Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...  

Broader source: Energy.gov (indexed) [DOE]

April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond Green Diesel, LLC for Construction of the Diamond Green Diesel Facility in Norco, Louisiana April...

2

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

3

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

4

Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection  

SciTech Connect (OSTI)

This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

SINGH, G.

2000-04-25T23:59:59.000Z

5

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

6

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

7

Toda Cathode Materials Production Facility  

Broader source: Energy.gov (indexed) [DOE]

Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

8

Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS  

E-Print Network [OSTI]

Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as “the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. ” Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

Md. Nurun Nabi; S. M. Najmul Hoque

9

Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review  

E-Print Network [OSTI]

Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

Darunde Dhiraj S; Prof Deshmukh Mangesh M

10

A Framework to Report the Production of Renewable Diesel from Algae  

E-Print Network [OSTI]

A Framework to Report the Production of Renewable Diesel from Algae Colin M. Beal & Colin H. Smith(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, algae have algae are a viable source for renewable diesel, three questions that must be answered are (1) how much

11

Rates for Alternate Energy Production Facilities (Iowa)  

Broader source: Energy.gov [DOE]

The Utilities Board may require public utilities furnishing gas, electricity, communications, or water to public consumers, to own alternate energy production facilities, enter into long-term...

12

Non-Catalytic Production of Hydrogen via Reforming of Diesel, Hexadecane and Bio-Diesel for Nitrogen Oxides Remediation.  

E-Print Network [OSTI]

?? After-treatment technologies are required for diesel engines to meet the current and future stringent emissions regulations. Lean NOx traps and SCR catalysts represent the… (more)

Hernandez-Gonzalez, Sergio Manuel

2008-01-01T23:59:59.000Z

13

Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-11-01T23:59:59.000Z

14

Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-01-01T23:59:59.000Z

15

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

SciTech Connect (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

16

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

17

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

18

Property Tax Abatement for Production and Manufacturing Facilities  

Broader source: Energy.gov [DOE]

In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable...

19

Gasification Product Improvement Facility (GPIF). Final report  

SciTech Connect (OSTI)

The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

NONE

1995-09-01T23:59:59.000Z

20

Pinellas Plant facts. [Products, processes, laboratory facilities  

SciTech Connect (OSTI)

This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

Not Available

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Isotope production facility produces cancer-fighting actinium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

22

Cell Fabrication Facility Team Production and Research Activities...  

Broader source: Energy.gov (indexed) [DOE]

Cell Fabrication Facility Team Production and Research Activities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

23

Production and Injection data for NV Binary facilities  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

Mines, Greg

24

Production and Injection data for NV Binary facilities  

SciTech Connect (OSTI)

Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

Mines, Greg

2013-12-24T23:59:59.000Z

25

Renewable Diesel  

Broader source: Energy.gov (indexed) [DOE]

Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

26

Diesel prices slightly increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDieselDiesel

27

Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine  

E-Print Network [OSTI]

Abstract- The production of biodiesel from vegetable oils stands as a new versatile method of energy generation in the present scenario. Biodiesel is obtained by the transesterification of long chain fatty acids in presence of catalysts. Transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil, reaction temperature, catalyst amount and time. Biodiesel is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. It can be used in diesel engines by blending with conventional diesel in various proportions. Biodiesel seems to be a realistic fuel for future. It has become more attractive recently because of its environmental benefits. This paper discuses the production of biodiesel from

Sruthi Gopal; Sajitha C. M; Uma Krishnakumar

28

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

29

Toda Material/Component Production Facilities  

Broader source: Energy.gov (indexed) [DOE]

Europe Toda America Inc. Company Profile 6 7 Project Milestones In commercial production ISO 9001 Certified Milestone Status Target Dates DOE Award Announcement August 2009 DOE...

30

Toda Material/Component Production Facilities  

Broader source: Energy.gov (indexed) [DOE]

for battery customers worldwide 7 Toda Background * World's leading manufacturer of Solid State Chemistry Particles with 186 year history * Broad product breadth of all key...

31

Toda Material/Component Production Facilities  

Broader source: Energy.gov (indexed) [DOE]

confidential and restricted circulation 6 * World's leading manufacturer of Solid State Chemistry Particles with 186 year history * Broad product breadth of all key cathode...

32

Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass  

SciTech Connect (OSTI)

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible fuels.

Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

2013-06-09T23:59:59.000Z

33

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDieselDiesel

34

PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact  

E-Print Network [OSTI]

of Oil, Gas and Geothermal Resources 8 Department of Fish and Game (OSPR) 800-852-7550 or 800-OILS-911 9 provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL the Location and Labeling of: 1 Permanent Tanks 7 Tank & Storage Container Volumes with Contents Storedg 2

35

Environmental report for the Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The Fossil Energy Program has a mission to develop energy systems that utilize national coal resources in power systems with increased efficiency and environmental compatibility. Coal gasification technology is a versatile candidate that meets this goal. This two phased project consists primarily of the design, construction and operation of a 5-foot inside diameter (minimum) fixed-bed gasifier called PyGas{trademark} and supporting infrastructure (Phase I), and an additional follow on phase consisting of the design, construction and operation of a hot fuel gas cleanup unit (Phase II). Issues expected to be successfully overcome by PyGas{trademark} through its application in this test facility include the processing of high-swelling coals, which causes agglomeration in conventional fixed-bed gasifiers. Such coals comprise 87% of all eastern coals. Other issues expected to be eliminated or significantly reduced include: production of ash clinkers, production of ammonia, the presence of significant tars and fines, and the volatilization of alkalinity in the product fuel gas. A second portion of the NEPA report is concerned with the emission of toxic metal compounds by the gasification process improvement facility (GPIF). The GPIF facility will be located on site at the Fort Martin facility of Allegheny Power Company, and the energy produced (steam) will be directly used by Fort Martin to produce electricity. The coal used at the GPIF facility will be the same coal used by the utility. Therefore, the emissions of the GPIF will be put in context of the entire facility. The GPIF assessment will be divided into four sections: Estimation of the toxic metals content of the raw coal; calculation of the emissions from Fort Martin normally; an estimate of the emission from the GPIF; and a comparison of the two flows.

Sadowski, R.S.; Skinner, W.H.; Norris, E.S.; Duck, R.R.; Hass, R.B.; Morgan, M.E.; Helble, J.J.; Johnson, S.A.

1993-01-01T23:59:59.000Z

36

Diesel Oxidation Catalyst Combined to Non-Thermal Plasma: Effect on Activation Catalyst Temperature and by-products formation  

E-Print Network [OSTI]

Diesel Oxidation Catalyst Combined to Non-Thermal Plasma: Effect on Activation Catalyst Temperature efficiency together with the catalyst activation temperature when a Diesel Oxidation Catalyst (DOC) is placed downstream to a multi-plans Dielectric Barrier Discharge (DBD) reactor. In order to simulate Diesel engine

Paris-Sud XI, Université de

37

Decommissioning of U.S. uranium production facilities  

SciTech Connect (OSTI)

From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

Not Available

1995-02-01T23:59:59.000Z

38

Summary of Historical Production for Nevada Binary Facilities  

SciTech Connect (OSTI)

The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

Mines, Greg; Hanson, Hillary

2014-09-01T23:59:59.000Z

39

Summary of Historical Production for Nevada Binary Facilities  

SciTech Connect (OSTI)

The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

Mines, Greg; Hanson, Hillary

2001-09-01T23:59:59.000Z

40

DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY  

SciTech Connect (OSTI)

Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

Murray, A.; Abbott, H.

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation  

E-Print Network [OSTI]

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

42

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDieselDiesel

43

Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder  

SciTech Connect (OSTI)

Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

Muth, T. R.; Mayer, R. (Queen City Forging)

2012-05-04T23:59:59.000Z

44

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

45

Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities  

E-Print Network [OSTI]

Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities Atalla F. Sayda and James H. Taylor Abstract-- Oil production facilities exhibit complex and challenging dynamic behavior simplicity. I. INTRODUCTION The function of an oil production facility is to separate the oil well stream

Taylor, James H.

46

The Production and Analysis of Biodiesel from Waste Chicken Skin and Pork Skin Fat and a Comparison of Fuel Properties to Petroleum Derived Diesel Fuel  

E-Print Network [OSTI]

Abstract—People today are increasingly health conscious and therefore shopkeepers tend to dispose of fatty chicken and pork skin. Chicken and pork skins thus are sources of solid waste that are usually not utilized. This paper deals with the production of useful biodiesel from utilizing the waste chicken and pork skins. Fat from the waste chicken and pork skins (sourced from local shops), was first extracted and subjected to transesterification. The products of transesterification were FAME (Fatty acid methyl esters) and glycerol. The FAME produced was tested for five parameters namely calorific value, pour point and cloud point when compared to ASTM E2515-11 standard values. Comparison of the obtained values of the five parameters with the standard values for diesel was performed to determine the viability of the biodiesel produced. The results of this experiment showed that the calorific values of FAME produced from chicken skin and pork skin fat were close to that of petroleum derived diesel. However, two test parameters namely kinematic viscosity and pour point differed when compared to diesel; this problem can be circumvented by modifying an automobile’s internal combustion engine. Due to the relatively high yield value of biodiesel, it is feasible to utilize chicken skin and pork skin fat at a rural level to produce FAME that can be an alternative to diesel in this time of acute fuel scarcity.

Krish T Bharat; Agni Bhattacharya

47

Production of Renewable Liquid Fuels for Diesel Engine Applications – A Review  

E-Print Network [OSTI]

. There is an imperative need to improve the existing biodiesel production methods from technological

unknown authors

48

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel prices

49

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel

50

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices decrease

51

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices

52

Diesel prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDieselDiesel

53

Diesel prices slightly decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices

54

Diesel prices slightly decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel

55

Biodiesel and Other Renewable Diesel Fuels  

SciTech Connect (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

56

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass  

E-Print Network [OSTI]

W. Huber. "Production of Renewable Petroleum Refinery DieselW. Huber. "Production of Renewable Petroleum Refinery DieselW. Huber. "Production of Renewable Petroleum Refinery Diesel

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

57

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDieselDiesel

58

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel pricesDiesel

59

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDiesel prices

60

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDiesel

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Diesel prices slightly decrease nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDiesel

62

AET's new energy-efficient facility gears up for production  

SciTech Connect (OSTI)

American Energy Technologies, Inc. (AET), a company based just north of Green Cove Springs, Florida, has become the largest manufacturer of solar thermal products in the U.S. Phase 1 of the construction of AET's new manufacturing facility, which commenced in October 1992, was completed in April 1993. It houses high-output tooling designed by AET to ensure affordable, high-quality solar thermal hardware which is rated among the most efficient in the world today. The AET facility has integrated a number of energy-efficient design considerations and conservation measures. The passive-solar design of the building minimizes direct solar gain in the summer and maximizes tropical winds for passive cooling. Strategically placed native landscaping requires minimal maintenance, thus reducing water consumption, and provides natural shading for the offices. The exterior walls are constructed of Poly Steel hollow-core styrofoam forms filled with pumped concrete. This design provides an insulation rate of R-22, a wind load of 160 mph, and a two-hour fire rating. The light-colored office and the plant's exterior skin assist in reducing the cooling load with the protection of Lomit, a spray-applied radiant barrier manufactured by SOLEC Corporation, which coats the office roof decks. Climate control for the manufacturing area is provided by an AET solar heating system which works in tandem with two LPG Amana Command Aire 80s for back up. Office space heating is supplied by a warm forced-air system by US Solar Corporation which utilizes a 320-square-foot solar array with a 1,000-gallon storage tank. Circulation is powered by a Siemens Solar Pro photovoltaic array and the thermal system also provides solar hot water for the manufacturing process.

Pucci, A.

1993-01-01T23:59:59.000Z

63

Source Characterization and Pretreatment Evaluation of Pharmaceuticals and Personal Care Products in Healthcare Facility Wastewater  

E-Print Network [OSTI]

Healthcare facility wastewaters are a potentially important and under characterized source of pharmaceuticals and personal care products to the environment. In this study the composition and magnitude of pharmaceuticals and personal care products...

Nagarnaik, Pranav Mukund

2012-07-16T23:59:59.000Z

64

Conceptual design report -- Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

1994-09-01T23:59:59.000Z

65

Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana)  

Broader source: Energy.gov [DOE]

This legislation aims to encourage the development of alternative energy, cogeneration, and small hydropower facilities. The statute requires utilities to enter into long-term contracts with these...

66

Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology.  

E-Print Network [OSTI]

??Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning… (more)

Abuhabaya, Abdullah

2012-01-01T23:59:59.000Z

67

Driving Down Diesel Emissions  

E-Print Network [OSTI]

is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

Harley, Robert

2013-01-01T23:59:59.000Z

68

Reformulated diesel fuel  

DOE Patents [OSTI]

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

69

Cleaning Up Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

70

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

71

Experimental and theoretical study of exhaust gas fuel reforming of Diesel fuel by a non-thermal arc discharge for syngas production  

E-Print Network [OSTI]

Experimental and theoretical study of exhaust gas fuel reforming of Diesel fuel by a non Abstract: An experimental set-up has been developed to study two typical operating points of Diesel powered that the oxygen from CO2 and H2O almost does not intervene in the exhaust gas Diesel fuel reforming

Paris-Sud XI, Université de

72

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

73

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Bed Solids Waste Gasifier," Forest Products Journal, Vol.BASIS IV. SUMMARY APPENDIX A - Gasifier Liquefaction Design1 - Modified Lurgi Gasifier with Liquefaction Reactor 2 -

Figueroa, C.

2012-01-01T23:59:59.000Z

74

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices

75

Diesel prices flat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel prices

76

Diesel prices flat nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel

77

Diesel prices increase nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel prices

78

Diesel prices rise slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel

79

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDieselDiesel

80

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continueDiesel

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDiesel prices

82

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDiesel

83

Diesel prices continue to fall  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel prices continue

84

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel prices

85

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel

86

Diesel prices remain fairly stable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel pricesDiesel

87

Diesel prices see slight drop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices see

88

Business Case for Light-Duty Diesels  

Broader source: Energy.gov (indexed) [DOE]

Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

89

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

90

Plutonium production story at the Hanford site: processes and facilities history  

SciTech Connect (OSTI)

This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

Gerber, M.S., Westinghouse Hanford

1996-06-20T23:59:59.000Z

91

Hydrogen Production and Dispensing Facility Opens at W. Va. Airport  

Broader source: Energy.gov [DOE]

A hydrogen production and dispensing station constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory was officially opened Monday at the Yeager Airport in Charleston, W.Va.

92

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

SciTech Connect (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

93

DIESEL FUEL TANK FOUNDATIONS  

SciTech Connect (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

94

Identifying Bio-Diesel Production Facility Locations for Home Heating Fuel Applications Within the Midwest Region of the United States.  

E-Print Network [OSTI]

?? Amid concerns of rising oil prices, interest into researching alternative renewable energy sources has increased in recent years. A great deal of research has… (more)

Schafer, Guy M.

2011-01-01T23:59:59.000Z

95

Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques  

SciTech Connect (OSTI)

Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

Deng, Yangyang; Parajuli, Prem B.

2011-08-10T23:59:59.000Z

96

An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities  

SciTech Connect (OSTI)

Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

2014-06-19T23:59:59.000Z

97

Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera  

E-Print Network [OSTI]

Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera psosera to the Diesel programming language, entitled Join Diesel. We describe the design decisions and trade-offs made in integrating these concurrency primitives into the Diesel language. We also give a typechecking algorithm

Plotkin, Joshua B.

98

MHUG process for production of low sulfur and low aromatic diesel fuel. [Medium-pressure Hydro UpGrading  

SciTech Connect (OSTI)

A new hydro-upgrading process operated under medium pressure has been developed to reduce the sulfur and the aromatics content in light cycle oil (LCO). Two catalysts were used in series in this technology. The commercial RN-1 catalyst, which is known as having high activity in hydrodenitrogenation, desulfurization and aromatic saturation, was chosen as the first catalyst. The second one was a nickel-tungsten zeolite catalyst, named RT-5, which was developed by RIPP specially for hydrogenolysis of naphthenic and aromatic hydrocarbons. The pilot plant tests showed that high quality diesel oil with aromatics content less than 20 v% and sulfur content less than 0.05 wt% could be produced from various LCO/straight-run-gas-oil (SRGO) blended feedstocks under hydrogen partial pressure of 6.4 MPa. The reaction temperature and overall space velocity (S.V.) varied in the range of 350--380 C and 0.6--1.2 h[sup [minus]1], respectively, depending on the properties of the feedstocks to be processed and the upgrading depth required. Several examples presented also illustrated that this technology could be used to prepare catalytic reforming feedstock as well, which is in urgent need in China. A life test operated in relatively high severity for 3,000 hr. indicated that the catalysts possessed excellent stability. A commercial demonstration unit has been running well since the last Oct 1.

Shi, Yu Lin; Shi, Jian Wen; Zhang, Xin Wei; Shi, Ya Hua; Li, Da Dong (SINOPEC, Beijing (China). Research Inst. of Petroleum Processing)

1993-01-01T23:59:59.000Z

99

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network [OSTI]

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

100

ARM Climate Research Facility Quarterly Value-Added Product Report January 1–March 30, 2011  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, and (3) future VAPs that have been recently approved.

Sivaraman, C

2011-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities  

SciTech Connect (OSTI)

Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

1999-11-14T23:59:59.000Z

102

ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES  

E-Print Network [OSTI]

ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

Jagannatham, Aditya K.

103

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0AdministrationNext100 Federal09

104

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

105

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

1998-05-05T23:59:59.000Z

106

Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak  

SciTech Connect (OSTI)

Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States, such as the Hanford facility; several are also underway in other countries, such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions, which are used to estimate environmental releases, transport, and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling, when conducted, is used to organize and validate the measurements. Past operation of Cold War-related facilities for the manufacture of nuclear weapons has resulted in major releases of radionuclides into the environment. Reconstruction of the historical releases and the resultant radiation dose to individuals in the public living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States; several are also underway in other countries. The types of activity performed, the operating histories, and the radionuclide releases vary widely across the different facilities. The U.S. Hanford Site and the Russian Mayak Production Association are used here to illustrate the nature of the assessed problems and the range of approaches developed to solve them.

Ansbaugh, Lynn R.; Degteva, M. O.; Kozheurov, V. P.; Napier, Bruce A.; Tolstykh, E. I.; Vorobiova, M. I.

2003-05-01T23:59:59.000Z

107

Forecasting and planning for a multi-product seasonal production facility  

E-Print Network [OSTI]

With increasing cost pressure on commodity vaccine products, Novartis Vaccines & Diagnostics is continually looking for ways to improve operating efficiencies and decrease costs. As the largest drug product manufacturing ...

Sita, Dannielle (Dannielle Rose)

2011-01-01T23:59:59.000Z

108

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDieselDieselU.S. Diesel

109

Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities  

SciTech Connect (OSTI)

The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.

Doll, Charles G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Sorensen, Christina M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Friese, Judah I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hoffman, Emma L. [Australian Nuclear Science and Technology Organisation, Menai (Australia); Kephart, Rosara F. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

2014-04-01T23:59:59.000Z

110

Isotopic noble gas signatures released from medical isotope production facilities - Simulations and measurements  

SciTech Connect (OSTI)

Journal article on the role that radioxenon isotopes play in confirming whether or not an underground explosion was nuclear in nature. Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which {sup 131m}Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty.

Saey, Paul R.; Bowyer, Ted W.; Ringbom, Anders

2010-09-09T23:59:59.000Z

111

Recent Developments in BMW's Diesel Technology  

SciTech Connect (OSTI)

The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

Steinparzer, F

2003-08-24T23:59:59.000Z

112

Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.  

SciTech Connect (OSTI)

Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. For the nuclides with a very high capture microscopic cross section, such as iridium, rhenium, and samarium, their specific activities are reduced by a factor of 30 when the self-shielding effect is included. Four irradiation locations were considered in the analyses to maximize the medical isotope production rate. The results show the self-shield effect reduces the specific activity values and changes the irradiation location for obtaining the maximum possible specific activity. The axial and radial distributions of the specific activity were used to define the irradiation sample size for producing each isotope.

Talamo, A.; Gohar, Y.; Nuclear Engineering Division

2007-05-15T23:59:59.000Z

113

Fission product behavior during the PBF (Power Burst Facility) Severe Fuel Damage Test 1-1  

SciTech Connect (OSTI)

In response to the accident at Three Mile Island Unit 2 (TMI-2), the United States Nuclear Regulatory Commission (USNRC) initiated a series of Severe Fuel Damage tests that were performed in the Power Burst Facility at the Idaho National Engineering Laboratory to obtain data necessary to understand (a) fission product release, transport, and deposition; (b) hydrogen generation; and (c) fuel/cladding material behavior during degraded core accidents. Data are presented about fission product behavior noted during the second experiment of this series, the Severe Fuel Damage Test 1-1, with an in-depth analysis of the fission product release, transport, and deposition phenomena that were observed. Real-time release and transport data of certain fission products were obtained from on-line gamma spectroscopy measurements. Liquid and gas effluent grab samples were collected at selected periods during the test transient. Additional information was obtained from steamline deposition analysis. From these and other data, fission product release rates and total release fractions are estimated and compared with predicted release behavior using current models. Fission product distributions and a mass balance are also summarized, and certain probable chemical forms are predicted for iodine, cesium, and tellurium. An in-depth evaluation of phenomena affecting the behavior of the high-volatility fission products - xenon, krypton, iodine, cesium, and tellurium - is presented. Analysis indicates that volatile release from fuel is strongly influenced by parameters other than fuel temperature. Fission product behavior during transport through the Power Burst Facility effluent line to the fission product monitoring system is assessed. Tellurium release behavior is also examined relatve to the extent of Zircaloy cladding oxidation. 81 fig., 53 tabs.

Hartwell, J K; Petti, D A; Hagrman, D L; Jensen, S M; Cronenberg, A W

1987-05-01T23:59:59.000Z

114

Diesel particles -a health hazard 1 Diesel particles  

E-Print Network [OSTI]

Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

115

Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling  

SciTech Connect (OSTI)

Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

2014-04-06T23:59:59.000Z

116

FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION  

SciTech Connect (OSTI)

The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

Cozzi, A.

2011-01-18T23:59:59.000Z

117

UNIT NAME: C-751 Fuel Facility REGULATORY STATUS: AOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SITEPROCESS DESCRIPTION: The fuel facility consist of two underground storage tanks, piping system, fuel pumps, and a small service building. The USTs store gasoline and diesel....

118

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

119

The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta.  

E-Print Network [OSTI]

??The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This… (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

120

Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.  

SciTech Connect (OSTI)

The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

Senn, Harry G.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Maximum Reasonable Radioxenon Releases from Medical Isotope Production Facilities and Their Effect on Monitoring Nuclear Explosions  

SciTech Connect (OSTI)

Fission gases such as 133Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of 99Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Saey, et al., 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5×109 Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Kephart, Rosara F.; Eslinger, Paul W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Friese, Judah I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Miley, Harry S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saey, Paul R. [Vienna University of Technology, Atomic Institute of the Austrian Universities, Vienna (Austria)

2013-01-01T23:59:59.000Z

122

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

123

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

124

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

125

EPA Diesel Update  

Broader source: Energy.gov (indexed) [DOE]

for US Introduction of Tier 2 Diesels - Dr. Gerhard Schmidt, VP Research and Advanced Engineering Ford, "Our target must be 50 state programs at LEV2Bin 5. ....the prognosis...

126

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDiesel prices

127

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDiesel

128

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continue to

129

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continue

130

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices

131

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue to increase

132

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue to

133

Diesel prices continue to rise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue

134

Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends  

E-Print Network [OSTI]

Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

135

Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered...  

Broader source: Energy.gov (indexed) [DOE]

Outlines of the presentation 18 Green House Gas Emissions Production Compression Refinery CH4 GWP25 CO2 Exhaust 19 ADEME Program Program Evaluations on Diesel & CNG Buses...

136

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

137

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 16. U.S. No. 2 Diesel Fuel Prices by Sales Type 30 Energy Information Administration Petroleum...

138

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

139

CLEERS Activities: Diesel Soot Filter Characterization & NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

140

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.  

SciTech Connect (OSTI)

In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4 provides a chronological account of previous ISRP reviews, official Coeur d'Alene fisheries program responses to a series of ISRP reviews, master planning documentation, and annual reports dating back to 1990. Collectively, the materials provided by the Coeur d'Alene Tribe in this Step-1 submission package comprehensively assesses key research, habitat improvement activities, and hatchery production issues to best protect and enhance native cutthroat trout populations and the historically and culturally important tribal fisheries they support.

Anders, Paul

2003-01-01T23:59:59.000Z

142

DIESEL et CANCER Dominique Lafon  

E-Print Network [OSTI]

1/5 DIESEL et CANCER Dominique Lafon INERIS (*) De nombreuses questions se posent sur la toxicité des émissions des moteurs diesel. C'est un sujet qui a beaucoup préoccupé les scientifiques ces EMISSIONS DU DIESEL. Avant d'aborder la toxicité des émissions du diesel, un rappel de leur composition est

Boyer, Edmond

143

Production of 37Ar in The University of Texas TRIGA reactor facility  

SciTech Connect (OSTI)

The detection of {sup 37}Ar is important for on-site inspections for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by {sup 40}Ca(n,{alpha}){sup 37}Ar reaction in surrounding soil and rock. With a half-life of 35 days, {sup 37}Ar provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect {sup 37}Ar, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of {sup 37}Ar for the calibration of the detector. The {sup 41}Ar activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the {sup 41}Ar/{sup 37}Ar production ratio and the {sup 41}Ar activity, the amount of {sup 37}Ar created is calculated. The {sup 41}Ar decays quickly (half-life of 109.34 minutes) leaving a radioactive sample of high purity {sup 37}Ar and only trace levels of {sup 39}Ar.

Egnatuk, Christine M.; Lowrey, Justin; Biegalski, S.; Bowyer, Ted W.; Haas, Derek A.; Orrell, John L.; Woods, Vincent T.; Keillor, Martin E.

2011-06-19T23:59:59.000Z

144

Determining the Cause of a Header Failure in a Natural Gas Production Facility  

SciTech Connect (OSTI)

An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

2007-03-01T23:59:59.000Z

145

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel pricesDiesel

146

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDieselDiesel prices

147

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDieselDiesel

148

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDieselDieselU.S.

149

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDieselDieselU.S.U.S.

150

Production of exotic, short lived carbon isotopes in ISOL-type facilities  

E-Print Network [OSTI]

The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

Franberg, Hanna; Köster, Ulli; Ammann, Markus

2008-01-01T23:59:59.000Z

151

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network [OSTI]

reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energyUsing mobile distributed pyrolysis facilities to deliver a forest residue resource for bio

Victoria, University of

152

Diesel Engine Idling Test  

SciTech Connect (OSTI)

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

153

Diesel Engine Alternatives  

SciTech Connect (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

154

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

155

Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems  

SciTech Connect (OSTI)

This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

2009-05-31T23:59:59.000Z

156

Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery  

SciTech Connect (OSTI)

The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

2010-06-21T23:59:59.000Z

157

Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans  

SciTech Connect (OSTI)

This evaluation compared six hybrids and six standard diesels in UPS facilities in Phoenix, Arizona. Dispatch and maintenance practices are the same at both facilities. GPS logging, fueling, and maintenance records are used to evaluate the performance of these step delivery vans. The hybrids' average monthly mileage rate was 18% less than the diesel vans. The hybrids consistently were driven a fewer number of miles throughout the evaluation period. The hybrids idled more and operating at slower speeds than the diesels, and the diesels spent slightly more time operating at greater speeds, accounting for much of the hybrids fewer monthly miles. The average fuel economy for the hybrid vans is 13.0 mpg, 23% greater than the diesel vans 10.6 mpg. Total hybrid maintenance cost/mile of $0.141 was 9% more than the $0.130 for the diesel vans. Propulsion-related maintenance cost/mile of $0.037 for the hybrid vans was 25% more than the $0.029 for the diesel vans. Neither difference was found to be statistically significant. The hybrid group had a cumulative average of 96.3% uptime, less than the diesel group's 99.0% uptime. The hybrids experienced troubleshooting and recalibration issues related to prototype components that were primarily responsible for the lower uptime figures.

Lammert, M.; Walkowicz, K.

2012-03-01T23:59:59.000Z

158

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network [OSTI]

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

159

Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.  

SciTech Connect (OSTI)

This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1992 annual report.

Anders, Paul

2003-01-01T23:59:59.000Z

160

[98e]-Catalytic reforming of gasoline and diesel fuel  

SciTech Connect (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - alternate product facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

typically represents about 30 percent... (NPV) 1 Status Quo with transportation and disposal End 2010 4* of excess ash at alternative facility 2... residue from these two...

162

Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations apply to underground storage facilities for petroleum and hazardous waste, and seek to protect water resources from contamination. The regulations establish procedures for the...

163

Optimizing Low Temperature Diesel Combustion  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filter Regenerations," SAE Paper 2007-01-3970, SAE Fall Powertrain and Fluids Systems Conference, Chicago, IL, Oct. 2007. * "Comprehensive Characterization of...

164

Tailored Acicular Mullite Substrates for Multifunctional Diesel...  

Broader source: Energy.gov (indexed) [DOE]

"New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications," Proceedings of the 9th Diesel Engine Emissions Reduction Conference August 24-28, 2003,...

165

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

166

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

167

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

168

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

169

Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia  

SciTech Connect (OSTI)

Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control, the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.

Baring-Gould, E.I.; Barley, C.D.; Drouilhet, S. [and others] [and others

1997-09-01T23:59:59.000Z

170

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

SciTech Connect (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

171

ARM Climate Research Facility Quarterly Value-Added Product Report First Quarter: October 01-December 31, 2011  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

Sivaraman, C

2012-02-28T23:59:59.000Z

172

ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1–September 30, 2012  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

Sivaraman, C

2012-11-13T23:59:59.000Z

173

Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas  

E-Print Network [OSTI]

/or Robertson County sites on the following dates: • January 9, 2013 • February 10, 2013 • March 10, 2013 • April 3, 2013 • May 9, 2013 • May 16, 2013 • May 21, 2013 • June 3, 2013 • June 10, 2013 • July 15, 2013 Results from the analysis... Research Service Texas Water Resources Institute TR-452 November 2013 Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas STATE NONPOINT SOURCE GRANT PROGRAM TSSWCB PROJECT...

Wagner, K.; Harmel, D.; Higgs, K.

2013-01-01T23:59:59.000Z

174

Reformulated diesel fuel and method  

DOE Patents [OSTI]

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

175

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production.  

E-Print Network [OSTI]

??Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry… (more)

Brown, Duncan

2013-01-01T23:59:59.000Z

176

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

SciTech Connect (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

177

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

178

diesel.vp  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575Diesel

179

Update on Diesel Exhaust Emission Control Technology and Regulations...  

Broader source: Energy.gov (indexed) [DOE]

Update on Diesel Exhaust Emission Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction...

180

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Retrofit Diesel Emissions Control System Providing 50% NOxControl...  

Broader source: Energy.gov (indexed) [DOE]

Retrofit Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER)...

182

Alloy Foam Diesel Emissions Control School Bus Implementation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alloy Foam Diesel Emissions Control School Bus Implementation Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel...

183

Perspectives Regarding Diesel Engine Emissions Reduction in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

184

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

185

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

186

Measurements of Diesel Truck Traffic Associated with Goods Movement  

E-Print Network [OSTI]

Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

Houston, Douglas; Krudysz, Margaret; Winer, Arthur

2007-01-01T23:59:59.000Z

187

adicionado ao diesel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

188

automotive diesel exhaust: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

189

adiabatic diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

190

advanced diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

191

adiabatic diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

192

advanced diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

193

An Accelerated Aging Method for Diesel Exhaust Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Diesel Aftertreatment Devices Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts...

194

Regulated Emissions from Diesel and Compressed Natural Gas Transit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

195

Value Analysis of Alternative Diesel Particulate Filter (DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

196

The 60% Efficient Diesel Engine: Probably, Possible, Or Just...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

197

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

198

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

199

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

200

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter  

E-Print Network [OSTI]

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter Kenneth D a comprehensive database of ammonia emission rates (ER) from US poultry facilities. The influence of common

Kentucky, University of

202

Biodegradable Products Institute is an organization that certifies that so-called "biodegradable" plastic products will safely break down in a typical commercial composting facility. www.bpiworld.org.  

E-Print Network [OSTI]

.green-e.org. Greenguard is a nonprofit organization that certifies products that impact indoor air quality. Find productsEco-Labels Biodegradable Products Institute is an organization that certifies that so-called "biodegradable" plastic products will safely break down in a typical commercial composting facility. www

Escher, Christine

203

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

204

Diesel prices continue to decrease nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel

205

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

Minnesota, University of

206

Model Identification for Optimal Diesel Emissions Control  

SciTech Connect (OSTI)

In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

2013-06-20T23:59:59.000Z

207

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel

208

Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and...  

Gasoline and Diesel Fuel Update (EIA)

EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type Energy Information Administration ...

209

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

210

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

211

Durability of Diesel Particulate Filters - Bench Studies on Cordierite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Development of Advanced Diesel Particulate Filtration (DPF) Systems fundamental...

212

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry production facilities in Texas.  

E-Print Network [OSTI]

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry Summary: There are increasing numbers of poultry production buildings, with large, densely housed flocks to allow producers to meet the increasing demand for poultry products and, yet, reduce the environmental

Mukhtar, Saqib

213

Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

214

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network [OSTI]

Suncor Energy Inc. developed a long term plan to expand production from its oil sands operation north of Fort McMurray, Alberta up to 500,000 to 550,000 barrels/day in 2010-2012, while reducing the per barrel energy usage, emissions, and long term...

Booker, G.; Robinson, J.

215

Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review  

SciTech Connect (OSTI)

This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

Not Available

1991-10-01T23:59:59.000Z

216

DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance  

E-Print Network [OSTI]

DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

Ickert-Bond, Steffi

217

Nevada Production and Injection Well Data for Facilities with Flash Steam Plants  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

Mines, Greg

218

Nevada Production and Injection Well Data for Facilities with Flash Steam Plants  

SciTech Connect (OSTI)

Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

Mines, Greg

2014-03-26T23:59:59.000Z

219

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

220

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

BMW Diesel - Engine Concepts for Efficient Dynamics  

Broader source: Energy.gov (indexed) [DOE]

"24 Hours of Nrburgring" 2001 - 2nd Gen. Common Rail (1600 bar) 2004 - Variable Twin Turbo - Diesel Particulate Filter of 2nd Gen. 1999 - First V8 Diesel Sedan in Premium...

222

Elastomer Compatibility Testing of Renewable Diesel Fuels  

SciTech Connect (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

223

2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel  

E-Print Network [OSTI]

-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel cell been also developed for different reforming reactors: solid oxide fuel cell (SOFC)7 , membrane reformer1 2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel

Boyer, Edmond

224

Ethanol fuel for diesel tractors  

SciTech Connect (OSTI)

The use of ethanol fuel in turbocharged diesel tractors is considered. The investigation was performed to evaluate the conversion of a diesel tractor for dual-fueling with ethanol by attaching a carburetor to the inlet air system or with the use of an alcohol spray-injection kit. In this system the mixture of water and alcohol is injected into the air stream by means of pressure from the turbocharger. The carburetor was attached to a by-pass apparatus which allowed the engine to start and shut off on diesel alone. Approximately 46% of the energy for the turbocharged 65 kW diesel tractor could be supplied by carbureted ethanol, and about 30% by the spray-injection approach. Knock limited the extent of substitution of ethanol for diesel fuel. The dual-fueling with ethanol caused a slight increase in brake thermal efficiency. Exhaust temperatures were much lower for equivalent high torque levels. Maximum power was increased by 36% with the spray-injection approach and about 59% with carburetion.

da Cruz, J.M.

1981-01-01T23:59:59.000Z

225

ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report  

SciTech Connect (OSTI)

This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

McFarlane, S; Gaustad, K; Long, C; Mlawer, E

2011-07-15T23:59:59.000Z

226

Center for Diesel Research Potential Efficiency Improvement  

E-Print Network [OSTI]

Speed Histogram #12;Center for Diesel Research Results ­ Power Data Wasted power · Engine Hydraulic FanW Fan Power Histogram Fan Power Scatter Plot #12;Center for Diesel Research Results ­ Average AccessoryCenter for Diesel Research Potential Efficiency Improvement by Accessory Load Reduction on Hybrid

Minnesota, University of

227

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

SciTech Connect (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

228

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

229

Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels  

SciTech Connect (OSTI)

The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

1982-05-01T23:59:59.000Z

230

Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines  

SciTech Connect (OSTI)

In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

2008-01-01T23:59:59.000Z

231

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

SciTech Connect (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

232

List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

Not Available

1993-04-01T23:59:59.000Z

233

On-Road Use of Fischer-Tropsch Diesel Blends  

SciTech Connect (OSTI)

Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

1999-04-26T23:59:59.000Z

234

Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities  

SciTech Connect (OSTI)

The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.

K. Ladwig

2005-12-31T23:59:59.000Z

235

Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery  

SciTech Connect (OSTI)

The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

Stewart Mehlman

2010-06-16T23:59:59.000Z

236

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

SciTech Connect (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

237

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Pennsylvania  

E-Print Network [OSTI]

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 1 Ammonia Emissions from Broiler Houses in Pennsylvania During Cold of reducing ammonia (NH3) emissions are under study. Ammonia emissions during cold weather conditions from

Kentucky, University of

238

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 AMMONIA EMISSIONS FROM LAYER HOUSES IN IOWA  

E-Print Network [OSTI]

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 1 AMMONIA EMISSIONS FROM LAYER HOUSES IN IOWA Y. Liang1 , H. Xin2 , A. Casey10 ABSTRACT An ongoing project of monitoring ammonia (NH3) emissions from U.S. layer houses

Kentucky, University of

239

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

240

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

SciTech Connect (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer  

SciTech Connect (OSTI)

Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

Dennis Witmer; Thomas Johnson

2008-12-31T23:59:59.000Z

242

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to  

E-Print Network [OSTI]

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

Millar, Andrew J.

243

A Comparison of Combustion and Emissions of Diesel Fuels and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

244

The California Demonstration Program for Control of PM from Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of PM from Diesel Backup Generators Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles...

245

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

Minnesota, University of

246

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

247

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

T. A. , (2001). Diesel engines: environmental impact andof a heavy-duty diesel engine to improve deNOx performanceOn-road heavy-duty diesel engine exhaust particulate matter

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

248

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network [OSTI]

EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T. TOMPKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T...

Tompkins, Brandon T.

2009-05-15T23:59:59.000Z

249

Fuel effects on flame lift-off under diesel conditions  

SciTech Connect (OSTI)

An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

2011-01-15T23:59:59.000Z

250

Diesel vs Gasoline Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) | DepartmentTrucksvs

251

Long Baseline Neutrino Experiment Target Material Radiation Damage Studies Using Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility  

E-Print Network [OSTI]

One of the future multi-MW accelerators is the LBNE Experiment where Fermilab aims to produce a beam of neutrinos with a 2.3 MW proton beam as part of a suite of experiments associated with Project X. Specifically, the LBNE Neutrino Beam Facility aims for a 2+ MW, 60 -120 GeV pulsed, high intensity proton beam produced in the Project X accelerator intercepted by a low Z solid target to facilitate the production of low energy neutrinos. The multi-MW level LBNE proton beam will be characterized by intensities of the order of 1.6 e+14 p/pulse, {\\sigma} radius of 1.5 -3.5 mm and a 9.8 microsecond pulse length. These parameters are expected to push many target materials to their limit thus making the target design very challenging. To address a host of critical design issues revealed by recent high intensity beam on target experience a series of experimental studies on radiation damage and thermal shock response conducted at BNL focusing on low-Z materials have been undertaken with the latest one focusing on LBNE.

Simos, N; Hurh, P; Mokhov, N; Kotsina, Z

2014-01-01T23:59:59.000Z

252

Further improvement of conventional diesel NOx aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

253

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

254

Multicylinder Diesel Engine Design for HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

7 DEER Detroit August 12-16 Multicylinder Diesel Engine Design for HCCI operation William de Ojeda Phil Zoldak, Ral Espinoza, Raj Kumar, Chunyi Xia, Dan Cornelius International...

255

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES  

Broader source: Energy.gov (indexed) [DOE]

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES Thierry Leprince & Phil Roberts Extengine Transport Systems, LLC 1370 South Acacia Avenue Fullerton, CA - 92831 www.extengine.com...

256

Electrochemical NOx Sensors for Monitoring Diesel Emissions  

Broader source: Energy.gov (indexed) [DOE]

x Sensors for Monitoring Diesel Emissions This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract...

257

Review of Diesel Emission Control Technology  

Broader source: Energy.gov (indexed) [DOE]

Diesel Emission Control Technology Tim Johnson August 2002 2 Outline * Introduction - Regulatory update and technology approaches * Ultrafines * Filters * NOx - LNC - SCR - LNT *...

258

Review of Emerging Diesel Emissions and Control  

Broader source: Energy.gov (indexed) [DOE]

Emerging Diesel Emissions and Control Tim Johnson DEER Conference Dearborn, MI August 4, 2009 2 Corning Incorporated Summary * Criteria pollutant regulatory efforts are focused on...

259

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

260

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

262

Staged direct injection diesel engine  

DOE Patents [OSTI]

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

263

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

264

The California Demonstration Program for Control of PM from Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Research and Technology EPA's AP-42 Emission Factors - Small Diesel SMALL DIESEL (< 600 hp) Emission Factor Emission Factor Emission Factor Emission (lbhp-hr) (g...

265

Microwave Regenerated DPF for Auxiliary Power Units and Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration...

266

Modeling Combustion Control for High Power Diesel Mode Switching...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

267

Optimization of an Advanced Passive/Active Diesel Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

268

Low Temperature Combustion and Diesel Emission Reduction Research...  

Broader source: Energy.gov (indexed) [DOE]

Low Temperature Combustion and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24,...

269

Advanced Diesel Common Rail Injection System for Future Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

270

Simplification of Diesel Emission Control System Packaging Using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

271

Fuel Formulation Effects on Diesel Fuel Injection, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

272

Visualization of UHC Emissions for Low-Temperature Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER...

273

Emissions and Durability of Underground Mining Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given...

274

Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

275

Assessment of Health Hazards of Repeated Inhalation of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

276

Dilute Clean Diesel Combustion Achieves Low Emissions and High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

277

Measurement of diesel solid nanoparticle emissions using a catalytic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

278

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

279

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

280

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The California Demonstration Program for Control of PM from Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Backup Generators (BUGs) CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab...

282

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Technology, Dr. S. Diamond ** Plasma Science and Fusion Center, MIT ***Sloan Automobile Laboratory, MIT Diesel Plasmatron Reformers * Enhanced conversion of diesel fuel...

283

Modeling Combustion Control for High Power Diesel Mode Switching  

Broader source: Energy.gov (indexed) [DOE]

and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching P-20 Motivation * High power LTC-diesel mode operation * Transient...

284

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

285

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster...

286

Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

System (EAS) for On- Highway Diesel Engines Highway Diesel Engines Haoran Hu Eaton Corporation August 22, 2006 2004 Eaton Corporation. All rights reserved. Agenda...

287

Diesel Soot Filter Characterization and Modeling for Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Publications Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced...

288

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

289

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

290

Update on Diesel Exhaust Emission Control Technology and Regulations  

Broader source: Energy.gov (indexed) [DOE]

Control Technology and Regulations Tim Johnson August 2004 2 Diesel emission control technology is making significant progress * Diesel regulations are getting tighter in all...

291

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

292

Clean Diesel: The Progress, The Message, The Opportunity  

Broader source: Energy.gov (indexed) [DOE]

and are selling... and here's what people here's what people are saying are saying Image, Story Courtesy of Diesel Progress Washington Policymakers Have Seen the New Diesel...

293

Burning Modes and Oxidation Rates of Soot: Relevance to Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Presentation given...

294

Development of an Accelerated Ash-Loading Protocol for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

295

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

296

Local Soot Loading Distribution in Cordierite Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

297

Modeling of Diesel Exhaust Systems: A methodology to better simulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

298

AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer...  

Energy Savers [EERE]

09 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports The Vehicle Technologies...

299

Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24,...

300

New Cordierite Diesel Particulate Filters for Catalyzed and Non...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CARB Verification of Catalyzed Diesel Particulate Filters for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

302

12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

303

Advances in Diesel Engine Technologies for European Passenger...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

304

AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

305

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

306

Combination of Diesel fuel system architectures and Ceria-based...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

307

Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

308

Improvement and Simplification of Diesel Particulate Filter System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

309

A New CFD Model for understanding and Managing Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CFD Model for understanding and Managing Diesel Particulate Filter Regeneration A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration...

310

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

311

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

312

Emission Performance of Modern Diesel Engines Fueled with Biodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

313

Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report  

SciTech Connect (OSTI)

Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

2006-03-01T23:59:59.000Z

314

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

SciTech Connect (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

315

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

316

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

317

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

318

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

319

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

320

Achieving High-Effiency Clean Ccombustion in Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Achieving High-Efficiency Clean Combustion in Diesel Engines Robert M. Wagner, C. Scott Sluder, John M. Storey, Sam A. Lewis Oak Ridge National Laboratory Diesel Engine Emissions...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

322

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

323

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

324

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and Other Applications Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and...

325

Hydrogen generation from plasmatron reformers and use for diesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003...

326

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov (indexed) [DOE]

R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2,...

327

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005...

328

Multicylinder Diesel Engine for Low Temperature Combustion Operation...  

Broader source: Energy.gov (indexed) [DOE]

Multicylinder Diesel Engine for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low...

329

Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Emissions and fuel economy data were...

330

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

331

New Feedstocks and Replacement Fuel Diesel Engine Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Diesel Engine Challenges New Feedstocks and Replacement Fuel Diesel Engine Challenges Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

332

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor...

333

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

SciTech Connect (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

334

Diesel prices decrease slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel prices

335

Diesel prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel

336

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report  

SciTech Connect (OSTI)

The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

NONE

1995-08-01T23:59:59.000Z

337

Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report  

SciTech Connect (OSTI)

This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

Walkowicz, K.; Lammert, M.; Curran, P.

2012-08-01T23:59:59.000Z

338

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System  

SciTech Connect (OSTI)

Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

2013-04-01T23:59:59.000Z

339

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

340

Diesel Brewing | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska:Dickinson County isDiesel

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Renewable Diesel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy Diesel Fuels: Status

342

Sandia National Laboratories: Diesel Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BERPressure, Not ChemistryDiesel

343

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

SciTech Connect (OSTI)

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01T23:59:59.000Z

344

Diesel Reforming for Solid Oxide Fuel Cell Application  

SciTech Connect (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

345

Diesel Locomotive Fueling Problem (LFP) in Railroad Operations  

E-Print Network [OSTI]

Chapter 2 Diesel Locomotive Fueling Problem (LFP) in Railroad Operations Bodhibrata Nag Katta G their operating costs low. About 75% of transport by railroads in the world is based on diesel locomotives by diesel locomotives. One of the major compo- nents in the operating cost of diesel powered rail transport

Murty, Katta G.

346

Robust Strategy for Intake Leakage Detection in Diesel Engines  

E-Print Network [OSTI]

Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

Boyer, Edmond

347

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.  

E-Print Network [OSTI]

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean at their tachometers to be sure that they were running. You would not expect that of a diesel, however. Yet these are diesel engines. The world has been looking to gas/electric hybrids and fuel cells for future fuel

348

Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.  

E-Print Network [OSTI]

??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

Rajendra Prasath B

2013-01-01T23:59:59.000Z

349

Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice  

E-Print Network [OSTI]

McDonald JD: Inhaled diesel emissions alter atheroscleroticinduced by inhalation of diesel exhaust. AtherosclerosisA, Sandstrom T, Newby DE: Diesel exhaust inhalation causes

2013-01-01T23:59:59.000Z

350

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

Scora, George Alexander

2011-01-01T23:59:59.000Z

351

Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

352

High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004 Diesel...

353

Carbon Fiber Pilot Plant and Research Facilities  

Broader source: Energy.gov (indexed) [DOE]

for the U.S. Department of Energy Presentationname Carbon Fiber Facilities Materials Carbon Fiber Research Facility Type Production Fiber Types Tow Size Tensioning Line...

354

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

355

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

356

Calor de combustão de Blendas do tipo diesel/biodiesel e diesel/bio-óleo.  

E-Print Network [OSTI]

??Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, 2009. O programa brasileiro de biocombustíveis prevê a adição de 2% de biocombustíveis em diesel até 2008 e… (more)

Andrade, Rômulo Davi Albuquerque

2009-01-01T23:59:59.000Z

357

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

358

Worldwide wind/diesel hybrid power system study: Potential applications and technical issues  

SciTech Connect (OSTI)

The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

1991-04-01T23:59:59.000Z

359

Direct production of fractionated and upgraded hydrocarbon fuels from biomass  

SciTech Connect (OSTI)

Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

2014-08-26T23:59:59.000Z

360

BMW Diesel Engines - Dynamic, Efficient and Clean  

Broader source: Energy.gov (indexed) [DOE]

about cars General Attitude towards Driving & Cars Market Study Diesel Image Germany and UK 2005 74 85 75 82 60 72 65 66 64 66 56 60 60 51 54 66 83 83 89 62 57 29 32 64...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An improved visualization of diesel particulate filter/  

E-Print Network [OSTI]

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

362

French perspective on diesel engines & emissions  

Broader source: Energy.gov (indexed) [DOE]

smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

363

Modeling deposit formation in diesel injector nozzle  

E-Print Network [OSTI]

Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

Sudhiesh Kumar, Chintoo

2009-01-01T23:59:59.000Z

364

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)  

Broader source: Energy.gov [DOE]

Saskatchewan has introduced a mandate for inclusion of 2% renewable content in the average annual diesel fuel pool for fuel distributors beginning July 1, 2012. In order to allow industry to fully...

365

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

SciTech Connect (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

366

Diesel prices decrease for first time in four weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel

367

Diesel prices decrease for the ninth consecutive week  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel prices increaseDiesel

368

Diesel prices dip below the 4 dollar mark  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel prices dip

369

Diesel prices increase for first time in six weeks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel prices increase

370

Diesel particulate filter with zoned resistive heater  

SciTech Connect (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

371

Diesel prices continue to increase Â… U.S. average over $4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue toDiesel

372

Fuels and Other Products | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Emerging Technologies PDF Assessment of Hydrogen Production with CO2 Capture, Volume 1: Baseline State of the Art Plants PDF Affordable, Low-Carbon Diesel...

373

BIODIESEL AS AN ALTERNATE FUEL FOR POLLUTION CONTROL IN DIESEL ENGINE  

E-Print Network [OSTI]

Diesel vehicles are the major source for air pollution; there is great potential for global warming due to discharge of greenhouse gases like CO2 from vehicles. Many lung problems are connected with particulate matter emitted by diesel vehicle including dust, soot and smoke. People are exposed to pollution even as they talk or when stir up the dust when they walk. Biodiesel is a non-toxic, biodegradable and renewable fuel. Compared to diesel fuel, biodiesel produces no sulfur, no net carbon dioxide, less carbon monoxide and more oxygen. More free oxygen leads to the complete combustion and reduced emission. Overall biodiesel emissions are very less compared to diesel fuel emissions which is promising pollution free environment. Abundant source of vegetable oil in India and its ease of conversion to biodiesel help to save large expenditure done on import of petroleum products and economic growth of country. Biodiesel also generates huge rural employment and degraded lands can be restored due to plantation of oil plants which help in reducing pollution. Extensive research is going on in different countries on different types of vegetable oils like sunflower oil, karanj oil, linseed oil, soya been oil, palm oil, and many more, which can be used in those countries as per availability, our research is in progress on CNSL and its blend with diesel, research is going on in right direction and likely to get surprising

Mr. Paresh K. Kasundra; Prof Ashish; V. Gohil

374

THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM  

SciTech Connect (OSTI)

Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

Fairbanks, John W.

2000-08-20T23:59:59.000Z

375

Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program  

SciTech Connect (OSTI)

One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

Not Available

1994-05-01T23:59:59.000Z

376

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

DC t Total facilities investment cost of production (capitalaverage of facilities investment cost of production for allThe total “facilities investment cost” of oil production on

Leighty, Wayne

2008-01-01T23:59:59.000Z

377

Low-temperature pyrolysis of coal to produce diesel-fuel blends  

SciTech Connect (OSTI)

Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

Shafer, T.B.; Jett, O.J.; Wu, J.S.

1982-10-01T23:59:59.000Z

378

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

379

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

Inventories for Motorcycles, Diesel Automobiles, School Inventories for Motorcycles, Diesel Automobiles, School Inventories for Motorcycles, Diesel Automobiles, School 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

380

Perspective on the Future Development of Diesel Emission Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspective on the Future Development of Diesel Emission Standards in Europe - Euro 5 for LDV, amendment of EURO 5 for HDV Perspective on the Future Development of Diesel Emission...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Marketing Light-Duty Diesels to U.S. Consumers  

Broader source: Energy.gov (indexed) [DOE]

levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

382

Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

383

Durability of Diesel Engine Particulate Filters CRADA No. ORNL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc....

384

Performance Characteristics of Coal-to-Liquids (CTL) Diesel in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions...

385

The Effect of Diesel Fuel Properties on Emissions-Restrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

386

BioDiesel Content On-board monitoring  

Broader source: Energy.gov (indexed) [DOE]

2008 - all rights reserved 1 (tm) BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring August 6th, 2008 Copyright SP3H 2007 -- all rights reserved 2 Biofuel...

387

Study of deposit formation inside diesel injectors nozzles  

E-Print Network [OSTI]

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

388

Diesel Injection Shear-Stress Advanced Nozzle (DISSAN)  

Broader source: Energy.gov (indexed) [DOE]

3th Diesel Engine-Efficiency and Emissions Research (DEER) Conference August 13, 2007 - Poster P-20 Detroit, MI...

389

Unique Catalyst System for NOx Reduction in Diesel Exhaust  

Broader source: Energy.gov (indexed) [DOE]

* Development Partnership: AEI & Noxtech * Presenter: Ralph Slone from Noxtech * Mobile Applications: diesel aftertreatment * Unique dual catalyst system - Cost effective:...

390

PERFORMANCE OF DIESEL ENGINE USING BLENDED CRUDE JATROPHA OIL  

E-Print Network [OSTI]

renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its

Kamarul Azhar Kamarudin; Nor Shahida; Akma Mohd Sazali; Ahmad Jais Alimin

2009-01-01T23:59:59.000Z

391

Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-05-01T23:59:59.000Z

392

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

393

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System  

E-Print Network [OSTI]

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

Stefanopoulou, Anna

394

UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES  

E-Print Network [OSTI]

diesel engines and stationary power plants. The possibility of early detecting small defects priorUNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical

395

Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion  

E-Print Network [OSTI]

the turbocharger and the diesel engine in steady-state 5]. Secondly, it modi es the power transfer to the turbineEmissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion Anna Stefanopoulouy is designed that reduces smoke generation on an experimental marine Diesel engine equipped with a variable

Stefanopoulou, Anna

396

Diesel knock noise from combustion phenomenon to perceived signals  

E-Print Network [OSTI]

Diesel knock noise from combustion phenomenon to perceived signals O. Sauvagea , A. Lauracb , M for reducing Diesel knock are modifications of engine parameters used for controlling combustion processes-acoustic properties, throught its noticeable combustion noise (also called "Diesel knock"). Combustion noise generated

Paris-Sud XI, Université de

397

Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel  

E-Print Network [OSTI]

Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion Potential of Olefin Impact in a Diesel Base Fuel D. Alseda1,2, X. Montagne1 and P. Dagaut2 1 Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion - Potential

Paris-Sud XI, Université de

398

Numerical simulation of turbulent jet primary breakup in Diesel engines  

E-Print Network [OSTI]

Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary Outline 1 Introduction 2 DNS of Primary Breakup in Diesel

Helluy, Philippe

399

Comparative Analysis on the Effects of Diesel Particulate Filter and  

E-Print Network [OSTI]

Comparative Analysis on the Effects of Diesel Particulate Filter and Selective Catalytic Reduction February 15, 2008. Revised manuscript received May 2, 2008. Accepted May 27, 2008. Two methods, diesel that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel

Wu, Mingshen

400

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

Minnesota, University of

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL  

E-Print Network [OSTI]

A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL ENGINES 1 Gianluca Zito ,2 Ioan is illustrated by means of an automotive case study, namely a variable geometry turbocharged diesel engine identification procedure is illustrated. In section 3 a diesel engine system, used to test the procedure

Paris-Sud XI, Université de

402

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network [OSTI]

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

403

Les dbuts du moteur Diesel en France Nouveaux lments historiques  

E-Print Network [OSTI]

1 Les débuts du moteur Diesel en France Nouveaux éléments historiques par Jean-Michel Althuser 1 et Paul-Antoine Naegel 2 Résumé : Après la biographie de Rudolf DIESEL par son fils Eugen, parue dans sa première édition à Hambourg en 1937, après un dossier spécial consacré à DIESEL en 1966 par la revue

Paris-Sud XI, Université de

404

TECHNICAL CERTIFICATE -MARINE DIESEL MECHANICS Lewisporte -April 16, 2012  

E-Print Network [OSTI]

TECHNICAL CERTIFICATE - MARINE DIESEL MECHANICS Lewisporte - April 16, 2012 March 19, 2012 Monday - Lewisporte April 30, 2012 Monday Last date for Marine Diesel Mechanics students to register or add courses Last date for Marine Diesel Mechanics students to drop courses and receive 100% refund of tuition fees

deYoung, Brad

405

Diesel: Applying Privilege Separation to Database Access Adrienne Porter Felt  

E-Print Network [OSTI]

Diesel: Applying Privilege Separation to Database Access Adrienne Porter Felt UC Berkeley apf reviewers. We construct a system called Diesel, which implements data sep- aration by intercepting database queries and applying mod- ules' restrictions to the queries. We evaluate Diesel on three widely

Wagner, David

406

Vibration signatures, wavelets and principal components analysis in diesel engine  

E-Print Network [OSTI]

Vibration signatures, wavelets and principal components analysis in diesel engine diagnostics G of a normally aspirated diesel engine contain valu­ able information on the health of the combustion chamber induced in a 4­stroke diesel engine and the ensuing vi­ bration signals recorded. Three different feature

Sharkey, Amanda

407

Diesel: Applying Privilege Separation to Database Adrienne Porter Felt  

E-Print Network [OSTI]

Diesel: Applying Privilege Separation to Database Access Adrienne Porter Felt Matthew Finifter Joel to lists, requires prior specific permission. #12;Diesel: Applying Privilege Separation to Database Access and code reviewers. We design and construct a system called Diesel, which implements data separation

Wagner, David

408

Diesel fuel component contribution to engine emissions and performance. Final report  

SciTech Connect (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

409

Effects of diesel exhaust on the microbiota within a tuffaceous tunnel system  

SciTech Connect (OSTI)

The abundance and distribution of microbiota that may be impacted by diesel and diesel exhaust were investigated from three depths into the walls and invert (floor) of U12n tunnel at Rainier Mesa, Nevada Test Site, a potential geological analog of Yucca Mountain. Enumerations included total cell counts, and numbers of aerobic heterotrophic, sulfate-reducing, nitrate-reducing, and diesel-degrading bacteria. Additionally, the disappearance of total petroleum hydrocarbons was determined in microcosms containing subsurface materials that were amended with diesel fuel. Results revealed that microbes capable of utilizing diesel and diesel combustion products were present in the subsurface in both the walls and the invert of the tunnel. The abundance of specific bacterial types in the tunnel invert, a perturbed environment, was greater than that observed in the tunnel wall. Few trends of microbial distribution either into the tunnel wall or the invert were noted with the exception of aerobic heterotrophic abundance which increased with depth into the wall and decreased with depth into the invert. No correlation between microbiota and a specific introduced chemical species have yet been determined. The potential for microbial contamination of the tunnel wall during sampling was determined to be negligible by the use of fluorescently labeled latex spheres (1{mu}m in dia.) as tracers. Results indicate that additional investigations might be needed to examine the microbiota and their possible impacts on the geology and geochemistry of the subsurface, both indigenous microbiota and those microorganisms that will likely be introduced by anthropogenic activity associated with the construction of a high-level waste repository.

Haldeman, D.L.; Lagadinos, T.; Amy, P.S. [Univ. of Nevada, Las Vegas, NV (United States); Hersman, L. [Los Alamos National Lab., NM (United States); Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States)

1996-08-01T23:59:59.000Z

410

Cleaner, More Efficient Diesel Engines  

ScienceCinema (OSTI)

Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

Musculus, Mark

2014-02-26T23:59:59.000Z

411

Cleaner, More Efficient Diesel Engines  

SciTech Connect (OSTI)

Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

Musculus, Mark

2013-08-13T23:59:59.000Z

412

?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-06-01T23:59:59.000Z

413

Diesel Generator Fuel Oil, Diesel Generator Lubricating Oil, and Diesel Generator Starting Air Requirements"  

E-Print Network [OSTI]

(ISTS) and adds requirements for DG Lubricating Oil, and DG Starting Air. The proposed changes will assure that required quality and quantity of DG Fuel Oil is maintained and also will assure that sufficient DG Lubricating Oil and DG Starting Air is maintained. This proposed amendment imposes limits on DG support system parameters to ensure the DGs will be able to perform their design function. This proposed amendment also brings the current TS on DG Fuel Oil into alignment with the ISTS. This amendment is modeled after the ISTS, Section 3.8.3. This amendment also incorporates into the FCS TS improvements to ISTS Sections 3.8.3 and 5.5 consistent with those provided in Technical Specification Task Force (TSTF) travelers TSTF-254, Rev. 2 and TSTF-374, Rev. 0. FCS also requests approval of reduction in commitments with respect to the FCS Quality Assurance (QA) Program associated with this License Amendment Request. This License Amendment Request adds a Surveillance [Table 3-5, Item 9c] stating that the DG Fuel Oil Properties are required to be verified within limits in accordance with the Diesel Fuel Oil Testing Program. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days.

Omaha Public; Power Distrct

1979-01-01T23:59:59.000Z

414

Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

Dane, J.; Voorhees, K. J.

2010-06-01T23:59:59.000Z

415

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

416

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

417

Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report  

SciTech Connect (OSTI)

The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

Not Available

1981-11-01T23:59:59.000Z

418

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

419

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

420

Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure  

SciTech Connect (OSTI)

Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

2014-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Manufacture and properties of continuous grain flow crankshafts for locomotive and power generation diesel engines  

SciTech Connect (OSTI)

The bulk of the large crankshaft production volume is associated with the medium speed diesel engine market. These engines have seen intense development to obtain higher power outputs without change in the physical size of the crankshaft and at the same time there has been continuing pressure to reduce costs. Fatigue and bearing normal wear are the major technical hurdles that threaten the crankshaft life, and measures for dealing with these issues are described. Continuous grain flow (CGF) crankshafts are responsible for the continued integrity of these enhanced power output engines and the production of these crankshafts is described. Comparisons are made with the older slab forging crankshaft production method. The demand for the medium speed diesel engine and its natural gas derivative is strong and supports an aggressive engine building industry serving locomotive, marine and power generation markets. This demand in turn relies on practical national standards that serve the needs of the engine builder, material supplier and the end user.

Antos, D.J.; Nisbett, E.G. [National Forge Co., Irvine, PA (United States)

1997-12-31T23:59:59.000Z

422

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

423

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

424

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect (OSTI)

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

425

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

426

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

427

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

428

Facility-J 13 Update Worksheet (16June14) Conformed (2).xlsx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor and Fuel Storage Basin 100N WCH 105NA Emergency Diesel Enclosure 100N WCH 105ND Remote Air Intake 100N WCH 105NE Fission Product Filter Trap 100N WCH 107N Basin...

429

Copy of Facility-J 13 Update Worksheet (16June14) Conformed.xlsx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor and Fuel Storage Basin 100N WCH 105NA Emergency Diesel Enclosure 100N WCH 105ND Remote Air Intake 100N WCH 105NE Fission Product Filter Trap 100N WCH 107N Basin...

430

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003  

E-Print Network [OSTI]

Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

2008-01-01T23:59:59.000Z

431

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

Anderson, Byron P.

2011-01-01T23:59:59.000Z

432

Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles  

E-Print Network [OSTI]

use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

Millstein, Dev E.; Harley, Robert A

2010-01-01T23:59:59.000Z

433

Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration  

E-Print Network [OSTI]

Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

Wang, Yujun, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

434

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network [OSTI]

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

de Weck, Olivier L.

435

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

Anderson, Byron P.

2011-01-01T23:59:59.000Z

436

Future Potential of Hybrid and Diesel Powertrains in the U.S...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market 2004 Diesel...

437

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network [OSTI]

in Alaskan North Slope oil production facilities. Title:Profiling Despite oil production from several major16) was isolated from oil-production water and has optimal

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

438

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

439

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

440

Diesel Aerosol Sampling in the Atmosphere  

SciTech Connect (OSTI)

The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

2000-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

442

Utiization of alternate fuels in diesel engines  

SciTech Connect (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

443

Microwave-Regenerated Diesel Exhaust Particulate Filter  

SciTech Connect (OSTI)

Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

2001-03-05T23:59:59.000Z

444

Electrical diesel particulate filter (DPF) regeneration  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

445

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

release, December, 2004 11th DEER Conference, Chicago IL, August, 2005 2005 Detroit Diesel Corporation. All Rights Reserved. 3 Near-term Powertrain Evolution Improved Thermal...

446

Reliability and Design Strength Limit Calculations on Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Corning 2004deerwebb.pdf More Documents & Publications Predicting Thermal Stress in Diesel Particulate Filters Environmental Effects on Power Electronic Devices Effect of...

447

Active Diesel Emission Control Technology for Transport Refrigeration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

448

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

172012 Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Mojghan Naseri, Daniel Kucheruck, Hai-Ying Chen , Sougato Chatterjee DEER Conference 2012...

449

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Broader source: Energy.gov (indexed) [DOE]

light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

450

Diesel Soot Filter Characterization and Modeling for Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Reactor regeneration of soot loaded catalyzed SCF * Micro-model of soot oxidation versus spatial catalyst loading. 7 2008 DOE OVT Merit Review Diesel Soot Filter Characterization...

451

Light-Duty Diesel Market Potential in North America  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

452

Diesel fuel containing a tetrazole or triazole cetane improver  

SciTech Connect (OSTI)

This patent describes a liquid fuel adapted for use in a diesel engine containing a cetane number increasing amount of at least one fuel soluble additive compound.

Martella, D.J.

1986-12-30T23:59:59.000Z

453

Estimation and Control of Diesel Engine Processes Utilizing Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators deer12kocher.pdf More Documents &...

454

Proceedings of the 1998 diesel engine emissions reduction workshop [DEER  

SciTech Connect (OSTI)

This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

NONE

1998-12-31T23:59:59.000Z

455

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

456

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

457

Partitioning of Volatile Organics in Diesel Particulate and Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in...

458

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

459

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

Dynamometer Evaluation of Plasma- Catalyst for Diesel NOx Reduction February 20, 2003 CRADA Protected Document and Data 2 Introduction * Engine dynamometer evaluation of...

460

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Diesel Soot Filter Characterization and Modeling for Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Presentation from the U.S. DOE Office of Vehicle Technologies...

462

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

463

Diesel Soot Filter Characterization and Modeling for Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA and DOW Automotive) Presentation from the U.S. DOE Office of Vehicle Technologies...

464

Durability Evaluation of an Integrated Diesel NOx Adsorber A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey 2004deerli.pdf More Documents & Publications Desulfurization Fuel Filter...

465

The California Demonstration Program for Control of PM from Diesel...  

Broader source: Energy.gov (indexed) [DOE]

for Control of PM from Diesel Backup Generators (BUGs) David R. Cocker III, Kent Johnson, John Lee, Marla Mueller, Sandip Shah, Bonnie Soriano, Bill Welch Supporting...

466

2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...  

Energy Savers [EERE]

with a Combined SCR and DPF Technology for Heavy-Duty Diesel Retrofit Ray Conway Johnson Matthey Environmental Catalysts & Technologies (PDF 287 KB) A Soot Formation Model...

467

Comparison of Conventional Diesel and Reactivity Controlled Compressio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Engine Combustion Strategies Effect of Compression Ratio and Piston Geometry on RCCI load limit High Efficiency Fuel Reactivity Controlled Compression...

468

Combination of Diesel fuel system architectures and Ceria-based...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Integrations Diesel Particulate Filter On-Board Eolys(tm) tank Conclusions Acknowledgement 3 Content of presentation Introduction Global DPF System Approach Ceria-Based...

469

Failure Stress and Apparent Elastic Modulus of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF...

470

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid...  

Energy Savers [EERE]

to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an...

471

Development of an Accelerated Ash-Loading Protocol for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Ash-Loading Protocol for Diesel Particulate Filters Bruce G. Bunting and Todd J. Toops Oak Ridge National Laboratory Adam Youngquist and Ke Nguyen University of...

472

Diesel Reforming for Fuel Cell Auxiliary Power Units  

SciTech Connect (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

473

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

474

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

SciTech Connect (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

475

Diesel Health Impacts & Recent Comparisons to Other Fuels  

Broader source: Energy.gov (indexed) [DOE]

ALAPCO, 2000) * Studies in California reveal that more than 70% of cancer risk from air pollution comes from diesel exhaust alone. (SCAQMD, MATES II, 2000) * A recent...

476

A Correlation of Diesel Engine Performance with Measured NIR...  

Broader source: Energy.gov (indexed) [DOE]

CORRELATION OF DIESEL ENGINE PERFORMANCE WITH MEASURED NIR FUEL CHARACTERISTICS Bruce Bunting, Michael Bunce, ORNL Alain Lunati, Oswin Galtier, Eric Hermitte, SP3H Monday, P-02...

477

Advanced Modeling of Direct-Injection Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

High EGR level and multiple- injection Application to DI Diesel Combustion Optimization Marc ZELLAT, Driss ABOURI, Thierry CONTE CD-adapco Group The development of CFD...

478

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

479

Review of SCR Technologies for Diesel Emission Control: Euruopean...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

480

ao diesel mineral: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feasibility of karanja seed oilby modified the fuel using karanja methyl ester(biodiesel)blends withmineral diesel. This experimentation evaluatethe performance and emission...

Note: This page contains sample records for the topic "diesel production facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

482

Impact of Biodiesel on Modern Diesel Engine Emissions  

Broader source: Energy.gov (indexed) [DOE]

Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

483

administered diesel exhaust: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection Diesel Engine Using Pongamia Oil CiteSeer Summary: Abstract The use of biodiesel, the methyl esters of vegetable oils are becoming popular due to their low...

484

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

485

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

486

Future Breathing System Requirements for Clean Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Breathing System Requirements for Clean Diesel Engines Poster Location P23 Motivation Results Understand engine air system requirements to reduce NOx Identify...

487

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important...

488

A Conceptual Model for Partially PremixedLow-Temperature Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling A Conceptual Model for Partially...

489

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov (indexed) [DOE]

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Mark Hemingway, Dr. Joachim Kupe, Joseph Bonadies, Mike Seino, Dr. John Kirwan, - Delphi Powertrain DEER, August...

490

Diesel Engine Strategy & North American Market Challenges, Technology...  

Broader source: Energy.gov (indexed) [DOE]

Engine Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the...

491

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...  

Broader source: Energy.gov (indexed) [DOE]

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results R. Aneja, B. Bolton, N. Hakim, Z. Pavlova-MacKinnon Detroit...

492

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace037sun2012o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

493

Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

494

Diesel Particulate Oxidation Model: Combined Effects of Fixed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

495

Modeling light scattering from diesel soot particles  

SciTech Connect (OSTI)

The Mie model is widely used to analyze light scattering from particulate aerosols. The Diesel Particle Scatterometer (DPS), for example, determines the size and optical properties of diesel exhaust particles that are characterized by measuring three angle-dependent elements of the Mueller scattering matrix. These elements are then fitted using Mie calculations with a Levenburg-Marquardt optimization program. This approach has achieved good fits for most experimental data. However, in many cases, the predicted real and imaginary parts of the index of refraction were less than that for solid carbon. To understand this result and explain the experimental data, we present an assessment of the Mie model by use of a light scattering model based on the coupled dipole approximation. The results indicate that the Mie calculation can be used to determine the largest dimension of irregularly shaped particles at sizes characteristic of Diesel soot and, for particles of known refractive index, tables can be constructed to determine the average porosity of the particles from the predicted index of refraction.

Hull, Patricia; Shepherd, Ian; Hunt, Arlon

2002-07-16T23:59:59.000Z

496

Representative Doses to Members of the Public from Atmospheric Releases of 131I at the Mayak Production Association Facilities from 1948 through 1972  

SciTech Connect (OSTI)

Scoping epidemiologic studies performed by researchers from the Southern Urals Biophysics Institute revealed an excess prevalence of thyroid nodules and an increased incidence of thyroid cancer among residents of Ozersk, Russia, who were born in the early 1950s. Ozersk is located about 5 km from the facilities where the Mayak Production Association produced nuclear materials for the Russian weapons program. Reactor operations began in June 1948 and chemical separation of plutonium from irradiated fuel began in February 1949. The U.S.–Russia Joint Coordinating Committee on Radiation Effects Research conducted a series of projects over a 10-year period to assess the radiation risks in the Southern Urals. This paper uses data collected under Committee projects to reconstruct individual time-dependent thyroid doses to reference individuals living in Ozersk from 131I released to the atmosphere. Between 3.22×1016 and 4.31×1016 Bq of 131I released may have been released during the 1948–1972 time period, and a best estimate is 3.76×1016 Bq. A child born in 1947 is estimated to have received a cumulative thyroid dose of 2.3 Gy for 1948–1972, with a 95% confidence interval of 0.51–7.3 Gy. Annual doses were the highest in 1949 and a child who was 5 years old in 1949 is estimated to have a received an annual thyroid dose of 0.93 Gy with a 95% confidence interval of 0.19–3.5 Gy.

Eslinger, Paul W.; Napier, Bruce A.; Anspaugh, Lynn R.

2014-04-03T23:59:59.000Z

497

Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline...  

Energy Savers [EERE]

However, from 2007 to 2009, the share of diesel vehicle sales has begun to decline. Germany and Italy have experienced the greatest declines in diesel vehicle sales, though...

498

LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...  

Broader source: Energy.gov (indexed) [DOE]

LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

499

Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...  

Broader source: Energy.gov (indexed) [DOE]

Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation:...

500

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...