National Library of Energy BETA

Sample records for diesel hybrid-electric buses

  1. Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION ◆ DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles accumulated more than 9 million miles and transported 11 million

  2. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01-1556 In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit Robb A. Barnitt National Renewable Energy Laboratory - U.S. Department of Energy Copyright © 2008 SAE International ABSTRACT The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems' HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid

  3. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    SciTech Connect (OSTI)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  4. Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rides in Maryland Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle

  5. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  6. Case Study: Ebus Hybrid Electric Buses and Trolleys

    SciTech Connect (OSTI)

    Barnitt, R.

    2006-07-01

    Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

  7. Case Study: Ebus Hybrid Electric Buses and Trolleys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Case Study: Ebus Hybrid Electric Buses and Trolleys R. Barnitt Technical Report NREL/TP-540-38749 July 2006 Case Study: Ebus Hybrid Electric Buses and Trolleys R. Barnitt Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38749 July 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

  8. Comparison of Clean Diesel Buses to CNG Buses

    Office of Scientific and Technical Information (OSTI)

    COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES Dana M. Lowell MTA New York City Transit, Department of Buses, Research & Development William Parsley MTA New York City Transit, Department of Buses, Research & Development Christopher Bush MTA New York City Transit, Department of Buses, Research & Development Douglas Zupo MTA New York City Transit, Department of Buses, Research & Development Comparison of Clean Diesel Buses to CNG Buses ABSTRACT Using previously published data on

  9. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

  10. AVTA: Plug-In Hybrid Electric School Buses

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid electric school buses in locations in three different states. This research was conducted by the National Renewable Energy Laboratory (NREL).

  11. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel...

  12. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    SciTech Connect (OSTI)

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  13. Comparison of Clean Diesel Buses to CNG Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Clean Diesel Buses to CNG Buses Comparison of Clean Diesel Buses to CNG Buses 2003 DEER Conference Presentation: New York City Transit Department of Buses PDF icon deer_2003_lowell.pdf More Documents & Publications Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses Summary of Swedish Experiences on CNG and "Clean" Diesel Buses CNG and Diesel Transite Bus Emissions in Review

  14. Guidelines for Conversion of Diesel Buses to Compressed Natural...

    Open Energy Info (EERE)

    Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas...

  15. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  16. Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Emissions and fuel economy data were studied from tests on four diesel and diesel hybrid transit buses using the Houston Metro Bus Cycle. PDF icon p-16_muncrief.pdf More Documents & Publications Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Combining Biodiesel and EGR for Low-Temperature NOx and PM

  17. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large

  18. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Eudy, L.

    2006-01-01

    This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

  19. King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Walkowicz, K.

    2006-12-01

    Final technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington. The evaluation lasted 12 months.

  20. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. PDF icon p-13_thornton.pdf

  1. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mile. Table 8. Hybrid and Diesel Van Total Cost per Mile Car PWRTRN Mileage Total Non-Prop Mnt (mile) Prop Maint (mile) Fuel Cost (mile) Total Cost (mile) 663982 Diesel...

  2. Summary of Swedish Experiences on CNG and "Clean" Diesel Buses | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Swedish Experiences on CNG and "Clean" Diesel Buses Summary of Swedish Experiences on CNG and "Clean" Diesel Buses 2003 DEER Conference Presentation: Ecotraffic ERD3 AB PDF icon deer_2003_ahlvik.pdf More Documents & Publications A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies Diesel Health Impacts & Recent Comparisons to Other Fuels Comparison of Clean Diesel Buses to CNG Buses

  3. Comparative emissions from natural gas and diesel buses

    SciTech Connect (OSTI)

    Clark, N.N.; Gadapati, C.J.; Lyons, D.W.; Wang, W.; Gautam, M.; Bata, R.M.; Kelly, K.; White, C.L.

    1995-12-31

    Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods. During the three years of testing, a significant fraction of emissions data was acquired from buses with Cummins L-10 engines designed to operate on either CNG or diesel. The CNG lean burn engines were spark ignited and throttled. Early CNG engines, which were pre-certification demonstration models, have provided the bulk of the data, but data from 9 buses with more advanced technology were also available. It has been found that carbon monoxide (CO) levels from early Cummins L-10 CNG powered buses varied greatly from bus to bus, with the higher values ascribed to either faulty catalytic converters or a rich idle situation, while the later model CNG L-10 engines offered CO levels considerably lower than those typical of diesel engines. The NO{sub x} emissions were on par with those from diesel L-10 buses. Those natural gas buses with engines adjusted correctly for air-fuel ratio, returned very low emissions data. CNG bus hydrocarbon emissions are not readily compared with diesel engine levels since only the non-methane organic gases (NMOG) are of interest. Data show that NMOG levels are low for the CNG buses. Significant reduction was observed in the particulate matter emitted by the CNG powered buses compared to the diesel buses, in most cases the quantity captured was vanishingly small. Major conclusions are that engine maintenance is crucial if emissions are to remain at design levels and that the later generation CNG engines show marked improvement over the earlier models. One may project for the long term that closed loop stoichiometry control is desirable even in lean burn applications.

  4. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  5. King County Metro Transit Hybrid Articulated Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Walkowicz, K.

    2006-04-01

    Interim technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington.

  6. NREL: News - Hybrid Buses Operate With Lower Emissions, Greater Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Hybrid Buses Operate With Lower Emissions, Greater Fuel Efficiency Golden, Colo., August 1, 2002 A recently released study by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) concludes that hybrid buses operate with lower emissions and greater fuel efficiency than conventional diesel buses. The yearlong evaluation of 10 prototype diesel hybrid-electric buses in the Metropolitan Transportation Authority's New York City Transit (NYCT) fleet of

  7. Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel In 1995, over 95% of the fuel used in transit buses was diesel. In 2006, diesel fuel constituted just under 75% of the fuel used by transit buses while other fuel types such as compressed natural gas (CNG) and liquefied natural gas (LNG) have become much more prevalent. The use of CNG in buses has grown from less than 2% in 1995 to

  8. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  9. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation: California Environmental Protection Agency Air Resources Board PDF icon 2002_deer_ayala.pdf More Documents & Publications CNG and Diesel Transite Bus Emissions in Review Diesel Health Impacts & Recent Comparisons to Other Fuels Investigation of the Effects of Fuels and Aftertreatment Devices

  10. New Buses Transport Students and Savings in Texas | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Lindsay Gsell This fall, when students in Texas' Fort Worth Independent School District (FWISD) board school buses, some of them will be riding on the district's new hybrid electric diesel vehicles. Thanks to Recovery Act funding from the U.S.

  11. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  12. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  13. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2468 Published 09/24/2013 doi:10.4271/2013-01-2468 saecomveh.saejournals.org In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks Jonathan Burton, Kevin Walkowicz, Petr Sindler, and Adam Duran National Renewable Energy Laboratory ABSTRACT This study compared fuel economy and emissions between heavy-duty

  14. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  15. New York City Transit Diesel Hybrid-Electric Buses Final Results...

    Open Energy Info (EERE)

    Results: DOE NREL Transit Bus Evaluation Project1 Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References Overview This report provides final results from New...

  16. Comparative Study on Exhaust Emissions from Diesel-and CNG-powered Urban Buses

    Office of Scientific and Technical Information (OSTI)

    COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES [ * ] Patrick COROLLER & Gabriel PLASSAT French Agency of Environment and Energy Management (ADEME) Air & Transport Division [ * ] presented at the DEER 2003 Conference by Dr. Thierry SEGUELONG, Aaqius & Aaqius) ABSTRACT Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has

  17. Thirty-Six Month Evaluation of UPS Diesel Hybrid Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because that event was outside normal van and powertrain operations. Car PWRTRN Non-Prop Mnt (mile) Prop Maint (mile) Fuel Cost (mile) Total Cost (mile) 663982 Diesel...

  18. Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-03-01

    This evaluation compared six hybrids and six standard diesels in UPS facilities in Phoenix, Arizona. Dispatch and maintenance practices are the same at both facilities. GPS logging, fueling, and maintenance records are used to evaluate the performance of these step delivery vans. The hybrids' average monthly mileage rate was 18% less than the diesel vans. The hybrids consistently were driven a fewer number of miles throughout the evaluation period. The hybrids idled more and operating at slower speeds than the diesels, and the diesels spent slightly more time operating at greater speeds, accounting for much of the hybrids fewer monthly miles. The average fuel economy for the hybrid vans is 13.0 mpg, 23% greater than the diesel vans 10.6 mpg. Total hybrid maintenance cost/mile of $0.141 was 9% more than the $0.130 for the diesel vans. Propulsion-related maintenance cost/mile of $0.037 for the hybrid vans was 25% more than the $0.029 for the diesel vans. Neither difference was found to be statistically significant. The hybrid group had a cumulative average of 96.3% uptime, less than the diesel group's 99.0% uptime. The hybrids experienced troubleshooting and recalibration issues related to prototype components that were primarily responsible for the lower uptime figures.

  19. Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses

    Broader source: Energy.gov [DOE]

    Poster presentaiton at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  1. New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors and customer requirements, evaluating performance and durability of alternative

  2. Development and Deployment of Generation 3 Plug-In Hybrid Electric School

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss023_friesner_2011_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero

  3. System Simulations of Hybrid Electric Vehicles with Focus on Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control. PDF icon deer10_gao.pdf More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis PHEV Engine and

  4. Alameda-Contra Costa Transit District Fuel Cell Transit Buses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Transit Buses: Evalluation Results Update Alameda-Contra Costa Transit District ... on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District. ...

  5. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Heavy Duty Vehicle In-Use Emission Performance Comparison of Clean Diesel Buses to CNG Buses

  6. United Parcel Service Evaluates Hybrid Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's Fleet Test and Evaluation team evaluated the 12-month, in-service performance of six Class 4 hybrid electric delivery vans - fueled by regular diesel - and six comparable conventional diesel vans operated by the United Parcel Service.

  7. Evaluation of Orion/BAE Hybrid Buses and Orion CNG Buses at New York City Transit: Preprint

    SciTech Connect (OSTI)

    Eudy, L.; Barnitt, R.; Chandler, K.

    2005-05-01

    This paper prepared for the 2005 American Public Transportation Association Bus & Paratransit Conference discusses the NREL/DOE evaluation of hybrid electric transit buses operated by New York City Transit.

  8. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining Fuel Economy - News Releases | NREL Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While Maintaining Fuel Economy February 23, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently completed a yearlong technology evaluation of gasoline hybrid electric (gHEV) trucks compared with conventional diesel vehicles. A report released this week details NREL's efforts to determine the impact of hybridization on performance,

  9. Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Emissions and fuel economy data were ...

  10. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-03-01

    This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

  11. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  12. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  13. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-07-01

    This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

  14. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  15. NREL: Energy Systems Integration Facility - Fuel Distribution Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, laboratory-grade natural gas is provided through a utility connection. Diesel fuel is available in two laboratories. Each of these labs is equipped with a 50-gallon "day tank" for diesel fuel and supply lines throughout the lab space. Photo of a man standing next to a rooftop hydrogen distribution bus.

  16. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Summary of Swedish Experiences on CNG and "Clean" Diesel Buses Diesel Particulate Filters: Market Introducution in Europe Diesel Technology - ...

  17. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  18. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,

    Energy Savers [EERE]

    Buses | Department of Energy Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press

  19. Alameda-Contra Costa Transit District Fuel Cell Transit Buses: Evalluation Results Update

    Broader source: Energy.gov [DOE]

    This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District.

  20. Hybrid Electric Systems | Department of Energy

    Office of Environmental Management (EM)

    Hybrid Electric Systems Hybrid Electric Systems 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn07_howell_ft_2011_o.pdf More Documents & Publications Overview of Battery R&D Activities Battery SEAB Presentation Overview of Battery R&D Activities

  1. NREL Evaluates UPS Hybrid-Electric Van Performance - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Evaluates UPS Hybrid-Electric Van Performance New trucks deliver more than 28% fuel savings December 22, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has collected and analyzed fuel economy, maintenance and other vehicle performance data from UPS's first generation hybrid diesel step delivery vans powered by an Eaton Corp. electric hybrid propulsion system. The diesel hybrid delivery vans improved the on-road fuel economy by 28.9 percent resulting

  2. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share

  3. Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |

    Office of Environmental Management (EM)

    Department of Energy Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. File Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) File Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) Image icon Chart of Electric and Hybrid Electric Vehicle

  4. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures PDF icon Fleet Test and Evaluation Procedure PDF icon ...

  5. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  6. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet ...

  7. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    Name: JV between Hybrid Electric and Mullen Motors Product: Joint Venture to develop a vehicle fitted with hybrid and lithium technologies References: JV between Hybrid Electric...

  8. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle ...

  9. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  10. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: ...

  11. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  12. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Evaluation Results | Department of Energy Preliminary Evaluation Results Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses. PDF icon 41041.pdf More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell

  13. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  14. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  15. Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar Fuel Cell Buses Development held September 12, 2013.

  16. Enterprise converting buses to biodiesel

    Broader source: Energy.gov [DOE]

    Rental car customers may be able to breathe a little easier during their next trip to the airport. Alamo Rent A Car, Enterprise Rent-A-Car, and National Car Rental, all brands operated by the subsidiaries of Enterprise Holdings, are converting their airport shuttle buses to run on biodiesel fuel. The move is a good one for the environment, and will ultimately reduce the company’s carbon emissions. “We are saving 420,000 gallons of petroleum diesel,”  says Lee Broughton, director of corporate identity and sustainability for Enterprise Holdings.    

  17. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative

  18. New Yellow School Buses Harness the Sun in Wisconsin | Department of Energy

    Office of Environmental Management (EM)

    Yellow School Buses Harness the Sun in Wisconsin New Yellow School Buses Harness the Sun in Wisconsin October 22, 2010 - 2:50pm Addthis Lindsay Gsell "Hybrid electric school buses are helping our school districts save money while reducing energy use and cleaning our air," Wisconsin Governor Jim Doyle said for a ribbon-cutting ceremony for a solar-energy powered bus canopy earlier this year. That solar fueling station in Oconomowoc, Wis. is generating electricity, used to charge 11

  19. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  20. Energy Lab to Evaluate Performance of UPS Hybrid-Electric Vans - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Energy Lab to Evaluate Performance of UPS Hybrid-Electric Vans New delivery trucks expected to save fuel, reduce harmful emissions August 23, 2007 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is collecting and analyzing maintenance, fuel economy and other vehicle performance data from 50 UPS hybrid diesel step delivery vans powered by an Eaton Corp. electric hybrid propulsion system. Funded by the DOE's Advanced Vehicle Testing Activity

  1. Evaluating Exhaust Emission Performance of Urban Buses Using Transient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Chassis Dynamometer | Department of Energy Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: VTT Technical Research Centre of Finland PDF icon 2004_deer_erkkila.pdf More Documents & Publications Heavy Duty Vehicle In-Use Emission Performance HEAVY-DUTY TRUCK

  2. CNG and Diesel Transite Bus Emissions in Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG and Diesel Transite Bus Emissions in Review CNG and Diesel Transite Bus Emissions in Review 2003 DEER Conference Presentation: California Environmental Protection Agency, Air Resources Board PDF icon deer_2003_ayala.pdf More Documents & Publications ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses Comparison of Clean Diesel Buses to CNG Buses Diesel Health Impacts & Recent Comparisons to Other Fuels

  3. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Evaluation Report - Appendices | Department of Energy Third Evaluation Report - Appendices Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report - Appendices This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location. PDF icon 43545-2.pdf More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second

  4. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Evaluation Report | Department of Energy Report Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location. PDF icon 43545-1.pdf More Documents & Publications SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report SunLine Transit Agency Hydrogen-Powered Transit

  5. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  6. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  7. Hybrid electric vehicle power management system

    DOE Patents [OSTI]

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  8. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars,

  9. NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits. Such vehicles use less petroleum-based fuel and capture energy created during braking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill

  10. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations ...

  11. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a ...

  12. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a ...

  13. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Environmental Management (EM)

    Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do

  14. BAE/Orion Hybrid Electric Buses at New York City Transit: A Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be powered by a hybrid drive system developed by BAE Systems and incorporate lithium-ion energy storage supplied by A123Systems. When the complete order is delivered to...

  15. Alternative fuel transit buses

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  16. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  17. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  18. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures PDF icon Fleet Test and Evaluation Procedure PDF icon HEVAmerica Technical Specifications PDF icon HEV Baseline Test Sequence PDF icon HEV End of Life Test Sequence PDF icon ETA-HTP01 Implementation of SAE Standard J1263 February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques PDF icon ETA-HTP02 Implementation of

  19. Power Conversion Apparatus and Method for Hybrid Electric and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Engines - Energy Innovation Portal Power Conversion Apparatus and Method for Hybrid Electric and Electric Vehicle Engines Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a solution to power source problems in hybrid electric vehicle (HEV) and electric vehicle (EV) engines. These engines typically use voltage source inverters. The conventional type of converter requires costly capacitors, has trouble with high

  20. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm066_yaccarino_2012_o.pdf More Documents & Publications A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components Report on Assessment of

  1. EV America: Hybrid Electric Vehicle (HEV) Technical Specifications - Revision 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV AMERICA: HYBRID ELECTRIC VEHICLE (HEV) TECHNICAL SPECIFICATIONS Revision 1 Effective November 1, 2005 Prepared by Electric Transportation Applications HEV AMERICA November 1, 2004 TECHNICAL SPECIFICATIONS MINIMUM VEHICLE REQUIREMENTS The HEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hybrid electric vehicles (HEVs). Vehicles tested under this program are evaluated against specific qualitative and

  2. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  3. Alternative Fuel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    35th St. Craig Ave. Alt Blvd. Colucci Pkwy. Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Transit Buses Alternative Fuel Alternative Fuel Final Results from the

  4. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  5. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  6. Diesel Health Impacts & Recent Comparisons to Other Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Health Impacts & Recent Comparisons to Other Fuels Diesel Health Impacts & Recent Comparisons to Other Fuels 2002 DEER Conference Presentation: Natural Resources Defense Council PDF icon 2002_deer_bailey.pdf More Documents & Publications Summary of Swedish Experiences on CNG and "Clean" Diesel Buses CNG and Diesel Transite Bus Emissions in Review ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses

  7. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicle Basics Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon. This Toyota Prius hybrid electric car was converted to a plug-in hybrid for research purposes. Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side in front. The motors are connected by

  8. Diesel Desulfurization Filter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfurization Filter Diesel Desulfurization Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_rohrbach.pdf More Documents & Publications Desulfurization Fuel Filter NOx Adsorber Regeneration Phenomena In Heavy Duty Applications Investigation of the Effects of Fuels and Aftertreatment Devices on the Emission Profiles of Trucks and Buses

  9. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  10. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  11. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  12. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  13. Adaptive powertrain control for plugin hybrid electric vehicles

    DOE Patents [OSTI]

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  14. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Research Advanced Combustion

  15. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  16. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  17. Data Collection, Testing, and Analysis of Hybrid Electric Trucks and Buses Operating in California Fleets. Final Report

    SciTech Connect (OSTI)

    Thornton, Matthew; Duran, Adam; Ragatz, Adam; Cosgrove, Jon; Sindler, Petr; Russell, Robert; Johnson, Kent

    2015-06-12

    The objective of this project was to evaluate and quantify the emission impacts of commercially available hybrid medium- and heavy-duty vehicles relative to their non-hybrid counterparts. This effort will allow the California Air Resources Board (CARB) and other agencies to more effectively encourage development and commercial deployment of the most efficient, lowest emitting hybrid technologies needed to meet air quality and climate goals.

  18. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  19. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  20. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  1. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  2. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 5: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 Hybrid electric vehicles (HEVs) are conventional hybrid vehicles that use a gasoline engine with a hybrid electric drive for superior efficiency; they do not plug-in. This type of hybrid vehicle was introduced to the U.S. market in 1999 with the Honda Insight and followed by the Toyota Prius in 2000. After about 15 years of

  3. Study Released on the Potential of Plug-In Hybrid Electric Vehicles |

    Energy Savers [EERE]

    Department of Energy Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported

  4. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in

  5. Alternative Fuels Data Center: School Buses Go Green in Virginia

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Buses Go Green in Virginia to someone by E-mail Share Alternative Fuels Data Center: School Buses Go Green in Virginia on Facebook Tweet about Alternative Fuels Data Center: School Buses Go Green in Virginia on Twitter Bookmark Alternative Fuels Data Center: School Buses Go Green in Virginia on Google Bookmark Alternative Fuels Data Center: School Buses Go Green in Virginia on Delicious Rank Alternative Fuels Data Center: School Buses Go Green in Virginia on Digg Find More places to share

  6. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  7. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  8. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  9. Experiences from Introduction of Ethanol Buses and Ethanol Fuel...

    Open Energy Info (EERE)

    of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency...

  10. Experiences from Ethanol Buses and Fuel Station Report - La Spezia...

    Open Energy Info (EERE)

    Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report...

  11. Evaluating Exhaust Emission Performance of Urban Buses Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis ...

  12. Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aDZzQdBB3Qg

  13. Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Ireland, J.; Cosgrove, J.

    2013-04-01

    This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

  14. Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses 2003 DEER Conference Presentations: French Agency of Environment and Energy Management PDF icon deer_2003_seguelong.pdf More Documents & Publications Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Performance and durability of PSA Peugeot Citroen's DPF System on a Taxi Fleet in the

  15. Hydrogen-Powered Buses Brochure - 2010 | Department of Energy

    Energy Savers [EERE]

    Hydrogen-Powered Buses Brochure - 2010 Hydrogen-Powered Buses Brochure - 2010 This brochure outlines how the latest advances in hydrogen vehicles are expressed in these hydrogen-powered buses. PDF icon Hydrogen-Powered Buses More Documents & Publications Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fuel Cells Fact Sheet FutureGen -- A Sequestration and Hydrogen Research Initiative

  16. A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technologies | Department of Energy A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies 2002 DEER Conference Presentation: Ecotraffic Environmental Consultants PDF icon 2002_deer_ahlvik.pdf More Documents & Publications Summary of Swedish Experiences on CNG and "Clean" Diesel Buses Diesel Particulate Filters: Market Introducution in Europe

  17. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEVs fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  18. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  19. NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings June 20, 2007 Hybrid electric vehicles have saved close to 230 million gallons - or 5.5 million barrels - of fuel in the United States since their introduction in 1999, according to a recent analysis conducted at the U. S. Department of Energy's National Renewable Energy Laboratory (NREL). "Sales of hybrid electric vehicles have increased an average of 72 percent a year for the past five years and in 2006 the average fuel economy

  20. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Sales History | Department of Energy 6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the end of 2010 mark the beginning of mainstream plug-in vehicle sales in

  1. DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks | Department of Energy DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 - 1:04pm Addthis DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating that plug-in electric vehicles can provide significant benefits to

  2. Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    out Greener Future Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses

  3. Alternative Fuels Data Center: Propane Buses Save Money for Virginia

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data

  4. Alternative Fuels Data Center: Propane School Buses Launched in Gloucester

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    County Schools Propane School Buses Launched in Gloucester County Schools to someone by E-mail Share Alternative Fuels Data Center: Propane School Buses Launched in Gloucester County Schools on Facebook Tweet about Alternative Fuels Data Center: Propane School Buses Launched in Gloucester County Schools on Twitter Bookmark Alternative Fuels Data Center: Propane School Buses Launched in Gloucester County Schools on Google Bookmark Alternative Fuels Data Center: Propane School Buses Launched

  5. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  6. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  7. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  8. Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:

    Office of Environmental Management (EM)

    Nationwide Greenhouse Gas Emissions | Department of Energy Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions

  9. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  10. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  11. European Diesel Engine Technology: An Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technology: An Overview European Diesel Engine Technology: An Overview 2002 DEER Conference Presentation: AVL Powertrain Engineering, Inc. PDF icon 2002_deer_brueckner.pdf More Documents & Publications 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions Heavy Duty Vehicle In-Use Emission Performance Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer

  12. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  13. Transit Users Group Supports Transit Agencies with Natural Gas Buses

    SciTech Connect (OSTI)

    Not Available

    2002-04-01

    Fact sheet describes the benefits of the Transit Users Group, which supports transit groups with compressed natural gas (CNG) buses.

  14. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  15. Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have system benefits - News Releases | NREL Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could have system benefits February 21, 2007 Xcel Energy today announced the results of a six-month study related to plug-in hybrid electric vehicles (PHEVs) and how an increase in their popularity may affect Colorado. The study found that PHEVs may result in a reduction of the overall expense of owning a vehicle and, with the help of smart-grid technologies, eliminate harmful

  16. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  17. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  18. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report R. Barnitt Technical Report NREL/TP-5400-48896 January 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 FedEx Express Gasoline Hybrid Electric Delivery

  19. NREL: Transportation Research - Electric and Plug-In Hybrid Electric Fleet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Testing Electric and Plug-In Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be plugged into an electric power

  20. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy 2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when plugged into an outlet connected to the typical U.S. grid. Even when PHEV10s are charged using power generated

  1. Hybrid-Electric Porsche GT3R to Make North American Debut | Department of

    Energy Savers [EERE]

    Energy Hybrid-Electric Porsche GT3R to Make North American Debut Hybrid-Electric Porsche GT3R to Make North American Debut September 24, 2010 - 4:10pm Addthis The Porsche 911 GT3R will make its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce The Porsche 911 GT3R will make its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce Paul Lester Paul Lester

  2. Hybrid Electric Vehicles: How They Perform in the Real World | Department

    Office of Environmental Management (EM)

    of Energy Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World October 5, 2009 - 11:27am Addthis John Lippert One advantage of working on a U.S. Department of Energy (DOE) support team is that I'm exposed to the impressive work DOE is doing to develop and promote advanced energy technologies. I'm particularly impressed with the data DOE has gathered as part of the Advanced Vehicle Testing Activity (AVTA) on many of the

  3. ETA-HTP04 - Hybrid Electric Vehicle Constant Speed Range Tests - Revision 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Revision 1 Effective October 1, 2005 Hybrid Electric Vehicle Constant Speed Range Tests Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:_________ Roberta Brayer Approved by: _________________________________________________ Date: _______________ Donald Karner i Procedure ETA-HTP04 Revision 1 TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation 1 4. Initial Conditions and Prerequisites 1 5. Testing Activity Requirements 4 5.1 Range

  4. ETA-HTP05 - Hybrid Electric Vehicle Rough Road Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP05 Revision 0 Effective November 1, 2004 "Hybrid Electric Vehicle Rough Road Course Test" Prepared by Electric Transportation Applications Prepared by: _______________________________ Date _________ Roberta Brayer Approved by: _________________________________________________ Date: _______________ Donald Karner Procedure ETA-HTP05 Revision 0 2004 Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation 1 4. Initial

  5. ETA-HTP10 - Measurement and Evaluation of Hybrid Electric Vehicle RESS Charger Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP10 Revision 0 Effective May 1, 2004 Measurement and Evaluation of Hybrid Electric Vehicle RESS Charger Performance Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: _________ Roberta Brayer Approved by: ______________________________________________ Date: _______________ Donald Karner ETA-HTP10 Revision 0 2004 Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1. Objective 1 2. Purpose 1 3. Documentation 1 4.

  6. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  7. Fuel Cell School Buses: Report to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    School Buses: Report to Congress Fuel Cell School Buses: Report to Congress The Department of Energy (DOE) Hydrogen Program has examined the potential for a fuel cell school bus development and demonstration program. This report discusses cost and durability in relation to the robust fuel cell transit bus program that already exists. PDF icon Fuel Cell School Buses: Report to Congress More Documents & Publications SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report SunLine

  8. Experiences from Ethanol Buses and Fuel Station Report - Nanyang...

    Open Energy Info (EERE)

    Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang AgencyCompany Organization: BioEthanol for...

  9. AC Transit Demos Three Prototype Fuel Cell Buses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report - Appendices Alameda-Contra Costa Transit District ...

  10. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  11. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  12. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  13. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Energy Savers [EERE]

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  14. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  15. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  16. Hydrogen-Powered Buses Brochure … 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered by Hydrogen EERE Information Center 1-877-EERE-INFO (1-877-337-3463) eere.energy.gov/informationcenter Prepared by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. October 2010 Source: NREL, Dennis Schroeder Source: NREL, Dennis Schroeder Hydrogen-Powered Buses Showcase Advanced Vehicle Technologies Visitors to federal facilities across the country may now have the opportunity to tour the sites in a hydrogen- powered shuttle bus. The U.S. Department of

  17. Webinar: Fuel Cell Buses | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Below is the text version of the webinar titled "Fuel Cell Buses," originally presented on September 12, 2013. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: Thanks for joining today's webinar. Before I turn it over to today's speakers, I want to go through a few housekeeping items with you guys. Today's webinar is being recorded, so a recording along with the slides will be posted to our website in about 10 days. I will send out an

  18. SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results This paper provides...

  19. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004. Award-winning accomplishments included KAT's increase in annual ridership

  20. King County Metro Transit: Allison Hybrid Electric Transit Bus Laboratory Testing

    SciTech Connect (OSTI)

    Hayes, R. R.; Williams, A.; Ireland, J.; Walkowicz, K.

    2006-09-01

    Paper summarizes chassis dynamometer testing of two 60-foot articulated transit buses, one conventional and one hybrid, at NREL's ReFUEL Laboratory. It includes experimental setup, test procedures, and results from vehicle testing performed at the NREL ReFUEL laboratory.

  1. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  2. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  3. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  4. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  5. Hybrid Electric Vehicle, Winner of the "FutureCar Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle, Winner of the "FutureCar Challenge," to Recharge at the National Renewable Energy Laboratory, One of Only Three Stops Between Sacramento, Calif. and Washington, D.C. For more information contact: George Douglas (303) 275-4096 or (303) 880-2913 (cellular) Golden, Colo., July 15, 1997 -- Media are invited to photograph "FutureCar" winner and interview students who designed it. What: The "FutureCar Challenge" winner, a modified Ford Taurus,

  6. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  7. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2015-01-01

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. The objective of this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  8. Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative

  9. Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Michigan School Buses Get Rolling on Propane to someone by E-mail Share Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Facebook Tweet about Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Twitter Bookmark Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Google Bookmark Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Delicious Rank Alternative Fuels Data Center: Michigan

  10. Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Save Money Natural Gas School Buses Help Kansas City Save Money to someone by E-mail Share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Facebook Tweet about Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Twitter Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Google Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on

  11. Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Pennsylvania School Buses Run on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Google Bookmark Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Delicious Rank Alternative Fuels Data Center: Pennsylvania

  12. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect (OSTI)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  13. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  14. Can propane school buses save money and provide other benefits...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

  15. King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-540-40585 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC07.3000 Technical Report

  16. Boise Buses Running Strong with Clean Cities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise Buses Running Strong with Clean Cities Boise Buses Running Strong with Clean Cities May 28, 2013 - 12:05pm Addthis Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean

  17. King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-540-39742 April 2006 King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-39742 April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado

  18. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  19. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  20. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  1. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  2. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  3. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  4. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  5. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  6. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  7. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Heat Is on in St. Louis Buses to someone by E-mail Share Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Facebook Tweet about Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Twitter Bookmark Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Google Bookmark Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Delicious Rank Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Digg Find More places to share

  8. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  9. Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues

    SciTech Connect (OSTI)

    Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons; Michael S. Graboski; Robert L. McCormick; Teresa L. Alleman; Paul Norton

    1999-05-03

    Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.

  10. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  11. ETA-HTP02 Hybrid Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure - Effective November 1, 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Revision 0 Effective November 1, 2004 Implementation of SAE Standard J1666 May93 "Hybrid Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure" Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Roberta Brayer Approved by: _______________________________________________ Date: _______________ Donald Karner Procedure ETA-HTP02 Revision 0 2004 Electric Transportation Applications All Rights Reserved i

  12. ETA-HTP09 - Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) Generated by Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP09 Revision 0 Effective May 1, 2004 Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) Generated by Hybrid Electric Vehicles Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Roberta Brayer Approved by: ___________________________________________________ Date: _______________ Donald Karner ETA-HTP09 Revision 0 2004 Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1.

  13. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation...

  14. SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update This report provides an update on the evaluation results for hydrogen and CNG-fueled buses ...

  15. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER 2006, ...

  16. Fleet DNA Project Data Summary Report for City Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 18 17 19 Deployment ID 0 100 200 300 400 472 Number of days Breakdown of Total Operational Days Collected by Deployment for City Transit Buses 0% 20% 40% 60% 80% 100% # of Vehicles Reporting: 19 # of Days Included: 472 Generated: Thu Aug 07, 2014 17 18 25 19 Deployment ID 0 5 10 15 19 Number of Vehicles Breakdown of Total Vehicles by Deployment for City Transit Buses 0% 20% 40% 60% 80% 100% # of Vehicles Reporting: 19 # of Days Included: 472 Generated: Thu Aug 07, 2014 25 18 17 19 Deployment

  17. Fleet DNA Project Data Summary Report for School Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 39 45 20 Deployment ID 0 100 200 300 400 500 600 700 800 857 Number of days Breakdown of Total Operational Days Collected by Deployment for School Buses 0% 20% 40% 60% 80% 100% # of Vehicles Reporting: 204 # of Days Included: 857 Generated: Thu Aug 07, 2014 42 39 45 20 Deployment ID 0 50 100 150 200 204 Number of Vehicles Breakdown of Total Vehicles by Deployment for School Buses 0% 20% 40% 60% 80% 100% # of Vehicles Reporting: 204 # of Days Included: 857 Generated: Thu Aug 07, 2014 39 42 45

  18. New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results

    SciTech Connect (OSTI)

    Barnitt, R.; Chandler, K.

    2006-11-01

    This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

  19. SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update | Department of Energy Agency Hydrogen-Powered Transit Buses: Evaluation Results Update SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California. PDF icon 42080.pdf More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency

  20. SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Results | Department of Energy Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency. PDF icon 41001.pdf More Documents & Publications SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results

  1. Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Refueling Station Arkansas Launches Natural Gas-Powered Buses and Refueling Station to someone by E-mail Share Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Facebook Tweet about Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Twitter Bookmark Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Google Bookmark Alternative Fuels Data

  2. Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    County Schools Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel

  3. Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduce Operating Costs and Emissions Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions to someone by E-mail Share Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Facebook Tweet about Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Twitter Bookmark Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating

  4. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore » driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  5. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  6. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  7. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  8. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  9. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

  10. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  11. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  12. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  13. Comparison of LNG, CNG, and diesel transit bus economics. Topical report, July 1992-September 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Luscher, D.R.; Lowell, D.D.; Pera, C.J.

    1993-10-20

    The purpose of the report is to compare the expected costs of operating a transit bus fleet on liquefied natural gas (LNG), compressed natural gas (CNG), and diesel fuel. The special report is being published prior to the overall project final report in response to the current high level of interest in LNG transit buses. It focuses exclusively on the economics of LNG buses as compared with CNG and diesel buses. The reader is referred to the anticipated final report, or to a previously published 'White Paper' report (Reference 1), for information regarding LNG vehicle and refueling system technology and/or the economics of other LNG vehicles. The LNG/CNG/diesel transit bus economics comparison is based on total life-cycle costs considering all applicable capital and operating costs. The costs considered are those normally borne by the transit property, i.e., the entity facing the bus purchase decision. These costs account for the portion normally paid by the U.S. Department of Transportation (DOT) Federal Transit Administration (FTA). Transit property net costs also recognize the sale of emissions reduction credits generated by using natural gas (NG) engines which are certified to levels below standards (particularly for NOX).

  14. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

  15. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines 2005 Diesel ...

  16. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  17. LPG buses in southern California leave the competition at the curb

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This paper reports that after the first year of a landmark experiment in which LPG has been competing against methanol and CNG in city buses, propane appears to be pulling out in front of the pack. According to Efren Medellin, superintendent of vehicle maintenance at the Orange County Transit Authority, two LPG buses had registered a total of 31,000 moles with relatively little, if any, downtime. The two methanol buses had run a total of 30,000 miles while the two CNG buses had traveled only 5000 miles. Furthermore the methanol and CNG buses have had their share of downtime for new parts and other problems. The propane-powered buses appear to be running consistently well without mechanical difficulties. The only problem that occurred was occasional backfiring. As a result, the electronic controls were replaced and no subsequent complaints were heard.

  18. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program - DRAFT 3-29-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program DRAFT 3-29-07 Donald Karner Roberta Brayer Derek Peterson Mindy Kirkpatrick James Francfort March 2007 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance INL/EXT-01-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies

  19. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of its commitment to reducing fuel use and emissions, the United Parcel Service (UPS) operates more than 2,500 natural gas, propane, electric, and hybrid-electric vehicles worldwide. The company uses these advanced vehicles as a "rolling laboratory" to learn how such technologies can best serve its large delivery fleet. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has a long history of helping UPS determine the impact of hybrid technology on fuel

  20. To Evaluate Zero Emission Propulsion and Support Technology for Transit Buses

    SciTech Connect (OSTI)

    Kevin Chandler; Leslie Eudy

    2006-11-01

    This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California, in partnership with the San Mateo County Transit District in San Carlos, California. VTA has been operating three fuel cell transit buses in extra revenue service since February 28, 2005. This report provides descriptions of the equipment used, early experiences, and evaluation results from the operation of the buses and the supporting hydrogen infrastructure from March 2005 through July 2006.

  1. Kansas City Buses Provide a Clean Ride for Kids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas City Buses Provide a Clean Ride for Kids Kansas City Buses Provide a Clean Ride for Kids March 18, 2011 - 2:25pm Addthis Kansas City Buses Provide a Clean Ride for Kids Dennis A. Smith Director, National Clean Cities What does this project do? Creates infrastructure such as fueling stations to support compressed natural gas vehicles. Saves the Kansas City, Kansas School District money Reduces pollution Educates students about natural gas technologies. On Wednesday March 16, the Kansas

  2. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009 This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure. PDF icon 46490.pdf More Documents & Publications Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008 Fuel Cell Bus Evaluation Results (Presentation)

  3. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report -- Appendices | Department of Energy -- Appendices SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report -- Appendices This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses. For main report, see NREL/TP-560-43741. PDF icon 43741-2.pdf More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses:

  4. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Appendices | Department of Energy and Appendices SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report and Appendices This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses. PDF icon 43741-1.pdf More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine

  5. SunLine Transit Agency, Hydrogen Powered Transit Buses: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-02-01

    This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency.

  6. Sunline Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-10-01

    This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California.

  7. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  8. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Staunton, Robert H; Hsu, John S; Starke, Michael R

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

  9. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

  10. CNG and Diesel Transit Bus Emissions in Review

    SciTech Connect (OSTI)

    Ayala, A.; Kado, N.; Okamoto, R.; Gebel, M. Rieger, P.; Kobayashi, R.; Kuzmicky, P.

    2003-08-24

    Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.

  11. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  12. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price...

  13. Diesel prices slightly increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly increase The U.S. average retail price for on-highway diesel fuel rose slightly to 3.87 a gallon on Monday. That's up 2-tenths of a penny from a week ago,...

  14. Diesel prices flat nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at 3.98 a gallon on Monday, based on the weekly price...

  15. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price...

  16. Diesel prices rise slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to 4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based...

  17. Diesel prices decrease slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago,...

  18. Diesel prices slightly decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago,...

  19. Diesel prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.90 a gallon on Monday. That's up 3 cents from a week ago, based on the weekly price...

  20. Diesel prices slightly decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on the...

  1. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price...

  2. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price...

  3. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price...

  4. Diesel prices flat

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at 3.89 a gallon on Monday, based on the weekly...

  5. Diesel prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price...

  6. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price...

  7. Diesel prices increase nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

  8. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  9. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  10. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  11. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    SciTech Connect (OSTI)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  12. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Selective Catalytic Reduction Technologies on the AFDC | Department of Energy Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an

  13. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  14. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  15. Alternative Fuels Data Center: Michigan Transports Students in Hybrid

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric School Buses Michigan Transports Students in Hybrid Electric School Buses to someone by E-mail Share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Facebook Tweet about Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Twitter Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Google Bookmark Alternative Fuels Data Center: Michigan

  16. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  17. Alternative Fuel School Buses Earn High Marks: Reprint from Alternative Fuel News, Vol. 5, No. 3

    SciTech Connect (OSTI)

    Not Available

    2002-11-01

    A two-page article on school buses that run on alternative fuels including biodiesel and compressed natural gas. Reprinted from Alternative Fuel News, published by the Clean Cities Program of DOE.

  18. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-06-01

    This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

  19. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current

    Office of Environmental Management (EM)

    Status | Department of Energy Buses in U.S. Transit Fleets: Summary of Experiences and Current Status Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status This report reviews past and present fuel cell bus technology development and implementation in the United States. PDF icon 41967.pdf More Documents & Publications Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration;

  20. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole

  1. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  2. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  3. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    On-Highway Diesel Fuel Prices & Coefficients of Variation Report

  4. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  5. Inspection of compressed natural gas cylinders on school buses

    SciTech Connect (OSTI)

    1995-07-01

    The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

  6. EPA Diesel Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Update EPA Diesel Update 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deercharmley.pdf More Documents & Publications EPA...

  7. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  8. Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2006-03-01

    Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

  9. Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2006-11-01

    This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

  10. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  11. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  12. Evaluation of Alternative Field Buses for Lighting ControlApplications

    SciTech Connect (OSTI)

    Koch, Ed; Rubinstein, Francis

    2005-03-21

    The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include at least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.

  13. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  14. CLEERS Activities: Diesel Soot Filter Characterization & NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

  15. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  16. Tailored Acicular Mullite Substrates for Multifunctional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acicular Mullite Substrates for Multifunctional Diesel Particulate Filters Tailored Acicular Mullite Substrates for Multifunctional Diesel Particulate Filters SEM analysis showed ...

  17. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon deer08brodt-giles.pdf More Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow EPA Diesel Update Hybrid and Plug-In Electric ...

  18. Fuel cell propulsion systems for large vehicles: buses, freight locomotives, and marinecraft

    SciTech Connect (OSTI)

    Altseimer, J.H.; Frank, J.A.; Nochumson, D.H.

    1983-08-01

    A recent Los Alamos study assessed the use of fuel cell systems in transportation vehicles. Study results for buses, railroad locomotives, and marinecraft are presented in this paper. Levelized-life-cycle costs and a figure-of-merit ranking technique for noneconomic criteria were used. Advanced fuel cell systems appear necessary for fuel-cell-powered buses to be costcompetitive. The application of near-term fuel cell technology to city buses might still be worthwhile because of air pollution considerations. For locomotives and marinecraft especially, the cost data was rather limited but certain design and operational features of fuel cell systems were found that could impact favorably on both railroad and ship applications. These are discussed.

  19. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gigakis, C.

    2010-11-01

    This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

  20. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2011-11-01

    This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

  1. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  2. Diesel Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Diesel Energy Place: Spain Product: Joint venture set up to invest in biodiesel plants. References: Diesel Energy1 This article is a stub. You can help OpenEI...

  3. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then...

  4. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.92 a gallon on Monday. That's down 7-tenths of a penny from a week ago, based...

  5. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.88 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

  6. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the...

  7. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

  8. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the...

  9. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.83 a gallon on Monday. That's down 2 cents from a week ago, based on the...

  10. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.98 a gallon. That's up 2.6 cents from a week ago, based on the weekly price...

  11. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down a penny from a week ago, based on the...

  12. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the...

  13. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.94 a gallon on Monday. That's down 3 12 cents from a week ago, based on the...

  14. Diesel prices see slight drop

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices see slight drop The U.S. average retail price for on-highway diesel fuel fell slightly to 3.91 a gallon on Monday. That's down 6-tenths of a penny from a week ago,...

  15. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the...

  16. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

  17. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based...

  18. Diesel prices slightly decrease nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.97 a gallon on Monday. That's down 7-tenths of a penny from a week...

  19. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the...

  20. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the...

  1. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 5 12 cents from a week ago, based on the...

  2. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based on the...

  3. Diesel prices slightly increase nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly increase nationally The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's up 4-tenths of a penny from a...

  4. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based...

  5. Diesel prices remain fairly stable

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices remain fairly stable The U.S. average retail price for on-highway diesel fuel slightly fell to 3.85 a gallon on Monday. That's down 6-tenths of a penny from a week...

  6. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 7-tenths of a penny from a week ago, based...

  7. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.92 a gallon on Monday. That's down 3 cents from a week ago based on the...

  8. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 00,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_barnitt.pdf More Documents & Publications Recent Research to Address Technical Barriers to Increased Use of Biodiesel Impact of

  9. Microsoft Word - NUCLEUS - INL Busing-DAT 10-14-2010.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL busing now becoming the DOE role model For energy savings and pollution reduction The following message to Integrated Transportation Services from R&D Support Services Director Debby Tate was sent to all her transportation employees last month. There has been a surprising and welcome change in attitude for why we have INL busing. I'd like to share it with you because of the role each of you has played in moving Bus Operations forward in exciting new directions for the future. INL was one

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 8 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008 This report provides results from fuel cell bus evaluations at Alameda-Contra Costa Transit District, SunLine Transit Agency, and Santa Clara Valley Transportation Authority. PDF icon tp44133.pdf More Documents & Publications Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix Fuel Cell Buses in U.S. Transit Fleets:

  11. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency | Department of Energy Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation of the ThunderPower hydrogen fuel cell bus demonstrated at SunLine Transit Agency. PDF icon sunline_report.pdf More Documents & Publications SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact

  12. Renewable Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Renewable Diesel Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_cornforth.pdf More Documents & Publications Renewable Diesel Fuels: Status of Technology and R&D Needs Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Recent Research to Address

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the

  14. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  15. An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998

    SciTech Connect (OSTI)

    MacCarley, C.A.

    1999-01-26

    Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

  16. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  17. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  18. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_witherspoon.pdf More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines DIesel Emission Control Technology Developments The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

  19. conventional diesel generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional diesel generator - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from

  1. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of...

  2. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    These data are made available through EIA's hotline (202-586-6966), EIA's web page, and through EIA's email notification, regular and wireless. Previous Diesel Fuel Price Data ...

  3. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  4. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  5. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

  6. Southeast BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel Jump to: navigation, search Name: Southeast BioDiesel Place: Charleston, South Carolina Product: Biodiesel producer based in South Carolina References: Southeast...

  7. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for...

  8. Clean Diesel Technologies | Open Energy Information

    Open Energy Info (EERE)

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  9. American Agri diesel LLC | Open Energy Information

    Open Energy Info (EERE)

    American Agri diesel LLC Jump to: navigation, search Name: American Agri-diesel LLC Place: Colorado Springs, Colorado Product: Biodiesel producer in Colorado. References: American...

  10. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine Fuel-Induced System ...

  11. Catalytic Filter for Diesel Exhaust Purification | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate filter. PDF icon deer09fokema.pdf More Documents &...

  12. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015 Leslie Eudy and Matthew Post National Renewable Energy Laboratory Christina Gikakis Federal Transit Administration Technical Report NREL/TP-5400-64974 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013 Leslie Eudy National Renewable Energy Laboratory Christina Gikakis Federal Transit Administration Technical Report NREL/TP-5400-60490 December 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  14. Comparing the Performance of SunDiesel and Conventional Diesel in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle and Engines | Department of Energy the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_ng.pdf More Documents & Publications Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Fuel Formulation Effects on Diesel

  15. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NRELs Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  16. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  17. Diesel prices continue to rise

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to rise The U.S. average retail price for on-highway diesel fuel rose to 4.16 a gallon on Monday. That's up 5.3 cents from a week ago, based on the weekly...

  18. Diesel prices up this week

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices up this week The U.S. average retail price for on-highway diesel fuel rose sharply to 4.10 a gallon on Monday. That's up 8.2 cents from a week ago and 17.7 cents...

  19. Diesel prices continue to fall

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to 4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly...

  20. The best news for LPG in Denmark is diesel conversion breakthrough

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Throughout Scandanavia, taxes seem to drive the marketplace. Governments do not want to encourage consumption of alcoholic beverages, so they tax them heavily, thereby actually discouraging their use. Using the same means, they dictate the fate of the various fuels. Taxes have depressed propane's use to a large extent; today it is priced at three times natural gas, with the result that it accounts for only 0.5%-0.7% of total energy consumption. But, this paper reports on a potential new star that has appeared on the horizon, as participants in the People-to-People sojourn to Scandanavia last August learned. It's a program of converting diesel buses to propane, and officials of the company that is marketing it, Skibby Motor A/S, are so confident of its success that they have already begun a campaign of introducing it to the U.S.

  1. EPA Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  2. EPA Tribal Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.

  3. Diesel Emission Control Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Diesel Emission Control Review Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications PDF icon deer10_tjohnson.pdf More Documents & Publications Review of Emerging Diesel Emissions and Control Diesel Emission Control Technology in Review Vehicle Emissions Review - 2012

  4. Diesel Use in California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use in California Diesel Use in California 2002 DEER Conference Presentation: California Energy Commission PDF icon 2002_deer_boyd.pdf More Documents & Publications Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Diesel Fuel: Use, Manufacturing, Supply and Distribution Cleaning Up Diesel Engines

  5. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  6. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel...

  7. The 60% Efficient Diesel Engine: Probably, Possible, Or Just...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

  8. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  9. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions ...

  10. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

  11. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine...

  12. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  13. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine ...

  14. 2007 Diesel Particulate Measurement Research (E-66 Project) ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate Measurement Research (E-66 Project) 2007 Diesel Particulate Measurement Research (E-66 Project) 2004 Diesel Engine Emissions Reduction (DEER) Conference:...

  15. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Use Management PDF icon 2004deerblock.pdf More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel ...

  16. Predicting Thermal Stress in Diesel Particulate Filters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Stress in Diesel Particulate Filters Predicting Thermal Stress in Diesel Particulate Filters 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning...

  17. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine...

  18. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  19. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  20. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel ...

  1. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Particulate Filters and NO2 Emission Limits Active Diesel Emission Control Technology for Transport Refrigeration Units Active Diesel Emission ...

  2. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  3. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale Banks...

  4. Diesel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    Diesel prices continue to increase The U.S. retail price for on-highway diesel fuel rose to its highest average since September at $3.95 a gallon. That's up 4.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.31 a gallon, up 13.4 cents from a week ago and marking the highest average this region has seen since last February. Prices were lowest in the Gulf Coast states at 3.78 a gallon,

  5. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses M. Lammert National Renewable Energy Laboratory Technical Report NREL/TP-540-42226 June 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research

  6. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 12 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year. There are 25 active FCEBs in demonstrations this year at eight locations. PDF icon Fuel Cell

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014 L. Eudy and M. Post National Renewable Energy Laboratory C. Gikakis Federal Transit Administration Technical Report NREL/TP-5400-62683 December 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  8. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Sampling Methodology The sample design for the weekly diesel price survey was a two-phase design. The first phase constituted construction of a frame of 2,207 company-State units...

  10. Performance of a High Speed Indirect Injection Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High Speed Indirect Injection Diesel Engine with Poultry Fat Bio-Diesel Performance of a High Speed Indirect Injection Diesel Engine with Poultry Fat Bio-Diesel Poster presented ...

  11. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    2015-12-11

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.

  12. Pleated Ceramic Fiber Diesel Particulate Filter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_nixdorf.pdf More Documents & Publications Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Expanded Capacity Microwave-Cleaned Diesel Particulate Filter

  13. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation PDF icon 2004_deer_stang2.pdf More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins/DOE Light Truck Diesel Engine Progress Report

  14. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_godwin.pdf More Documents & Publications Clean Diesel: The Progress, The Message, The Opportunity Light-Duty Diesel Market Potential in North America Accelerating Light-Duty Diesel Sales in the U.S. Market

  15. Emissions Effects of Using B20 in the Current Transit Bus Fleet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effects of Using B20 in the Current Transit Bus Fleet Emissions Effects of Using B20 in the Current Transit Bus Fleet Transit buses using diesel and biodiesel blends were tested for fuel consumption and emissions on the UDDS, OCTA, and Man duty cycles. PDF icon p-19_sindler.pdf More Documents & Publications Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Performance of Biofuels and Biofuel Blends Performance of

  16. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  17. Earthship BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    Earthship BioDiesel Jump to: navigation, search Name: Earthship BioDiesel Place: Taos, New Mexico Zip: 87571 Product: Supplier and retailer of biodiesel made from Waste Vegetable...

  18. BPM Diesel Engineering | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: WR12 7NL Product: Converts diesel engines to operate on Dual Fuel using a digital generic system. References: BPM Diesel Engineering1 This article is a stub. You can...

  19. Diesel prices top $4 per gallon

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices top 4 per gallon The U.S. average retail price for on-highway diesel fuel surpassed the four dollar mark for the first time this year. Prices rose to 4.02 a gallon...

  20. Diesel prices continue to decrease nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.95 a gallon on Monday. That's down 2 cents from a week ago...

  1. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fell to 2.48 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price...

  2. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 2.53 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly...

  3. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 2.52 a gallon on Monday. That's down 1.7 cents from a week ago, based on the weekly...

  4. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E; Smith, David E; Smith, Richard L; Greene, David L; Brooks, Daniel L; Wiegman, Herman; Miller, Nicholas; Marano, Dr. Vincenzo

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  5. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  6. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  7. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  8. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

  9. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  10. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; McFarlane, Joanna; Daw, C Stuart; Ra, Youngchul; Griffin, Jelani K

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  11. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  12. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management PDF icon 2004_deer_block.pdf More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

  13. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  14. Low Temperature Automotive Diesel Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Automotive Diesel Combustion Low Temperature Automotive Diesel Combustion 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace002_miles_2011_o.pdf More Documents & Publications Low-Temperature Automotive Diesel Combustion Mixture Formation in a Light-Duty Diesel Engine Light-Duty Diesel Combustion

  15. Heavy-Truck Clean Diesel (HTCD) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Truck Clean Diesel (HTCD) Program Heavy-Truck Clean Diesel (HTCD) Program 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar PDF icon 2004_deer_duffy.pdf More Documents & Publications Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Heavy-Duty HCCI Development Activities

  16. Advanced Ceramic Filter For Diesel Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Filter For Diesel Emission Control Advanced Ceramic Filter For Diesel Emission Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Dow Automotive PDF icon 2004_deer_mao.pdf More Documents & Publications Vehicle Evaluation of Downsized Dow ACM DPF fundamental Modeling and Experimental Studies of Acicular Mullite Diesel Particulate Filters Tailored Acicular Mullite Substrates for Multifunctional Diesel Particulate Filters

  17. Review of Diesel Emission Control Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Control Technology Review of Diesel Emission Control Technology 2002 DEER Conference Presentation: Corning Inc. PDF icon 2002_deer_johnson.pdf More Documents & Publications Diesel Emission Control Technology Review Update on Diesel Exhaust Emission Control Light Duty Diesels in the United States - Some Perspectives

  18. DIesel Emission Control Technology Developments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments PDF icon 2005_deer_andreoni.pdf More Documents & Publications Cleaning Up Diesel Engines Diesel Engines: Environmental Impact and Control ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines

  19. Update on Diesel Exhaust Emission Control Technology and Regulations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning PDF icon 2004_deer_johnson2.pdf More Documents & Publications Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission Control Technology Update on Diesel Exhaust Emission Control

  20. Diesel Emission Control Technology in Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Review Diesel Emission Control Technology in Review Review of light- and heavy-duty diesel emission regulations and state-of-the-art emission control technologies and strategies to meet them. PDF icon deer08_johnson.pdf More Documents & Publications Diesel Emission Control Review Review of Emerging Diesel Emissions and Control Diesel Emission Control in Review

  1. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004

    SciTech Connect (OSTI)

    Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

    2005-11-01

    The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

  2. Eight States Plan for 3.3 Million Zero-Emission Vehicles by 2025...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    battery electric vehicles, plug-in hybrid electric vehicles, and hydrogen fuel-cell-electric vehicles. These technologies can be used in passenger cars, trucks, and transit buses. ...

  3. ISE Corporation | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 92064 Region: Southern CA Area Sector: Vehicles Product: Develops hybrid-electric drive systems and components for municipal buses Website: www.isecorp.com...

  4. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA: Plug-In Hybrid Electric School Buses Medium and Heavy Duty Vehicle and Engine Testing Medium- and Heavy-Duty Electric Drive Vehicle Simulation ...

  5. Efficient Drivetrains Inc | Open Energy Information

    Open Energy Info (EERE)

    have direct applications in Plug-in Hybrid Electric Vehicles (PHEVs), Hybrids, and Electric Vehicles (EVs), including trucks, buses and cars. The company's closely related...

  6. Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results

    Energy Savers [EERE]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Evaluation Results Kevin Chandler Battelle Leslie Eudy National Renewable Energy Laboratory Technical Report NREL/TP-560-40615 November 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No.

  7. Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction | Department of Energy the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-15_wei.pdf More Documents & Publications On-Road PM Mass Emission Measured with OBS-TRPM Investigation of Direct Injection Vehicle Particulate Matter

  8. BioDiesel One Ltd | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel One Ltd Jump to: navigation, search Name: BioDiesel One, Ltd. Place: Southington, Connecticut Zip: 6489 Product: BioDiesel One plans to develop a biodiesel plant in...

  9. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  10. Response of Oil Sands Derived Fuels in Diesel HCCI Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency & ...

  11. American Road: Clean Diesels for the Real World | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Road: Clean Diesels for the Real World American Road: Clean Diesels for the Real World Perspectives on clean diesels and public policy as it is developing in the US, as...

  12. Low-Temperature Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Diesel Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel

  14. Nanocatalysts for Diesel Engine Emissions Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocatalysts for Diesel Engine Emissions Remediation Zeolite-Based Nanocatalysts Offer Enhanced Catalyst Performance and Durability Each year, the United States consumes a large volume of petroleum fuel, with more than half of crude oil imported from foreign sources. Diesel engines, which are approximately 30 percent more fuel effcient than gasoline engines, provide one pathway for reducing dependence on imported oil and improving overall energy effciency. The use of improved diesel engines can

  15. Diesel Aftertreatment Systems development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Systems development Diesel Aftertreatment Systems development 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar PDF icon 2004_deer_verkiel.pdf More Documents & Publications APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped

  16. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vs Gasoline Production Diesel vs Gasoline Production A look at refinery decisions that decide "swing" between diesel and gasoline production PDF icon deer08_leister.pdf More Documents & Publications Marathon Sees Diesel Fuel in Future ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program

  17. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  18. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Durability of Diesel Engine Particulate Filters High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the...

  19. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference...

  20. Diesel Idling Reduction | Open Energy Information

    Open Energy Info (EERE)

    Idling Reduction Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Diesel Idling Reduction AgencyCompany Organization: US EPA, NY SERDA Focus Area: Fuels & Efficiency...

  1. Sandia Energy - Low-Temperature Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel consumption and attendant CO2 emissions. However, the relatively high emission of NOx and particulate matter emitted by diesels increases the cost and raises environmental...

  2. Clean Diesel Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    products that reduce emissions from diesel engines while simultaneously improving fuel economy and power. Coordinates: 42.75294, -73.068531 Show Map Loading map......

  3. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Dispersion in a Phospholipid Lung Surfactant In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials

  4. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuels Application of Synthetic Diesel Fuels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_schaberg.pdf More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  5. Update on 2007 Diesel Particulate Measurement Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2007 Diesel Particulate Measurement Research Update on 2007 Diesel Particulate Measurement Research 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_shimpi.pdf More Documents & Publications Real-Time Measurement of Diesel Trap Efficiency Mass Correlation of Engine Emissions with Spectral Instruments Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate Filters for LIght-Duty Diesel Vehicles

  6. The Effect of Changes in Diesel Exhaust Composition and After...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Changes in Diesel Exhaust Composition and ... for the Health Effects of Inhaled Engine Emissions ACES: Evaluation of Tissue Response to Inhaled 2007-Compliant Diesel ...

  7. A New CFD Model for understanding and Managing Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFD Model for understanding and Managing Diesel Particulate Filter Regeneration A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration PDF icon...

  8. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company PDF...

  9. New Cordierite Diesel Particulate Filters for Catalyzed and Non...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

  10. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: CaterpillarU.S. Department of Energy PDF icon 2004deerhopmann.pdf More Documents & Publications Diesel Engine...

  11. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

  12. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  13. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications Title A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition...

  14. 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. PDF icon 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine...

  16. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

  17. Dilute Clean Diesel Combustion Achieves Low Emissions and High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

  18. O2Diesel Corporation formerly Dynamic Ventures | Open Energy...

    Open Energy Info (EERE)

    O2Diesel Corporation formerly Dynamic Ventures Jump to: navigation, search Name: O2Diesel Corporation (formerly Dynamic Ventures) Place: Newark, Delaware Zip: 19713 Product:...

  19. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  20. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  1. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Diesel Combustion Control with Closed-Loop Control of the Injection Strategy ...

  2. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from ...

  3. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

  4. A Systematic Investigation of Parameters Affecting Diesel NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst...

  5. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

  6. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the European Light Duty Diesel Vehicle During DPF Regeneration Events Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events Repeated partial ...

  7. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  8. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of an Integrated Diesel NOx Adsorber AT Subsystem at Light-Duty Operation Durability Evaluation of an Integrated Diesel NOx Adsorber AT Subsystem at Light-Duty ...

  9. Opportunity Assessment Clean Diesels in the North American Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment Clean Diesels in the North American Light Duty Market Opportunity Assessment Clean Diesels in the North American Light Duty Market Presentation given at the ...

  10. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market 2005 ...

  11. Combination of Diesel fuel system architectures and Ceria-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for improvement and simplification of the Diesel Particulate Filter System in serial applications Combination of Diesel fuel system architectures and Ceria-based...

  12. Fuel Additivies for Improved Performance of Diesel Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

  13. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference Presentation: National...

  14. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  15. Low Temperature Combustion and Diesel Emission Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. ...

  16. A Conceptual Model for Partially PremixedLow-Temperature Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling A Conceptual Model for Partially PremixedLow-Temperature Diesel ...

  17. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER 2006, August ...

  18. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

  19. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at ... More Documents & Publications An Enabling Study of Diesel Low-Temperautre Combustion via ...

  20. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  1. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  2. Failure Stress and Apparent Elastic Modulus of Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics Three...

  3. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon...

  4. New Generation Biofuels Holdings Inc formerly H2Diesel | Open...

    Open Energy Info (EERE)

    Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name: New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place: Lake Mary, Florida Zip: 32746...

  5. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction ...

  6. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission ...

  7. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine...

  8. Local Soot Loading Distribution in Cordierite Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

  9. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with ...

  10. Simplification of Diesel Emission Control System Packaging Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

  11. Value Analysis of Alternative Diesel Particulate Filter (DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel ... Provide higher soot mass limits and durability than other materials at the same porosity. ...

  12. Advanced Radio Frequency-Based Sensors for Monitoring Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter ...

  13. The California Demonstration Program for Control of PM from Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The California Demonstration Program for Control of PM from Diesel Backup Generators 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of...

  14. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  15. CARB Verification of Catalyzed Diesel Particulate Filters for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARB Verification Testing of the CBSTM Soot Filter for Stationary Diesel Applications The California Demonstration Program for Control of PM from Diesel Backup Generators ...

  16. Diesel Engine Oil Technology Insights and Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Technology Insights and Opportunities Diesel Engine Oil Technology Insights and Opportunities Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant ...

  17. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation:...

  18. Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with...

  19. Emission Control Strategy for Downsized Light-Duty Diesels |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy for Downsized Light-Duty Diesels Emission Control Strategy for Downsized Light-Duty Diesels This poster discusses the combustion aspects and control challenges of a high ...

  20. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve ...