying

    Materials and Methods Strain construction, materials, and Net1 mutagenesis All strains used and destruction boxes (Clb2C2DK100)HA3 was used in over-expression experiments with Clb2 (1). Net1 mutant constructs were created as previously described (2). Briefly, a wild type NET1-myc9 epitope tagged construct

  7. Comparing materials used in mist eliminators

    SciTech Connect (OSTI)

    Looney, B.; Baleno, B.; Boles, G.L.; Telow, J. [Solvay Advanced Polyers (United States)

    2007-11-15T23:59:59.000Z

    Wet flue gas desulfurization (FGD) systems, or wet scrubbers, are notoriously capital - and maintenance-intensive. Mist eliminators are an integral part of most wet FGD systems. These are available in a variety of materials - polypropylene, fiberglass reinforced polymer (FRP), polysulfone and stainless steel. The article discusses the material properties, performance attributes and relative cost differences associated with each of these four materials. It describes the common problems with mist eliminators - fouling and corrosion. These can be minimised by routine cleaning and use of chemical additives to prevent deposition. An analysis was carried out to compare the four materials at APS Cholla power plant. As a result the facility is retrofitting its remaining wet scrubber towers in Unit 2 with mist eliminators constructed from polysulfone as each of the current ones of the existing polypropylene needs replacing. Polysulfone is cheaper to clean and components require replacing less frequently than polypropylene. Switching from stainless steel to polypropylene has proved advantageous on 22 wet scrubbers operated by PPL Montana. 5 figs. 2 tabs.

  8. Shear banding in soft glassy materials

    E-Print Network [OSTI]

    Suzanne M. Fielding

    2014-08-20T23:59:59.000Z

    Many soft materials, including foams, dense emulsions, micro gel bead suspensions, star polymers, dense packing of surfactant onion micelles, and textured morphologies of liquid crystals, share the basic "glassy" features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  9. Material Safety Data Sheets | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

  10. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

  11. NUCLEAR MATERIALS PROGRESS REPORTS FOR 1980

    E-Print Network [OSTI]

    Olander, D.R.

    2010-01-01T23:59:59.000Z

    Ceramics", Progress in Material Science 21, 307 (1976}. S. -heating techniques in material processing. Thermal analysisIrreversible Thermodynamics in Materials Problems", in Mass

  12. On the fracture toughness of advanced materials

    E-Print Network [OSTI]

    Launey, Maximilien E.

    2009-01-01T23:59:59.000Z

    toughness of advanced materials ?? By Maximilien E. LauneyAbstract: Few engineering materials are limited by theirare manufactured from materials that are comparatively low

  13. Cybersecurity Awareness Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Awareness Materials Cybersecurity Awareness Materials The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or...

  14. Materials Theory, Modeling and Simulation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Materials Theory and Simulation Quantum Monte Carlo Density Functional Theory Monte Carlo Ab Initio Molecular Dynamics Chemical and Materials Theory...

  15. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  16. Chemistry of Organic Electronic Materials 6483-Fall

    E-Print Network [OSTI]

    Sherrill, David

    Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis General introduction to the electronic structure of organic materials with connection

  17. Computational materials: Embedding Computation into the Everyday

    E-Print Network [OSTI]

    Thomsen, Mette Ramsgard; Karmon, Ayelet

    2009-01-01T23:59:59.000Z

    Computational materials: Embedding Computation into thepaper presents research into material design merging thean integrated part of our material surroundings. Rather than

  18. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  19. Sandia National Laboratories: Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

  20. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

  1. Helpful links for materials transport, safety, etc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

  2. Sandia National Laboratories: understanding of composite material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of composite material behavior in realistic wind applications Composite-Materials Fatigue Database Updated On January 22, 2014, in Energy, Materials Science, News, News & Events,...

  3. PHASE TRANSFORMATIONS, STABILITY AND MATERIALS INTERACTIONS

    E-Print Network [OSTI]

    Morris, Jr., J.W.

    2010-01-01T23:59:59.000Z

    mechanisms of turbine materials in this environment, whichTurbines Research Opportunities: •Thermodynamics and kinetics of material-for designing improved materials. Gas turbines of the closed

  4. Computational materials: Embedding Computation into the Everyday

    E-Print Network [OSTI]

    Thomsen, Mette Ramsgard; Karmon, Ayelet

    2009-01-01T23:59:59.000Z

    building forces, smart materials are dynamic in that theymaterial With a smart material, we should be clearly1] Addington, M. 2001 Smart Materials and Technologies. In A

  5. Sandia National Laboratories: Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRCOverviewWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

  6. Comments on Landau damping due to synchrotron frequency spread

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2005-01-01T23:59:59.000Z

    An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.

  7. Excitation of flow instabilities due to nonlinear scale invariance

    SciTech Connect (OSTI)

    Prasad Datta, Dhurjati, E-mail: dp-datta@yahoo.com [Department of Mathematics, University of North Bengal, Siliguri, West Bengal 734013 (India); Sen, Sudip [National Institute of Aerospace (NASA-LaRC), 100 Exploration Way, Hampton, Virginia 23666 (United States); College of William and Mary, Williamsburg, Virginia 23187 (United States)

    2014-05-15T23:59:59.000Z

    A novel route to instabilities and turbulence in fluid and plasma flows is presented in kinetic Vlasov-Maxwell model. New kind of flow instabilities is shown to arise due to the availability of new kinetic energy sources which are absent in conventional treatments. The present approach is based on a scale invariant nonlinear analytic formalism developed to address irregular motions on a chaotic attractor or in turbulence in a more coherent manner. We have studied two specific applications of this turbulence generating mechanism. The warm plasma Langmuir wave dispersion relation is shown to become unstable in the presence of these multifractal measures. In the second application, these multifractal measures are shown to induce naturally non-Gaussian, i.e., a stretched, Gaussian distribution and anomalous transport for tracer particles from the turbulent advection-diffusion transport equation in a Vlasov plasma flow.

  8. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    SciTech Connect (OSTI)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16T23:59:59.000Z

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  9. Optical analog of Rabi oscillation suppression due to atomic motion

    E-Print Network [OSTI]

    J. G. Muga; B. Navarro

    2005-05-13T23:59:59.000Z

    The Rabi oscillations of a two-level atom illuminated by a laser on resonance with the atomic transition may be suppressed by the atomic motion through averaging or filtering mechanisms. The optical analogs of these velocity effects are described. The two atomic levels correspond in the optical analogy to orthogonal polarizations of light and the Rabi oscillations to polarization oscillations in a medium which is optically active, naturally or due to a magnetic field. In the later case, the two orthogonal polarizations could be selected by choosing the orientation of the magnetic field, and one of them be filtered out. It is argued that the time-dependent optical polarization oscillations or their suppression are observable with current technology.

  10. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30T23:59:59.000Z

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

  11. Impedance sensing of flaws in non-homogeneous materials

    DOE Patents [OSTI]

    Novak, J.L.

    1997-02-11T23:59:59.000Z

    An apparatus and method are disclosed for sensing impedances of materials placed in contact therewith. The invention comprises a plurality of drive electrodes and one or more sense electrodes. Both rotating electric fields and differently shaped electric fields are provided for, as are analysis of structure and composition at different orientations and depths. 10 figs.

  12. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Proceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite strength of unidirectional (UD) carbon fibre reinforced composites (CFRP) in the fibre direction composites are getting much attention these years, due to increasing use of these materials in large

  13. Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b

    E-Print Network [OSTI]

    Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b , Hjalte S than that of other chemical fuels1 . However, hydrogen storage is still a key problem remaining on reversible hydrogen storage in complex metal hydrides, these materials have dominated the research field due

  14. PLANETARY-SCALE STRONTIUM ISOTOPIC HETEROGENEITY AND THE AGE OF VOLATILE DEPLETION OF EARLY SOLAR SYSTEM MATERIALS

    SciTech Connect (OSTI)

    Moynier, Frederic; Podosek, Frank A. [Department of Earth and Planetary Science and McDonnell Center for Space Sciences, Washington University, St. Louis, MO 63130 (United States); Day, James M. D. [Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0244 (United States); Okui, Wataru; Yokoyama, Tetsuya [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Bouvier, Audrey [Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455-0231 (United States); Walker, Richard J., E-mail: moynier@levee.wustl.edu, E-mail: fap@levee.wustl.edu, E-mail: jmdday@ucsd.edu, E-mail: rjwalker@umd.edu, E-mail: okui.w.aa@m.titech.ac.jp, E-mail: tetsuya.yoko@geo.titech.ac.jp, E-mail: abouvier@umn.edu [Department of Geology, University of Maryland, College Park, MD 20742 (United States)

    2012-10-10T23:59:59.000Z

    Isotopic anomalies in planetary materials reflect both early solar nebular heterogeneity inherited from presolar stellar sources and processes that generated non-mass-dependent isotopic fractionations. The characterization of isotopic variations in heavy elements among early solar system materials yields important insight into the stellar environment and formation of the solar system, and about initial isotopic ratios relevant to long-term chronological applications. One such heavy element, strontium, is a central element in the geosciences due to wide application of the long-lived {sup 87}Rb-{sup 87}Sr radioactive as a chronometer. We show that the stable isotopes of Sr were heterogeneously distributed at both the mineral scale and the planetary scale in the early solar system, and also that the Sr isotopic heterogeneities correlate with mass-independent oxygen isotope variations, with only CI chondrites plotting outside of this correlation. The correlation implies that most solar system material formed by mixing of at least two isotopically distinct components: a CV-chondrite-like component and an O-chondrite-like component, and possibly a distinct CI-chondrite-like component. The heterogeneous distribution of Sr isotopes may indicate that variations in initial {sup 87}Sr/{sup 86}Sr of early solar system materials reflect isotopic heterogeneity instead of having chronological significance, as interpreted previously. For example, given the differences in {sup 84}Sr/{sup 86}Sr between calcium aluminum inclusions and eucrites ({epsilon}{sup 84}Sr > 2), the difference in age between these materials would be {approx}6 Ma shorter than previously interpreted, placing the Sr chronology in agreement with other long- and short-lived isotope systems, such as U-Pb and Mn-Cr.

  15. age-related plumage differences: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with timing of dispersal and plumage morph in a sedentary Environmental Sciences and Ecology Websites Summary: -individual differences may arise due to polymorphic genes...

  16. Material selection for electrooptic deflectors

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    The selection of a material for a practical device is generally guided by a number of criteria, including cost, size, difficulty of fabrication, durability, driver requirements, and system constraints. A quantitative analysis can usually be made for comparison, or a figure of merit can be computed. In the case of materials for electrooptical (EO) devices the choice is often made based on the availability of materials meeting some minimum system requirement. For fast EO deflectors, where a large number of resolvable spots is required, the choice of materials is quite limited. A model of just such a device is proposed; it is based on the resolution of 400 spots and reasonable boundary conditions. The model predicts that to be successful, an EO material must be chosen that has a linear EO coefficient (r/sub 33/) of at least 336 pm/V. A survey was conducted of the EO materials which are generally available. Based on the model and the survey, Czochralski crystal growth of strontium barium niobate (SBN:60) is recommended. Although SBN:60 does not have the largest EO coefficient, it may be the easiest to grow in the required size and optical quality, thus satisfying the availability criterion. It should be borne in mind that many materials may be grown by this technique and there are many new and potential applications for EO materials. 92 refs., 18 figs., 14 tabs.

  17. Materials science Nanotubes get hard

    E-Print Network [OSTI]

    Downs, Robert T.

    Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

  18. Creating Wave-Focusing Materials

    E-Print Network [OSTI]

    A. G. Ramm

    2008-05-16T23:59:59.000Z

    Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

  19. Field of Expertise Materials Science

    E-Print Network [OSTI]

    structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

  20. Material stabilization characterization management plan

    SciTech Connect (OSTI)

    GIBSON, M.W.

    1999-08-31T23:59:59.000Z

    This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority.

  1. Superconductivity and Magnetism: Materials Properties

    E-Print Network [OSTI]

    .g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

  2. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  3. Mercury-Related Materials Studies

    E-Print Network [OSTI]

    McDonald, Kirk

    . Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury of Cavitation Resistant Modifications to Type 316LN Stainless Steel in a Mercury Thermal Convection Loop," OakMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010

  4. Mercury-Related Materials Studies

    E-Print Network [OSTI]

    McDonald, Kirk

    Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

  5. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04T23:59:59.000Z

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

  6. CPT and lepton number violation in neutrino sector: Modified mass matrix and oscillation due to gravity

    E-Print Network [OSTI]

    Monika Sinha; Banibrata Mukhopadhyay

    2007-11-21T23:59:59.000Z

    We study the consequences of CPT and lepton number violation in neutrino sector. For CPT violation we take gravity with which neutrino and antineutrino couple differently. Gravity mixes neutrino and antineutrino in an unequal ratio to give two mass eigenstates. Lepton number violation interaction together with CPT violation gives rise to neutrino-antineutrino oscillation. Subsequently, we study the neutrino flavor mixing and oscillation under the influence of gravity. It is found that gravity changes flavor oscillation significantly which influences the relative abundance of different flavors in present universe. We show that the neutrinoless double beta decay rate is modified due to presence of gravity- the origin of CPT violation, as the mass of the flavor state is modified.

  7. Compliant high temperature seals for dissimilar materials

    DOE Patents [OSTI]

    Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

    2001-01-01T23:59:59.000Z

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  8. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  9. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  10. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06T23:59:59.000Z

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  11. Supplemental material JCB

    E-Print Network [OSTI]

    unknown authors

    anti-GFP antibody coupled to agarose, sepharose, or very small magnetic beads (QUBIC), digested on bead or in column with trypsin, and analyzed in a single run on the mass spectrometer. (right) In all three cases, the QUBIC purification was cleanest in terms of the smallest number of background proteins identified. QUBIC resulted in the best sequence coverage of the bait protein. (B) Different elution methods were tested on GFP-THOC3, including elution with SDS buffer followed by FASP (Wi?niewski et al., 2009), elution with 8 M urea, specific elution involving the PreScission cleavage site in the LAP tag, LysC in-column digest followed by trypsin digestion, and QUBIC (trypsin in-column digestion). (left) As expected, specific cleavage resulted in the highest purity of IP. (right) However, THOC3 is a typical example of a shielded PreScission cleavage site for the complexed bait, as most of the TREX components were not identified. The adequate coverage of the bait protein may result from purified free or UAP56-bound THOC3-GFP in the cell. Overall, QUBIC again resulted in the best sequence coverage of the bait protein. Quantitative BAC interactomics • Hubner et al. S1 Figure S2. Additional SILAC pull-downs of the TREX complex components. (A–E) Forward and reverse pull-down of THOC1, THOC3, THOC5, THOC7, and THOC4/Aly as described in Fig. 2. Specific interaction partners are annotated and marked with black dots. Proteins marked in red were not significant regarding their ratios. Bars, 10 µm. S2 JCB Figure S3. Additional SILAC pull-down of CDC23. Single SILAC pull-down of CDC23 with double-SILAC labeling and tryptic digestion of proteins reveals all but one component of the APC and two new interactors, C10orf104/ANAPC16 and C11orf51, with P < 10 ?10.

  12. Materials 1 Faculty of Engineering, Department of

    E-Print Network [OSTI]

    Materials 1 Faculty of Engineering, Department of --Materials This publication refers syllabuses Materials The Department occupies newly refurbished premises over four floors of the Royal School and research in materials science and engineering, in particular nanomaterials, structural ceramics, theory

  13. Reflectance Function Approximation for Material Classification

    E-Print Network [OSTI]

    Dyer, Charles R.

    Reflectance Function Approximation for Material Classification Edward Wild CS 766 Final Project This report summarizes the results of a project to approximate reflectance functions and classify materials to classify materials. Classification algorithms are proposed to deal with unseen materials. Experimental

  14. Divertor Materials Evaluation System (DiMES)

    SciTech Connect (OSTI)

    Wong, C.P.; West, W.P. [General Atomics, San Diego, CA (United States); Whyte, D.G. [Univ. of California, San Diego, CA (United States); Bastasz, R.J. [Sandia National Labs., Livermore, CA (United States); Brooks, J. [Argonne National Lab., IL (United States); Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01T23:59:59.000Z

    The mission of the Divertor Materials Evaluation System (DiMES) in DIII-D is to establish an integrated data base from measurements in the divertor of a tokamak in order to address some of the ITER and fusion power reactor plasma material interaction issues. Carbon and metal coatings of Be, W, V, and Mo were exposed to the steady-state outer strike point on DIII-D for 4-18 s. These short exposure times ensure controlled exposure conditions, and the extensive arrays of DIII-D divertor diagnostics provide a well-characterized plasma for modeling efforts. Postexposure analysis provides a direct measure of surface material erosion rates and the amount of retained deuterium. For carbon, these results match closely with the results of accumulated carbon deposition and erosion, and the corresponding deuterium retention of long term exposure tiles in DIII-D. Deuterium retention of different materials was measured using the {sup 3}He(d,p) {sup 4}He nuclear reaction. For carbon, these measurements showed peak deuterium areal density of about 8 {times} 10 {sup 18} D/cm{sup 2} in a co-deposited layer about 6 {micro}m deep, mainly at the usually detached inboard divertor leg. That layer of carbon near the inner divertor strike point has an atomic saturation concentration of D/C {approx} 0.25, which is not significantly lower than the laboratory-measured saturation retention of 0.4. Under the carbon contaminated background plasma of DIII-D, metal coatings of Be, V, Mo, and W were exposed to the steady state outer strike point under ELMing and ELM-free H-mode discharges. The rate of material erosion and tritium retention were measured. As expected, W shows the lowest erosion rate at 0.1 nm/s and the lowest deuterium uptake.

  15. Preliminary materials assessment for the Satellite Power System (SPS)

    SciTech Connect (OSTI)

    Teeter, R.R.; Jamieson, W.M.

    1980-01-01T23:59:59.000Z

    Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

  16. Material accountancy in an electrometallurgical Fuel Conditioning Facility

    SciTech Connect (OSTI)

    Vaden, D.; Benedict, R.W.; Goff, K.M.; Keyes, R.W.; Mariani, R.D. [Argonne National Lab.-West, Idaho Falls, ID (United States); Bucher, R.G.; Yacout, A.M. [Argonne National Lab., IL (United States)

    1996-05-01T23:59:59.000Z

    The Fuel Conditioning Facility (FCF) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond and cladding materials. Material accountancy is necessary at FCF for two reasons: first, it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security; second, it provides a periodic check of inventories to ensure that processes and material are under control. By weighing material entering and leaving a process, and using sampling results to determine composition, an inventory difference (ID) results when the measured inventory is compared to the predicted inventory. The ID and its uncertainty, based on error propagation, determines the degree of assurance that an operation proceeded according to expectations. FCF uses the ID calculation in two ways: closeout, which is the ID and uncertainty for a particular operational step, and material accountancy, which determines an ID and its associated uncertainty for a material balance area through several operational steps. Material accountancy over the whole facility for a specified time period assists in detecting diversion of nuclear material. Data from depleted uranium operations are presented to illustrate the method used in FCF.

  17. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOE Patents [OSTI]

    Holcomb, Matthew J. (Manhattan Beach, CA)

    2002-01-01T23:59:59.000Z

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  18. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  19. Webinar: Hydrogen Storage Materials Database Demonstration |...

    Broader source: Energy.gov (indexed) [DOE]

    Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

  20. CHARACTERIZATION OF SIALON-TYPE MATERIALS

    E-Print Network [OSTI]

    Spencer, P.N.

    2010-01-01T23:59:59.000Z

    testing of ceramic materials. crucihle Thermal Shock Tests.and thermal shock. Among the various ceramic materials being