National Library of Energy BETA

Sample records for differ materially due

  1. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect (OSTI)

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  2. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    SciTech Connect (OSTI)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-11-10

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  3. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect (OSTI)

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-21

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  4. Mixing device for materials with large density differences

    DOE Patents [OSTI]

    Gregg, D.W.

    1994-08-16

    An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

  5. Mixing device for materials with large density differences

    DOE Patents [OSTI]

    Gregg, David W.

    1994-01-01

    An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.

  6. Evaluating different classes of porous materials for carbon capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emission from power plants. In particular, amongst several separation strategies, adsorption by nano-porous materials is regarded as a potential means to efficiently capture CO2...

  7. Uncertainty in soil-structure interaction analysis of a nuclear power plant due to different analytical techniques

    SciTech Connect (OSTI)

    Chen, J.C.; Chun, R.C.; Goudreau, G.L.; Maslenikov, O.R.; Johnson, J.J.

    1984-01-01

    This paper summarizes the results of the dynamic response analysis of the Zion reactor containment building using three different soil-structure interaction (SSI) analytical procedures which are: the substructure method, CLASSI; the equivalent linear finite element approach, ALUSH; and the nonlinear finite element procedure, DYNA3D. Uncertainties in analyzing a soil-structure system due to SSI analysis procedures were investigated. Responses at selected locations in the structure were compared through peak accelerations and response spectra.

  8. Seal assembly for materials with different coefficients of thermal expansion

    DOE Patents [OSTI]

    Minford, Eric

    2009-09-01

    Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.

  9. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect (OSTI)

    Childs, Kenneth W; Stovall, Therese K

    2012-03-01

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  10. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOE Patents [OSTI]

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1991-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.

  11. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOE Patents [OSTI]

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1988-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.

  12. ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.

    2013-06-19

    Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

  13. Severe accident modeling of a PWR core with different cladding materials

    SciTech Connect (OSTI)

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  14. Method of preloading superconducting coils by using materials with different thermal expansion coefficients

    DOE Patents [OSTI]

    Heim, Joseph R.

    1993-01-01

    The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700.degree. C. to obtain the desired compression. The embodiment of the invention uses Nb.sub.3 Sn as the conducting wire, since Nb.sub.3 Sn must be heated to 700.degree. C. to cause a reaction which makes Nb.sub.3 Sn superconducting.

  15. Method of preloading superconducting coils by using materials with different thermal expansion coefficients

    DOE Patents [OSTI]

    Heim, J.R.

    1993-02-23

    The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700 C to obtain the desired compression. The embodiment of the invention uses Nb[sub 3]Sn as the conducting wire, since Nb[sub 3]Sn must be heated to 700 C to cause a reaction which makes Nb[sub 3]Sn superconducting.

  16. Workshop session on pros and cons for different target materials/corrosion and corrosion control

    SciTech Connect (OSTI)

    Takeda, Y.; Mansur, L.K.; Dai, Y.; DiStefano, J.R.

    1996-06-01

    Two of the originally planned workshop sessions, indicated by the titles on each side of the {open_quotes}/{close_quotes} in the above title were combined. The session was structured into four areas in which target material attributes were considered: nuclear properties; physical properties; compatibility; and liquid metal engineering/safety. Short presentations were either volunteered by participants or requested by the session organizers to help establish a background and stimulate discussion. G. Bauer, J. Takeda, T. Gabriel and S. Wender covered the first two areas; J. DiStefano, Y. Dai and Y. Orlov made presentations in the third area. O. Lielausis and R. Dressler spoke on the fourth area. L.K. Mansur served as moderator for the combined session. Although there was much discussion and some differences of opinion, the overall recommendations, considering all available factors, as distilled by this session`s organizers, are as follows. Choose Hg as the prime candidate target material to which most resources should be devoted. A strong alternate candidate is considered to exist in Pb-Bi eutectic. Other candidate materials such as Pb, Pb-Mg eutectic and Bi are weaker choices for various reasons, with Bi being the weakest.

  17. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    SciTech Connect (OSTI)

    Grubbs, R.K.; George, S.M.

    2006-05-15

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H{sub 2} pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H{sub 2} heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H{sub 2} flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H{sub 2} gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, {gamma}, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes.

  18. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  19. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  20. Method and apparatus for measuring surface changes, in porous materials, using multiple differently-configured acoustic sensors

    DOE Patents [OSTI]

    Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip

    2001-01-01

    A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.

  1. Internal neutronics-temperature coupling in Serpent 2 - Reactivity differences resulting from choice of material property correlations

    SciTech Connect (OSTI)

    Valtavirta, V. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2013-07-01

    This paper describes the unique way of simultaneously solving the power and temperature distributions of a nuclear system with the Monte Carlo neutron transport code Serpent 2. The coupled solution is achieved through the implementation of an internal temperature solver and material property correlations in the code. The program structure is reviewed concerning the temperature solver and the internal correlations as well as the internal coupling between these two and the neutron transport part. To estimate the reactivity differences resulting from correlation choices a simple pin-cell case has been calculated. It is established, that some correlation choices may result in difference in reactivity of approximately 100 pcm. (authors)

  2. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  3. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    SciTech Connect (OSTI)

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-field technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.

  4. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    SciTech Connect (OSTI)

    Post, Ekkehard; Henderson, Jack B.

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  5. Generation of high-amplitude soliton waves in crystalline materials of different dimensions under high radiative, dynamic, and temperature loads

    SciTech Connect (OSTI)

    Dubovsky, O. A. Orlov, A. V.

    2011-12-15

    It is shown that beams of high-amplitude supersonic breather solitons, phonons, and subsonic excitations of new type (torsions) are generated in crystalline materials of different dimensions under high radiative and dynamic loads near the stability threshold. The dispersion dependences of solitons and phonons in 1D crystals are presented. It is shown that, in 2D crystals beams consisting of six or two (depending on the bombarding particle direction), breather solitons are generated and propagate in certain crystallographic directions. The masses of soliton excitations as particles (coupled complexes of massless phonons) have been determined. It is shown that the subsonic soliton waves of a new type with torsion atomic vibrations are generated in 3D nanotubes, along with supersonic soliton waves of longitudinal vibrations.

  6. Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.; Booten, C.

    2012-07-01

    Phase change materials (PCMs) represent a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have the capability to simulate PCM but their accuracy has not been completely tested. This report summarizes NREL efforts to develop diagnostic tests cases to obtain accurate energy simulations when PCMs are modeled in residential buildings.

  7. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  8. Comparison of LiV{sub 3}O{sub 8} cathode materials prepared by different methods

    SciTech Connect (OSTI)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.; Saidi, Y.; Barker, J.; Olsen, I.I.; Pynenburg, R.; Koksbang, R.

    1996-03-01

    Lithium trivanadate, LiV{sub 3}O{sub 8}, can be prepared in a finely dispersed form by dehydration of aqueous lithium vanadate gels. Two methods of dehydration, both easily adaptable to large-scale production, are described in this work: freeze drying and spray drying. After heat-treatment of the dried gels (xerogels) to remove loosely bound water they show a high capacity for lithium insertion, approaching four additional lithium per formula unit, and good reversibility as electrode materials for high energy density lithium cells. How the heat-treatment temperature influences the crystal structure is demonstrated as well as the electrochemical properties of the vanadium oxide.

  9. Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions

    SciTech Connect (OSTI)

    Sellers, R. S.; Cheng, W. J.; Anderson, M. H.; Sridharan, K.; Wang, C. J.; Allen, T. R.

    2012-07-01

    Molten fluoride salts such as FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) have been proposed for use as secondary reactor coolants, media for transfer of high temperature process heat from nuclear reactors to chemical plants, and for concentrated solar power thermal energy storage. In molten fluoride salts, passive oxide films are chemically unstable, and corrosion is driven largely by the thermodynamically driven dissolution of alloying elements into the molten salt environment. Two alloys, Hastelloy{sup R} N and 316L stainless steel were exposed to molten FLiNaK salt in a 316L stainless steel crucible under argon cover gas for 1000 hours at 850 deg. C. Graphite was present in some of the crucibles with the goal of studying corrosion behavior of relevant reactor material combinations. In addition, a technique to reduce alloy corrosion through modification of the reduction-oxidation state was tested by the inclusion of zirconium to the system. Corrosion of 316L stainless steel was noted to occur primarily through surface depletion of chromium, an effect that was enhanced by the presence of graphite. Hastelloy{sup R} N experienced weight gain through electrochemical plating of corrosion products derived from the 316L stainless steel crucible. In the presence of zirconium, both alloys gained weight through plating of zirconium and as a result formed intermetallic layers. (authors)

  10. Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models

    SciTech Connect (OSTI)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza; Moscovitch, Marko

    2013-02-28

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of the differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.

  11. NISE Requests Due Feb. 24

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISE Requests Due Feb. 24 NISE Requests Due Feb. 24 January 1, 2011 by Francesca Verdier The first round of NERSC Initiative for Scientific Exploration (NISE) requests are due February 24. Ten percent of NERSC time is allocated through this program. See NERSC Initiative for Scientific Exploration. Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015

  12. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  13. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  14. Dynamic failure in two-phase materials

    SciTech Connect (OSTI)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  15. Inductance due to spin current

    SciTech Connect (OSTI)

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  16. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  17. Metal segregation in hierarchically structured cathode materials...

    Office of Scientific and Technical Information (OSTI)

    due to the tailored surface chemistry, compared to conventional NMC-442 materials. ... Nanomaterials; batteries; materials chemistry; surface chemistry Word Cloud More Like ...

  18. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  19. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  20. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  1. Fullerene materials

    SciTech Connect (OSTI)

    Malhotra, R.; Ruoff, R.S.; Lorents, D.C.

    1995-04-01

    Fullerenes are all-carbon cage molecules. The most celebrated fullerene is the soccer-ball shaped C{sub 60}, which is composed of twenty hexagons and twelve pentagons. Because its structure is reminiscent of the geodesic domes of architect R. Buckminster Fuller, C{sub 60} is called buckminsterfullerene, and all the materials in the family are designated fullerenes. Huffman and Kraetschmer`s discovery unleashed activity around the world as scientists explored production methods, properties, and potential uses of fullerenes. Within a short period, methods for their production in electric arcs, plasmas, and flames were discovered, and several companies began selling fullerenes to the research market. What is remarkable is that in all these methods, carbon atoms assemble themselves into cage structures. The capability for self-assembly points to some inherent stability of these structures that allows their formation. The unusual structure naturally leads to unusual properties. Among them are ready solubility in solvents and a relatively high vapor pressure for a pure carbon material. The young fullerene field has already produced a surprising array of structures for the development of carbon-base materials having completely new and different properties from any that were previously possible.

  2. 2015 NERSC allocation requests due September 22

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requests due September 22 2015 NERSC allocation requests due September 22 August 13, 2014 by Francesca Verdier The NERSC allocation submission system is now open for 2015 requests. ...

  3. 2012 NERSC allocation requests due September 23

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NERSC allocation requests due September 23 2012 NERSC allocation requests due September 23 August 17, 2011 by Francesca Verdier The ERCAP allocation submission system is now open...

  4. Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions...

    Office of Scientific and Technical Information (OSTI)

    Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With Material At Finite Temperature Citation Details In-Document Search Title: Monte Carlo Implementation Of ...

  5. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  6. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  7. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in ...

  8. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  10. Enhancement of Zirconolite Dissolution Due to Water Radiolysis

    SciTech Connect (OSTI)

    Tribet, Magaly; Moncoffre, Nathalie

    2007-07-01

    Zirconolite is a candidate host material for conditioning minor tri- and tetra-valent actinides arising from enhanced nuclear spent fuel reprocessing and partitioning, in the case of disposal of the nuclear waste. Its chemical durability has been studied here under charged particle-induced radiolysis (He{sup 2+} and proton external beams) to identify the possible effects of water radiolysis on the dissolution rates in pure water and to describe the alteration mechanisms. Two experimental geometries have been used in order to evaluate the influence of the following parameters: solid irradiation, water radiolysis. In the first geometry the beam gets through the sample before stopping at the surface/water interface. In the second one the beam stops before the surface/water interface. Results on the elemental releases due to the enhanced dissolution of the zirconolite surface during charged particle-induced irradiation of water are presented. Under radiolysis, an increase of one order of magnitude is observed in the Ti, Zr and Nd elemental releases. No difference in the total elemental releases can be noticed when the solid is also irradiated. (authors)

  11. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  12. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  13. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  14. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  15. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  16. Cable twisting due to atmospheric icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Savadjiev, K.

    1995-12-31

    Samples of ice accretions collected on cables of overhead transmission lines have shown evidence of twisting of the cable during atmospheric icing. Previous work has attributed cable twisting to the torque created by the weight of an eccentric ice shape and by wind forces. However, testing of stranded cables and conductors has shown that such cables also twist when there is a change in tension in the cable span. This phenomenon is related to the interaction of the different strand layers under tension. When a cable is subjected to atmospheric icing, cable tension increases and this type of twisting should also be considered. In order to determine how the two types of twisting would compare on transmission lines, a numerical simulation was made using characteristics of a typical 35-mm stranded conductor. The twist angle was computed as a function of cable span, sag to span ratio and increasing ice loads. The simulation shows that for transmission lines, twisting due to varying tension will be significant. Since cable tension is influenced by wind speed and ambient temperature as well as ice load, this phenomenon, unless prevented, results in ice accretion more circular in shape and hence eventually in larger ice loads.

  17. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  18. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  19. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J. [Oak Ridge, TN; Walls, Claudia A. [Oak Ridge, TN; Boatner, Lynn A. [Oak Ridge, TN

    2010-02-23

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  20. Detecting fission from special nuclear material sources

    DOE Patents [OSTI]

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  1. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  2. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  3. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  4. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  5. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  6. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing of materials under ideal and realistic process conditions such as those found in coal-fired power plant and integrated gasification combined cycle fuel gas. Performance ...

  7. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  8. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  9. 2014 DOE ALCC Proposals Due February 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCC Proposals Due February 3, 2014 2014 DOE ALCC Proposals Due February 3 December 23, 2013 by Francesca Verdier DOE's 2014 call for its ASCR Leadership Computing Challenge (ALCC) competition is posted: http://science.energy.gov/ascr/facilities/alcc/. There are new guidelines this year: http://science.energy.gov/ascr/facilities/alcc/alcc-application-details/. Proposals for 2014 ALCC are due 11:59 PM EST February 3rd, 2014. Email your completed proposal to ALCC@science.doe.gov. PDF format is

  10. Cookoff of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.; Schmitt, R.G.

    1998-09-01

    An overview of cookoff modeling at Sandia National Laboratories is presented aimed at assessing the violence of reaction following cookoff of confined energetic materials. During cookoff, the response of energetic materials is known to involve coupled thermal/chemical/mechanical processes which induce thermal damage to the energetic material prior to the onset of ignition. These damaged states enhance shock sensitivity and lead to conditions favoring self-supported accelerated combustion. Thus, the level of violence depends on the competition between pressure buildup and stress release due to the loss of confinement. To model these complex processes, finite element-based analysis capabilities are being developed which can resolve coupled heat transfer with chemistry, quasi-static structural mechanics and dynamic response. Numerical simulations that assess the level of violence demonstrate the importance of determining material damage in pre- and post-ignition cookoff events.

  11. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  12. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  13. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  14. 2014 DOE ALCC Proposals Due February 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    There are new guidelines this year: http:science.energy.govascrfacilitiesalccalcc-application-details. Proposals for 2014 ALCC are due 11:59 PM EST February 3rd, 2014. Email ...

  15. Fourth Friday Cancelled due to Thanksgiving Holidays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    open late until 6:00 PM offering access to exhibits and special activities for all ages, however it will not take place on Friday, November 27 due to the Thanksgiving...

  16. Visualization Contest Applications due August 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contest Applications due August 3 June 22, 2012 by Francesca Verdier In support of the IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV) 2012's visualization...

  17. High accuracy electronic material level sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  18. High accuracy electronic material level sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  19. Visualization Contest Applications due August 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visualization Contest Applications due August 3 Visualization Contest Applications due August 3 June 22, 2012 by Francesca Verdier In support of the IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV) 2012's visualization contest, LDAV organizers are offering compute time to participants through a NERSC allocation awarded by ASCR. The LDAV Visualization Contest focuses on the area of visualization of extremely large datasets. The goal is to devise a visualization or a

  20. Applications for ACTS Workshop Due June 24

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for ACTS Workshop Due June 24 Applications for ACTS Workshop Due June 24 June 1, 2012 by Francesca Verdier The 13th Workshop on the DOE Advanced Computational Software (ACTS) Collection, Scalable and Robust Computational Libraries and Tools for High-End Computing, will be held in Berkeley, CA, on August 14-17, 2012.ide range of applications and fields in computational sciences. The four-day workshop will include tutorials on the tools currently available in the collection, discussion sessions to

  1. 2012 NERSC allocation requests due September 23

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NERSC allocation requests due September 23 2012 NERSC allocation requests due September 23 August 17, 2011 by Francesca Verdier The ERCAP allocation submission system is now open for 2012 NERSC allocation requests. All current projects (including startup, education, and ALCC projects) must be renewed for 2012 if you wish to continue using NERSC. New project requests may be submitted as well (for either the remainder of 2011 or for 2012). The deadline for 2012 requests is September 23, 2011.

  2. 2013 Allocation Request Submissions Due September 28

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Allocation Request Submissions Due September 28 2013 Allocation Request Submissions Due September 28 August 1, 2012 by Francesca Verdier The deadline for submissions for 2013 NERSC allocation requests is September 28 at 11:59 p.m. PDT. All current 2012 NERSC projects (including startup, education, ALCC, NISE and Data Intensive Pilot projects) must be renewed for 2013 in order to continue using NERSC. Award decisions for requests submitted before this deadline will be emailed to Principal

  3. 2013 INCITE Proposals due June 27

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INCITE Proposals 2013 INCITE Proposals due June 27 June 15, 2012 by Francesca Verdier The Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program promotes transformational advances in science and technology through large allocations of computer time, supporting resources, and data storage at the Argonne and Oak Ridge Leadership Computing Facilities. 2013 proposals are due June 27. See 2013 INCITE Call for Proposals. Subscribe via RSS Subscribe Browse by Date August

  4. 2014 NERSC allocation requests due September 22

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    allocation requests due September 22 2014 NERSC allocation requests due September 22 August 13, 2013 by Francesca Verdier NERSC's allocation submission system is now open for 2014 allocation requests. All current projects (including startup, education, and ALCC projects) must be renewed for 2014 if you wish to continue using NERSC. New project requests may be submitted as well (for either the remainder of 2013 or for 2014). The deadline for 2014 requests is 23:59 PM September 22, 2013. Award

  5. Anisotropic decomposition of energetic materials

    SciTech Connect (OSTI)

    Pravica, Michael; Quine, Zachary; Romano, Edward; Bajar, Sean; Yulga, Brian; Yang Wenge; Hooks, Daniel

    2007-12-12

    Using a white x-ray synchrotron beam, we have dynamically studied radiation-induced decomposition in single crystalline PETN and TATB. By monitoring the integrated intensity of selected diffraction spots via a CCD x-ray camera as a function of time, we have found that the decomposition rate varies dramatically depending upon the orientation of the crystalline axes relative to polarized x-ray beam and for differing diffracting conditions (spots) within the same crystalline orientation. We suggest that this effect is due to Compton scattering of the polarized x-rays with electron clouds that is dependent upon their relative orientation. This novel effect may yield valuable insight regarding anisotropic detonation sensitivity in energetic materials such as PETN.

  6. Anisotropic Decomposition of Energetic Materials

    SciTech Connect (OSTI)

    Pravica, Michael; Quine, Zachary; Romano, Edward; Bajar, Sean; Yulga, Brian; Yang, Wenge; Hooks, Daniel

    2008-01-17

    Using a white x-ray synchrotron beam, we have dynamically studied radiation-induced decomposition in single crystalline PETN and TATB. By monitoring the integrated intensity of selected diffraction spots via a CCD x-ray camera as a function of time, we have found that the decomposition rate varies dramatically depending upon the orientation of the crystalline axes relative to polarized x-ray beam and for differing diffracting conditions (spots) within the same crystalline orientation. We suggest that this effect is due to Compton scattering of the polarized x-rays with electron clouds that is dependent upon their relative orientation. This novel effect may yield valuable insight regarding anisotropic detonation sensitivity in energetic materials such as PETN.

  7. Dynamic failure in two-phase materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  8. Computational Modeling of Heterogeneous Reactive Materials at the Mesoscale

    SciTech Connect (OSTI)

    BAER, MARVIN R.

    1999-09-22

    The mesoscopic processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete ''crystals.'' Highly resolved three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states with wavelengths of the order of several particle diameters. Localization of energy produces ''hot-spots'' due to shock focusing and plastic work near internal boundaries as material flows into interstitial regions. Numerical experiments indicate that ''hot-spots'' are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and sustained reaction of shocked heterogeneous materials involves states distinctly different from single jump state descriptions.

  9. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  10. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  11. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  12. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  13. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  14. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  15. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader (Acting) Kimberly Obrey Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  16. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  17. Renewable Energy Loan Applications Due Today!

    Broader source: Energy.gov [DOE]

    If you haven't submitted your Part I application for Department of Energy Loan Guarantee Program’s Renewables Solicitation yet, today is your last day! Round 8, Part I applications for DOE's Energy Efficiency, Renewable Energy and Advanced Transmission and Distribution Technologies Solicitation (2009) are due today by midnight EDT.

  18. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  19. Training Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Materials Training Materials The following tutorials are produced by NERSC staff and are intended to provide basic instruction on NERSC systems. Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category Introduction to Hybrid OpenMP/MPI Programming June 24, 2004 | Author(s): Helen He | Download File: hybridTalk.pdf | pdf | 1005 KB sample managed list Using OpenMP October 20, 2010 | Author(s): Helen He | Introduction to MPI January 11, 2010 | Author(s): Richard

  20. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  1. Sandia Material Model Driver

    Energy Science and Technology Software Center (OSTI)

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  2. Critical Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  3. Production and characterization of a composite insulation material from waste polyethylene teraphtalates

    SciTech Connect (OSTI)

    Kurtulmus, Erhan; Karaboyac?, Mustafa; Yigitarslan, Sibel

    2013-12-16

    The pollution of polyethylene teraphtalate (PET) is in huge amounts due to the most widely usage as a packaging material in several industries. Regional pumice has several desirable characteristics such as porous structure, low-cost and light-weight. Considering the requirements approved by the Ministry of Public Works on isolation, composite insulation material consisting of PET and pumice was studied. Sheets of composites differing both in particle size of pumice and composition of polymer were produced by hot-molding technique. Characterization of new composite material was achieved by measuring its weight, density, flammability, endurance against both to common acids and bases, and to a force applied, heat insulation and water adsorption capacity. The results of the study showed that produced composite material is an alternative building material due to its desirable characteristics; low weight, capability of low heat conduction.

  4. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect (OSTI)

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  5. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID 412- 11/16/2012 - Page 1 Log No 2012-263 Reference Materials * Transporting Radioactive Waste to the Nevada National Security Site fact sheet (ww.nv.energy.gov/library/factsheets/DOENV_990.pdf) - Generators contract with commercial carriers - U.S. Department of Transportation regulations require carriers to select routes which minimize radiological risk * Drivers Route and Shipment Information Questionnaire completed by drivers to document routes taken to the NNSS upon entry into Nevada -

  6. Constrained inflaton due to a complex scalar

    SciTech Connect (OSTI)

    Budhi, Romy H. S.; Kashiwase, Shoichi; Suematsu, Daijiro

    2015-09-14

    We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential φ{sup n}. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model.

  7. DOE fundamentals handbook: Material science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum).

  8. Synthesis of Two-Dimensional Materials by Selective Extraction

    SciTech Connect (OSTI)

    Naguib, Michael; Gogotsi, Yury

    2014-12-09

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the precursor

  9. Synthesis of Two-Dimensional Materials by Selective Extraction

    SciTech Connect (OSTI)

    Abdelmalak, Michael Naguib; Gogotsi, Yury

    2015-01-01

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the precursor

  10. Synthesis of Two-Dimensional Materials by Selective Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Naguib, Michael; Gogotsi, Yury

    2014-12-09

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds tomore » form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the

  11. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S.; Antink, Allison L.

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  12. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  13. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  14. Particle transport due to magnetic fluctuations

    SciTech Connect (OSTI)

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T{sub e}) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product <{tilde J}{sub e}{tilde B}{sub r}>. Particle transport is small just inside the last closed flux surface ({Gamma}{sub e,mag} < 0.1 {Gamma}{sub e,total}), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity.

  15. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, Bernard P.

    1994-01-01

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  16. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, B.P.

    1994-08-02

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  17. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect (OSTI)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  18. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect (OSTI)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  19. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure maymore » be investigated.« less

  20. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect (OSTI)

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-15

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr{sub 0.5}Ti{sub 0.5}O{sub 3} after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 10{sup 15} neutrons/cm{sup 2}. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  1. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect (OSTI)

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  2. Computer Simulation of Bubble Growth in Metals Due to He

    SciTech Connect (OSTI)

    FOILES, STEPHEN M.; HOYT, JEFFREY J.

    2001-03-01

    Atomistic simulations of the growth of helium bubbles in metals are performed. The metal is represented by embedded atom method potentials for palladium. The helium bubbles are treated via an expanding repulsive spherical potential within the metal lattice. The simulations predict bubble pressures that decrease monotonically with increasing helium to metal ratios. The swelling of the material associated with the bubble growth is also computed. It is found that the rate of swelling increases with increasing helium to metal ratio consistent with experimental observations on the swelling of metal tritides. Finally, the detailed defect structure due to the bubble growth was investigated. Dislocation networks are observed to form that connect the bubbles. Unlike early model assumptions, prismatic loops between the bubbles are not retained. These predictions are compared to available experimental evidence.

  3. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  4. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  5. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to the melting of uranium alloys, and methods to ... and can be related to the details of its microstructure. ... in an iron-nickel invar alloy at two different volumes. ...

  6. Alpha particles diffusion due to charge changes

    SciTech Connect (OSTI)

    Clauser, C. F. Farengo, R.

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  7. Purification of metal-organic framework materials

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  8. Purification of metal-organic framework materials

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  9. Energy harvesting using a thermoelectric material

    DOE Patents [OSTI]

    Nersessian, Nersesse; Carman, Gregory P.; Radousky, Harry B.

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  10. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

  11. Functionalized Materials From Elastomers to High Performance Thermoplastics

    SciTech Connect (OSTI)

    Laura Ann Salazar

    2003-05-31

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  12. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  13. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  15. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N.

    2014-06-16

    and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  16. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    Nuclear Solicitation Part I Due Date Adv. Nuclear Solicitation Part I Due Date July 20, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I DUE DATE ...

  17. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date January 13, 2016 12:01AM to 11:59PM EST ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE ...

  18. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part I Due Date Adv. Nuclear Solicitation Part I Due Date March 16, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I DUE DATE ...

  19. REEE Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I Due Date REEE Solicitation Part I Due Date November 30, 2016 1:01AM EST to December 1, 2016 12:59AM EST RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART I DUE DATE

  20. REEE Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II Due Date REEE Solicitation Part II Due Date November 30, 2016 1:01AM EST to December 1, 2016 12:59AM EST RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART II DUE DATE

  1. REEE Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REEE Solicitation Part II Due Date REEE Solicitation Part II Due Date April 13, 2016 12:01AM to 11:59PM EDT RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART II DUE...

  2. REEE Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I Due Date REEE Solicitation Part I Due Date March 16, 2016 12:01AM to 11:59PM EDT RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART I DUE DATE...

  3. REEE Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REEE Solicitation Part II Due Date REEE Solicitation Part II Due Date June 15, 2016 12:01AM to 11:59PM EDT RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART II DUE...

  4. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date March 16, 2016 12:01PM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE...

  5. REEE Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I Due Date REEE Solicitation Part I Due Date September 14, 2016 12:01AM to 11:59PM EDT RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART I DUE DATE

  6. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    DOE Patents [OSTI]

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  7. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  8. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection

  9. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  10. Anisoplanatism in adaptive optics systems due to pupil aberrations...

    Office of Scientific and Technical Information (OSTI)

    Anisoplanatism in adaptive optics systems due to pupil aberrations Citation Details In-Document Search Title: Anisoplanatism in adaptive optics systems due to pupil aberrations You ...

  11. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in ...

  12. Potential for radionuclide redistribution due to biotic intrusion...

    Office of Scientific and Technical Information (OSTI)

    Potential for radionuclide redistribution due to biotic intrusion: Aboveground biomass ... due to biotic intrusion: Aboveground biomass study at the Los Alamos National ...

  13. Anisoplanatism in adaptive optics systems due to pupil aberrations...

    Office of Scientific and Technical Information (OSTI)

    Conference: Anisoplanatism in adaptive optics systems due to pupil aberrations Citation Details In-Document Search Title: Anisoplanatism in adaptive optics systems due to pupil ...

  14. A Google for Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson A Google for Materials February 4, 2014 Kirstin Persson, Berkeley Lab Downloads Persson-Materials-NUG2014.pdf | Adobe Acrobat PDF file A Google For Materials? -...

  15. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  16. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov disorderedMAT.jpg Conventional layered lithium and transition metal cathode material (top) and the new disordered material studied by researchers at MIT (bottom) as seen through a scanning transmission electron microscope. Inset images show diagrams of the different structures in these materials. (In the disordered

  17. Characterization of temperature-dependent optical material properties of polymer powders

    SciTech Connect (OSTI)

    Laumer, Tobias; Stichel, Thomas; Bock, Thomas; Amend, Philipp; Schmidt, Michael

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  18. Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy

    SciTech Connect (OSTI)

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.; Wilke, Christopher T.; Storme, Guy; Weisdorf, Daniel J.; Hui, Susanta K.

    2013-11-15

    Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to the thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.

  19. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J.; Dey, Thomas N.; Runnels, Scott R.

    2012-07-03

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed

  20. Design of a Compact Fatigue Tester for Testing Irradiated Materials...

    Office of Scientific and Technical Information (OSTI)

    a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use ...

  1. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  2. Cathode materials review

    SciTech Connect (OSTI)

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  3. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    SciTech Connect (OSTI)

    Shrestha, Som S; Biswas, Kaushik; Desjarlais, Andre Omer

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

  4. Computational Materials Science | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Materials Science An image of interconnecting, sphere- and square-shaped particles that appears to be floating in space NREL's computational materials science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS, and hybrid perovskite compounds Reconstruction of, and defect formation on, semiconductor surfaces Electronic and transport

  5. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  6. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    SciTech Connect (OSTI)

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; Miller, P. L.

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26 g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.

  7. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; Miller, P. L.

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26more » g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.« less

  8. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I Due Date Adv. Fossil Solicitation Part I Due Date November 30, 2016 1:01AM EST to December 1, 2016 12:59AM EST ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I

  9. Adv. Fossil Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II Due Date Adv. Fossil Solicitation Part II Due Date November 30, 2016 1:01AM AST to December 1, 2016 12:59AM AST ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART II

  10. SC11 Education Program Applications due July 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC11 Education Program Applications due July 31 SC11 Education Program Applications due July 31 June 9, 2011 by Francesca Verdier Applications for the Education Program are now ...

  11. NERSC Initiative for Scientific Exploration proposals due May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposals due May 31 NERSC Initiative for Scientific Exploration proposals due May 31 May 2, 2011 by Francesca Verdier The deadline to apply for the second and final round of award...

  12. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adv. Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date April 13, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II ...

  13. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  14. Solutal separation in a binary nanofluid due to thermodiffusion

    SciTech Connect (OSTI)

    Saghir, M.Z.; Yousefi, T.; Farahbakhsh, B.

    2015-03-10

    Transport phenomena in porous media have received considerable attention due to an increasing interest in geothermal processes, chemical catalytic reactors, waste storage (especially geological or ocean storage of carbon dioxide), etc. Among others, oil industry has shown an increasing interest in studying diffusion phenomenon. Nanofluid is a term used to describe the suspension of low concentration of metallic and non-metallic nanoparticles in a base fluid. The size of a nanoparticle ranges from 10 to 100nm, and the conventional fluids used are water, ethylene glycol (C{sub 2}H{sub 6}O{sub 2}) or engine oil. Various studies have proven that nanoparticles improve the heat transfer of a base fluid. However, using various nanofluids it has been shown that the results could vary depending on different initial concentrations. The main objective of this paper is to study the diffusion and the thermodiffusion effect in a nanofluid for different fluid/porous media configurations. In this configuration, a liquid layer surrounds a porous layer. The full Brinkman equation coupled with the heat and mass transfer equations have been solved numerically for the porous layer using the finite element technique. The full Navier stokes equation coupled with heat and mass transfer equations have been solved for the liquid layer using the finite element method. A constraint between the liquid and porous layer has been applied to ensure heat flow and mass transfer continuity is maintained. A square cavity filled with hydrocarbon nanofluid of a mixture of fullerene-toluene with varying concentration of fullerene has been subject to different heating conditions. The entire cavity has been considered to be fully wetted with nanofluid. Results have confirmed that in the presence of a nanofluid a heat transfer enhancement is present up to certain initial concentration of the fullerene. The heat convection coefficient has been found to be 16% higher when a nanofluid is used as the working

  15. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  16. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date September 14, 2016 12:01AM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Fossil

  17. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date November 23, 2016 12:01AM to 11:59PM EST ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Nuclear

  18. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date October 19, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Nuclear

  19. Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Innovating tomorrow's materials today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make revolutionary advances in the science of materials discovery and synthesis, and is designing new materials with advantageous properties - one atom at a time. Examples of these include Argonne's patented technologies for nanoparticle applications, heat transfer and materials for advanced

  20. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and ...

  1. Timelines | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A listing of timelines about various materials of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. ...

  2. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon ...

  3. Packaging - Materials review

    SciTech Connect (OSTI)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  4. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  6. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  7. Computation of multi-material interactions using point method

    SciTech Connect (OSTI)

    Zhang, Duan Z; Ma, Xia; Giguere, Paul T

    2009-01-01

    Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations

  8. Pu-bearing materials - from fundamental science to storage standards.

    SciTech Connect (OSTI)

    Tam, S. W.; Liu, Y.; Decision and Information Sciences; Michigan Technical Univ.

    2008-01-01

    The behavior of plutonium (Pu) oxides in the presence of water/moisture in a confined space and the associated issues of hydrogen and oxygen generation due to radiolysis have important implications for the storage and transportation of Pu-bearing materials. This paper reviews the results of recent studies of gas generation in the Pu-O-H system, including the determination of release rates via engineering-scale measurement. The observations of the significant differences in gas generation behavior between 'pure' Pu-bearing materials and those that contain salt impurities are addressed. In conjunction with the discussion of these empirical observations, the work also addresses recent scientific advances in the investigations of the Pu-O-H system using state-of-the-art ab initio electronic structure calculations, as well as advanced synchrotron techniques to determine the electronic structure of the various Pu-containing phases. The role of oxidizing species such as the hydroxyl radical from the radiolysis of water is examined. Discussed also is the challenge in the predictive ab-initio calculations of the electronic structure of the Pu-H-O system, due to the nature of the 5f valence electrons in Pu. Coupled with the continuing material surveillance program, it is anticipated that this work may help determine the electronic structure of the various Pu-containing phases and the role of impurity salts on gas generation and the long-term stability of oxygen/hydrogen-containing plutonium oxides beyond PuO{sub 2}.

  9. About Critical Materials | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory channel on YouTube Timelines related to rare earth elements and materials Other sources of information about rare earths: GE: Understanding rare earth metals, ...

  10. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    SciTech Connect (OSTI)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva; Stan, Rydell

    2008-08-07

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb).This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.

  11. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    SciTech Connect (OSTI)

    Stuart, B C; Wynne, A

    2000-12-16

    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  12. Visual Interface for Materials Simulations

    SciTech Connect (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materials simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.

  13. A novel nanocomposite material prepared by intercalating photoresponsive dendrimers into a layered double hydroxide

    SciTech Connect (OSTI)

    Tanaka, Toshiyuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Matsukawa, Junpei; Fujita, Yasuhiko; Takaguchi, Yutaka; Matsuda, Motohide; Miyake, Michihiro

    2010-02-15

    A novel combination for an inorganic-organic nanocomposite material was demonstrated. Anthryl dendron, i.e., poly(amidoamine) dendron with an anthracene chromophore group at the focal point, was incorporated in the interlayer space of ZnAl-NO{sub 3} type layered double hydroxide (LDH) through an anion-exchange reaction. The photoabsorption and fluorescence properties of the resulting material were different from those of the bare anthryl dendron molecule. It was suggested that the change in photochemical properties was due to the organization and pi-pi interaction of anthracene chromophores within the interlayer of the LDH. - Graphical abstract: A novel inorganic-organic nanocomposite material, a layered double hydroxide (LDH) containing photoresponsive dendrimers in the interlayer space, was successfully prepared through an ion-exchange reaction. The resulting material exhibited unique photochemical properties, compared to those of the bare photoresponsive dendrimer molecule.

  14. Subsidence due to fluid withdrawal: a survey of analytical capabilities. [1225 citations

    SciTech Connect (OSTI)

    Engi, D.

    1985-08-01

    An extensive review of the literature was conducted in the area of land subsidence due to the withdrawal of fluids. A method of categorizing the citations was developed to facilitate identification of references relating to specific fields of interest. A brief review of the materials represented by the bibliography indicates the state-of-the-art within this area. The bibliography (containing 1225 citations) is presented in its categorized form. 5 figs., 3 tabs.

  15. Program for Numerical Simulation of Beam Losses due to Interaction with Residual Gas

    SciTech Connect (OSTI)

    Karamysheva, G.; Skripka, G.

    2010-01-05

    Program for estimation of the beam losses of light ions due to interaction with the residual gas has been written. The loss of beam intensity is determined by the cross sections for loss processes respecting different ion energies and depends on the pressure of the residual gas. The beam losses due to interaction with the residual gas by the example of C400 cyclotron (IBA, Belgium) were done.

  16. Acquisition Letter on Allowability of Incurred Costs Due to Contractor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Errors | Department of Energy on Allowability of Incurred Costs Due to Contractor Errors Acquisition Letter on Allowability of Incurred Costs Due to Contractor Errors The attached Acquisition Letter has been issued to provide application guidance to contracting officers for determining the allowability of incurred costs due to contractor errors. It applies to all contracts, including management and operating contracts, whose price or cost reimbursement is based on estimated or incurred

  17. New Materials and Technologies Available for Use in Industrial Infrastructure

    SciTech Connect (OSTI)

    none,

    2003-03-01

    This paper provides an overview of different types of new industrial infrastructure materials and technologies that are available.

  18. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  19. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-04-07

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  20. Energy Materials Network Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Materials Network (EMN) is a national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Through targeted consortia offering accessible suites of advanced research and development capabilities, EMN is accelerating materials development to address U.S. manufacturers' most pressing materials challenges.

  1. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  2. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  3. ASCR Leadership Computing Challenge (ALCC) proposals due February...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals are due February 1, 2013. See: http:science.energy.govascrfacilitiesalcc. Subscribe via RSS Subscribe Browse by Date April 2016 January 2016 December 2015 November ...

  4. Sandia National Laboratories: Due Diligence on Lead Acid Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

  5. An evaluation of complementary approaches to elucidate fundamental interfacial phenomena driving adhesion of energetic materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoss, Darby J.; Knepper, Robert; Hotchkiss, Peter J.; Tappan, Alexander S.; Boudouris, Bryan W.; Beaudoin, Stephen P.

    2016-03-23

    In this study, cohesive Hamaker constants of solid materials are measured via optical and dielectric properties (i.e., Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. To date, however, a comparison across these measurement techniques for common energetic materials has not been reported. This has been due to the inability of the community to produce samples of energetic materials that are readily compatible with contact angle measurements. Here we overcome this limitation by using physical vapor deposition to produce thin films of five common energetic materials, and the contact angle measurement approach is applied to estimate the cohesive Hamakermore » constants and surface energy components of the materials. The cohesive Hamaker constants range from 85 zJ to 135 zJ across the different films. When these Hamaker constants are compared to prior work using Lifshitz theory and nonpolar probe IGC, the relative magnitudes can be ordered as follows: contact angle > Lifshitz > IGC. Furthermore, the dispersive surface energy components estimated here are in good agreement with those estimated by IGC. Due to these results, researchers and technologists will now have access to a comprehensive database of adhesion constants which describe the behavior of these energetic materials over a range of settings.« less

  6. Materials Analysis and Modeling of Underfill Materials.

    SciTech Connect (OSTI)

    Wyatt, Nicholas B; Chambers, Robert S.

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  7. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  8. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  9. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  10. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  11. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader Tanja Pietrass Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division Materials Physics and

  12. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for the Future Materials for the Future The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion Mary Hockaday Email Pillar Contact Toni Taylor Email Pillar Contact David Teter Email Materials for the Future Science Overview At Los Alamos National Laboratory, we anticipate the advent of a new era in materials science, when we will transition from observing and exploiting the properties of materials to a science-based

  13. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  14. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  15. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    SciTech Connect (OSTI)

    Shrestha, Som S. Biswas, Kaushik; Desjarlais, Andre O.

    2014-04-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: We proposed a protocol to evaluate the environmental impacts of insulation materials. The protocol considers all life cycle stages of an insulation material. Both the direct environmental impacts and the indirect impacts are defined. Standardized calculation methods for the avoided operational energy is defined. Standardized calculation methods for the avoided environmental impact is defined.

  16. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  17. Electrode material comprising graphene-composite materials in...

    Office of Scientific and Technical Information (OSTI)

    Title: Electrode material comprising graphene-composite materials in a graphite network A durable electrode material suitable for use in Li ion batteries is provided. The material ...

  18. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  19. High Temperature Materials Laboratory (HTML) - PSD Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel:

  20. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  1. Enhanced magnetocaloric effect material

    DOE Patents [OSTI]

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  2. Visual Interface for Materials Simulations

    Energy Science and Technology Software Center (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materialsmore » simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.« less

  3. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  4. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov 2332 Pammel Drive, 134 Wilhelm Hall, Iowa State University, Ames, IA 50011-1025 The Critical Materials Institute focuses on technologies that make better use of

  5. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  6. Visible light absorption of TiO{sub 2} materials impregnated with tungstophosphoric acid ethanol–aqueous solution at different pH values. Evidence about the formation of a surface complex between Keggin anion and TiO{sub 2} surfaces

    SciTech Connect (OSTI)

    Rengifo-Herrera, Julián A. Blanco, Mirta N.; Pizzio, Luis R.

    2014-01-01

    Graphical abstract: - Highlights: • TPA impregnation on TiO{sub 2} particles was done at different initial pH values. • Powders characterization evidenced the possible existence of TPA–TiO{sub 2} complexes. • Keggin anion complexed on TiO{sub 2} would be responsible of visible light absorption. - Abstract: TiO{sub 2} particles prepared by the sol–gel method were impregnated at different pH values (1.0, 2.0, 5.0 and 10.0) with a water–ethanol solution (50% V/V) of tungstophosphoric acid (TPA) (0.012 M). Similar preparation was carried out to synthesize TiO{sub 2} impregnated with [WO{sub 4}]{sup 2−} (TiW). These materials were characterized by different techniques such as UV–vis diffuse reflectance spectroscopy (UV–vis DRS), magic angle spinning nuclear magnetic resonance of {sup 31}P ({sup 31}P MAS NMR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Fourier transform Raman spectroscopy (FT-Raman). Results revealed that TPA–TiO{sub 2} materials exhibit visible light absorption only when impregnation was done at pH 1.0 (TiTPA1) and 2.0 (TiTPA2). TiW powder did not show visible light absorption. XRD patterns show the presence of peaks at 2θ = 25.4° (1 0 1), 37.9° (0 0 4), 47.8° (2 0 0) and 54.3° associated to the anatase phase. Solid NMR, FT-IR and FT-Raman characterization showed that TiTPA1 and TiTPA2 samples contain Keggin ([PW{sub 12}O{sub 40}]{sup 3−}) and lacunary anions ([PW{sub 11}O{sub 39}]{sup 7−}) respectively. On the other hand, FT-Raman results revealed a blue shifting and broadening of the band at 141 cm{sup −1} corresponding to anatase TiO{sub 2} and moreover, a broadening of bands at 900–1100 cm{sup −1} attributed to Keggin structures of TPA. Both spectral changes could be related to the formation of a surface complex between the Keggin anion of TPA and TiO{sub 2} surfaces. This interaction should be responsible for visible light absorption.

  7. EAC Meeting Cancelled Due to Weather | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cancelled Due to Weather EAC Meeting Cancelled Due to Weather March 5, 2013 - 3:06pm Addthis This week's Electricity Advisory Committee (EAC) meeting has been cancelled due to a strong winter storm which is predicted to impact the Washington DC area on Wednesday. Originally scheduled to be held March 6 and March 7 in Arlington, Virginia, the EAC meeting may possibly be rescheduled for a later date. If the meeting is rescheduled, details will be posted online and will be published in a new

  8. Nanostructured composite reinforced material

    SciTech Connect (OSTI)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  9. Geopolymer Sealing Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  10. Earth-Abundant Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  11. Cybersecurity Awareness Materials

    Broader source: Energy.gov [DOE]

    The OCIO develops and distributes a variety of materials to enhance cyber awareness campaigns, address emerging cyber threats, and examine hot topics. These materials are available to all DOE organizations, and public and private institutions.

  12. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  13. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied

  14. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  15. ARM - Public Information Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information...

  16. REEE Solicitation Part II Due Date | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12:01AM to 11:59PM EST RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Renewable Energy and Efficent Energy Projects Solicitation...

  17. Adv. Fossil Solicitation Part II Due Date | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    January 29, 2016 12:01AM to 11:59PM EST ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Fossil Energy Projects Solicitation...

  18. REEE Solicitation Part II Due Date | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12:01AM to 11:59PM EDT RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Renewable Energy and Efficent Energy Projects...

  19. COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION...

    Office of Scientific and Technical Information (OSTI)

    COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION OF sup 26Al BY A NEARBY SUPERNOVA Citation Details In-Document Search Title: COLLATERAL EFFECTS ON SOLAR ...

  20. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  1. Sorbent Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's sorbent storage materials research focuses on increasing the dihydrogen binding energies and improving the hydrogen volumetric capacity by optimizing the material's pore size, pore volume, and surface area, as well as investigating effects of material densification.

  2. Enhanced tunnelling electroresistance effect due to a ferroelectricall...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Nature Materials; Journal Volume: 12 Research Org: Oak Ridge National ...

  3. NERSC Initiative for Scientific Exploration proposals due May 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposals due May 31 NERSC Initiative for Scientific Exploration proposals due May 31 May 2, 2011 by Francesca Verdier The deadline to apply for the second and final round of award decisions for the NERSC Initiative for Scientific Exploration (NISE) program is May 31, 2011. Award decisions will be announced by mid June. Details of NISE award and application form can be found at: NERSC Initiative for Scientific Exploration (NISE) Subscribe via RSS Subscribe Browse by Date August 2016 June 2016

  4. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow Room Air Mixing | Department of Energy Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the heating, ventilating, and air-conditioning (HVAC) system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the

  5. SC11 Education Program Applications due July 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC11 Education Program Applications due July 31 SC11 Education Program Applications due July 31 June 9, 2011 by Francesca Verdier Applications for the Education Program are now being accepted. Submission website: https://submissions.supercomputing.org Applications deadline: Sunday, July 31, 2011 Acceptance Notifications: Monday, August 22, 2011 The Education Program is hosting a four-day intensive program that will immerse participants in High Performance Computing (HPC) and Computational and

  6. Los Alamos STEM Challenge registration due April 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos STEM Challenge registration due April 12 Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Los Alamos STEM Challenge registration due April 12 Submission deadline April 30. April 1, 2013 Two students at work on a laptop Videos, posters, apps and essays are all possible submissions for the upcoming STEM Challenge for students. Contact Editor Linda Anderman Email Community

  7. Protecting the Electric Grid from Increasingly Severe Weather Due to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change | Department of Energy Electric Grid from Increasingly Severe Weather Due to Climate Change Protecting the Electric Grid from Increasingly Severe Weather Due to Climate Change August 12, 2013 - 5:25pm Addthis Transmission lines along Highway 15 outside Victorville, California. | Photo courtesy of Abby Rowling. Transmission lines along Highway 15 outside Victorville, California. | Photo courtesy of Abby Rowling. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary,

  8. Summer 2012 National Geothermal Academy: Applications Due February 15 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summer 2012 National Geothermal Academy: Applications Due February 15 Summer 2012 National Geothermal Academy: Applications Due February 15 January 23, 2012 - 4:02pm Addthis Course modules run from June 18 to August 10. (Download Application) The National Geothermal Academy is proud to present an intensive summer course in all aspects of geothermal energy development and utilization, held at the University of Nevada, Reno campus. The eight-week course is offered for

  9. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  10. ASCR Leadership Computing Challenge (ALCC) proposals due February 1, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ALCC) proposals due February 1, 2013 ASCR Leadership Computing Challenge (ALCC) proposals due February 1, 2013 January 2, 2013 by Francesca Verdier DOE's ASCR Leadership Computing Challenge (ALCC) program is intended for special situations of interest to the Department's energy mission, with an emphasis on high-risk, high-payoff simulations: Advancing the clean energy agenda. Advancing a robust predictive understanding of the Earth's climate and environmental systems. Responding to natural and

  11. ASCR Leadership Computing Challenge Requests for Time Due February 14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requests for Time Due February 14 ASCR Leadership Computing Challenge Requests for Time Due February 14 November 17, 2011 by Francesca Verdier The ASCR Leadership Computing Challenge (ALCC) program is open to scientists from the research community in national laboratories, academia and industry. This program allocates time at NERSC and the Leadership Computing Facilities at Argonne and Oak Ridge. Areas of interest are: Advancing the clean energy agenda. Understanding the environmental impacts of

  12. ASCR Leadership Computing Challenge proposals due February 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposals due February 3 ASCR Leadership Computing Challenge proposals due February 3 January 6, 2015 by Francesca Verdier The Call for 2015 ALCC is now open. See http://science.energy.gov/ascr/facilities/alcc/ for details. ALCC supports projects that advance the DOE mission and further the goals of DOE program offices. For 2015 ALCC, projects of special interest to the DOE include the following: Energy efficiency and the clean energy agenda Nuclear reactor safety and environmental management of

  13. Quantifying Unnecessary Normal Tissue Complication Risks due to Suboptimal Planning: A Secondary Study of RTOG 0126

    SciTech Connect (OSTI)

    Moore, Kevin L.; Schmidt, Rachel; Moiseenko, Vitali; Olsen, Lindsey A.; Tan, Jun; Xiao, Ying; Galvin, James; Pugh, Stephanie; Seider, Michael J.; Dicker, Adam P.; Bosch, Walter; Michalski, Jeff; Mutic, Sasa

    2015-06-01

    Purpose: The purpose of this study was to quantify the frequency and clinical severity of quality deficiencies in intensity modulated radiation therapy (IMRT) planning in the Radiation Therapy Oncology Group 0126 protocol. Methods and Materials: A total of 219 IMRT patients from the high-dose arm (79.2 Gy) of RTOG 0126 were analyzed. To quantify plan quality, we used established knowledge-based methods for patient-specific dose-volume histogram (DVH) prediction of organs at risk and a Lyman-Kutcher-Burman (LKB) model for grade ≥2 rectal complications to convert DVHs into normal tissue complication probabilities (NTCPs). The LKB model was validated by fitting dose-response parameters relative to observed toxicities. The 90th percentile (22 of 219) of plans with the lowest excess risk (difference between clinical and model-predicted NTCP) were used to create a model for the presumed best practices in the protocol (pDVH{sub 0126,top10%}). Applying the resultant model to the entire sample enabled comparisons between DVHs that patients could have received to DVHs they actually received. Excess risk quantified the clinical impact of suboptimal planning. Accuracy of pDVH predictions was validated by replanning 30 of 219 patients (13.7%), including equal numbers of presumed “high-quality,” “low-quality,” and randomly sampled plans. NTCP-predicted toxicities were compared to adverse events on protocol. Results: Existing models showed that bladder-sparing variations were less prevalent than rectum quality variations and that increased rectal sparing was not correlated with target metrics (dose received by 98% and 2% of the PTV, respectively). Observed toxicities were consistent with current LKB parameters. Converting DVH and pDVH{sub 0126,top10%} to rectal NTCPs, we observed 94 of 219 patients (42.9%) with ≥5% excess risk, 20 of 219 patients (9.1%) with ≥10% excess risk, and 2 of 219 patients (0.9%) with ≥15% excess risk. Replanning demonstrated the

  14. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  15. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to ??real-world? materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  16. Method and apparatus for separating material

    DOE Patents [OSTI]

    Oder, Robin R.; Jamison, Russell E.

    2004-11-23

    An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor or a pulverizer for reducing the size of the particles. The apparatus includes a mechanism for separating undesired material from desired material.

  17. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect (OSTI)

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  18. Effective thermal conductivity in thermoelectric materials

    SciTech Connect (OSTI)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  19. Uranium reference materials

    SciTech Connect (OSTI)

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  20. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  1. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W.

  2. AY 2016 ERCAP Renewals Due Sept 21st

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AY 2016 ERCAP Renewals Due Sept 21st AY 2016 ERCAP Renewals Due Sept 21st September 18, 2015 Rememeber to submit your AY 2016 ERCAP renewal requests by 21:59 on Monday Sept. 21st. Thanks. Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December 2014 November 2014 October 2014 August 2014 June 2014 May 2014 April 2014 March 2014 January

  3. Energy Materials Network Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 th , 2016 2 MGI - Framework New Material Innovations for Clean Energy 2X Faster and 2X Cheaper Predictive Simulation Across Scales Synthesis & Characterization Rapid Screening End Use Performance Process Scalability Process Control Real-time Characterization Reliability Validation Data Management & Informatics Coordinated resource network with a suite of capabilities for advanced materials R&D In Support of the Materials Genome Initiative (MGI) 3 Network Requirements 1. WORLD

  4. Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  5. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Materials in the news Discover more about the wide-ranging scope of materials research at Los Alamos National Laboratory. Contact Us ADEPS Communications Email Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Read more... Materials science at Los

  6. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  7. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted

  8. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a variety of chemical and materials science calculations. VASP is available to NERSC users who already have a VASP license. Read More » Quantum ESPRESSO/PWscf Quantum Espresso is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on

  9. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating

  10. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating

  11. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Spectroscopy of semiconductor materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag 3 VO 4 as a New p-Type Transparent Conducting Material Using systematic design principles, the Center for Inverse Design is exploring a new class of ternary p-type transparent conducting oxides (TCOs), including the prototypical Ag 3 VO 4 entry-point material. The simultaneous occurrence of transparency and p-type (hole-carrier) conductivity is an elusive materials property that could have high impact on technologies such as photovoltaics and transparent electronics. However, no satisfactory

  14. Hydrogen Compatible Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compatible Materials Workshop November 3 rd , 2010 Research, Engineering, and Applications Center for Hydrogen Sandia National Laboratory, Livermore, CA Introduction: On November 3 rd , 2010, Sandia National Labs hosted a workshop focused on hydrogen compatible materials and components. The goals of the workshop were two-fold, 1) to identify gaps in hydrogen compatible materials R&D, and 2) to develop international R&D pathways that address the identified R&D gaps. This

  15. Frequency Shift of the Cesium Clock Transition due to Blackbody Radiation

    SciTech Connect (OSTI)

    Angstmann, E. J.; Dzuba, V. A.; Flambaum, V. V.

    2006-07-28

    We perform ab initio calculations of the frequency shift induced by a static electric field on the cesium clock hyperfine transition. The calculations are used to find the frequency shifts due to blackbody radiation. Our result [{delta}{nu}/E{sup 2}=-2.26(2)x10{sup -10} Hz/(V/m){sup 2}] is in good agreement with early measurements and ab initio calculations performed in other groups. We present arguments against recent claims that the actual value of the effect might be smaller. The difference ({approx}10%) between ab initio and semiempirical calculations is due to the contribution of the continuum spectrum in the sum over intermediate states.

  16. Radiation Safety Training Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  17. Chemistry of Materials

    Office of Scientific and Technical Information (OSTI)

    Engineering and Materials Science, Dept. of Chemistry, The Smalley Institute for Nanoscale ... University, R.E. Smalley Institute for Nanoscale Science and Tech., Ajayan, Pulickel; ...

  18. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  19. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  1. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  2. Overview of Propulsion Materials

    Energy Savers [EERE]

    ... 250 bar - HDV >103 bar - LDV gasoline 300 bar - HDV Background Graphic Courtesy of Daimler Trucks North America Vehicle Technologies Program eere.energy.gov VTO ACE Materials ...

  3. Electrical Utility Materials Handler

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  4. Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Light Creation Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRC...

  5. Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Wavelength Conversion Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  6. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties. In this talk, I will discuss our recent research in the area of nanoscale materials modeling, using various atomistic simulation techniques, aimed at uncovering the...

  7. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J.; Dumitru, Earl T.

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  8. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J.; Dumitru, Earl T.

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  9. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  10. CRITICAL MATERIALS MUSEUM DISPLAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    critical materials, rare earth elements (REE), and the national purpose of the CMI. The CSM Geology Museum is the second most visited geology museum at an American university. ...

  11. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Links to national laboratories and other facilities with research related to rare earth elements or critical materials. National Energy Technology Laboratory ...

  12. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  13. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  14. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The Critical Materials Institute at the The Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University, offers a variety of career ...

  15. Material Safety Data Sheets

    Broader source: Energy.gov [DOE]

    Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a hazardous substance and other health and safety information.

  16. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  17. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs Advanced Materials Laboratory, Analysis, Capabilities, Energy, Facilities, Highlights - Energy Research, ...

  18. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Researchers Win CSP:ELEMENTS Funding Award Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test ...

  19. Material for radioactive protection

    DOE Patents [OSTI]

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  20. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  1. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  2. Chapter 6: Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... reflectance and thermal emissivity requirements for roofs. ... ENERGY STAR-compliant roof materials include metal and are ... insulated doors (low-temperature applications) cost more ...

  3. Plant-based Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant-based Materials Catalysis Center for Energy Innovation teams with consumer goods and ... announced a research program with the Plant PET Technology Collaborative (PTC) to ...

  4. Spallation radiation effects in materials

    SciTech Connect (OSTI)

    Mansur, L.K.; Farrell, K.; Wechsler, M.S.

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  5. DYNA3D Material Model 71 - Solid Element Test Problem

    SciTech Connect (OSTI)

    Zywicz, E

    2008-01-24

    A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.

  6. Experimental fretting-wear studies of steam generator materials

    SciTech Connect (OSTI)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1995-11-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances, and tube support geometries have been studied. The effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated as well. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion, were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is an appropriate correlating parameter for impact-sliding interaction.

  7. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  8. Advanced research workshop: nuclear materials safety

    SciTech Connect (OSTI)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  9. materials | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for Advanced Steam Cycles Materials for Ultra-Supercritical Coal-Fired Power Plant Boilers R. Viswanathan, EPRI Presentation Coal Ash Corrosion Resistant Materials ...

  10. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  11. Hydrocarbonaceous material upgrading method

    SciTech Connect (OSTI)

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  12. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  13. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  14. Packaging Materials Properties Data

    SciTech Connect (OSTI)

    Leduc, D.

    1991-10-30

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the U.S. Department of Energy Technical Safety Review Panels requested compression versus deflection . data on these materials. This report is a compilation of that data.

  15. Packaging materials properties data

    SciTech Connect (OSTI)

    Walker, M.S.

    1991-01-01

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the US Department of Energy Technical Safety Review Panels requested compression versus deflection data on these materials. This report is a compilation of that data.

  16. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement and Materials Management U.S. Department of Energy | Who We Are | Current Requests for Proposal | Requests for Information | Expression of Interest | Subcontractor Information | Small Business Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small Business Calendar Terms & Conditions Procedures to Subcontractors Instructions Forms Vendor Registration Solicitations Small Bus. Events Procedures

  17. MATERIAL TRACKING USING LANMAS

    SciTech Connect (OSTI)

    Armstrong, F.

    2010-06-07

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  18. Method and apparatus for vibrating a substrate during material formation

    DOE Patents [OSTI]

    Bailey, Jeffrey A. [Richland, WA; Roger, Johnson N. [Richland, WA; John, Munley T. [Benton City, WA; Walter, Park R. [Benton City, WA

    2008-10-21

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  19. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  20. Sandia National Laboratories: Due Diligence on Lead Acid Battery Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US Geological Survey estimated that 95% of lead in the United States is recycled, primarily from used lead acid batteries. A broader 2009 European study estimated that globally about 52% of lead is recycled, and a 2008 Asian study estimated a global recycle rate of 68%. Unfortunately, many incidents over the past decade

  1. Charge Transport Anisotropy Due to Grain Boundaries in Directionally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Charge Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Semicrystalline polymers, such as polythiophenes, hold much promise as active layers in printable electronic devices such as photovoltaic cells, sensors, and thin film transistors. As organic semiconductors approach commercialization, there is a need to better understand the relationship between

  2. Atomistic Simulations of Displacement Cascades in Fused Silica: It is Compared with Different Concentration of H in the Bulk

    SciTech Connect (OSTI)

    Mota, Fernando; Perlado, Jose Manuel; Caturla, Maria Jose; Ibarra, Angel; Molla, Joaquin

    2008-07-01

    Amorphous Silica is one of candidate materials for both final focusing optics of lasers for NIF and future inertial fusion reactors and diagnostics of the Safety and Control Systems of the ITER machine as well as DEMO magnetic fusion reactors. In operation, these materials will be exposed to high neutron irradiation fluxes and it can result in point defect and vary the optical absorption, that is, degradation of the optical properties. In this paper we present molecular dynamic simulation of displacement cascade due to energetic recoils in amorphous silica without hydrogen atoms and with 1% of hydrogen atoms trying to identify defects formation. We have made a statistics of the different kind of defects at different energy of primary knock-on atoms (PKA). The range of studied PKA energies are from 400 eV to 3.5 keV and it is made to both component of this material Silicon and Oxygen. (authors)

  3. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  4. Thermal Conductivity Measurements of Bulk Thermoelectric Materials (Prop. 2004-067)

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Sharp, J

    2006-01-01

    Thermal conductivity is an important material property of the bulk thermoelectrics. To improve ZT a reduced thermal conductivity is always desired. However, there is no standard material for thermoelectrics and the test results, even on the same material, often show significant scatter. The scatter in thermal conductivity made reported ZT values uncertain and sometime unrepeatable. One of the reasons for the uncertainty is due to the microstructure differences resulting from sintering, heat treatment and other processing parameters. They selected commonly used bulk thermoelectric materials and conducted thermal conductivity measurements using the laser flash diffusivity and differential scanning calorimeter (DSC) systems. Thermal conductivity was measured as a function of temperature of temperature from room temperature to 500 K and back to room temperature. The effect of thermal cycling on the bulk thermoelectric was studied. Comnbined with measurements on electrical resistivity and Seebeck coefficient, they show the use of a ZT map in selecting thermoelectrics. The commercial bulk material showed very good consistency and reliability compared to other bulk materials. The goal is to develop a thermal transport properties database for the bulk thermoelectrics and make the information available to the research community and industry.

  5. Space Reflector Materials for Prometheus Application

    SciTech Connect (OSTI)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    -bearing materials require significant controls, handling of clean, finished products requires only modest controls. Neither material was initially considered to be viable as a structural material, however, based on improved understanding of its unirradiated properties, Be should be evaluated due to having potentially acceptable structural properties in the unirradiated condition, i. e., during launch, when loads might be most limiting. All three of the alternative materials are non-hazardous, and thus do not engender the ES&H concerns associated with use of Be or BeO. Aluminum oxide is a widely available ceramic material with well characterized physical properties and well developed processing practices. Although the densest (3.97 g/cm{sup 3} versus Be: 1.85, BeO: 3.01, MgO: 3.58, and MgAl{sub 2}O{sub 4}: 3.60, all theoretical density), and therefore the heaviest, of all the materials considered for this application, its ease of fabrication, mechanical properties, availability and neutronic characteristics warrant its evaluation. Similarly, MgO is widely used in the refractory materials industry and has a large established manufacturing base while being lighter than Al{sub 2}O{sub 3}. Most of the commercially available MgO products incorporate additives or a second phase to avoid the formation of Mg(OH){sub 2} due to spontaneous reaction with ambient humidity. The hygroscopicity of MgO makes it a more difficult material to work with than Al{sub 2}O{sub 3} or MgAl{sub 2}O{sub 4}. Magnesium aluminate spinel, although not as widely available as either Al{sub 2}O{sub 3} or MgO, has the advantage of a density almost as low as MgO without being hygroscopic, and shares comparable neutronic performance characteristics in the reflector application.

  6. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08

  7. NSUF Irradiated Materials Library

    SciTech Connect (OSTI)

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  8. Nanoscale materials for hyperthermal theranostics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reducemore » angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.« less

  9. Nanoscale materials for hyperthermal theranostics

    SciTech Connect (OSTI)

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  10. Materials for geopressure energy extraction

    SciTech Connect (OSTI)

    Raman, A.

    1982-01-01

    The status of efforts in methane and energy extraction from the geopressured aquifer sources of the North Gulf of Mexico region is outlined. Three different schemes for energy extraction are considered, and the anticipated materials and corrosion problems are defined. Suitable materials are suggested for use in the production well and surface equipment. J-55 steel can be used for production well casing. Monel clad carbon steel or high chromium ferritic stainless steels, such as E-Brite or AL 29-4 can be used in the cyclone gas separator. Polymer-concrete coated steel pipings are suitable for brine piping. The hydraulic turbine as well as the power turbine in the thermal energy converter can be made of a titanium alloy such as Ticode-12. Monel or Hastelloy-C276 clad steel is recommended for steam processing areas and monel piping is recommended for the heat exchangers. 20 references.

  11. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2000-01-01

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  12. Ionized cluster beam technology for material science

    SciTech Connect (OSTI)

    Takagi, Toshinori

    1997-06-20

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  13. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  14. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  15. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  16. Materials science and engineering

    SciTech Connect (OSTI)

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  17. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I.; Lushchikov, Vladislav I.; Shabalin, Eugeny P.; Maznyy, Nikita G.; Khvastunov, Michael M.; Rowland, Mark

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  18. Critical Materials Hub

    Office of Energy Efficiency and Renewable Energy (EERE)

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  19. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  20. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  1. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and complementary experimentalcomputational materials data - Provide an accessible brain trust of professionals highly skilled in computational materials techniques, such as ...

  2. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES ... 12132011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database ...

  3. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  4. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  5. Small Building Material Loan

    Broader source: Energy.gov [DOE]

    Applicants may borrow up to $100,000 for projects that improve the livability of a home, improve energy efficiency, or expand space. The loan can be applied toward building materials, freight or...

  6. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  7. Next Generation Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  8. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  9. Nuclear Material Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Supersedes DOE M 441.1-1, dated 3-7-08.

  10. Heavy Vehicle Propulsion Materials

    SciTech Connect (OSTI)

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  11. Building Materials Property Table

    SciTech Connect (OSTI)

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  12. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  13. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  14. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this tool into a more permanent, flexible and scalable data service built on top of rich modern web interfaces and state-of-the-art NoSQL database technology." The Materials...

  15. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  16. 2011 Critical Materials Strategy

    Broader source: Energy.gov [DOE]

    This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting.

  17. 2010 Critical Materials Strategy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

  18. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  19. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  20. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  1. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  2. Fission reactors and materials

    SciTech Connect (OSTI)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

  3. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration ...

  4. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  5. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  6. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  7. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  8. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM) provide an intriguing new path for the design of algorithms that are poised to scale to billions of cores [4]. These methods are particularly important for simulating various phases in the presence of extreme deformation and topological change. This brings about the possibility of new simulations enabled at the exascale

  9. Materials processing with light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials processing with light, plasmas and other sources of energy At the ARC various processing technologies are used to create materials, struc- tures, and devices that play an increasingly important role in high value-added manufacturing of computer and communications equipment, physical and chemical sensors, biomedical instruments and treatments, semiconductors, thin films, photovoltaics, electronic components and optical components. For example, making coatings, including paint, chrome,

  10. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program under

  11. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Material Control & Accountability Safeguards First Principles Initiative NNSA undertook a Safeguards First Principles Initiative (SFPI) to develop a principle-based standard for Material Control and Accountability (MC&A) Programs. The objective of SFPI was to prepare a model/standard for developing, implementing, and evaluating MC&A Programs to be adopted NNSA-wide. The model/standard: Establishes fundamental principles that the NNSA expects its management

  12. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  13. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  14. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  15. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  16. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | National Nuclear Security Administration | (NNSA) Nuclear Materials Safeguards and Security Upgrade Project Completed Under Budget April 03, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Nuclear Materials Safeguards and Security Upgrade Project (NMSSUP) was recently completed approximately $1 million under its original budget of $245 million. NMSSUP upgrades security at Los Alamos National Laboratory's (LANL) Technical Area-55, a facility that houses

  17. EXCITATION OF STRUCTURAL RESONANCE DUE TO A BEARING FAILURE

    SciTech Connect (OSTI)

    Leishear, R; David Stefanko, D

    2007-04-30

    Vibration due to a bearing failure in a pump created significant vibrations in a fifteen foot by fifteen foot by eight feet tall mounting platform due to excitation of resonant frequencies. In this particular application, an 18,000 pound pump was mounted to a structural steel platform. When bearing damage commenced, the platform vibrated with sufficient magnitude that conversations could not be heard within forty feet of the pump. Vibration analysis determined that the frequency of the bearing was coincident to one of the natural frequencies of the pump, which was, in turn, coincident to one of the natural frequencies of the mounting platform. This coincidence of frequencies defines resonance. Resonance creates excessive vibrations when the natural frequency of a structure is coincident to an excitation frequency. In this well documented case, the excitation frequency was related to ball bearing failures. The pump is a forty foot long vertical pump used to mix nuclear waste in 1,300,000 gallon tanks. A 300 horsepower drive motor is mounted to a structural steel platform on top of the tank. The pump hangs down into the tank from above to mix the waste and is inaccessible after installation. Initial awareness of the problem was due to increased noise from the pump. Initial vibration analysis indicated that the vibration levels of the bearing were within the expected range for this type of bearing, and the resonant condition was not obvious. Further analysis consisted of disassembly of the motor to inspect the bearings and extensive vibration monitoring. Vibration data for the bearings was obtained from the manufacturer and compared to measured vibration plots for the pump and mounting platform. Vibration data measured along the length of the pump was available from full scale testing, and vibrations were also measured at the installed pump. One of the axial frequencies of the pump, the platform frequency in the vertical direction, and the ball spin frequency for the

  18. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect (OSTI)

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  19. Effects of Dopant Metal Variation and Material Synthesis Method...

    Office of Scientific and Technical Information (OSTI)

    chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry ...

  20. Wave propagation in anisotropic elastic materials and curvilinear...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method Citation Details In-Document...

  1. Wave propagation in anisotropic elastic materials and curvilinear...

    Office of Scientific and Technical Information (OSTI)

    Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method Citation Details In-Document Search Title: Wave...

  2. Seismic attenuation due to wave-induced flow

    SciTech Connect (OSTI)

    Pride, S.R.; Berryman, J.G.; Harris, J.M.

    2003-10-09

    Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.

  3. Materials performance in advanced combustion systems

    SciTech Connect (OSTI)

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  4. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  5. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  6. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  7. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  8. ATS materials support

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S.; Rawlins, M.H.

    1996-12-31

    The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

  9. Material Protection, Control, & Accounting | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nonproliferation Nuclear and Radiological Material Security Material Protection, Control, & Accounting Material Protection, Control, & Accounting NNSA implements material...

  10. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells ...

  11. Phonon Polariton Behavior in 2D Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phonon Polariton Behavior in 2D Materials Phonon Polariton Behavior in 2D Materials Print Tuesday, 19 January 2016 09:57 In a crystal, collective excitations can be treated as if they are quasiparticles. For example, an excited electron and its associated hole are an exciton; oscillations of conduction electrons in a metal are plasmons; and different modes of lattice vibrations are phonons. Furthermore, when such excitations interact strongly with photons, a new form of quasiparticle emerges:

  12. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  13. Quality Control Inspector: Different Programs, Different Responosibilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Control Inspector: Different Programs, Different ResponsibiliDes. A Guide to the JTA So& Skills. Inspects implementaDon of the program. þ þ Documents areas needing improvement in report. þ þ May assure homeowners/clients of follow---up work. ý þ Independent 3 rd party inspectors may be hired by an enDty not in a role to promise follow---up to clients or residents. Agency staff can and should assure clients of proper follow---up when appropriate. May address

  14. Material bagging device

    DOE Patents [OSTI]

    Wach, Charles G.; Nelson, Robert E.; Brak, Stephen B.

    1984-01-01

    A bagging device for transferring material from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.

  15. Panel 3 - material science

    SciTech Connect (OSTI)

    Sarrao, John L; Yip, Sidney

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  16. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  17. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  18. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  19. Comments on Landau damping due to synchrotron frequency spread

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2005-01-01

    An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.

  20. Detailed characteristics of intermittent current pulses due to positive corona

    SciTech Connect (OSTI)

    Liu, Yang Cui, Xiang; Lu, Tiebing; Wang, Zhenguo; Li, Xuebao; Xiang, Yu; Wang, Xiaobo

    2014-08-15

    In order to get detailed characteristics of intermittent current pulses due to positive corona such as the repetition rate of burst-pulse trains, the peak value ratio of the primary pulse to the secondary pulse, the number of pulses per burst, and the interval of the secondary pulses, a systematic study was carried out in a coaxial conductor-cylinder electrode system with the conductor electrode being set with a discharge point. Empirical formulae for the number of pulses per burst and the interval of the secondary pulses are first presented. A theoretical model based on the motion of the space-charge clouds is proposed. Analysis with the model gives explanations to the experimental results and reveals some new insights into the physical mechanism of positive intermittent corona.

  1. Excitation of flow instabilities due to nonlinear scale invariance

    SciTech Connect (OSTI)

    Prasad Datta, Dhurjati; Sen, Sudip

    2014-05-15

    A novel route to instabilities and turbulence in fluid and plasma flows is presented in kinetic Vlasov-Maxwell model. New kind of flow instabilities is shown to arise due to the availability of new kinetic energy sources which are absent in conventional treatments. The present approach is based on a scale invariant nonlinear analytic formalism developed to address irregular motions on a chaotic attractor or in turbulence in a more coherent manner. We have studied two specific applications of this turbulence generating mechanism. The warm plasma Langmuir wave dispersion relation is shown to become unstable in the presence of these multifractal measures. In the second application, these multifractal measures are shown to induce naturally non-Gaussian, i.e., a stretched, Gaussian distribution and anomalous transport for tracer particles from the turbulent advection-diffusion transport equation in a Vlasov plasma flow.

  2. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    SciTech Connect (OSTI)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  3. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect (OSTI)

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  4. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  5. Application of Negligible Creep Criteria to Candidate Materials for HTGR Pressure Vessels

    SciTech Connect (OSTI)

    Jetter, Robert I; Sham, Sam; Swindeman, Robert W

    2011-01-01

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel (RPV) during normal operation. This work addresses the criteria for negligible creep in Subsection NH, Division 1 of the ASME B&PV (Boiler and Pressure Vessel) Code, Section III, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by creep properties. In assessing the effect of localized cyclic stresses it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 2 Cr-1Mo, is illustrated and the relative advantages and disadvantages of the materials are discussed.

  6. Material isolation enclosure

    DOE Patents [OSTI]

    Martell, Calvin J.; Dahlby, Joel W.; Gallimore, Bradford F.; Comer, Bob E.; Stone, Water A.; Carlson, David O.

    1993-01-01

    An enclosure similar to a glovebox for isolating materials from the atmosphere, yet allowing a technician to manipulate the materials and also apparatus which is located inside the enclosure. A portion of a wall of the enclosure is comprised of at least one flexible curtain. An opening defined by a frame is provided for the technician to insert his hands and forearms into the enclosure. The frame is movable in one plane, so that the technician has access to substantially all of the working interior of the enclosure. As the frame is moved by the technician, while he accomplishes work inside the enclosure, the curtain moves such that the only opening through the enclosure wall is the frame. In a preferred embodiment, where a negative pressure is maintained inside the enclosure, the frame is comprised of airfoils so that turbulence is reduced, thereby enhancing material retention within the box.

  7. Material isolation enclosure

    DOE Patents [OSTI]

    Martell, C.J.; Dahlby, J.W.; Gallimore, B.F.; Comer, B.E.; Stone, W.A.; Carlson, D.O.

    1993-04-27

    An enclosure is described, similar to a glove box, for isolating materials from the atmosphere, yet allowing a technician to manipulate the materials and also apparatus which is located inside the enclosure. A portion of a wall of the enclosure is comprised of at least one flexible curtain. An opening defined by a frame is provided for the technician to insert his hands and forearms into the enclosure. The frame is movable in one plane, so that the technician has access to substantially all of the working interior of the enclosure. As the frame is moved by the technician, while he accomplishes work inside the enclosure, the curtain moves such that the only opening through the enclosure wall is the frame. In a preferred embodiment, where a negative pressure is maintained inside the enclosure, the frame is comprised of airfoils so that turbulence is reduced, thereby enhancing material retention within the box.

  8. Apparatus for dispensing material

    DOE Patents [OSTI]

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2011-07-05

    An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

  9. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  10. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  11. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  12. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  13. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  14. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    SciTech Connect (OSTI)

    Wampler, William R.; Ding, R.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Kirschner, A.; Guo, H. Y.; Chan, V. S.; McLean, A. G.; Snyder, P. B.; Rudakov, D. L.

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and the material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.

  15. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wampler, William R.; Ding, R.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Kirschner, A.; Guo, H. Y.; Chan, V. S.; McLean, A. G.; Snyder, P. B.; et al

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  16. Fire water systems in composite materials

    SciTech Connect (OSTI)

    Sundt, J.L.

    1993-12-31

    Due to corrosion problems in fire water systems offshore there is a need for a corrosion resistant material to improve the reliability of onboard fire fighting systems. Glass Reinforced Epoxy (GRE) pipe is seen as a cost effective and light weight alternative to metals. Through a test program run by AMAT, Advanced Materials a/s in collaboration with the Norwegian Fire and Research Laboratory (NBL, SINTEF), GRE pipes have proved to be viable materials for offshore fire water systems. The test program included furnace testing, jetfire testing and simulated explosion testing. GRE pipes (2--12 inches) from two suppliers were fire tested and evaluated. Both adhesively bonded joints and flange connections were tested. During the course of the project, application methods of passive fire protection and nozzle attachments were improved.

  17. The Application of materials attractiveness in a graded approach to nuclear materials security

    SciTech Connect (OSTI)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.; Murphy, J.

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.

  18. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  19. Ultrasonic Processing of Materials

    SciTech Connect (OSTI)

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  20. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.

    1998-01-01

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  1. Lasers in materials processing

    SciTech Connect (OSTI)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out.

  2. The Limits of Porous Materials in the Topology Optimization of Stokes Flows

    SciTech Connect (OSTI)

    Evgrafov, Anton

    2005-10-15

    We consider a problem concerning the distribution of a solid material in a given bounded control volume with the goal to minimize the potential power of the Stokes flow with given velocities at the boundary through the material-free part of the domain.We also study the relaxed problem of the optimal distribution of the porous material with a spatially varying Darcy permeability tensor, where the governing equations are known as the Darcy-Stokes, or Brinkman, equations. We show that the introduction of the requirement of zero power dissipation due to the flow through the porous material into the relaxed problem results in it becoming a well-posed mathematical problem, which admits optimal solutions that have extreme permeability properties (i.e., assume only zero or infinite permeability); thus, they are also optimal in the original (non-relaxed) problem. Two numerical techniques are presented for the solution of the constrained problem. One is based on a sequence of optimal Brinkman flows with increasing viscosities, from the mathematical point of view nothing but the exterior penalty approach applied to the problem. Another technique is more special, and is based on the 'sizing' approximation of the problem using a mix of two different porous materials with high and low permeabilities, respectively. This paper thus complements the study of Borrvall and Petersson (Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77-107, 2003), where only sizing optimization problems are treated.

  3. FY 2008 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other ...

  4. Human Resources at Critical Materials Institute | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners ...

  5. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  6. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  7. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    SciTech Connect (OSTI)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  8. Formation of amorphous materials

    DOE Patents [OSTI]

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  9. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    Refractory metal nitrides are synthesized during a combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed. The azide is combusted with a transition metal of the IIIB, IVB group, or a rare earth metal, and ignited to produce the refractory material.

  10. Materials, Reliability, & Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials, Reliability, & Standards - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  11. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  12. Laser material processing system

    SciTech Connect (OSTI)

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  13. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  14. Carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  15. Materials Technical Team Roadmap

    SciTech Connect (OSTI)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  16. Evaluation of MC&A Effectiveness and Its Contribution to the Safeguarding Of Nuclear Material with Assurance Assessments

    SciTech Connect (OSTI)

    Schlegel, Steven C.

    2007-07-10

    Safeguards and Security within the DOE complex has struggled with integrating MC&A and Physical Security together in a single model. Attempts were made to incorporate MC&A elements that provide detection into vulnerability assessments. While this approach has met with some success, it does not fully address the different contributions that each make to nuclear material protection. Protection measures that rely on the lack of alarms to imply all nuclear material is still present, in the correct location, and intended use are limited due to their passive nature. A highly effective system may provide confidence that all nuclear material is still present, but it does not provide assurance that it is there. MC&A, through active measures that confirm or verify the actual presence of nuclear material, provides assurance that all of the nuclear material is controlled and accounted for. This paper presents a model that combines the detection and assessment functions from vulnerability assessments with assurance activities provided by MC&A to provide an integrated model that can be used for evaluation of current systems, evaluation of system changes, and monitoring assurance in real time based upon operational activities. 1.0 OVERVIEW Material control and accounting (MC&A) and physical security provide complementary measures that can effectively protect nuclear material against the threats of theft, diversion, and sabotage. Tools have been introduced to evaluate and quantify the effectiveness of different protective measures and schemes, but the ability to fully model the contribution of MC&A to protection effectiveness has been limited. This is due, in part, by not fully recognizing that the two areas contribute differently, but not independently, to protection effectiveness. Physical protection provides detection, assessment, interruption, neutralization, and deterrence against a threat. Except for deterrence, mathematical models have been developed to quantify the

  17. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  18. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would

  19. Resource demand growth and sustainability due to increased world consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore » immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  20. Resource demand growth and sustainability due to increased world consumption

    SciTech Connect (OSTI)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.

  1. Universality of the acceleration due to gravity on the surface of a rapidly rotating neutron star

    SciTech Connect (OSTI)

    AlGendy, Mohammad; Morsink, Sharon M.

    2014-08-20

    On the surface of a rapidly rotating neutron star, the effective centrifugal force decreases the effective acceleration due to gravity (as measured in the rotating frame) at the equator while increasing the acceleration at the poles due to the centrifugal flattening of the star into an oblate spheroid. We compute the effective gravitational acceleration for relativistic rapidly rotating neutron stars and show that for a star with mass M, equatorial radius R{sub e} , and angular velocity ?, the deviations of the effective acceleration due to gravity from the nonrotating case take on a universal form that depends only on the compactness ratio M/R{sub e} , the dimensionless square of the angular velocity ?{sup 2}R{sub e}{sup 3}/GM, and the latitude on the star's surface. This dependence is universal, in that it has very little dependence on the neutron star's equation of state. The effective gravity is expanded in the slow-rotation limit to show the dependence on the effective centrifugal force, oblate shape of the star, and the quadrupole moment of the gravitational field. In addition, an empirical fit and simple formula for the effective gravity is found. We find that the increase in the acceleration due to gravity at the poles is of the same order of magnitude as the decrease in the effective acceleration due to gravity at the equator for all realistic value of mass, radius, and spin. For neutron stars that spin with frequencies near 600 Hz, the difference between the effective gravity at the poles and the equator is about 20%.

  2. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

    1981-12-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  3. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

    1983-01-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  4. Making, Measuring, and Modeling Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making, Measuring, and Modeling Materials Making, Measuring, and Modeling Materials M4 facility aims to accelerate the transition from observation to control of materials providing unique synthesis and characterization tools to advance the frontiers of materials design and discovery. CONTACT Mark Bourke (505) 667-9667 Email Predicting and Controlling Materials' Performance MaRIE's Making, Measuring, and Modeling Materials (M4) Facility aims to accelerate the transition from observation to

  5. Institute for Multiscale Materials Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and mechanics of soft, responsive, engineered materials. Activities combine theory, experiment, and numerical simulation of phenomena in soft materials spanning 7-14...

  6. Reactor Materials Newsletter- Issue 1

    Broader source: Energy.gov [DOE]

    The Reactor Materials (RM) newsletter includes information about key nuclear materials programs, results from ongoing projects across the Office of Nuclear Energy, and other relevant information.

  7. Nuclear Material Control and Accountability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... can be established for waste accounts, material under ... decay, fission transmutation, adjustments for ... inventory. 6.4.4.4 Nuclear material activities shall ...

  8. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    ... can be established for waste accounts, material under ... decay, fission transmutation, adjustments for ... inventory. 6.4.4.4 Nuclear material activities shall ...

  9. Serious Materials | Open Energy Information

    Open Energy Info (EERE)

    Serious Materials Jump to: navigation, search Name: Serious Materials Address: 1250 Elko Drive Place: Sunnyvale, California Zip: 94089 Region: Bay Area Sector: Carbon Product:...

  10. Reactor Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    reactor materials crosscut effort will enable the development of innovative and ... Research into specific degradation modes or material needs unique to a particular reactor ...

  11. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry ...

  12. Complementary Chemistry and Matched Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials November 15, 2013 - 1:45pm Addthis DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively

  13. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.

  14. Tailoring of a metastable material: alfa-FeSi2 thin film

    SciTech Connect (OSTI)

    Cao, Guixin; Singh, David J; Zhang, Xiaoguang; Samolyuk, German D; Qiao, Liang; Parish, Chad M; Ke, Jin; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael D; Ward, Thomas Zac; Sales, Brian C; Mandrus, D.; Stocks, George Malcolm; Gai, Zheng

    2015-01-01

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  15. Tailoring of a metastable material: alfa-FeSi2 thin film

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, David J; Zhang, Xiaoguang; Samolyuk, German D; Qiao, Liang; Parish, Chad M; Ke, Jin; Zhang, Yanwen; Guo, Hangwen; Wang, Wenbin; et al

    2015-01-01

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transportmore » calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.« less

  16. An analytical and computational study of combined rate and size effects on material properties.

    SciTech Connect (OSTI)

    Fang, Huei Eliot; Chen, Zhen; Shen, Luming University of Missouri-Columbia, Columbia, MO); Gan, Yong

    2005-05-01

    The recent interests in developing multiscale model-based simulation procedures have brought about the challenging tasks of bridging different spatial and temporal scales within a unified framework. However, the research focus has been on the scale effect in the spatial domain with the loading rate being assumed to be quasi-static. Although material properties are rate-dependent in nature, little has been done in understanding combined loading rate and specimen size effects on the material properties at different scales. In addition, the length and time scales that can be probed by the molecular level simulations are still fairly limited due to the limitation of computational capability. Based on the experimental and computational capabilities available, therefore, an attempt is made in this report to formulate a hyper-surface in both spatial and temporal domains to predict combined size and rate effects on the mechanical properties of engineering materials. To demonstrate the features of the proposed hyper-surface, tungsten specimens of various sizes under various loading rates are considered with a focus on the uniaxial loading path. The mechanical responses of tungsten specimens under other loading paths are also explored to better understand the size effect. It appears from the preliminary results that the proposed procedure might provide an effective means to bridge different spatial and temporal scales in a unified multiscale modeling framework, and facilitate the application of nanoscale research results to engineering practice.

  17. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  18. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.; Norris, Pamela M.; Smoyer, Justin L.; Duda, John C.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  19. Handling difficult materials: Textiles

    SciTech Connect (OSTI)

    Polk, T.

    1994-07-01

    As recyclable materials, textiles are a potentially valuable addition to community collection programs. They make up a fairly substantial fraction--about 4%--of the residential solid waste stream, a higher figure than corrugated cardboard or magazines. Textiles have well-established processing and marketing infrastructures, with annual sales of over $1 billion in the US And buyers are out there, willing to pay $40 to $100 per ton. There doesn't seem to be any cumbersome government regulations standing in the way, either. So why are so few municipalities and waste haulers currently attempting to recover textiles The answers can be found in the properties of the material itself and a lack of knowledge about the existing textile recycling industry. There are three main end markets that come from waste textiles. In descending order of market share, they are: used clothing, fiber for paper and re-processing, and industrial wiping and polishing cloths.

  20. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  1. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. Critical Materials Institute |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    The Ames Laboratory | U.S. Department of Energy Search form Search Search Home Home CMI Materials Research Inventions Projects Researchers Webinars News Resources Success Stories US RE Magnet Patents Table Webinars Education Resources for K-12 Outreach in 2016 Courses Exhibit Webinars Working with CMI Affiliates Associates Team ORNL, Oddello sign CRADA for work on pulling magnets from used hard disk drives signing ceremony for CMI and Oddello to work together to recover rare earth magnets from

  3. Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creation Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. Hydrogen Compatibility of Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen

  5. Storage material for hydrogen

    SciTech Connect (OSTI)

    Bernauer, O.; Zlegler, K.

    1984-05-01

    A storage material for hydrogen comprising an alloy with the following composition: Ti(V/sub 1//sub -/ /SUB a/ /sub -/ /SUB b/ Fe /SUB a/ Al /SUB b/) /SUB x/ Cr /SUB y/ Mn/sub 2//sub -/ /SUB x/ /sub -/ /SUB y/, wherein: x = greater than 1, less than 2 y = 0 to approximately 0.2 x + y = not greater than 2 a = 0 to approximately 0.25 b = 0 to approximately 0.33 a + b = not greater than approximately 0.35 (1 - a - b) . x = not less than 1 This storage material for hydrogen can, in the cold state, absorb a maximum of 3.2% by weight of H/sub 2/ and already possesses, at low temperatures, a high reaction speed for the absorption of hydrogen. During the absorption of hydrogen, the storage material exhibits self-heating to high temperatures. Thus, in addition to its use for storing hydrogen, it is also particularly suitable for use in preheating systems for hydride-type storage units of motor vehicles.

  6. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  7. Chemical Functionalization of Nanostructured Materials Using Supercritical Reaction Media

    SciTech Connect (OSTI)

    Zemanian, Thomas S.; Fryxell, Glen E.; Liu, Jun; Mattigod, Shas V.; Shin, Yongsoon; Franz, James A.; Ustyugov, Oleksiy A.; Nie, Zimin

    2001-12-15

    There exists a need for durable and thin functional coatings to utilize the afforded surface area of highly porous ceramic materials. Deposition of silane-based Self Assembled Monolayers (SAMs) has thus far been limited to maximum coverages of 4-5 molecules/nm2 and long processing times (up to 2 weeks), due to the restricted internal geometry of the substrates. Results are presented for SAMs deposited on high surface area silica from supercritical fluids (SCFs). The SAMs so produced display unprecedented coverages, high monolayer integrity, and extremely low surface defect density. Moreover, the depositions and subsequent removal of reaction byproducts are complete in a matter of minutes rather than days. Nuclear Magnetic Resonance (NMR) spectra of the surface modified silica are presented, demonstrating the SAM integrity and evolution over time. Sorption of aqueous metal ions is demonstrated, and results are given demonstrating the broad pH stability of the deposited SAMs. A chemical explanation for the enhanced deposition is posited, and the kinetics of mass transport into and out of the nanostructured spaces are discussed.Related experiments using zeolite substrates show deposition of thiol-terminated silanes to internal surfaces of 6? microporous material. After oxidation of the thiol functional group size selective chemistry was demonstrated using the produced catalyst, proving the efficacy of the supercritical reaction medium for installing functional coatings inside pores of similar diameters to the chain length of the deposited molecule[]. Comparisons are made between the response of the different substrates to the supercritical fluid-based processing, and remarks on the utility of SCF based processing of nanostructured materials are presented.

  8. Radioactive Materials Emergencies Course Presentation

    Broader source: Energy.gov [DOE]

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  9. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  10. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  11. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  12. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  13. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, David A.

    1994-01-01

    Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  14. Laser detection of material thickness

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  15. United States Department of Energy Nuclear Materials Stewardship

    SciTech Connect (OSTI)

    Newton, J. W.

    2002-02-27

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

  16. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect (OSTI)

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  17. Sandia National Laboratories: Dynamic Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Materials Compressing materials under extreme conditions Pushing forward the frontiers of high-energy-density science Sandia Physicist, Marcus Knudson Sandia scientists are investigating the behavior of a wide-range of materials under the extreme conditions of very high pressures and densities. They seek the answers to such questions as: When do insulators become a metal? How strong do materials become when they are compressed? How and when do materials change their phase at very high

  18. Materials Science / Data Technology Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science / Data Technology Nexus Materials Science / Data Technology Nexus: IMS mini-symposium This one day mini-symposium is aligned with the CINT 2016 User Meeting, September 19 - 20 thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email

  19. Shipping Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shipping Materials General Users are not permitted to transport hazardous material on the Argonne site or to arrange for shipment directly to the CNM. Hazardous materials must be processed through Argonne's hazardous materials receiving area. Inbound Shipments Before you ship anything to the CNM, you must notify the User Office and your CNM contact. Nonhazardous Material To ensure that samples and equipment that you ship to the CNM gets here without unnecessary delays, address your shipments as

  20. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOE Patents [OSTI]

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  1. Constituent quark scaling violation due to baryon number transport

    SciTech Connect (OSTI)

    Dunlop J. C.; Lisa, M.A., Sorensen, P.

    2011-10-31

    In ultrarelativistic heavy-ion collisions at {radical}s{sub NN} {approx} 200 GeV, the azimuthal emission anisotropy of hadrons with low and intermediate transverse momentum (p{sub T} {approx}< 4 GeV/c) displays an intriguing scaling. In particular, the baryon (meson) emission patterns are consistent with a scenario in which a bulk medium of flowing quarks coalesces into three-quark (two-quark) 'bags.' While a full understanding of this number-of-constituent-quark (NCQ) scaling remains elusive, it is suggestive of a thermalized bulk system characterized by colored dynamical degrees of freedom - a quark-gluon plasma (QGP). In this scenario, one expects the scaling to break down as the central energy density is reduced below the QGP formation threshold; for this reason, NCQ-scaling violation searches are of interest in the energy scan program at the Relativistic Heavy Ion Collider. However, as {radical}s{sub NN} is reduced, it is not only the initial energy density that changes; there is also an increase in the net baryon number at midrapidity, as stopping transports entrance-channel partons to midrapidity. This phenomenon can result in violations of simple NCQ scaling. Still in the context of the quark coalescence model, we describe a specific pattern for the breakdown of the scaling that includes different flow strengths for particles and their antipartners. Related complications in the search for recently suggested exotic phenomena are also discussed.

  2. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    SciTech Connect (OSTI)

    Harrison, Alan K; Shashkov, Mikhail J; Fung, Jimmy; Canfield, Thomas R; Kamm, James R

    2010-10-14

    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  3. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect (OSTI)

    Pham, Chuyen V.; Krueger, Michael E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael; Weber, Stefan; Erdem, Emre E-mail: emre.erdem@physchem.uni-freiburg.de

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g?=?2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  4. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  5. Construction Material And Method

    DOE Patents [OSTI]

    Wagh, Arun S.; Antink, Allison L.

    2006-02-21

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  6. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  7. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  8. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Safety Data Sheet MSDS of LITHIUM POLYMER battery (total 3pages) 1. Product and Company Identification Product 1.1 Product Name: LITHIUM- POLYMER Battery 1.2 System: Rechargeable Lithium-ion Polymer Battery Comapny 1.4 Company Name: YUNTONG POWER CO.,LTD 1.5 Company Address: LINGGANG INDUSTRIAL ZONE JIANGLING Road, Zhongshan, G.D.China 1.6 Emergency Telephone Number: 86-760-8299193 2. Composition Information on Components Components Approximate Percent of Total Weight Aluminum 2-10%

  9. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, Joseph B.

    1984-01-01

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  10. Material containment enclosure

    DOE Patents [OSTI]

    Carlson, David O.

    1993-01-01

    An isolation enclosure and a group of isolation enclosures useful when a relatively large containment area is required. The enclosure is in the form of a ring having a section removed so that a technician may enter the center area of the ring. In a preferred embodiment, an access zone is located in the transparent wall of the enclosure and extends around the inner perimeter of the ring so that a technician can insert his hands into the enclosure to reach any point within. The inventive enclosures provide more containment area per unit area of floor space than conventional material isolation enclosures.

  11. Activated carbon material

    DOE Patents [OSTI]

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  12. Ion emittance growth due to focusing modulation from slipping electron bunch

    SciTech Connect (OSTI)

    Wang, G.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.

  13. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    SciTech Connect (OSTI)

    Virbhadra, K. S.; Keeton, C. R.

    2008-06-15

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.

  14. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    SciTech Connect (OSTI)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-12-04

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles.

  15. First-principles modeling of materials for nuclear energy applications

    SciTech Connect (OSTI)

    Dmitriev, Andrey I. Nikonov, Anton Yu.; Ponomareva, Alena V.; Abrikosov, Igor A.; Barannikova, Svetlana A.

    2014-11-14

    We discuss recent developments in the field of ab initio electronic structure theory and its use for studies of materials for nuclear energy applications. We review state-of-the-art simulation methods that allow for an efficient treatment of effects due to chemical and magnetic disorder, and illustrate their predictive power with examples of two materials systems, Fe-Cr-Ni alloys and Zr-Nb alloys.

  16. Attrition Resistant Catalyst Materials for Fluid Bed Applications - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryResearchers at NREL have developed novel steam reforming catalyst materials which have improved resistance to loss of catalyst due to attrition when producing hydrogen from gasified

  17. An Experiment to Tame the Plasma Material Interface

    SciTech Connect (OSTI)

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  18. Means for ultrasonic testing when material properties vary

    DOE Patents [OSTI]

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  19. Optical polarizer material

    DOE Patents [OSTI]

    Ebbers, Christopher A.

    1999-01-01

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  20. Optical polarizer material

    DOE Patents [OSTI]

    Ebbers, C.A.

    1999-08-31

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.