Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

2

Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet  

SciTech Connect (OSTI)

Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

Wogsland, J.

2001-01-25T23:59:59.000Z

3

Diesel fuel qualities  

SciTech Connect (OSTI)

As a result of rising fuel costs, many ship operators are turning to less expensive, heavier grade fuels for their diesel engines. Use of these lower quality fuels without adequate preparation can cause increased engine wear and damage to fuel systems. The oil properties which affect pretreatment and cleaning requirements, specifications that should be used when purchasing these fuels, and procedures for confirming that bought fuels meet purchase specifications are discussed. (LCL)

Blenkey, N.

1981-02-01T23:59:59.000Z

4

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

5

Reformulated diesel fuel  

DOE Patents [OSTI]

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

6

The Performance Analysis on Fuel Injection System Failure for a Four-Stroke Marine Diesel Engine  

Science Journals Connector (OSTI)

The middle speed four stroke diesel engine has the advantages of small capacity, light in weight, capable to combustion poor fuel oil. In recent years, they have been used more comprehensive than before. Daihatsu 6PSHdM-26H diesel engine, which is a ... Keywords: 4-stroke medium-speed turbocharged marine diesel engine, Fuel injection system failure, delayed combustion, performance analysis

Jialiang Huang; Guohao Yang; Dan Wang

2010-12-01T23:59:59.000Z

7

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

8

Gasoline and Diesel Fuel Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage)...

9

Diesel fuel oils, 1980  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1980 were submitted for study and compilation under a cooperative agreement between the Department of Energy, Bartlesville Energy Technology Center, Bartlesville, Oklahoma and the American Petroleum Institute. Tests of 192 samples of diesel fuel oils from 95 refineries throughout the country were made by 28 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960-1980. Summaries of the results of the 1980 survey, compared with similar data for 1979, are shown.

Shelton, E.M.

1980-12-01T23:59:59.000Z

10

Measured effect of wind generation on the fuel consumption of an isolated diesel power system  

SciTech Connect (OSTI)

The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

Stiller, P.; Scott, G.; Shaltens, R.

1983-06-01T23:59:59.000Z

11

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

12

Fuel Additivies for Improved Performance of Diesel Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additivies for Improved Performance of Diesel Aftertreatment Systems Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems 2002 DEER Conference Presentation:...

13

Diesel fuel oils, 1982  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

14

Diesel fuel oils, 1981  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1981 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 160 samples of diesel fuel oils from 77 refineries throughout the country were made by 26 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1981. Summaries of the results of the 1981 survey, compared with similar data for 1980, are shown.

Shelton, E.M.

1981-12-01T23:59:59.000Z

15

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

16

Ethanol fuel for diesel tractors  

SciTech Connect (OSTI)

The use of ethanol fuel in turbocharged diesel tractors is considered. The investigation was performed to evaluate the conversion of a diesel tractor for dual-fueling with ethanol by attaching a carburetor to the inlet air system or with the use of an alcohol spray-injection kit. In this system the mixture of water and alcohol is injected into the air stream by means of pressure from the turbocharger. The carburetor was attached to a by-pass apparatus which allowed the engine to start and shut off on diesel alone. Approximately 46% of the energy for the turbocharged 65 kW diesel tractor could be supplied by carbureted ethanol, and about 30% by the spray-injection approach. Knock limited the extent of substitution of ethanol for diesel fuel. The dual-fueling with ethanol caused a slight increase in brake thermal efficiency. Exhaust temperatures were much lower for equivalent high torque levels. Maximum power was increased by 36% with the spray-injection approach and about 59% with carburetion.

da Cruz, J.M.

1981-01-01T23:59:59.000Z

17

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

18

Development of HC-SCR System Using Diesel Fuel as a Reductant  

Broader source: Energy.gov (indexed) [DOE]

Vehicle test Dynamo test In order to remove NOx from diesel vehicle emission, urea- SCR is generally used. In this studies, diesel fuel itself was used as a NO to remove...

19

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

20

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

22

Impact of Fuel-Borne Catalysts on Diesel Aftertreatment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems...

23

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

SciTech Connect (OSTI)

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

24

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the weekly on-highway diesel price survey began collecting diesel prices for low sulfur diesel (LSD) which contains between 15 and 500 parts-per-million sulfur and ULSD separately. Prior to January 2007, EIA collected the price of on-highway fuel without distinguishing the sulfur

25

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

26

AIR POLLUTION: Diesel Fuel Culprits  

Science Journals Connector (OSTI)

AIR POLLUTION: Diesel Fuel Culprits ... Low-molecular-weight components aren't necessarily the true culprits of diesel fuel pollution, although they do contribute to it, according to Hertha Skala, assistant director of research, and her coworkers F. G. Padrta and P. C. Samson at Universal Oil Products. ... At the first national symposium on heterogeneous catalysis for control of air pollution, sponsored by Philadelphia's Franklin Institute, Mrs. Skala identified five different classes of oxygenated hydrocarbons found over the full molecular-weight range of diesel fuel components. ...

1968-12-02T23:59:59.000Z

27

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

28

Reformulated diesel fuel and method  

DOE Patents [OSTI]

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

29

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies

30

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

31

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

32

Improvement and Simplification of Diesel Particulate Filter System...  

Broader source: Energy.gov (indexed) [DOE]

and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel Particulate Filter...

33

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

34

Coal fueled diesel system for stationary power applications-technology development  

SciTech Connect (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

35

Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report  

SciTech Connect (OSTI)

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

Not Available

2007-03-01T23:59:59.000Z

36

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

37

Verification of Shell GTL Fuel as CARB Alternative Diesel | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Verification of Shell GTL Fuel as CARB Alternative Diesel Verification of Shell GTL Fuel as CARB Alternative Diesel Presentation given at the 2007 Diesel Engine-Efficiency &...

38

Hydrogen as a Supplemental Fuel in Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

39

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, it’s necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

40

Development of a fuel-tolerant diesel for alternative fuels  

Science Journals Connector (OSTI)

There is a growing requirement for engines operating on a wider range of fuels than when fuel supplies were more stable. The diesel engine, with its high compression ratio and absence of part-load throttling, offers high efficiency. Some widely available alternative fuels, in particular alcohol from biomass, present problems because of their low cetane number. The authors report the development of a diesel engine using a combustion system incorporating a high-energy, multi-strike spark to promote smooth combustion. Results obtained with this engine using ethanol are presented to illustrate its ability to handle fuels of very low cetane numbers.

A.W.E. Henham; R.A. Johns; S. Newnham

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Elastomer Compatibility Testing of Renewable Diesel Fuels  

SciTech Connect (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

42

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies that cannot be contacted and for reported prices that are extreme outliers.

43

Chemical Kinetic Research on HCCI & Diesel Fuels  

Energy Savers [EERE]

fuel * a primary reference fuel for diesel * Include both high and low temperature chemistry important to model low temperature combustion modes Improve component models for...

44

Coal-Fueled Diesel Technology Assessment Study: systems performance and cost comparisons  

SciTech Connect (OSTI)

This report examines the performance of diesel engines operating on coal-based fuels and compares their power generation costs with those of corresponding oil-burning prime movers. Similar performance and cost comparisons are also presented for an alternative prime mover, the direct-fired gas turbine in both a simple-cycle and a regenerative-cycle configuration. The coal-based fuels under consideration include micronized coal, coal slurries, and coal-derived gaseous fuels. The study focuses on medium-speed diesel engines for locomotive, marine, small stationary power, and industrial cogeneration applications in the 1000 to 10,000 kW size range. This report reviews the domestic industrial and transportation markets for medium-speed engines currently using oil or gas. The major problem areas involving the operation of these engines on coal-based fuels are summarized. The characteristics of available coal-based fuels are discussed and the costs of various fuels are compared. Based on performance data from the literature, as well as updated cost estimates originally developed for the Total Energy Technology Alternatives Studies program, power generation costs are determined for both oil-fueled and coal-fueled diesel engines. Similar calculations are also performed for direct-fired gas turbines. The calculations illustrate the sensitivity of the power generation cost to the associated fuel cost for these prime movers. The results also show the importance of reducing the cost of available coal-based fuels, in order to improve the economic competitiveness of coal-fueled prime movers relative to engines operating on oil or gas. 50 refs., 9 figs., 11 tabs.

Holtz, R.E.; Krazinski, J.L.

1985-12-01T23:59:59.000Z

45

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

46

Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Green Biodiesel and Green Diesel Fuel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

47

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions  

Science Journals Connector (OSTI)

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions ... Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels ...

Matthew A. Ratcliff; A. John Dane; Aaron Williams; John Ireland; Jon Luecke; Robert L. McCormick; Kent J. Voorhees

2010-10-01T23:59:59.000Z

48

Coal-fueled diesel locomotive test  

SciTech Connect (OSTI)

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

49

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel engineDiesel Idling diesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

50

Color Degradation of Hydrocracked Diesel Fuel  

Science Journals Connector (OSTI)

Color Degradation of Hydrocracked Diesel Fuel ... An important quality standard to be examined is the color of diesels, given the fact that consumers tend to relate a dark colored fuel to low quality fuel, where the dark color comes from the fuels aging. ...

Isabelle Bergeron; Jean-Pierre Charland; Marten Ternan

1999-04-17T23:59:59.000Z

51

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

52

Diesel fueled ship propulsion fuel cell demonstration project  

SciTech Connect (OSTI)

The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

1996-12-31T23:59:59.000Z

53

Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels  

SciTech Connect (OSTI)

A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

2007-01-01T23:59:59.000Z

54

Biodiesel and Other Renewable Diesel Fuels  

SciTech Connect (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

55

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

56

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single...

57

A Comparison of Combustion and Emissions of Diesel Fuels and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

58

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops. Due to statistical and operational considerations, outlets in the States of Alaska and Hawaii are excluded from the target population. The primary publication cells of the survey include Petroleum Administration for Defense Districts (PADDs) 2-4, three sub-PADDs within

59

Flammability of diesel fuels with various compositions  

SciTech Connect (OSTI)

This paper reports on a study of the flammability of a number of fuels and blends, in relation to their physicochemical properties, particularly the volatility; these studies were performed in a specially designed simulator. The following fuels were used in the studies: a hydrotreated straight-run diesel fuel L; a catalytic gas oil; diesel fuel A; blends of diesel fuels L and A with cetaine, alpha-methylnaphthalene, undecane, and docosane; and a blend of fuel L, A-72 gasoline, and the additive TsGN. The physicochemical properties of the test fuels are shown. It is shown that the flammability of fuels with various compositions in a diesel engine is more correctly evaluated on the basis of the ignition delay period, which can be calculated from the cetane number and other physicochemical property indexes of fuels for a particular set of engine operating conditions.

Gureev, A.A.; Kamfer, G.M.; Prigul'skii, G.B.

1986-09-01T23:59:59.000Z

60

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

SciTech Connect (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

62

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

63

Performance and emissions of a diesel tractor engine fueled with marine diesel and soybean methyl ester  

Science Journals Connector (OSTI)

Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. This paper presents the results of investigations carried out in studying the fuel properties of soybean methyl ester (SME) and its blend with marine diesel fuel from 5%, 20% and 50% blends by volume and in running a diesel engine with these fuels. The results indicate that the use of biodiesel produces lower smoke opacity (up to 74%), but higher brake specific fuel consumption (BSFC) (up to 12%) compared to marine fuel (MF). The measured carbon monoxide (CO) emissions of B5 and B100 fuels were found to be 3% and 52% lower than that of the MF, respectively.

B. Gokalp; E. Buyukkaya; H.S. Soyhan

2011-01-01T23:59:59.000Z

64

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

65

Response of Oil Sands Derived Fuels in Diesel HCCI Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency &...

66

Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-05-01T23:59:59.000Z

67

Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions

68

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

69

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

70

NOx Emissions of Alternative Diesel Fuels:? A Comparative Analysis of Biodiesel and FT Diesel  

Science Journals Connector (OSTI)

This study explores the diesel injection and combustion processes in an effort to better understand the differences in NOx emissions between biodiesel, Fischer?Tropsch (FT) diesel, and their blends with a conventional diesel fuel. Emissions studies were ...

James P. Szybist; Stephen R. Kirby; André L. Boehman

2005-05-14T23:59:59.000Z

71

Investigation of a Fatality Due to Diesel Fuel No. 2 Ingestion  

Science Journals Connector (OSTI)

......diesel oil No. 2. Diesel fuel No. 4 is marine diesel fuel or distillate marine diesel fuel (1,4). Diesel fuel No. 2 (CAS 68476-34-6...naphtalenes (dominant) to phenanthrenes. Some marine diesel fuels may content higher levels. Diesel fuel No......

María A. Martínez; Salomé Ballesteros

2006-10-01T23:59:59.000Z

72

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

SciTech Connect (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

73

Miscibility of Ethanol in Diesel Fuels  

Science Journals Connector (OSTI)

The fuels selected were as follows:? US-1D, US-2D, kerosene, light cycle oil, #1 fuel oil, Fischer Tropsch Liquid 2 (FTL-2, FTL refers to a broad-cut fraction of Fischer?Tropsch products not meeting diesel volatility specifications.), ... The close proximity of a mixture's UCST to the fuel's cloud point masked the classical UCST phase behavior for the FTL fuels and light cycle oil; however, the general trends persisted. ...

K. R. Gerdes; G. J. Suppes

2001-01-12T23:59:59.000Z

74

Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system  

Science Journals Connector (OSTI)

Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523?K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523?K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

Yasushi Sekine; Naotsugu Furukawa; Masahiko Matsukata; Eiichi Kikuchi

2011-01-01T23:59:59.000Z

75

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

76

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

77

Diesel Fuel Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Diesel Fuel Price Pass-through Diesel Fuel Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Diesel Fuel Price Pass-through Printer-Friendly PDF Diesel Fuel Price Pass-through by Michael Burdette and John Zyren* Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. Beginning with gasoline, we looked at the two ends of the pricing structure in the U.S. market: daily spot prices, which capture sales of large quantities of product between refiners, importers/exporters, and traders; and weekly retail prices, measured at local gasoline outlets nationwide. In the course of this analysis, EIA has found that the relationships between spot and retail prices are consistent and predictable, to the extent that changes in spot prices can be used to forecast subsequent changes in retail prices for the appropriate regions. This article represents the extension of this type of analysis and modeling into the diesel fuel markets.

78

Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions,  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Digg

79

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel enginediesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

80

Fueling U.S. Light Duty Diesel Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. diesel fuel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago,...

82

U.S. diesel fuel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.78 a gallon on Monday. That's down 2.3 cents from a week ago, based on...

83

New Diesel Feedstocks and Future Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Diesel Feedstocks and Future Fuels New Diesel Feedstocks and Future Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's...

84

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

85

Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Diesel Fleet Clean Diesel Fleet Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Diesel Fleet Vehicle Grants The Oklahoma Department of Environmental Quality (DEQ) Air Quality Division

86

Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

National Clean Diesel National Clean Diesel Campaign (NCDC) to someone by E-mail Share Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Facebook Tweet about Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Twitter Bookmark Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Google Bookmark Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Delicious Rank Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Digg Find More places to share Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Clean Diesel Campaign (NCDC) The NCDC was established by the U.S. Environmental Protection Agency to

87

Influence of Biodiesel Addition to Fischer?Tropsch Fuel on Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Zhu, R.; Wang, X.; Miao, H.; Huang, Z.; Gao, J.; Jiang, D.Performance and Emission Characteristics of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends Energy Fuels 2009, 23, 286– 293 ... Results showed that, without changing the fuel supply system and the combustion system of a diesel engine, when using blended fuel with increased DMM percentage, break-specific fuel consumption (BSFC) is higher for a smaller lower heating value of DMM, while thermal efficiency increases a little. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Johan Einar Hustad

2010-04-14T23:59:59.000Z

88

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

89

Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Green Biodiesel and Green Diesel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Google Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Delicious Rank Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Green Diesel Definitions Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of

90

Alternative Fuels Data Center: Biofuels and Green Diesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels and Green Biofuels and Green Diesel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Google Bookmark Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Delicious Rank Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels and Green Diesel Definitions Advanced biofuels are defined as fuels derived from any cellulose,

91

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

92

Diesel and Biodiesel Fuel Spray Simulations  

Science Journals Connector (OSTI)

Diesel and Biodiesel Fuel Spray Simulations ... That deviates from general assumptions and is probably the consequence of the large nozzle diameter. ... Numerous trials gave the best results for the pretuned C1, C2, and C3 values using following parameters and appropriate coefficients in the following expressions: where ?f is fuel density [kg/m3], ?f is fuel viscosity [mPa s], ?f is fuel surface tension [N/mm], tinj stands for injection time [ms], pave is average injection pressure [MPa], sq = pave/pmax (squarness), Qc represents fueling [mm3/cycle], and n is pump speed [1/min]. ...

Primoz Pogorevc; Breda Kegl; Leopold Skerget

2008-01-12T23:59:59.000Z

93

PCR+ in Diesel Fuels and Emissions Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 PCR+ in Diesel Fuels and Emissions Research MARCH 2002 Prepared by H. T. McAdams AccaMath Services Carrollton, Illinois R. W. Crawford RWCrawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

94

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

95

Diesel fuel containing a tetrazole or triazole cetane improver  

SciTech Connect (OSTI)

This patent describes a liquid fuel adapted for use in a diesel engine containing a cetane number increasing amount of at least one fuel soluble additive compound.

Martella, D.J.

1986-12-30T23:59:59.000Z

96

Diesel Health Impacts & Recent Comparisons to Other Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Impacts & Recent Comparisons to Other Fuels Diesel Health Impacts & Recent Comparisons to Other Fuels 2002 DEER Conference Presentation: Natural Resources Defense Council...

97

Response of Oil Sands Derived Fuels in Diesel HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Bruce G. Bunting senior staff scientist Fuels, Engines, and Emissions Research Center 2007 DOE DEER Conference...

98

A Neural Network Approach for the Correlation of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties  

Science Journals Connector (OSTI)

National Technical University of Athens, Department of Chemical Engineering, Iroon Polytechniou 9, Athens 157 80, Greece ... The emissions from diesel engines have been drastically reduced during the last 30 years as a result of significant improvement in engine technology and modification of diesel fuel. ... First principles models are using fundamental equations, which have been developed by analyzing the physical insight of the systems. ...

D. Karonis; E. Lois; F. Zannikos; A. Alexandridis; H. Sarimveis

2003-08-15T23:59:59.000Z

99

Novel injector techniques for coal-fueled diesel engines  

SciTech Connect (OSTI)

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

100

Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Vehicle Diesel Vehicle Retrofit and Improvement Grants to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Diesel Retrofit Clean Diesel Retrofit and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

102

Experimental analysis of a diesel engine operating in Diesel–Ethanol Dual-Fuel mode  

Science Journals Connector (OSTI)

Abstract The use of engines is necessary to keep the world moving. Such engines are fed mainly by fossil fuels, among these, the diesel. The operation and the behavior of engines in different thermodynamic cycles, with common fossil fuels, it is still challenging but, in general, it has well known and documented data. On the other hand, for alternative fuels, there is still demand of experimental data, particularly considering that it is desirable, most of the times, the use of a system with dual mode (reversible). Such systems are called Dual-Fuel, it brings a greater degree of freedom, but imply in technological challenges. In this paper we used an engine operating with single cylinder direct injection diesel and port ethanol injection system in Dual-Fuel mode with a 100% electronically controlled calibration. The methodology applied was, once the engine calibration was given to achieve the best specific fuel consumption or the MBT (Maximum Brake Torque) in each load condition, to gradually substitute the diesel oil by ethanol in compliance with the requirements established. Comparisons were made among working conditions considering the rate of diesel substitution and the energy indicated efficiency. Initially, the flow structure in the combustion chamber was tested in both ‘quiescent’ and high “swirl” modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. It was tested two injectors, the first one of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar.

Roberto Freitas Britto Jr.; Cristiane Aparecida Martins

2014-01-01T23:59:59.000Z

103

U.S. diesel fuel price decrease  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. average retail price for on-highway diesel fuel fell to 3.66 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

104

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The sample design for the weekly diesel price survey was a two-phase design. The first phase constituted construction of a frame of 2,207 company-State units (CSUs) from the combination of two sample cycles of the EIA-782A and EIA-782B surveys that collected monthly petroleum products' sales at the State level. For sampling purposes, any combination of State and company where diesel was sold through retail outlets as reported on the EIA-782 surveys defined a CSU, the sampling unit. For the second phase, a sub-sample of the 2,207 CSUs from phase 1 was selected using probability proportional to size (PPS). The measure of size for each of the two sample cycles separately was normalized using the annual State sales' volumes from the monthly survey divided by the unit's

105

Combustion characteristics of coal fuels in adiabatic diesel engines  

SciTech Connect (OSTI)

An experimental investigation was conducted to determine the combustion characteristics of coal fuels in adiabatic diesel engines. For this purpose engine testing was carried out by the fumigation of fine coal powder to the intake of an insulated and uncooled single cylinder diesel engine. The engine tests conducted include three types of fuels - Diesel fuel No. 2 (DF-2), Dual fuel (DF-2 + Coal), and Coal fuel. Excellent combustion characteristics of coal fuels were obtained in the present work in an adiabatic engine operating at high temperatures. The ''thermal ignition'' concept uncovered in this investigation led to a hot ''ignition chamber'' which provided ignition of the coal fuel. The high temperature engine with the ''ignition chamber'' permitted engine operation on 100% coal fuel without any external ignition aids or compression ignition. With the addition of a glow plug, the coal fueled engine was successfully cold started. For the coal fueled engine tests, analysis of cylinder pressure data showed rapid heat release rates, shorter combustion duration and very fast burning of coal powder fuel. Preliminary results of the apparent indicated cycle efficiency calculated from the heat release data, indicate that 100% coal powder fueled engine has higher cycle efficiency than DF-2 fueled engine in an adiabatic configuration. The problems encountered during the engine tests include: variation in the engine speed and load due to non-uniform coal flow rate by the coal feed system, contamination of the lubricating oil with fine coal powder, and wear of conventional piston rings. However, these problems can be solved with an improved coal feed system and wear resistant ceramic materials for the piston rings. 33 refs.

Kamo, R.; Kakwani, R.M.; Woods, M.E.; Valdmanis, E.

1986-06-01T23:59:59.000Z

106

Engines - Fuel Injection and Spray Research - Diesel Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nation’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

107

?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-06-01T23:59:59.000Z

108

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method  

Science Journals Connector (OSTI)

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method ... Energy Fuels, 2013, 27 (2), ...

Peter Y. Hsieh; Kathryn R. Abel; Thomas J. Bruno

2013-01-17T23:59:59.000Z

109

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Broader source: Energy.gov (indexed) [DOE]

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

110

Diesel Reforming for Solid Oxide Fuel Cell Application  

SciTech Connect (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

111

Affordable, Low-Carbon Diesel Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affordable, Low-Carbon Diesel Fuel Affordable, Low-Carbon Diesel Fuel from Domestic Coal and Biomass January 14, 2009 DOE/NETL-2009/1349 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

112

Oxygenated fuels for clean heavy-duty diesel engines  

Science Journals Connector (OSTI)

For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been extrapolated towards lower emission levels. Exhaust gas recirculation (EGR) was applied to a modern EURO-3-type HD diesel engine. Tests were done at different engine working points, with EGR-levels and start of fuel delivery timings set to give NOx emissions between 3.5 and 2.0 g/kWh with regular diesel fuel. Fourteen blends of a low-sulphur diesel fuel respectively of a gas-to-liquid synthetic diesel fuel with different oxygenates were tested. The corresponding fuel matrix covers a range of fuel oxygen mass fractions up to 15%. Results are presented and the impact of fuel oxygen mass fraction and Cetane Number are analysed and compared with results from previous research.

P.J.M. Frijters; R.S.G. Baert

2006-01-01T23:59:59.000Z

113

Utiization of alternate fuels in diesel engines  

SciTech Connect (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

114

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions  

Science Journals Connector (OSTI)

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions ... The test fuels indicate variable hydrocarbon composition and physical and chemical properties, and they were prepared under a European Union research program aiming to identify future fuel formulations for use in modern DI diesel engines. ... 1,2,4-9,13,14,16,17,24-26 In general, there is an interrelation between the molecular structure (paraffins, olefins, napthenes, and aromatic hydrocarbons), the chemical properties (cetane number, ignition point, etc.), and the physical properties (density, viscosity, surface tension, etc.) of the diesel fuel. ...

Theodoros C. Zannis; Dimitrios T. Hountalas; Roussos G. Papagiannakis

2007-07-19T23:59:59.000Z

115

DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Awarded Patent for Reformulated Diesel Fuel Awarded Patent for Reformulated Diesel Fuel DOE Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of Energy today announced that it has developed, patented, and made commercially available reformulated diesel fuels which when used can reduce nitrogen oxides up to 10% and particulate matter up to 22% compared to those currently available. The diesel fuel formulations covered under this patent will be commercially available for use without licensing or royalty fees. This reformulated diesel fuel patent resulted from research conducted by the U.S. Department of Energy, Oak Ridge National Laboratory and its subcontractors. "DOE's personnel continue to bring to the forefront technologies and

116

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

117

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

118

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

SciTech Connect (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

119

Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel  

Science Journals Connector (OSTI)

Abstract The diesel/methanol dual fuel (DMDF) combustion mode was conducted on a turbo-charged, inter-cooling diesel engine with 6-cylinder for the heavy duty (HD) vehicle. In DMDF mode, methanol is injected into the intake port to form lean air/methanol premixed mixture, and then ignited by the direct-injected diesel fuel in cylinder. This study is aimed to investigate the effect of diesel injection pressure on the characteristics of performance and exhaust emissions from the engine with common-rail fuel system. The experimental results show that at low injection pressure, the IMEP of DMDF mode is lower than that of pure diesel combustion (D) mode. COVIEMP of DMDF mode firstly decreases and then increases with increasing injection pressure, and it remains under 2.1% for all the tests. It is found that the combustion duration in DMDF mode becomes shorter, the maximum cylinder pressure and the peak heat release rate increase, and CA50 gets close to the top dead center as the injection pressure increases. BSFC of DMDF mode decreases with the increase of injection pressure, and is lower than that of D mode for injection pressure over 115 MPa. Both of NOX and smoke emissions are reduced in DMDF mode. But smoke decreases and NOX increases as the diesel injection pressure increases in DMDF mode. DMDF generates lower NO and CO2 emissions, while produces higher HC, CO, andNO2 emissions compared to D mode. As the diesel injection pressure increases, CO and HC emissions are decreased, however, CO2 and NO2 emissions are slightly increased.

Junheng Liu; Anren Yao; Chunde Yao

2015-01-01T23:59:59.000Z

120

A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas  

Science Journals Connector (OSTI)

This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid Wind–Diesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this study’s strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

Tammam Basbous; Rafic Younes; Adrian Ilinca; Jean Perron

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts  

Broader source: Energy.gov (indexed) [DOE]

Fuel Metal Impurities on Diesel Exhaust Catalysts Aaron Williams, Jonathan Burton, Robert McCormick National Renewable Energy Laboratory Todd Toops, Michael Lance, Andrew...

122

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

123

Fueling U.S. Light Duty Diesel Vehicles  

Broader source: Energy.gov (indexed) [DOE]

U.S. Light Duty Diesel Vehicles DEER Conference August 23, 2005 Joe Kaufman Manager, Fuel & Vehicle Trends ConocoPhillips NYSE: COP Core Activities * Petroleum & natural gas...

124

Emulsified fuel testing in a medium speed diesel engine. Final report Feb 81-Apr 82  

SciTech Connect (OSTI)

Medium-speed diesel engine testing of fuel-water emulsification with various grades of diesel fuel was conducted in order to determine the effect of water emulsification on engine performance. Emulsions from 0 to 12% water (by volume) were test run with various water particle sizes, injection timings, and engine loads with four separate fuels: Marine diesel, 1500 SR1, 3500 SR1, and 5000 SR1. Experimental results are presented for the basic engine performance areas for the various conditions run, focusing mainly on the effects of water emulsification on fuel consumption, exhaust emissions, and engine component wear rates. Details of the emulsification system are also discussed.

Barich, J.J.; Hinrichs, T.L.; Pearce, K.R.

1982-06-01T23:59:59.000Z

125

Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel  

Broader source: Energy.gov [DOE]

This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine.

126

Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels  

Science Journals Connector (OSTI)

Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels ... The characteristic variations of exhaust particles were investigated on a light-duty diesel engine. ... This study was conducted on a 2005 model-year light-duty diesel engine that meets Chinese national stage III emission standards (equivalent to Euro III emission standards) without any exhaust control device. ...

Zhen Xu; Xinling Li; Chun Guan; Zhen Huang

2013-12-02T23:59:59.000Z

127

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

fact that the diesel engines fuel consumption and emissionsDiesel Modal Emissions and Fuel Consumption Model Connection to engineDiesel Modal Emissions and Fuel Consumption Model unit; 5) engine-

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

128

Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Rhodia Electronics and Catalysis

129

FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL  

SciTech Connect (OSTI)

This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

2003-08-24T23:59:59.000Z

130

Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report  

SciTech Connect (OSTI)

The original plan for the project involved design modifications to an existing system to enhance its performance and increase the limit of power that was achieved by the original design and to apply the higher performance product to the full sized engine and test its performance. The new system would also be applied to a different engine model. The specific work would include the redesign of gas injectors, piston configurations and two types of igniters, engine instrumentation, monitoring and testing.

NONE

1998-07-16T23:59:59.000Z

131

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

132

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

133

Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with Diesel?Diethyl Adipate Blends  

Science Journals Connector (OSTI)

The advantage of a diesel engine compared with a gasoline engine is the fuel economy benefits; however, the high NOx and smoke emissions still remain the main obstacles for the increasing application of diesel engines with the increasing concerns for environmental protection and implementation of more stringent exhaust gas regulations, thus further reduction in engine emissions becomes one of major tasks in engine development. ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental change in combustion systems. ... Murayama, T.; Zheng, M.; Chikahisa, T. Simultaneous reduction of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate; SAE paper 952518, Society of Automotive Engineers:? Warrendale, PA, 1995. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-04-19T23:59:59.000Z

134

Coal-fueled diesels for modular power generation  

SciTech Connect (OSTI)

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

135

U.S. diesel fuel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

7, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.64 a gallon on Monday. That's down 2.1 cents from a week...

136

U.S. diesel fuel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.66 a gallon on Monday. That's down 4.2 cents from a week...

137

U.S. diesel fuel price hits 2014 low  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

diesel fuel price hits 2014 low The U.S. average retail price for on-highway diesel fuel has fallen to its lowest level so far in 2014 at 3.86 a gallon on Monday. That's down 1.1...

138

U.S. diesel fuel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

2, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.81 a gallon on Monday. That's down 7-tenths of a penny from...

139

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

140

Low Temperature Catalyst for Fuel Injection System  

Broader source: Energy.gov [DOE]

A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ethanol diesel dual fuel clean combustion with FPGA enabled control  

Science Journals Connector (OSTI)

Sophisticated engine controls have progressively become vital enablers for implementing clean and efficient combustion. The low temperature combustion in diesel engines is a viable combustion mode that offers ultra-low nitrogen oxides and dry soot emissions, yet only feasible under tightly controlled operating conditions. In this work, the dual fuel application of ethanol and diesel is studied for clean and efficient combustion. A set of real-time controllers has been configured to control the common-rail pressure and injection events, in concert with the use of two fuels in a high compression ratio diesel engine. An improved control algorithm has been implemented into the field programmable gate array devices to promptly execute the injection commands of the port and direct injection events. Such reliable and prompt control of fuel injection has been identified as critical to safely enable simultaneously low nitrogen oxides and soot combustion, especially when excessive or inadequate rate of exhaust gas recirculation is imminent. High load clean combustion was achieved with the improved control system.

Xiaoye Han; Jimi Tjong; Graham T. Reader; Ming Zheng

2014-01-01T23:59:59.000Z

142

Future Breathing System Requirements for Clean Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Breathing System Requirements for Clean Diesel Engines Future Breathing System Requirements for Clean Diesel Engines Poster presentation at the 2007 Diesel Engine-Efficiency &...

143

An Improvement of Diesel PM and NOx Reduction System | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions...

144

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect (OSTI)

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

145

Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel  

DOE Patents [OSTI]

Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

2002-06-04T23:59:59.000Z

146

Combined Numerical-experimental Study of Dual Fuel Diesel Engine  

Science Journals Connector (OSTI)

Abstract In the present paper the authors discuss the effect of different fuel ratios on the performance and emission levels of a common rail diesel engine supplied with natural gas and diesel oil. Dual fuel operation is characterized by a diesel pilot injection to start combustion in an intake port premixed NG/air mixture. The combined numerical – experimental study of the dual fuel diesel engine that is carried out in this paper aims at the evaluation of the CFD potential to predict the main features of this particular engine operation. The experimental investigations represent a tool for validating such a potential and for highlighting, at the same time, the major problems that arise from the actual engine operation with different NG / diesel oil fuel ratios.

Carmelina Abagnale; Maria Cristina Cameretti; Luigi De Simio; Michele Gambino; Sabatino Iannaccone; Raffaele Tuccillo

2014-01-01T23:59:59.000Z

147

Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration  

E-Print Network [OSTI]

1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

Boyer, Edmond

148

System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine  

Broader source: Energy.gov [DOE]

The objective of the current research is to assess differences in NOx emissions between biodiesel and petroleum diesel fuels, resulting from fundamental issues and system-response issues.

149

Advanced Diesel Common Rail Injection System for Future Emission Legislation  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

150

Performance and emissions of a dual fuel operated diesel engine  

Science Journals Connector (OSTI)

Vegetable oil and its esters (biodiesel) are the renewable alternative fuels that can be used as a substitute for diesel in the diesel engines. The vegetable oil fuelled diesel engine results in lower efficiency and higher smoke emission. Hence in this work, an attempt has been made to use inedible and under utilised mahua oil (MO) as a substitute for diesel by fumigating liquefied petroleum gas (LPG) along with the air. A single cylinder diesel engine was modified to work in dual fuel mode by suitable retrofitting. The MO was injected into the cylinder using a fuel pump and LPG was fumigated along with the air. In MO + LPG dual fuel mode, 9% increase in brake thermal efficiency and 35% reduction in smoke emission of the engine were observed as compared to the sole fuel mode with MO. Also, the engine performance characteristics in MO + LPG dual fuel mode are close to sole fuel mode with diesel. From this work, it is concluded that LPG can be fumigated along with the air to increase the performance of MO fuelled agricultural diesel engine.

N. Kapilan; R.P. Reddy

2012-01-01T23:59:59.000Z

151

Performance and Emissions of Direct Injection Diesel Engine Fueled with Diesel Fuel Containing Dissolved Methane  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China ... soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solns., one of which is the use of a gaseous fuel as a partial supplement for liq. ... (16)?Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill:? New York, 1988. ...

Junqiang Zhang; Deming Jiang; Zuohua Huang; Xibin Wang; Qi Wei

2006-01-19T23:59:59.000Z

152

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel  

Science Journals Connector (OSTI)

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel ... Recently, the use of diesel engines has increased by virtue of their low fuel consumption and high efficiencies. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Mustafa Canakci; Cenk Sayin; Ahmet Necati Ozsezen; Ali Turkcan

2009-05-04T23:59:59.000Z

153

Correlations of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties  

Science Journals Connector (OSTI)

Department of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece ... The amount of pollutants emitted from diesel engines is affected by both the engine and the fuel quality. ...

D. Karonis; E. Lois; S. Stournas; F. Zannikos

1998-02-14T23:59:59.000Z

154

Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol  

Science Journals Connector (OSTI)

Some of the diesel fuel properties were obtained from fuel certification tests conducted by the Alberta Research Council and established by the American Society for Testing and Materials, and the remainder are reported general properties. ... Clucas, D. M.Development of a Stirling engine battery charger based on a low cost wobble mechanism, Ph.D. Thesis, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 1993. ... investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' lab., which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. ...

Nicolas Farra; Tommy Tzanetakis; Murray J. Thomson

2012-01-27T23:59:59.000Z

155

Fuel consumption and emissions of hybrid diesel applications  

Science Journals Connector (OSTI)

GM Powertrain Europe and the Politecnico di Torino have experimentally assessed the potentialities in terms of fuel consumption reduction and the challenges in terms of ... 1.9 l four-cylinder in-line diesel engine

Prof.-Dr. Andrea Emilio Catania; Prof.-Dr. Ezio Spessa…

2008-12-01T23:59:59.000Z

156

Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions...  

Broader source: Energy.gov (indexed) [DOE]

5 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerbonadies.pdf More Documents & Publications Application of a Diesel Fuel...

157

Adhesion of Acinetobacter venetianus to Diesel Fuel Droplets Studied with In Situ Electrochemical and Molecular Probes  

Science Journals Connector (OSTI)

...and Center for Marine and Environmental...1997), to diesel fuel (a mixture...Italiana) for diesel engine vehicles is composed...liquid medium (marine broth; Difco...on commercial diesel fuel or n-hexadecane...Polarography of marine particles...strains degrading diesel fuel . Ivosevic...

Franco Baldi; Nadica Ivos?evi?; Andrea Minacci; Milva Pepi; Renato Fani; Vesna Svetlic?i?; Vera Z?uti?

1999-05-01T23:59:59.000Z

158

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect (OSTI)

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

159

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings  

Science Journals Connector (OSTI)

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings ... Because of their fuel economy and high reliability, compression-ignition (CI) engines known as diesel engines have been penetrating a number of markets around the world. ...

Mustafa Canakci; Cenk Sayin; Metin Gumus

2008-09-27T23:59:59.000Z

160

Thermal stability of diesel fuels by quantitative gravimetric JFTOT  

SciTech Connect (OSTI)

The current worldwide standard test method for assessing thermal stability of jet turbine aviation fuels is the ASTM D3241 method. This method generates a visual tube deposit rating which is not quantitative, but assumes that very dark colors equate to unstable fuels. The tube rating is coded against color standards and the darkest color is usually said to fail a fuel for use in jet turbine engines/fuel systems. The method also generates a semi-quantitative filter pressure drop. The pressure drop is so semi-quantitative that it also is afforded a pass/fail criterion for fuel acceptance in jet aircraft. In 1991, we described the construction of a test device which duplicated all of the experimentally important parameters of the D3241 method but which substituted a weighable 302 stainless steel (s/s) foil strip for the bulky tube, so that direct weighing of thermal surface deposits could be made. In addition, the nominal 17 micron (dutch weave) s/s filter of the D3241 was substituted with a nylon membrane 0.8 micron filter which was also capable of direct weighing of the fuel entrained solids generated by the test. In subsequent papers, the use of this device for generating a large data base of results based on aviation fuels from many different refinery processes and many different geographic/crude sources was described. In addition this new device, dubbed the gravimetric jet fuel total oxidation tester (JFTOT) after the original ASTM D3241 device, was also used to assess quantitatively the effects of temperature, pressure, and fuel flow in addition to the effects of dissolved metals and various fuel additives. This paper describes the JFTOT test for the analysis of middle distillate diesel fuels.

Beal, E.J.; Hardy, D.R. [Naval Research Laboratory, Washington, DC (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of Diesel Engine Cold-Start Performance: Definition of a Grading System To Assess the Impact of Fuel  

Science Journals Connector (OSTI)

In general, the term biodiesel covers a variety of materials made from vegetable oils or animal fats. ... Thus, with optimized settings (Figure 7), it is possible to obtain the same performance for conventional diesels and blends with biodiesel. ... Körfer, T.; Lamping, M.; Rohs, H.; Adolph, D.; Pischinger, S.; Wix, K.The future power density of HSDI diesel engines with lowest engine out emissions—A key element for upcoming CO2 demands. ...

L. Starck; H. Perrin; B. Walter; N. Jeuland

2011-09-22T23:59:59.000Z

162

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

163

Reducing Emissions of Persistent Organic Pollutants from a Diesel Engine by Fueling with Water-Containing Butanol Diesel Blends  

Science Journals Connector (OSTI)

An increasing energy demand and environmental pollution has motivated a search for bio-fuels, such as bio-diesels(1, 2) and bio-alcohols,(3, 4) that can be used as alternative fuels for diesel engines. ... In general, both bio-diesel and bio-alcohols, such as ethanol and butanol, have the advantages of higher brake thermal efficiency (BTE) and lower emissions of particulate matter (PM), carbon monoxide (CO) and hydrocarbons (HC). ... Diesel Engine and Test Cycle ...

Yu-Cheng Chang; Wen-Jhy Lee; Hsi-Hsien Yang; Lin-Chi Wang; Jau-Huai Lu; Ying I. Tsai; Man-Ting Cheng; Li-Hao Young; Chia-Jui Chiang

2014-04-16T23:59:59.000Z

164

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

that the diesel engines fuel consumption and emissions doEmissions and Fuel Consumption Model engine manufacturersEmissions and Fuel Consumption Model Connection to engine

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

165

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Injection Diesel Engine Fuel Consumption”, SAE 971142, 11.engine load, engine speed, and fuel consumption. The tirevehicle speed, engine speed, fuel consumption, engine load,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

166

Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification  

Science Journals Connector (OSTI)

A nonlinear optimization model is developed in this work to analyze biodiesel–ethanol–diesel (BED) ternary blending processes. The model establishes optimal blends to improve the system profitability given production costs, market demand, and fuel prices while meeting multiple property criteria such as kinematic viscosity, density, lower heating value, cloud point, cetane number, fuel stability and sulfur content. Pertinent fuel mixing rules for predicting the fuel properties of BED blends were extrapolated from previous works and applied as constraints to the present model. Several dynamic and/or uncertainty factors were explored in further depth to quantify their impacts on the fuel composition of BED blends including petro-diesel supply reduction, diesel production cost, diesel blends market retail price, and policy changes on bio-fuel subsidies. By examining key optimization sensitivity analysis such as shadow prices and opportunity costs, the crucial limits or constraints on fuel specifications can be identified and used to proactively identify and promote the development of potential additives. The model also suggests the government policy of simultaneously implementing bio-fuel tax credits and mandates may not have a higher contribution to promoting bio-fuel production than the case only with tax credits for the firms with the goal of profit maximization. The firms enable 5–8% increase of the optimal profit from BED blends by utilizing ethanol derived from food waste feedstocks instead of edible biomass.

Jiefeng Lin; Gabrielle Gaustad; Thomas A. Trabold

2013-01-01T23:59:59.000Z

167

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

168

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

169

Thin fuel film reactor testing for characterization of diesel fuel deposit formation  

E-Print Network [OSTI]

The need for specialized diesel fuel injectors is growing with increased efficiency and emissions regulation. These specialized fuel injectors have nozzle diameters of 150-200[mu]m which are susceptible to clogging from ...

Welling, Orian (Orian Z.)

2009-01-01T23:59:59.000Z

170

An Integrated Approach for Creating Model Diesel Fuels  

Science Journals Connector (OSTI)

An Integrated Approach for Creating Model Diesel Fuels ... There is growing recognition that the optimal fuel properties (i) are dependent on the engine operating conditions and (ii) can be different for different parts of the drive cycle. ... The total solution to this problem belongs to the general and very difficult class of mixed-integer nonlinear problems (MINLP). ...

Ioannis P. Androulakis; Mark D. Weisel; Chang S. Hsu; Kuangnan Qian; Larry A. Green; John T. Farrell; Kiyomi Nakakita

2004-11-19T23:59:59.000Z

171

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect (OSTI)

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

172

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31T23:59:59.000Z

173

An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel  

Science Journals Connector (OSTI)

Abstract This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P engine power, torque and specific fuel consumption. The mean values of engine power were increased in the range of 59.14–69.5 kW with increasing the engine speed. The engine power did not show significant difference for all the fuel blends except for the D65B25E10, 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P engine speed ranged from 1600 to 2000 rpm. The engine specific fuel consumption was increased significantly when the engine speed ranged from 1900 to 2000 rpm. The engine specific fuel consumption was greater for all the fuel blends when compared to neat diesel fuel. The D93B5E2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D86B10E4 and D79B15E6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application.

Seyed Reza Hassan-beygi; Vahideh Istan; Barat Ghobadian; Mohammad Aboonajmi

2013-01-01T23:59:59.000Z

174

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

175

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration...

176

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

SCR on Diesel Particulate Filter System for Heavy Duty Applications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Evaluation of a system...

177

Marathon Sees Diesel Fuel in Future  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

178

Advanced Research in Diesel Fuel Sprays Using X-rays from the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER...

179

Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions  

Broader source: Energy.gov (indexed) [DOE]

of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions APPROACH On-board diesel fuel reformation is being evaluated as an alternative to urea SCR to meet Tier 2 Bin 5 emissions...

180

U.S. diesel fuel price falls to lowest level since July 2012  

U.S. Energy Information Administration (EIA) Indexed Site

diesel fuel price falls to lowest level since July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest point since July 2012 at 3.80 a gallon on...

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. diesel fuel price shows no movement from a week ago  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

diesel fuel price shows no movement from a week ago The U.S. average retail price for on-highway diesel fuel showed no movement from a week ago. The average price remained flat at...

182

The U.S. average retail price for on-highway diesel fuel rose...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's...

183

Renewable Diesel Fuels: Status of Technology and R&D Needs |...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Diesel Fuels: Status of Technology and R&D Needs Renewable Diesel Fuels: Status of Technology and R&D Needs 2002 DEER Conference Presentation: National Renewable Energy...

184

Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)  

Reports and Publications (EIA)

On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

2006-01-01T23:59:59.000Z

185

Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine  

Science Journals Connector (OSTI)

Abstract This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (?th) are found to have maximum values under these conditions. The emission CO2 was found to increase with engine speed and to decrease with water content. \\{NOx\\} produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases.

Ali Alahmer

2013-01-01T23:59:59.000Z

186

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Diesel Engines Using Four Fuels,” Southwest Research Institute, 25. J.B.Heywood, “Internal Combustion Engine Fundamentals”,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

187

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect (OSTI)

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

188

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating  

Science Journals Connector (OSTI)

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating ... Exhaust gas emissions from diesel engines have become a serious problem to the researchers; therefore, a method of reduction of gas emission is needed. ... Their results show that the engine can achieve ultra-low emission without fundamental change to the combustion system. ...

P. Ramu; C. G. Saravanan

2009-01-07T23:59:59.000Z

189

Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

190

Experimental Studies for DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

191

Adhesion of Acinetobacter venetianus to Diesel Fuel Droplets Studied with In Situ Electrochemical and Molecular Probes  

Science Journals Connector (OSTI)

...containing 2 g of diesel fuel liter1. Aliquots (3...on commercial diesel fuel or n-hexadecane (99...saturated, and the measuring vessel was open to the air throughout...the presence of diesel fuel as the sole carbon and...Fig. A). The O2 consumption rate increased to about...

Franco Baldi; Nadica Ivos?evi?; Andrea Minacci; Milva Pepi; Renato Fani; Vesna Svetlic?i?; Vera Z?uti?

1999-05-01T23:59:59.000Z

192

Role of Hydrogen Peroxide in a Selected Emulsified Fuel Ratio and Comparing It to Diesel Fuel  

Science Journals Connector (OSTI)

(9) At higher load conditions, the brake thermal efficiency slightly increases for the hydrogen-peroxide-added emulsified fuel than for the remaining two fuels. ... Reduction of NOx, smoke, BSFC, and maximum combustion pressure by low compression ratios in a diesel engine fueled by emulsified fuel. ...

M. P. Ashok; C. G. Saravanan

2008-05-03T23:59:59.000Z

193

Chemical factors affecting insolubles formation in shale derived diesel fuel  

SciTech Connect (OSTI)

Detrimental changes in fuel properties with time have been a continuing problem in the use of middle distillate fuels. Instability of diesel fuels is usually defined by the formation of insoluble sediments and gums. Gravimetric stability tests have been conducted at 43/sup 0/ and 80/sup 0/C, respectively, using three model nitrogen heterocycles, 2-methylpyridine, 2,6-di methyl quinoline, and dodecahydrocarbazole, as dopants in an otherwise stable shale diesel fuel. Potential interactive effects have been defined for these three model nitrogen heterocycles in the stable fuel in the presence of a second model dopant, t-butyl hydroperoxide. 2-Methyl pyridine and 2,6-dimethyl quinoline were inactive and only 2-methyl pyridine showed slight positive interactive effects. Dodecahydrocarbazole formed large amounts of insolubles by itself and exhibited positive interactive effects.

Beal, E.J.; Mushrush, G.W.; Cooney, J.V. (Fuels Section, Code 6180 Naval Research Lab., Washington, DC (US)); Watkins, J.M. (Geo-Centers, Ft. Washington, MD (US))

1989-01-01T23:59:59.000Z

194

Simplification of Diesel Emission Control System Packaging Using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

195

Modeling of Diesel Exhaust Systems: A methodology to better simulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

196

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

197

Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures  

Science Journals Connector (OSTI)

In recent years, ester-based oxygenated fuels have been used in compression ignition engines in pure form or as an addition to diesel fuel. ... In hydrocarbon steam reforming (SR), high-temperature steam separates hydrogen from carbon atoms. ...

A. Tsolakis; A. Megaritis; M. L. Wyszynski

2003-09-19T23:59:59.000Z

198

Novel injector techniques for coal-fueled diesel engines. Final report  

SciTech Connect (OSTI)

This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

199

Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Diesel Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on AddThis.com... More in this section... Federal

200

Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel Versus Petroleum Diesel  

E-Print Network [OSTI]

Versus Petroleum Diesel By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction-world in-use on-road emissions of selected diesel vehicles, fueled with B20 biodiesel and petroleum diesel was tested for one day on B20 biodiesel and for one day on petroleum diesel. On average, there were 4.5 duty

Frey, H. Christopher

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"U.S. On-Highway Diesel Fuel Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

On-Highway Diesel Fuel Prices" On-Highway Diesel Fuel Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","W Diesel Prices - All Types",11,"Weekly","12/16/2013","3/21/1994" ,"Data 2","M Diesel Prices - All Types",11,"Monthly","11/2013","3/15/1994" ,"Data 3","W Diesel Prices-Low ",1,"Weekly","12/1/2008","2/5/2007" ,"Data 4","M Diesel Prices-Low ",1,"Monthly","12/2008","2/15/2007" ,"Data 5","W Diesel Prices-Ultra-Low",11,"Weekly","12/16/2013","2/5/2007"

202

Effect of Bioethanol Blended Diesel Fuel and Engine Load on Spray, Combustion, and Emissions Characteristics in a Compression Ignition Engine  

Science Journals Connector (OSTI)

Yan et al.(8) investigated the combustion and emission characteristics of diesel engines fueled with ethanol–diesel blended fuel in a single cylinder diesel engine. ... Figure 11 shows the indicated specific fuel consumption (ISFC) characteristics of diesel–bioethanol blended fuels at various engine loads. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Su Han Park; In Mo Youn; Yunsung Lim; Chang Sik Lee

2012-07-03T23:59:59.000Z

203

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

204

U.S. diesel fuel price continues to decrease  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. average retail price for on-highway diesel fuel fell to 3.21 a gallon on Monday. That's down 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy...

205

U.S. diesel fuel price continues to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. average retail price for on-highway diesel fuel fell to 3.05 a gallon on Monday. That's down 8.4 cents from a week ago, based on the weekly price survey by the U.S. Energy...

206

U.S. diesel fuel prices continue to decrease  

Gasoline and Diesel Fuel Update (EIA)

U.S. average retail price for on-highway diesel fuel fell to 3.61 a gallon on Monday. That's down 2.3 cents from a week ago, based on the weekly price survey by the U.S. Energy...

207

U.S. diesel fuel prices continue to decrease  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. average retail price for on-highway diesel fuel fell to 3.54 a gallon on Monday. That's down 7 cents from a week ago, based on the weekly price survey by the U.S. Energy...

208

U.S. diesel fuel price continues to decrease  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. average retail price for on-highway diesel fuel fell to 3.14 a gallon on Monday. That's down 7.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

209

U.S. diesel fuel prices continue to decrease  

Gasoline and Diesel Fuel Update (EIA)

U.S. average retail price for on-highway diesel fuel fell to 3.63 a gallon on Monday. That's down 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy...

210

A diesel engine study of conventional and alternative diesel and jet fuels: Ignition and emissions characteristics  

Science Journals Connector (OSTI)

Abstract Measurements of ignition delay, CO and NO emissions, and fuel consumption were carried out in a light-duty single-cylinder direct-injection diesel engine for operation with petroleum and alternative hydroprocessed and Fischer–Tropsch diesel and jet fuels. Ignition measurements carried out for a fixed engine speed and injection timing quantify the decrease in in-cylinder ignition delay with increasing derived cetane number (DCN) over a range of DCN relevant to diesel engine operation (DCN = 40–80) and show no discernible dependence of ignition delay on other fuel properties. Brake specific fuel consumption (BSFC) was found to decrease with increasing DCN with strong correlation due to a reduction in ignition time for fixed-injection-timed operation. Brake specific CO emissions were also found to decrease with increasing DCN due to increased time provided for CO burn out due to earlier ignition. Brake specific NO emissions were found to decrease with increasing hydrogen-to-carbon (H/C) ratio, due to the lower peak combustion temperatures and thermal \\{NOx\\} occurring for fuels with higher H/C.

Sandeep Gowdagiri; Xander M. Cesari; Mingdi Huang; Matthew A. Oehlschlaeger

2014-01-01T23:59:59.000Z

211

Fast start-up of a diesel fuel processor for PEM fuel cells  

Science Journals Connector (OSTI)

Abstract Fuel cell systems based on liquid fuels are particularly suitable for auxiliary power generation due to the high energy density of the fuel and its easy storage. Together with industrial partners, Oel-Waerme-Institut is developing a 3 kWel PEM fuel cell system based on diesel steam reforming to be applied as an APU for caravans and yachts. The start-up time of a fuel cell APU is of crucial importance since a buffer battery has to supply electric power until the system is ready to take over. Therefore, the start-up time directly affects the battery capacity and consequently the system size, weight, and cost. In the presented work a novel start-up strategy for the steam reforming fuel processor is introduced. The new approach includes the reactive heating of WGS reactors by using reformate from oxidative steam reforming (OSR) instead of the sequential heating of the fuel processor. The start-up procedure is demonstrated on a 10 kW steam reformer and a parameter study is carried out. Subsequently, the new procedure is tested on the complete fuel processor. Here, the OSR operation starts after 15:20 min and provides reformate for reactive heating of the WGS reactors. Steam reforming operation can be started after 23:40 min, which is 9 min earlier than applying sequential heating of the fuel processor. Until SR operation, the total energy consumption sums up to up to 5.9 MJ fuel and 13 Ah (12 V) electric energy.

Marius Maximini; Philip Engelhardt; Martin Brenner; Frank Beckmann; Oliver Moritz

2014-01-01T23:59:59.000Z

212

Fuel effects on flame lift-off under diesel conditions  

SciTech Connect (OSTI)

An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

2011-01-15T23:59:59.000Z

213

Effect of biodiesel fuels on diesel engine emissions  

Science Journals Connector (OSTI)

The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.

Magín Lapuerta; Octavio Armas; José Rodríguez-Fernández

2008-01-01T23:59:59.000Z

214

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

215

Adhesion of Acinetobacter venetianus to Diesel Fuel Droplets Studied with In Situ Electrochemical and Molecular Probes  

Science Journals Connector (OSTI)

...energy source. The diesel fuel (Esso Italiana) for diesel engine vehicles is composed of a mixture...5 mm2 s1 at 40C (). The diesel fuel was filtered through a 0...6-diamidino-2-phenylindole) staining (). O2 consumption rates. The strains were grown...

Franco Baldi; Nadica Ivos?evi?; Andrea Minacci; Milva Pepi; Renato Fani; Vesna Svetlic?i?; Vera Z?uti?

1999-05-01T23:59:59.000Z

216

Straight Vegetable Oil as a Diesel Fuel?  

SciTech Connect (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

217

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

218

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

219

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

220

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network [OSTI]

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Usage of Fuel Mixtures Containing Ethanol and Rapeseed Oil Methyl Esters in a Diesel Engine  

Science Journals Connector (OSTI)

However, its use in the diesel engine cycle is hampered by the poor motor-fueling characteristics of lower alcohols and, primarily, the limited solubility of ethanol in fossil diesel fuel and its low self-ignition characteristics. ... Coefficient ? = Gair/(GfL0) estimates air supply into a diesel engine cylinder (indicator process), taking into account the differences of stoichiometric ratio L0 of the tested fuels, caused by the increase of the E portion in the RME?E mixture (Gair is air consumption, and Gf is fuel consumption). ... Future research will concentrate on the analysis of fuel injection and heat release rate characteristics in a cylinder, while a diesel engine is running on biodiesel fuels RME?E, and also on the operational parameters of diesel engines when fossil diesel fuel is replaced with three-component fuels D?RME?E. ...

Sergejus Lebedevas; Galina Lebedeva; Violeta Makareviciene; Prutenis Janulis; Egle Sendzikiene

2008-11-12T23:59:59.000Z

222

Fuel Processor Enabled NOx Adsorber Aftertreatment System for...  

Broader source: Energy.gov (indexed) [DOE]

for Diesel Engine Emissions Control R. Dalla Betta, D. Sheridan, J. Cizeron Catalytica Energy Systems Inc. Mountain View, California 2 Outline Why use a fuel processor for NOx...

223

Mutagenicity of diesel exhaust particle extracts: Influence of non-petroleum fuel extenders  

Science Journals Connector (OSTI)

The mutagenicity of dichloromethane extracts of diesel participate exhaust, collected while the engine was running at steady state on diesel fuel alone was higher than when 10% ... in higher estimates of mutageni...

Charles R. Clark Ph.D.; Roger O. McClellan…

1982-11-01T23:59:59.000Z

224

Assessment of fuel efficiency of neem biodiesel (Azadirachta indica) in a single cylinder diesel engine  

Science Journals Connector (OSTI)

Increase of petroleum diesel usage and its environmental pollution necessitate the study of alternate fuel production. Vegetable oils are the viable alternate form of non-polluted, renewable fuel to diesel engines. In this work, the non-edible oil, neem (Azadirachta indica) was used to produce biodiesel by a two step transesterification process. The fuel properties of the biodiesel thus produced were determined by standard methods. It is further tested in a single cylinder diesel engine by mixing with petroleum diesel in various percentages. The brake thermal efficiency (BTE) and specific fuel consumption (SFC) of the engine running with biodiesel blends (10-50%) were compared with the petroleum diesel. The results have shown that the performance of the diesel engine was similar as that of normal diesel and thus the use of biodiesel in diesel engine is viable.

M. Mathiyazhagan; T. Elango; T. Senthilkumar; A. Ganapathi

2013-01-01T23:59:59.000Z

225

Effect of engine operating parameters and fuel characteristics on diesel engine emissions  

E-Print Network [OSTI]

To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

Acar, Joseph, 1977-

2005-01-01T23:59:59.000Z

226

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions  

Science Journals Connector (OSTI)

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions† ... Hydrogen production via hydrocarbon steam reforming and water gas shift reactions was investigated over a monolith-supported Pt-based diesel oxidation catalyst. ...

Meshari AL-Harbi; Jin-Yong Luo; Robert Hayes; Martin Votsmeier; William S. Epling

2010-12-08T23:59:59.000Z

227

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels  

Science Journals Connector (OSTI)

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels ... The reforming efficiency was dependent on the fuel type and followed the general trend of bioethanol > rapeseed methyl ester > low-sulfur diesel fuel. ... The use of exhaust gas recirculation (EGR) in diesel engines reduces nitrogen oxide (NOx) emissions but results in an increased release of smoke and particulate matter (PM), as well as higher fuel consumption. ...

A. Tsolakis; A. Megaritis; S. E. Golunski

2005-03-10T23:59:59.000Z

228

Advanced Technology Light Duty Diesel Aftertreatment System  

Broader source: Energy.gov [DOE]

Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions

229

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

230

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels  

Science Journals Connector (OSTI)

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels ... Abatement of diesel particulates has led to an overall decrease in the fuel efficiency of diesel engines, and overcoming these losses has been one of the more challenging problems in exhaust aftertreatment. ... (16-18) Establishing a general physical basis for modeling diesel particulate oxidation is especially challenging because of the large variations in microscopic structure that it can have. ...

Andrea Strzelec; Todd J. Toops; C. Stuart Daw

2013-06-10T23:59:59.000Z

231

Development of an ANN based system identification tool to estimate the performance-emission characteristics of a CRDI assisted CNG dual fuel diesel engine  

Science Journals Connector (OSTI)

Abstract In the present study the performance and emission parameters of a single cylinder four-stroke CRDI engine under CNG-diesel dual-fuel mode have been modeled by Artificial Neural Network. An ANN model was developed to predict BSFC, BTE, NOx, PM and HC based on the experimental data, with load, fuel injection pressure and CNG energy share as input parameters for the network. The developed ANN model was capable of predicting the performance and emission parameters with commendable accuracy as observed from correlation coefficients within the range of 0.99833–0.99999, mean absolute percentage error in the range of 0.045–1.66% along with noticeably low root mean square errors provided an acceptable index of the robustness of the predicted accuracy.

Sumit Roy; Rahul Banerjee; Ajoy Kumar Das; Probir Kumar Bose

2014-01-01T23:59:59.000Z

232

A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control  

Broader source: Energy.gov [DOE]

Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

233

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

234

Shaping of fuel delivery characteristics for solenoid operated diesel engine gaseous injectors  

SciTech Connect (OSTI)

Solenoid operated gaseous injectors, when compared to conventional liquid fuel diesel injectors, differ in the way the fuel dose and its discharge rate are controlled. While in conventional diesel systems, the fuel dose and its injection rate depends on the fuel injection pump effective stroke and on the plunger diameter and velocity, the solenoid injectors operate in an on-off manner which limits the ability to control the gas discharge rate, resulting in its profile to be basically rectangular in shape. To reduce the gas injection rate at the beginning of the injection process in order to suppress the diesel-knock phenomenon, similar procedures as used in diesel engines could be implemented. One such approach is to use a throttling type pintle nozzle, and another method is to use a double-spring injector with a hole nozzle. The rationale for using such nozzle configurations is that gaseous fuels do not require atomization, and therefore, can be injected at lower discharge velocities than with liquid fuels. The gas delivery characteristics from a solenoid injector has been computer-simulated in order to assess the impact of the investigated three modes of fuel discharge rate control strategies. The simulation results confirmed that the gas dose and its discharge rate can be shaped as required. An experimental set-up is described to measure the gas discharge rate using a special gas injection mass flow rate indicator with a strain-gage sensor installed at the entry to a long tube, similar to that proposed by Bosch for liquid fuel volumetric flow rate measurements.

Hong, H.; Krepec, T.; Kekedjian, H.

1996-09-01T23:59:59.000Z

235

Formulation and Combustion of Glycerol–Diesel Fuel Emulsions  

Science Journals Connector (OSTI)

Formulation and Combustion of Glycerol–Diesel Fuel Emulsions ... (4) In most large-scale biodiesel operations, the glycerol is purified and released to market as any number of purified products ranging from crude (50–85% purity) to United States Pharmacopeia (USP) (96–99.8% ... Therefore, purification of glycerol remains an active field of industrial research, and producers continue to seek high-volume markets to unload their products. ...

Scott J. Eaton; George N. Harakas; Richard W. Kimball; Jennifer A. Smith; Kira A. Pilot; Mitch T. Kuflik; Jeremy M. Bullard

2014-05-13T23:59:59.000Z

236

Fabrication of small-orifice fuel injectors for diesel engines.  

SciTech Connect (OSTI)

Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

Woodford, J. B.; Fenske, G. R.

2005-04-08T23:59:59.000Z

237

Performance and Emission Characteristics of Diesel Engines Fueled with Diesel?Dimethoxymethane (DMM) Blends  

Science Journals Connector (OSTI)

Although application of high-pressure injection and common rail system can reduce both NOx and PM emissions, the expense is also very high and unaffordable for many engine producers and consumers, especially for diesel engines widely applied for agricultural machinery, most of which are single-cylinder and of low price. ... Fleisch et al.,(2) Kapus and Ofner,(3) and Sorenson and Mikkelsen(4) have studied DME in a modified diesel engine, and their results showed that the engine could meet ultra-low emission levels without a fundamental change in the combustion systems. ... Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, 1988. ...

Ruijun Zhu; Xibin Wang; Haiyan Miao; Zuohua Huang; Jing Gao; Deming Jiang

2008-11-14T23:59:59.000Z

238

Multifunctional Diesel Fuel Additives from Triglycerides  

Science Journals Connector (OSTI)

Add to ACS ChemWorx ... A US1D test fuel (same as Table 3) was used with 10% ethanol added to lower the cetane number to additives was added to the low cetane fuel to evaluate the impact of the additive. ... In practice, decomposition exotherms for EHN and BK1P41 would both be lower than the DSC exotherms since heat removal capability and free radical?wall effects will impact decomposition temperatures. ...

G. J. Suppes; M. Goff; M. L. Burkhart; K. Bockwinkel; M. H. Mason; J. B. Botts; J. A. Heppert

2000-12-09T23:59:59.000Z

239

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

240

Dual-fuel natural gas/diesel engines: Technology, performance, and emissions. Topical report, February 1993-November 1994  

SciTech Connect (OSTI)

An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NOx and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

Turner, S.H.; Weaver, C.S.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development and Validation of a NOx Emission Testing Setup for a Diesel Engine, Fueled with Bio-Diesel.  

E-Print Network [OSTI]

??The increasing concerns related to long term availability of petroleum-based fuels and the emissions from diesel-powered vehicles have given rise to a growing search for… (more)

Kohli, Dhruv

2009-01-01T23:59:59.000Z

242

EXPERIMENTAL STUDY OF USING EMULSIFIED DIESEL FUEL ON THE PERFORMANCE AND POLLUTANTS EMITTED FROM FOUR STROKE WATER COOLED DIESEL ENGINE  

Science Journals Connector (OSTI)

A water?cooled four stroke four cylinder direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0% 5% 10% 15% 20% 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that in general using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm the torque the BMEP and efficiency are found to have maximum values under these conditions. CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

A. Sakhrieh; R. H. Fouad; J. A. Yamin

2009-01-01T23:59:59.000Z

243

Fuel consumption improvement for diesel engines by means of a computer-assisted automatic mapping optimization system Part 1  

Science Journals Connector (OSTI)

The Company ElringKlinger Motortechnik GmbH is carrying out engine development projects with a computer assisted System for mapping optimization which finds an optimum engine calibration using special mathematica...

Rainer Steinbrink; Gerald Eifler; Dietmar Ueberschär; Jürgen Kopp

2002-11-01T23:59:59.000Z

244

Fuel consumption improvement for series diesel engines by means of a computer-assisted automatic mapping optimization system Part 2  

Science Journals Connector (OSTI)

The Company ElringKlinger Motortechnik GmbH is carrying out engine development projects with a computer assisted System for mapping optimization which finds an optimum engine calibration using special mathematica...

Gerald Eifler; Rainer Steinbrink; Dietmar Ueberschär; Jürgen Kopp

2002-12-01T23:59:59.000Z

245

Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap„Precision Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Water-Neutral Diesel Fuel Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap-Precision Combustion Background Solid-Oxide Fuel Cell (SOFC) technology for auxiliary power units (APUs) offers the potential for major contributions toward Department of Energy (DOE) objectives such as clean energy deployment and improved efficiency. Reforming of conventional liquid fuels to produce synthesis gas (syngas) fuel for SOFC stacks is a practical approach for operating fuel cell APUs

246

Effect of Oxygenated Fuel on Combustion and Emissions in a Light-Duty Turbo Diesel Engine  

Science Journals Connector (OSTI)

The influence of fuel oxygen content on soot reduction in diesel engines is well-known. ... Fuel consumption was determined by weighing the fuel at the beginning and end of each test mode or each fuel blend through a Sartorius precision scale, with an accuracy of ±2 g. ... studies on effects of oxygenated fuels in conjunction with single and split fuel injections were conducted at high and low loads on a Caterpillar SCOTE DI diesel engine. ...

Juhun Song; Kraipat Cheenkachorn; Jinguo Wang; Joseph Perez; André L. Boehman; Philip John Young; Francis J. Waller

2002-01-15T23:59:59.000Z

247

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

248

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

249

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02anitescu.pdf More Documents & Publications...

250

Performance and Emissions of a Compression Ignition Engine Fueled with Diesel/Oxygenate Blends for Various Fuel Delivery Advance Angles  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus and Ofner,2 and Sorenson and Mikkelsen3 have studied dimethyl ether (DME) in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Although some previous work has revealed the characteristics of diesel/ethanol blends in a compression ignition engine (Satge de Caro et al.,14 Ali et al.15), there, however, is still much work that needs to be done in regard to the application of diesel/methanol blends in compression ignition engines, especially in clarifying the basic combustion and emission. ...

Zuohua Huang; Hongbing Lu; Deming Jiang; Ke Zeng; Bing Liu; Junqiang Zhang; Xibin Wang

2005-02-02T23:59:59.000Z

251

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Journals Connector (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

252

Effects of Fuel Sulfur Content and Diesel Oxidation Catalyst on PM Emitted from Light-Duty Diesel Engine  

Science Journals Connector (OSTI)

This work aims at the particle number concentrations and size distributions, sulfate and trace metals emitted from a diesel engine fueled with three different sulfur content fuels, operating with and without DOC. ... Figure 2. Sulfate emission rate and fuel consumption as a function of sulfur content at engine speed of 2690 rpm. ... Thus, the use of low metal fuels and lubricating oil is as important to the environment and human health as low sulfur fuels, especially for engines with after-treatment devices. ...

Hong Zhao; Yunshan Ge; Xiaochen Wang; Jianwei Tan; Aijuan Wang; Kewei You

2010-01-05T23:59:59.000Z

253

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

254

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

255

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Petroleum Marketing Annual 1995 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

256

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration  

Broader source: Energy.gov [DOE]

Learn how a new clean diesel engine could improve the fuel economy of full-sized pickup trucks by 40 percent while meeting new emissions standards.

257

Diesel pollution. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered. (Contains a minimum of 194 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

258

Diesel pollution. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered. (Contains a minimum of 176 citations and includes a subject term index and title list.)

Not Available

1993-03-01T23:59:59.000Z

259

Diesel pollution. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

260

Diesel pollution. (Latest citations from Pollution abstracts). NewSearch  

SciTech Connect (OSTI)

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered. (Contains a minimum of 217 citations and includes a subject term index and title list.)

Not Available

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 2, January 1--March 31, 1997  

SciTech Connect (OSTI)

Energy Conversions Incorporated has continued to work on the EMD-710 dual-fuel test cell in the second quarter of the project. The project is on schedule and is sticking to their original timeline. The tasks performed and percent complete are spark prechamber work--50% done; diesel prechamber work--50% done; gas compressor--100% complete; port injection work--50% complete; hydraulic gas inlet valve work--30% complete; knock board modifications--75% complete; test documentation--50% complete; record data from navy generator and offshore rigs--50% complete and single cylinder testing--50% complete. The authors continued to do much of their parts testing on single cylinder gas operation. The single cylinder testing will likely continue throughout the 710 development.

NONE

1997-04-11T23:59:59.000Z

262

Automated Fuel Dispensing System Form Instructions  

E-Print Network [OSTI]

Automated Fuel Dispensing System Form Instructions If additional forms are necessary to provide(s) are hired and will be obtaining fuel, an Add Driver Form MUST be submitted for entry into the web database and/or diesel fuel to operate. Note: When a new vehicle, golf cart (gasoline), etc., is placed

Fernandez, Eduardo

263

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

SciTech Connect (OSTI)

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

264

Evaluation of Fuel Properties of Butanol?Biodiesel?Diesel Blends and Their Impact on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Values of specific fuel consumption of engine when fueled with different blends and pure diesel at different speeds are shown in Figure 4. ... Chandra, R.; Kumar, R. Fuel properties of some stable alcohol?diesel microemulsions for their use in compression ignition engines Energy Fuels 2007, 21, 3410– 3414 ... Liu, B.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K. Combustion and emissions of a DI diesel engine fuelled with diesel?oxygenate blends Fuel 2008, 87, 2691– 2697 ...

Rakhi N. Mehta; Mousumi Chakraborty; Pinakeswar Mahanta; Parimal A. Parikh

2010-07-15T23:59:59.000Z

265

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect (OSTI)

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

266

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 3, April 1--June 30, 1997  

SciTech Connect (OSTI)

This quarter the project focused primarily in two basic areas. Approximately 60% of the time was applied at continuing to manufacture and test alternate designs of the diesel prechamber and its associated auxiliary equipment. Approximately 23% time was applied to the hydraulic actuation of the gas injector and the design work of applying the gas injector to the engines cylinder liner. The remaining 17% time was spread over a number of areas two of which include the completion of knock detection system and test facility calibration and service.

NONE

1997-06-30T23:59:59.000Z

267

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network [OSTI]

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

268

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System  

E-Print Network [OSTI]

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

Stefanopoulou, Anna

269

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

270

NO2 Management in Diesel Exhaust System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NO2 Management in Diesel Exhaust System NO2 Management in Diesel Exhaust System The project discusses the use of an NO2 mitigator for catalytic NO2 reduction deer09roberts.pdf...

271

Diesel engine lubrication with poor quality residual fuel  

SciTech Connect (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

272

Comparison of blends of conventional diesel fuel and CRBO containing high levels of FFA in a DI diesel engine  

Science Journals Connector (OSTI)

This work attempts to analyse the ability of high free fatty acid (FFA) crude rice bran oil (CRBO) in replacing diesel partially in a compression ignition (CI) engine. It was observed that the delay period and the maximum rate of pressure rise for CRBO blends are lower than diesel and is almost inversely proportional to FFA content. Maximum heat release rate for CRBO blends are lower and occur earlier than that of diesel. CRBO blends require longer duration to release 90% of heat than diesel and it decreases with increase in FFA content of CRBO. When operating with CRBO blends, all emission parameters were decreased significantly with a marginal increase in CO emission than that of diesel without affecting the brake thermal efficiency of the engine. It is concluded that higher FFA of CRBO blends does not inhibit its ability to be utilised as a fuel in CI engines.

S. Saravanan; G. Lakshmi Narayana Rao; S. Sampath; G. Nagarajan

2012-01-01T23:59:59.000Z

273

Characteristics of SME Biodiesel-Fueled Diesel Particle Emissions and the Kinetics of Oxidation  

Science Journals Connector (OSTI)

In general it is reported that biodiesel has a less adverse effect on human health than petroleum-based diesel fuel. ... The engine used in this study was a 1996 John Deere T04045TF250, which is a medium-duty, off-highway, direct-injection, 4 cylinder, 4 cycle, turbocharged diesel engine. ... These fuels were compared with a low-sulfur, petroleum #2 diesel fuel in a Caterpillar 3304, prechamber, 75 kW diesel engine, operated over heavy- and light-duty transient test cycles developed by the United States Bureau of Mines. ...

Heejung Jung; David B. Kittelson; Michael R. Zachariah

2006-07-19T23:59:59.000Z

274

Innovative coal-fueled diesel engine injector  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

275

Experimental Investigation of Optimal Timing of the Diesel Engine Injection Pump Using Biodiesel Fuel  

Science Journals Connector (OSTI)

University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, SI-2000 Maribor ... Compared to mineral diesel, biodiesel and biodiesel blends in general show lower CO, smoke, and HC emissions but higher NOx emission and higher specific fuel consumption. ... In this sense, to gain knowledge about the implications of its use, waste olive oil Me ester was evaluated as a fuel for diesel engines during a 50 h short-term performance test in a diesel direct-injection Perkins engine. ...

Breda Kegl

2006-05-03T23:59:59.000Z

276

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect (OSTI)

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

277

Benefits of Water-Fuel Emulsion on Automotive Diesel Exhaust Emissions  

Science Journals Connector (OSTI)

Water fuel emulsion is widely used to control pollutant emissions in large and medium diesel engines. The application of this fuel to small automotive engines has been limited by the emulsion stability and eco...

K. Lombaert; L. Le Moyne; P. Guibert…

2004-01-01T23:59:59.000Z

278

Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High  

Broader source: Energy.gov [DOE]

According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in...

279

U.S. Diesel Fuel Price Increases for First Time Since June  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diesel fuel price increase for first time since June The U.S. average retail price for on-highway diesel fuel rose to 3.68 a gallon on Monday. That's up 5.4 cents from a week ago...

280

U.S. diesel fuel price falls to lowest level since February 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3, 2014 U.S. diesel fuel price falls to lowest level since February 2011 The U.S. average retail price for on-highway diesel fuel fell to 3.62 a gallon on Monday. That's down 1.2...

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ORNL/TM-2002/16 PCR+ in Diesel Fuels and Emissions  

E-Print Network [OSTI]

ORNL/TM-2002/16 PCR+ in Diesel Fuels and Emissions Research MARCH 2002 Prepared by H. T. Mc Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased. #12;ORNL/TM-2002/16 PCR+ IN DIESEL FUELS AND EMISSIONS RESEARCH H. T. McAdams AccaMath Services

282

Bacterial Targets as Potential Indicators of Diesel Fuel Toxicity in Subantarctic Soils  

Science Journals Connector (OSTI)

...domestic guidelines for diesel fuel. The subsequent...role in biogeochemical cycles and ecosystem sustainability...hydrocarbons through the general mechanism of biochemical...steps within the nitrogen cycle have been targeted to...with hydrocarbons in the diesel fuel range (C9 to C28...

Josie van Dorst; Steven D. Siciliano; Tristrom Winsley; Ian Snape; Belinda C. Ferrari

2014-04-25T23:59:59.000Z

283

The U.S. average retail price for on-highway diesel fuel rose...  

Gasoline and Diesel Fuel Update (EIA)

The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose to 3.93 a gallon on Monday. That's up 2 ...

284

U.S. diesel fuel prices falls to lowest level since mid-July...  

U.S. Energy Information Administration (EIA) Indexed Site

4, 2014 U.S. diesel fuel prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to 3.70 a gallon on Monday. That's down 3...

285

U.S. diesel fuel prices falls to lowest level since mid-July...  

U.S. Energy Information Administration (EIA) Indexed Site

6, 2014 U.S. diesel fuel prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since mid-July 2012 at...

286

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodiesel–diesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodiesel–diesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

287

Combustion Characterization and Ignition Delay Modeling of Low- and High-Cetane Alternative Diesel Fuels in a Marine Diesel Engine  

Science Journals Connector (OSTI)

Mechanical and Aerospace Engineering Department, U.S. Naval Postgraduate School, Watkins Hall 700 Dyer Road Monterey, California 93943-5100, United States ... However, this study was done using an indirect injection diesel engine that may be uncharacteristic for typical diesel engines, which utilize direct injection. ... The IGD can, in turn, be used to provide qualitative or even quantitative prediction of other operational parameters such as peak pressure, maximum rate of pressure rise, or the general viability of the fuel in a diesel engine. ...

John Petersen; Doug Seivwright; Patrick Caton; Knox Millsaps

2014-07-10T23:59:59.000Z

288

Concentration measurements of biodiesel in engine oil and in diesel fuel  

Science Journals Connector (OSTI)

This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

A Mäder; M Eskiner; C Burger; W Ruck; M Rossner; J Krahl

2012-01-01T23:59:59.000Z

289

Application of Synthetic Diesel Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car...

290

Hardware-in-the-Loop Testing of Electronically-Controlled Common-Rail Systems for Marine Diesel Engine  

Science Journals Connector (OSTI)

Tougher legislation on exhaust emissions reduction, more power and mobility and less fuel consumption, has led to stronger call for the electronic engine control units for marine diesel engines. Electronically-controlled common-rail systems for marine ... Keywords: Marine Diesel Engine, Common Rail System, Engine Controller Unit, Hardware-in-the-loop Testing, Simulation Interface Toolkit

Jiadong Zhou; Guangyao Ouyang; Minghe Wang

2010-05-01T23:59:59.000Z

291

Renewable Diesel  

Broader source: Energy.gov (indexed) [DOE]

Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

292

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all petroleum reports all petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: December 16, 2013 | Next Release Date: December 23, 2013 Diesel Fuel Release Date: December 16, 2013 | Next Release Date: December 23, 2013 U.S. Regular Gasoline Prices* (dollars per gallon)full history Change from 12/02/13 12/09/13 12/16/13 week ago year ago U.S. 3.272 3.269 3.239 values are down -0.030 values are down -0.015 East Coast (PADD1) 3.389 3.382 3.373 values are down -0.009 values are up 0.023 New England (PADD1A) 3.475 3.494 3.508 values are up 0.014 values are up 0.015 Central Atlantic (PADD1B) 3.441 3.447 3.457 values are up 0.010 values are down -0.029 Lower Atlantic (PADD1C) 3.325 3.300 3.270 values are down -0.030 values are up 0.063

293

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

294

Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision  

SciTech Connect (OSTI)

Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

2000-05-01T23:59:59.000Z

295

Investigation of the Performance and Emission Characteristics of Biodiesel Fuel Containing Butanol under the Conditions of Diesel Engine Operation  

Science Journals Connector (OSTI)

(17) However, emissions of engines fueled with multicomponent fuels containing fossil diesel, butanol, and rapeseed oil butyl/methyl esters have not been tested. ... Break specific fuel consumption when engine is fuelled with fossil diesel fuel (n = 1500 min?1). ... For all cases, engine torque was retained the same by adjusting fueling rate. ...

Sergejus Lebedevas; Galina Lebedeva; Egle Sendzikiene; Violeta Makareviciene

2010-07-23T23:59:59.000Z

296

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

297

An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study  

Science Journals Connector (OSTI)

Abstract The need for more efficient energy usage and a less polluted environment are the prominent research areas that are currently being investigated by many researchers worldwide. Water-in-diesel emulsion fuel (W/D) is a promising alternative fuel that could fulfills such requests in that it can improve the combustion efficiency of a diesel engine and reduce harmful exhaust emission, especially nitrogen oxides (NOx) and particulate matter (PM). To date, there have been many W/D emulsion fuel studies, especially regarding performance, emissions and micro-explosion phenomena. This review paper gathers and discusses the recent advances in emulsion fuel studies in respect of the impact of W/D emulsion fuel on the performance and emission of diesel engines, micro-explosion phenomena especially the factors that affecting the onset and strength of micro-explosion process, and proposed potential research area in W/D emulsion fuel study. There is an inconsistency in the results reported from previous studies especially for the thermal efficiency, brake power, torque and specific fuel consumption. However, it is agreed by most of the studies that W/D does result in an improvement in these measurements when the total amount of diesel fuel in the emulsion is compared with that of the neat diesel fuel. \\{NOx\\} and PM exhaust gas emissions are greatly reduced by using the W/D emulsion fuel. Unburnt hydrocarbon (UHC) and carbon monoxide (CO) exhaust emissions are found to be increased by using the W/D emulsion fuel. The inconsistency of the experimental result can be related to the effects of the onset and the strength of the micro-explosion process. The factors that affect these measurements consist of the size of the dispersed water particle, droplet size of the emulsion, water-content in the emulsion, ambient temperature, ambient pressure, type and percentage of surfactant, type of diesel engine and engine operating conditions. Durability testing and developing the fuel production device that requires no/less surfactant are the potential research area that can be explored in future.

Ahmad Muhsin Ithnin; Hirofumi Noge; Hasannuddin Abdul Kadir; Wira Jazair

2014-01-01T23:59:59.000Z

298

Unique Catalyst System for NOx Reduction in Diesel Exhaust |...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma Assisted Catalysis System for NOx Reduction Clean Diesel Engine Component Improvement...

299

Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels  

SciTech Connect (OSTI)

The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

1982-05-01T23:59:59.000Z

300

Argonne Transportation - Diesel Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti Recent DOE Award winners, (L-R) Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti, stand in front of their fuel spray injection chamber. Using the synchrotron beam at the APS, the team is able to probe the fuel spray and study the process of combustion. A team of Argonne scientists (Jin Wang, Steve Ciatti, Chris Powell, and Yong Yue) recently won the 2002 National Laboratory Combustion and Emissions Control R&D Award for groundbreaking work in diesel fuel sprays. For the first time ever, the team used x-rays to penetrate through gasoline and diesel sprays and made detailed measurements of fuel injection systems for diesel engines. This technology uncovered a previously unknown

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

302

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

303

Potential for Reduction of Exhaust Emissions in a Common-Rail Direct-Injection Diesel Engine by Fueling with Fischer–Tropsch Diesel Fuel Synthesized from Coal  

Science Journals Connector (OSTI)

In the constant speed/varying load test modes, the use of CFT also resulted in a general reduction of regulated emissions. ... (5, 6) Moreover, FT diesel fuels can be used in contemporary diesel engines without any modification and with a negligible or weak improvement of engine efficiency. ... Liu, Z.; Shi, S.; Li, Y.Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering Chem. ...

Chonglin Song; Guohong Gong; Jinou Song; Gang Lv; Xiaofeng Cao; Lidong Liu; Yiqiang Pei

2011-11-28T23:59:59.000Z

304

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems  

Broader source: Energy.gov (indexed) [DOE]

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska February 13, 2013 - 3:26pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy is collaborating with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing dependence on imported fossil fuels. Through the Energy Policy Act of 2005, the DOE Office of Indian Energy is authorized to fund and implement a variety of programmatic activities that

305

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems  

Broader source: Energy.gov (indexed) [DOE]

DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska February 13, 2013 - 3:26pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy is collaborating with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing dependence on imported fossil fuels. Through the Energy Policy Act of 2005, the DOE Office of Indian Energy is authorized to fund and implement a variety of programmatic activities that

306

Dual Fuel Diesel Engine Operation Using H2. Effect on Particulate Emissions  

Science Journals Connector (OSTI)

Dual Fuel Diesel Engine Operation Using H2. ... School of Engineering, Mechanical and Manufacturing Engineering, The University of Birmingham, Birmingham B15 2TT, United Kingdom, Universidad de Castilla?La Mancha, Edificio Politecnico, Escuela Tecnica Superior de Ingenieros Industriales, Avda. ... In diesel engines, the reduction of particulate emissions must be achieved in conjunction with the reduction of NOx emissions. ...

A. Tsolakis; J. J. Hernandez; A. Megaritis; M. Crampton

2005-01-11T23:59:59.000Z

307

Nanoparticle Emissions from a Heavy-Duty Engine Running on Alternative Diesel Fuels  

Science Journals Connector (OSTI)

Nanoparticle Emissions from a Heavy-Duty Engine Running on Alternative Diesel Fuels ... Neat vegetable oils or animal fats are not suitable for high-speed diesel engines, and thus a transesterification process is required to produce fatty acid methyl esters (FAME). ... General trends in size distribution measurements are shown in Figure 1. ...

Juha Heikkilä; Annele Virtanen; Topi Rönkkö; Jorma Keskinen; Päivi Aakko-Saksa; Timo Murtonen

2009-11-16T23:59:59.000Z

308

2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel  

E-Print Network [OSTI]

-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel cell been also developed for different reforming reactors: solid oxide fuel cell (SOFC)7 , membrane reformer1 2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel

Boyer, Edmond

309

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

310

A critical review of bio-diesel as a vehicular fuel  

Science Journals Connector (OSTI)

The use of vegetable oils as alternative fuels has been around for one hundred years when the inventor of the diesel engine Rudolph Diesel first tested peanut oil, in his compression-ignition engine. In 1970, scientists discovered that the viscosity of vegetable oils could be reduced by a simple chemical process and that it could perform as diesel fuel in modern engine. Considerable efforts have been made to develop vegetable oil derivatives that approximate the properties and performance of the hydrocarbon-based diesel fuels. Bio-diesel is an alternative to petroleum-based fuels derived from vegetable oils, animal fats, and used waste cooking oil including triglycerides. Bio-diesel production is a very modern and technological area for researchers due to the relevance that it is winning everyday because of the increase in the petroleum price and the environmental advantages. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called bio-diesel when used for fuel purposes.

Mustafa Balat; Havva Balat

2008-01-01T23:59:59.000Z

311

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

74.6 77.3 90.7 86.5 77.3 68.4 See footnotes at end of table. 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States Energy Information...

312

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...  

U.S. Energy Information Administration (EIA) Indexed Site

70.4 69.1 87.1 75.2 71.6 61.0 See footnotes at end of table. 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States Energy Information...

313

Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and...  

Gasoline and Diesel Fuel Update (EIA)

EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type Energy Information Administration ...

314

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles  

Broader source: Energy.gov [DOE]

Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

315

A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Propane-Diesel Dual Fuel for CO2 and Nox Reduction DPF for a Tractor Auxiliary Power Unit...

316

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

317

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

318

Production of synthetic gasoline and diesel fuel from nonpetroleum resources  

SciTech Connect (OSTI)

In late 1985, the New Zealand Gas-to-Gasoline Complex was successfully streamed producing high octane gasoline from natural gas. The heart of this complex is the Mobil fixed-bed Methanol-to-Gasoline (MTG) section which represents one of several newly developed technologies for production of synthetic gasoline and diesel fuels. All of these technologies are based on production of methanol by conventional technology, followed by conversion of the methanol to transportation fuel. The fixed-bed (MTG) process has been developed and commercialized. The fluid-bed version of the MTG process, which is now also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane number advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant in Wesseling, Federal Republic of Germany. The project was funded jointly by the U.S. and German governments and by the industrial participants: Mobil, Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. This fluid-bed MTG project was extended recently to demonstrate a related fluid-bed process for selective conversion of methanol to olefins (MTO). The MTO process can be combined with Mobil's commercially available olefins conversion process (Mobil-Olefins-to-Gasoline-and-Distillate, MOGD) for coproduction of high quality gasoline and distillate via methanol. This MTO process was also successfully demonstrated at the Wesseling semiworks with this project being completed in late 1985.

Tabak, S.A.; Avidan, A.A.; Krambeck, F.J.

1986-04-01T23:59:59.000Z

319

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

320

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Journals Connector (OSTI)

? Marathon Petroleum Company, Main Street, Findlay, Ohio, 45840 ... We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oil streams (used automotive and transformer oils). ...

Charles J. Mueller; William J. Cannella; Thomas J. Bruno; Bruce Bunting; Heather D. Dettman; James A. Franz; Marcia L. Huber; Mani Natarajan; William J. Pitz; Matthew A. Ratcliff; Ken Wright

2012-05-22T23:59:59.000Z

322

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

323

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace037sun2012o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

324

An investigation of diesel–ignited propane dual fuel combustion in a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Abstract This paper presents a detailed experimental analysis of diesel–ignited propane dual fuel combustion on a 12.9-l, six-cylinder, production heavy-duty diesel engine. Gaseous propane was fumigated upstream of the turbocharger air inlet and ignited using direct injection of diesel sprays. Results are presented for brake mean effective pressures (BMEP) from 5 to 20 bar and different percent energy substituted (PES) by propane at a constant engine speed of 1500 rpm. The effect of propane PES on apparent heat release rates, combustion phasing and duration, fuel conversion and combustion efficiencies, and engine-out emissions of oxides of nitrogen (NOx), smoke, carbon monoxide (CO), and total unburned hydrocarbons (HC) were investigated. Exhaust particle number concentrations and size distributions were also quantified for diesel–ignited propane combustion. With stock engine parameters, the maximum propane PES was limited to 86%, 60%, 33%, and 25% at 5, 10, 15, and 20 bar BMEPs, respectively, either by high maximum pressure rise rates (MPRR) or by excessive HC and CO emissions. With increasing PES, while fuel conversion efficiencies increased slightly at high \\{BMEPs\\} or decreased at low BMEPs, combustion efficiencies uniformly decreased. Also, with increasing PES, \\{NOx\\} and smoke emissions were generally decreased but these reductions were accompanied by higher HC and CO emissions. Exhaust particle number concentrations decreased with increasing PES at low loads but showed the opposite trends at higher loads. At 10 bar BMEP, by adopting a different fueling strategy, the maximum possible propane PES was extended to 80%. Finally, a limited diesel injection timing study was performed to identify the optimal operating conditions for the best efficiency-emissions-MPRR tradeoffs.

Andrew C. Polk; Chad D. Carpenter; Kalyan Kumar Srinivasan; Sundar Rajan Krishnan

2014-01-01T23:59:59.000Z

325

Combustion system development of a two-stroke, spark-assisted DI diesel engine  

SciTech Connect (OSTI)

A loop-scavenged, two-stroke, spark-assisted DI diesel engine was developed by modifying an outboard marine gasoline engine to operate on diesel fuel with high fuel efficiency similar to a diesel engine, yet retain the two-stroke engine advantages of low cost, light weight, and high power-to-weight ratio. Engine modification was concentrated in the area of the combustion system, including transfer port design to generate air swirl in the cylinder, and combustion chamber design to generate air squish and turbulence. Bore and stroke (84 x 72 mm) remained the same as those of the base engine. The experimental engine used the production engine's piston, crankshaft, connecting rod, bearings, and cylinder block. The transfer port design was optimized using a flow test bench for best swirl and air flow pattern with a simple flow visualization technique. The best combustion chamber geometry, compression ratio, and fuel injection spray pattern were determined through engine experiments.

Ariga, S.; Matsushita, Y.

1988-01-01T23:59:59.000Z

326

Micro Hydro-Diesel Hybrid Power System  

E-Print Network [OSTI]

This paper presents the design and analysis of Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture for Load frequency control of an isolated wind-micro hydro-diesel hybrid power system, to regulate the frequency deviation and power deviations. Due to the sudden load changes and intermittent wind power, large frequency fluctuation problem can occur. This newly developed control strategy combines the advantage of neural networks and fuzzy inference system and has simple structure that is easy to implement. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to control the system. Simulations of the proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-diesel hybrid power system with different load disturbances are performed. Also, a conventional proportional Integral (PI) controller and a fuzzy logic (FL) controller were designed separately to control the same hybrid power system for the performance comparison. The performance of the proposed controller is verified from simulations and comparisons. Simulation results show that the performance of the proposed ANFIS based Neuro-Fuzzy Controller damps out the frequency deviation and attains the steady state value with less settling time. The proposed ANFIS based Neuro-Fuzzy controller provides best control performance over a wide range of operating conditions.

Dhanalakshmi R; Palaniswami S

327

Effect of the Addition of Diglyme in Diesel Fuel on Combustion and Emissions in a Compression?Ignition Engine  

Science Journals Connector (OSTI)

In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental changes in combustion systems. ... 16 Mitsuo et al.17 investigated the effects of DGM on engine exhaust emissions in three different diesel engines. ... (18)?Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill Book Company, New York, 1988. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-07-17T23:59:59.000Z

328

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

329

Effects of altitude and fuel oxygen content on the performance of a high pressure common rail diesel engine  

Science Journals Connector (OSTI)

Abstract The change of intake oxygen content caused by altitude variation and the change of fuel oxygen content both affect the performance of diesel engines. In this paper, comparative experiments were performed on a high pressure common rail diesel engine fueled with pure diesel and biodiesel–ethanol–diesel (abbreviated as BED) blends with oxygen content of 2%, 2.5%, and 3.2% in mass percentage at different atmospheric pressures of 81 kPa, 90 kPa, and 100 kPa. Moreover, in order to study the effect of different fuel blends with the same oxygen content on the performance of the diesel engine, tests were conducted on the diesel engine fueled with the BED blend and a biodiesel–diesel (abbreviated as BD) blend at 81 kPa ambient pressure. The experimental results indicate that the influence of altitude variation on the full-load engine brake torque is not significant when the pure diesel fuel is used. With the increase of BED fuel oxygen content, the engine brake torque reduces. When the pure diesel fuel is used, with the increase of atmospheric pressure, the brake specific fuel consumption (BSFC) decreases. As the fuel oxygen content increases, there is no significant difference in brake specific fuel consumption of the BED blends. And the values of brake specific energy consumption (BSEC) gradually decrease. Soot emissions of the diesel engine decrease with the increase of atmospheric pressure and fuel oxygen content. The effect of soot emission reduction by increasing the oxygen content of the fuel is more significant than the effect of increasing atmospheric pressure. The effects of BD and BED fuels with basically the same oxygen content on the full-load performance, fuel economy, and soot emissions of the diesel engine are different. The BSFC and soot emissions of the BED fuel are lower than those of the BD fuel.

Shaohua Liu; Lizhong Shen; Yuhua Bi; Jilin Lei

2014-01-01T23:59:59.000Z

330

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network [OSTI]

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies, analyzing, and optimizing of complex diesel exhaust after-treatment systems. The methodology presented

de Weck, Olivier L.

331

Combustion and emission characteristics of a turbocharged diesel engine using high premixed ratio of methanol and diesel fuel  

Science Journals Connector (OSTI)

Abstract The combustion and emission characteristics of a dual fuel diesel engine with high premixed ratio of methanol (PRm) were investigated. Experiments were performed on a 6-cylinder turbocharged, inter-cooling diesel engine. Methanol was injected through the intake port and ignited by direct injected diesel in the cylinder, the maximum \\{PRm\\} was over 70%. The experimental results showed that with high PRm, the maximum in-cylinder pressure increased from medium to high engine load but varied little or even decreased at low engine speed and load. High \\{PRm\\} prolonged the ignition delay but shortened the combustion duration and decreased the in-cylinder gas temperature at ignition timing. Hydrocarbons (HC), carbon monoxide (CO), formaldehyde emissions and the proportion of nitrogen dioxide (NO2) in nitrogen oxides (NOX) increased significantly with the increase of \\{PRm\\} while NOX and dry soot emissions were significantly reduced, which meant the trade-off relationship between NOX and soot emissions disappeared. The increased HC, CO and formaldehyde emissions could be effectively reduced by diesel oxidation catalyst (DOC) when the exhaust gas temperature reached the light off temperature of the DOC. After DOC, the NO2 proportion in NOX was greatly reduced to less than that of baseline engine at methanol premixed mode but increased slightly at pure diesel mode. The maximum \\{PRm\\} was confined by in-cylinder pressure at high engine speed and load. But at low engine speed and load, it was confined by the high emissions of HC, CO and formaldehyde even after DOC.

Lijiang Wei; Chunde Yao; Quangang Wang; Wang Pan; Guopeng Han

2015-01-01T23:59:59.000Z

332

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

SciTech Connect (OSTI)

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

333

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

334

Diesel Technology - Challenges & Opportunities for North America  

Broader source: Energy.gov (indexed) [DOE]

diesel entries Passenger car and Class 1 truck diesel sales fall off quickly as diesel fuel price advantage disappears, overall fuel costs drop, and fuel rationing ceases ...

335

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

336

Assessment of the use of oxygenated fuels on emissions and performance of a diesel engine  

Science Journals Connector (OSTI)

Abstract Requirements as torque, power, specific fuel consumption and emitted compounds are highly influenced by the chemical composition of the fuel being burned. Thus, the aim of this study was to assess the use of oxygenated fuels on emissions of NOx, CO, HC, CO2 and particle number and size distribution (11.5 diesel engine coupled to a dynamometer bench was used, where three types of fuels were employed, B5 (diesel with 5% of biodiesel); B5E6 (ternary composition containing 89% diesel, 5% of biodiesel and 6% of ethanol); and B100 (100% of biodiesel). The performance of a diesel engine was also evaluated to see the impact of the oxygenated fuels in this kind of engine. The use of ethanol with high latent heat of vaporization and low cetane number added to the binary blend (B5) shown an increase in the HC emissions and a reduction in \\{NOx\\} emissions when compared to B5. The use of pure biodiesel (B100) with high oxygen content showed a reduction in the HC emissions, but presented the highest emissions for both \\{NOx\\} and particle number of smaller diameter among the studied fuels. The use of more oxygenated fuels reduced the power output and increased the fuel consumption, but the exergy analysis showed that the energy efficiency of these fuels could be considered similar to the B5 fuel.

Lílian Lefol Nani Guarieiro; Egídio Teixeira de Almeida Guerreiro; Keize Katiane dos Santos Amparo; Victor Bonfim Manera; Ana Carla D. Regis; Aldenor Gomes Santos; Vitor P. Ferreira; Danilo J. Leão; Ednildo A. Torres; Jailson B. de Andrade

2014-01-01T23:59:59.000Z

337

Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment  

SciTech Connect (OSTI)

A motored engine study using premixed charges of fuel and air at a wide range of diesel-relevant equivalence ratios was performed to investigate autoignition differences among surrogates for conventional diesel fuel, gas-to-liquid (GTL) diesel fuel, and biodiesel, as well as n-heptane. Experiments were performed by delivering a premixed charge of vaporized fuel and air and increasing the compression ratio in a stepwise manner to increase the extent of reaction while monitoring the exhaust composition via Fourier transform infrared (FTIR) spectrometry and collecting condensable exhaust gas for subsequent gas chromatography/mass spectrometry (GC/MS) analysis. Each fuel demonstrated a two-stage ignition process, with a low-temperature heat release (LTHR) event followed by the main combustion, or high-temperature heat release (HTHR). Among the three diesel-relevant fuels, the magnitude of LTHR was highest for GTL diesel, followed by methyl decanoate, and conventional diesel fuel last. FTIR analysis of the exhaust for n-heptane, the conventional diesel surrogate, and the GTL diesel surrogate revealed that LTHR produces high concentrations of aldehydes and CO while producing only negligible amounts of CO{sub 2}. Methyl decanoate differed from the other two-stage ignition fuels only in that there were significant amounts of CO{sub 2} produced during LTHR; this was the result of decarboxylation of the ester group, not the result of oxidation. GC/MS analysis of LTHR exhaust condensate for n-heptane revealed high concentrations of 2,5-heptanedione, a di-ketone that can be closely tied to species in existing autoignition models for n-heptane. GC/MS analysis of the LTHR condensate for conventional diesel fuel and GTL diesel fuel revealed a series of high molecular weight aldehydes and ketones, which were expected, as well as a series of organic acids, which are not commonly reported as products of combustion. The GC/MS analysis of the methyl decanoate exhaust condensate revealed that the aliphatic chain acts similarly to n-paraffins during LTHR, while the ester group remains intact. Thus, although the FTIR data revealed that decarboxylation occurs at significant levels for methyl decanoate, it was concluded that this occurs after the aliphatic chain has been largely consumed by other LTHR reactions. (author)

Szybist, James P.; Boehman, Andre L.; Haworth, Daniel C. [Pennsylvania State University, Fuel Science Program, 405 Academic Activities Building, University Park, PA 16802 (United States); Koga, Hibiki [Honda R and D Company, Ltd., Asaka-shi, Saitama 351-0024 (Japan)

2007-04-15T23:59:59.000Z

338

Implementation of direct LSC method for diesel samples on the fuel market  

Science Journals Connector (OSTI)

Abstract The European Union develops common EU policy and strategy on biofuels and sustainable bio-economy through several documents. The encouragement of biofuel?s consumption is therefore the obligation of each EU member state. The situation in Slovenian fuel market is presented and compared with other EU countries in the frame of prescribed values from EU directives. Diesel is the most common fuel for transportation needs in Slovenia. The study was therefore performed on diesel. The sampling net was determined in accordance with the fuel consumption statistics of the country. 75 Sampling points were located on different types of roads. The quantity of bio-component in diesel samples was determined by direct LSC method through measurement of C-14 content. The measured values were in the range from 0 up to nearly 6 mass percentage of bio-component in fuel. The method has proved to be appropriate, suitable and effective for studies on the real fuel market.

Romana Krištof; Marko Hirsch; Jasmina Kožar Logar

2014-01-01T23:59:59.000Z

339

Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study  

Science Journals Connector (OSTI)

School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K., Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH, U.K., Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH, U.K., and Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading RG4 9NH, U.K. ... Clearly, the general trend is toward higher efficiency engines and improved fuel economy, something that puts current technology spark ignition (SI) engines in a relatively weak position compared to compression ignition (CI) engines. ... As the diesel engine used in this study was equipped with a pump-line-nozzle-type fuel injection system, all the observed effects may not apply to common rail or unit injection equipped engines. ...

A. Abu-Jrai; A. Tsolakis; K. Theinnoi; R. Cracknell; A. Megaritis; M. L. Wyszynski; S. E. Golunski

2006-10-18T23:59:59.000Z

340

Diesel Reforming for Fuel Cell Auxiliary Power Units  

SciTech Connect (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Diesel Health Impacts & Recent Comparisons to Other Fuels  

Broader source: Energy.gov (indexed) [DOE]

ALAPCO, 2000) * Studies in California reveal that more than 70% of cancer risk from air pollution comes from diesel exhaust alone. (SCAQMD, MATES II, 2000) * A recent...

342

Coal-fueled high-speed diesel engine development  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

343

Analysis and Simulation of Fuel Consumption and Energy Throughput on a Parallel Diesel-Electric Hybrid Powertrain.  

E-Print Network [OSTI]

??The aim of this master thesis is to study the energy throughput and fuel consumption of a parallel diesel-electric hybrid vehicle. This has been done… (more)

Gustafsson, Johanna

2009-01-01T23:59:59.000Z

344

Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation  

Broader source: Energy.gov [DOE]

A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

345

Dual-channel filter photometer system for biocomponent content determination in diesel oil  

Science Journals Connector (OSTI)

Currently, infrared spectrometry is the most often used method of determination of the biocomponent content in diesel oil, but this is also an expensive and time-consuming process. In this study, a portable, low-cost dual-channel filter photometer system is presented which meets the requirements of the European standard for biocomponent concentration measurements in diesel fuel. The results obtained using this novel system are reported and compared to the measurements made using a standard infrared spectrometer for biodiesel concentration between 0% and 20% by weight. The advantages of the new system, such as its adaptability to the different environmental conditions of analysis, are also discussed.

Jacek Go??biowski; Tomasz Prohu?

2008-01-01T23:59:59.000Z

346

Time-temperature-concentration matrix for induced sediment formation in shale diesel fuel  

SciTech Connect (OSTI)

Deterioration in fuel quality during storage has been a major problem with utilization of middle distillate fuels. In this work, the relationships between time, temperature, and concentration of dimethylpyrrole (DMP) to the formation of insoluble sediments are investigated. A common reaction pathway appears to exist for DMP-promoted sedimentation in diesel fuel. A high-precision gravimetric method of fuel storage stability determination has been developed.

Cooney, J.V.; Beal, E.J.; Hazlett, R.N.

1983-01-01T23:59:59.000Z

347

Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

348

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

349

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

350

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 4, July--September, 1997  

SciTech Connect (OSTI)

This quarter started out with fresh ability to perform sustained engine operation on gas because of the successful operation of the gas compressor last quarter. The authors have completed baseline tests recording emissions and efficiency numbers. This gives the authors data that they have never before been able to acquire in the facility. In addition to the baseline data they have recorded data with a host of additional engine variables. These variables include the adjustments of ignition timing, air fuel ratio, air inlet temperatures and some propane seeding of the injected gas. With the background data on record they will be able to properly measure the level of positive impact that the port gas injection system provides. The remaining time in this quarter has been focused on completing the application of the port style gas injection system. The next steps in this project all pivot on the application of this port injection system. They have also progressed in the evaluation of the cylinder/engine monitoring system.

NONE

1997-09-23T23:59:59.000Z

351

Chemical factors affecting insolubles formation in shale-derived diesel fuel  

SciTech Connect (OSTI)

In an effort to define the stability of shale-derived diesel fuel, the authors have conducted gravimetric accelerated storage stability tests at 43 and 80/sup 0/C using three model nitrogen compounds, 2-methylpyridine, 2,6-dimethylquinoline and dodecahydrocarbazole, as dopants in an otherwise stable shale diesel fuel. Also, information about potential interactive effects has been defined for these three model nitrogen compounds in the stable fuel in the presence of a second model dopant (a hydroperocide, organic acid or base).

Beal, E.J.; Cooney, J.V.; Hazlett, R.N.

1987-04-01T23:59:59.000Z

352

Combustion of the alternative marine diesel fuel LCO in large diesel engines  

Science Journals Connector (OSTI)

Large diesel engines represent the heart of the ships, which transport worldwide about 80 % of the goods over the sea route these days. Regimentations of the IMO are planning drastic reductions of nitrogen oxi...

Dipl.-Ing. Daniel Struckmeier; Prof. Dr.-Ing. Koji Takasaki…

2008-11-01T23:59:59.000Z

353

Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects  

Science Journals Connector (OSTI)

The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference ...

Andreas Petzold; Peter Lauer; Uwe Fritsche; Jan Hasselbach; Michael Lichtenstern; Hans Schlager; Fritz Fleischer

2011-11-01T23:59:59.000Z

354

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles  

Science Journals Connector (OSTI)

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles ... In general, LCI emissions of HC and CO are lower if NSPS-compliant soyoil plants are used. ... The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and ... ...

Shih-Hao Pang; H. Christopher Frey; William J. Rasdorf

2009-07-16T23:59:59.000Z

355

Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission  

Science Journals Connector (OSTI)

Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission ... (4, 9, 10) Recently, we have found nonvolatile core particles in the exhaust of heavy-duty diesel vehicles and engines also at high load conditions. ... On the basis of the thermodynamic behavior, particle core material has been inferred to be solid in room temperature,(4, 6, 10) but the character of the particles in general is still an open question. ...

Tero Lähde; Topi Rönkkö; Matti Happonen; Christer Söderström; Annele Virtanen; Anu Solla; Matti Kytö; Dieter Rothe; Jorma Keskinen

2011-02-24T23:59:59.000Z

356

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels.  

E-Print Network [OSTI]

??In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels.… (more)

Esquivel, Jason

2010-01-01T23:59:59.000Z

357

Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol  

Science Journals Connector (OSTI)

Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min?1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, \\{NOx\\} emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

C.S. Cheung; Yage Di; Zuohua Huang

2008-01-01T23:59:59.000Z

358

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application  

Science Journals Connector (OSTI)

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application ... It has been demonstrated that low current arc discharges are highly nonhomogenous. ... In the second case, which corresponds to the most favorable one, assuming (i) a 100 kW car engine thermal power (i.e., 40 kW mechanical power), (ii) that the plasma will treat only a small fraction of the exhaust gas (typically 3.5%), (iii) that the plasma will operate under a cycling operating mode, and (iv) an 80% efficiency for the onboard production of electricity from the car engine, one can estimate that the electric power needed to run the plasma will be around 2.2% of the engine power only during 12 s every 11 km (6.8 miles), that is, 12 s every 6 min assuming a 110 km·h?1 (68 mph) average car velocity. ...

Alexandre Lebouvier; Franc?ois Fresnet; Fre?de?ric Fabry; Vale?rie Boch; Vandad Rohani; Franc?ois Cauneau; Laurent Fulcheri

2011-02-03T23:59:59.000Z

359

Effects of Bioethanol-Blended Diesel Fuel on Combustion and Emission Reduction Characteristics in a Direct-Injection Diesel Engine with Exhaust Gas Recirculation (EGR)  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... As a fuel for compression engines, bioethanol-blended diesel fuels have some different trends on the exhaust emission characteristics according to the engine load. ... The paper begins with an introduction of general information on the nature of emissions of exhaust gases, including the toxicity and causes of emissions for both spark-ignition and diesel engines. ...

Su Han Park; Junepyo Cha; Chang Sik Lee

2010-06-03T23:59:59.000Z

360

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

362

Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel  

Broader source: Energy.gov [DOE]

Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

363

Ignition quality determination of diesel fuels from hydrogen type distribution of hydrocarbons  

SciTech Connect (OSTI)

Hydrogen types of diesel like hydrocarbon fuels which have dominant effect on the ignition quality have been identified. A scheme of characterizing the chemistry of hydrocarbon fuels in terms of these hydrogen types using proton nuclear resonance spectrometry has been proposed. Using this analysis technique on 70 different diesel fuels, whose cetane numbers were determined on a number of standard cetane rating engines, an empirical expression which relates the ignition quality to the hydrogen type distribution of the fuels has been developed. The developed expression and the relationship between the ignition delay and cetane number imply that the effective activation energy term in the usual semiempirical ignition delay expression is not a constant for a given fuel but is a function of pressure and temperature as well as the fuel chemistry.

Gulder, O.L.; Glavincevski, B.

1986-02-01T23:59:59.000Z

364

Dual fuel engine control systems for transportation applications  

SciTech Connect (OSTI)

Microprocessor control systems have been developed for dual fuel diesel engines intended for transportation applications. Control system requirements for transportation engines are more demanding than for stationary engines, as the system must be able to cope with variable speed and load. Detailed fuel maps were determined for both normally aspirated and turbocharged diesel engines based on the criterion that the engine did not operate in the regimes where knock or incomplete combustion occurred. The control system was developed so that the engine would follow the detailed fuel map. The input variables to the control system are engine speed and load. Based on this, the system then controls the amount of natural gas and diesel fuel supplied to the engine. The performance of the system is briefly summarized.

Gettel, L.E.; Perry, G.C.; Boisvert, J.; O'Sullivan, P.J.

1987-10-01T23:59:59.000Z

365

(Wear mechanism and wear prevention in coal-fueled diesel engines)  

SciTech Connect (OSTI)

The overall objectives of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system and design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1989-09-15T23:59:59.000Z

366

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

The overall objective of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1990-02-19T23:59:59.000Z

367

The Fate in the Marine Environment of a Minor Diesel Fuel Spill from an Antarctic Research Station  

Science Journals Connector (OSTI)

Monitoring was undertaken of the fate in the marine environment of an accidental spill of diesel fuel (1000 litres) from Faraday Research Station, ... local background levels within one week. The fuel had an imme...

G. C. Cripps; J. Shears

1997-07-01T23:59:59.000Z

368

An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998  

SciTech Connect (OSTI)

Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

MacCarley, C.A.

1999-01-26T23:59:59.000Z

369

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). “All truths are easy to understand once they are discovered, the point is to discover them.” —Plato

Claire Soares

2015-01-01T23:59:59.000Z

370

Fuel Optimal Thrust Allocation in Dynamic Positioning  

E-Print Network [OSTI]

vessels with diesel-electric power system. In this paper the focus is on using the thrust allocation to make the diesel generators on board the vessel work more fuel efficiently, by reducing the total fuel consumption of all online diesel generators. A static model for the fuel consumption of a diesel generator

Johansen, Tor Arne

371

Influence of Biodiesel Fuel on the Combustion and Emission Formation in a Direct Injection (DI) Diesel Engine  

Science Journals Connector (OSTI)

The injector needle lift trace at low engine speed was almost identical for both fuels, while at maximum engine speed, a shorter injection delay was observed for biodiesel fuel and the injector needle opened earlier as with D2 fuel. ... Figure 1 Comparison of the engine torque (M), fuel consumption (Gh), and brake specific energy consumption (ge) at full load for biodiesel fuel (BD) and D2 fuel in (a) TAM and (b) MAN engines. ... (7)?Sanatore, A.; Cardone, M.; Rocco, V.; Prati, M. V. A comparative analysis of combustion process in DI diesel engine fueled with biodiesel and diesel fuel. ...

Ales Hribernik; Breda Kegl

2007-05-01T23:59:59.000Z

372

Determination of Total Biodiesel Fatty Acid Methyl, Ethyl Esters, and Hydrocarbon Types in Diesel Fuels by Supercritical Fluid Chromatography-Flame Ionization Detection  

Science Journals Connector (OSTI)

......Research and Engineering, Paulsboro...determining total biodiesel methyl and...in diesel fuels by supercritical...mixture. Introduction The proposed use of biodiesel esters derived...as diesel fuel blending...of Total Biodiesel Fatty Acid...in Diesel Fuels by Supercritical...Research and Engineering, Paulsboro......

John W. Diehl; Frank P. DiSanzo

373

Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method  

Broader source: Energy.gov [DOE]

Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines.,

374

Exhaust emissions characteristics of a multi-cylinder 18.1-L diesel engine converted to fueled with natural gas and diesel pilot  

Science Journals Connector (OSTI)

Abstract A six-cylinder, turbocharged and aftercooled diesel engine was converted to operate with natural gas and diesel pilot for generator application. The flow of natural gas was electronically controlled using a throttle valve, and it was pre-mixed with air before being introduced into the combustion chambers. The aim of this work was to study the exhaust emissions characteristics under diesel and dual fuel operations at different operating conditions. Exhaust emissions of total hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), soot, particulate matter and carbon dioxide were measured at different loads. This work also presents the effects of diesel oxidation catalyst on HC and CO conversions under dual fuel operation. Results showed that \\{NOx\\} emission was reduced at all operating loads under dual fuel operation compared to diesel operation. HC and CO emissions were increased under dual fuel operation, but their concentrations were considerably reduced with oxidation catalyst. Contrary to conventional wisdom, it was found that soot and particulate matter were increased under dual fuel operation compared to diesel operation.

Mayank Mittal; Ron Donahue; Peter Winnie; Allen Gillette

2014-01-01T23:59:59.000Z

375

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

376

U.S. diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon  

U.S. Energy Information Administration (EIA) Indexed Site

diesel fuel price forecast to be 1 penny lower this summer diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon The retail price of diesel fuel is expected to average $3.94 a gallon during the summer driving season that which runs from April through September. That's close to last summer's pump price of $3.95, according to the latest monthly energy outlook from the U.S. Energy Information Administration. Demand for distillate fuel, which includes diesel fuel, is expected to be up less than 1 percent from last summer. Daily production of distillate fuel at U.S. refineries is forecast to be 70,000 barrels higher this summer. With domestic distillate output exceeding demand, U.S. net exports of distillate fuel are expected to average 830,000 barrels per day this summer. That's down 12 percent from last summer's

377

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

SciTech Connect (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

378

Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

The aim of this study is to experimentally investigate the effects of blends containing various alternative fuels and diesel fuel on the performance and emissions of a diesel engine. The considered parameters are brake power, specific fuel consumption and thermal efficiency as well as carbon monoxide, hydrocarbon and nitrogen oxide emissions. Blends of biodiesel, ethanol, methanol and vegetable oil with diesel fuel, each containing 15% alternative fuel in volume, were prepared. Then, these blends were tested in a naturally aspirated, direct injection diesel engine. The test results obtained with these blends were compared with those obtained with diesel fuel. It was found that the tested blends yielded usually different performance and emission characteristics compared to diesel fuel. The biodiesel blend resulted in performance parameters very close to those obtained in the use of diesel fuel. Ethanol and methanol blends yielded lower brake power, while they resulted in higher specific fuel consumption and lower carbon monoxide emissions. On the other hand, the vegetable oil blend yielded lower carbon monoxide emissions, while it caused only slight changes in the performance parameters.

Murat Karabektas; Gokhan Ergen; Murat Hosoz

2013-01-01T23:59:59.000Z

379

Process evaluation - steam reforming of diesel fuel oil. Final technical report 24 Apr-24 Dec 79 on phases 1-4  

SciTech Connect (OSTI)

This project is an evaluation of a proprietary catalyst as a means of steam-reforming diesel fuel oil (Fed. Spec. VV-F-800B, symbol DF-2). A system for testing the catalyst has been designed, built and successfully used to screen operating conditions of temperature, space velocity, and H2O/C ratio. A duration test has been conducted showing the catalyst capable of steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test.

Jarvi, G.A.; Bowman, R.M.; Camara, E.H.; Lee, A.L.

1980-02-15T23:59:59.000Z

380

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace037sun2010o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced boost system development for diesel HCCI/LTC applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace36sun.pdf More Documents & Publications Advanced boost system development for diesel HCCILTC...

382

Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions  

Science Journals Connector (OSTI)

Abstract A study was undertaken to investigate renewable fuels in a compression-ignition internal combustion engine. The focus of this study was the effect of newly developed renewable fuels on engine performance, combustion, and emissions. Eight fuels were investigated, and they include diesel, jet fuel, a traditional biodiesel (fatty acid methyl ester: FAME), and five next generation biofuels. These five fuels were derived using a two-step process: hydrolysis of the oil into fatty acids (if necessary) and then a thermo-catalytic process to remove the oxygen via a decarboxylation reaction. The fuels included a fed batch deoxygenation of canola derived fatty acids (DCFA), a fed batch deoxygenation of canola derived fatty acids with varying amounts of H2 used during the deoxygenation process (DCFAH), a continuous deoxygenation of canola derived fatty acids (CDCFA), fed batch deoxygenation of lauric acid (DLA), and a third reaction to isomerize the products of the deoxygenated canola derived fatty acid alkanes (IPCF). Diesel, jet fuel, and biodiesel (FAME) have been used as benchmarks for comparing with the newer renewable fuels. The results of the experiments show slightly lower mechanical efficiency but better brake specific fuel consumption for the new renewable fuels. Results from combustion show shorter ignition delays for most of the renewable (deoxygenated) fuels with the exception of fed batch deoxygenation of lauric acid. Combustion results also show lower peak in-cylinder pressures, reduced rate of increase in cylinder pressure, and lower heat release rates for the renewable fuels. Emission results show an increase in hydrocarbon emissions for renewable deoxygenated fuels, but a general decrease in all other emissions including NOx, greenhouse gases, and soot. Results also demonstrate that isomers of the alkanes resulting from the deoxygenation of the canola derived fatty acids could be a potential replacement to conventional fossil diesel and biodiesel based on the experiments in this work.

Dolanimi Ogunkoya; William L. Roberts; Tiegang Fang; Nirajan Thapaliya

2015-01-01T23:59:59.000Z

383

Fluidic fuel feed system  

SciTech Connect (OSTI)

This report documents the development and testing of a fluidic fuel injector for a coal-water slurry fueled diesel engine. The objective of this program was to improve the operating life of coal-water slurry fuel controls and injector components by using fluidic technology. This project addressed the application of fluidic devices to solve the problems of efficient atomization of coal-water slurry fuel and of injector component wear. The investigation of injector nozzle orifice design emphasized reducing the pressure required for efficient atomization. The effort to minimize injector wear includes the novel design of components allowing the isolation of the coal-water slurry from close-fitting injector components. Three totally different injectors were designed, fabricated, bench tested and modified to arrive at a final design which was capable of being engine tested. 6 refs., 25 figs., 3 tabs.

Badgley, P.

1990-06-01T23:59:59.000Z

384

Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel  

Gasoline and Diesel Fuel Update (EIA)

To help ensure that sulfates in engine exhaust do not To help ensure that sulfates in engine exhaust do not prevent manufacturers of heavy-duty diesel engines from meeting new particulate emissions standards for 1994 and later model years, 1 the Clean Air Act Amend- ments of 1990 (CAAA90) require refiners to reduce the sulfur content of on-highway diesel fuel from current average levels of 0.30 percent by weight to no more than 0.05 percent by weight. The new standard, which goes into effect October 1, 1993, also requires that on-highway diesel fuel have a minimum cetane index of 40 or a maximum aromatic content of 35 percent by volume. 2 (See list of terms and definitions on the fol- lowing page.) This provision is designed to prevent any future rises in aromatics levels. 3 Since the direct mea- surement of aromatics is complex, a minimum cetane

385

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Broader source: Energy.gov (indexed) [DOE]

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

386

The Effect of Diesel Fuel Properties on Emissions-Restrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints. deer08kumar.pdf More...

387

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 1, September 1--December 31, 1996  

SciTech Connect (OSTI)

Energy Conversions Incorporated has made substantial progress on the EMD-710 dual-fuel test cell in the first quarter of the project. The project is on schedule and has not met with any major roadblocks that would derail the planned timetable. Please note that much of the work done started before the funding arrived, and therefore those items are not included in the financial expenditures for the quarter.

NONE

1997-01-08T23:59:59.000Z

388

Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel  

Science Journals Connector (OSTI)

In addition, measurements were taken of the basic engine operational parameters such as engine speed, engine load, fuel consumption, pressure and temperature in the intake and exhaust systems, and the concentration of gaseous components and particulates in the exhaust gases. ... As can be seen, the torque and, consequently, the power of the engine are almost identical for both fuels WCO75 and D2, which is surprising, because the calorific value of the WCO is approximately 13% lower than that of D2 fuel. ... A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification. ...

Ales Hribernik; Breda Kegl

2009-02-11T23:59:59.000Z

389

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Type: Hybrid - Diesel Electric Maximum Seating: 2 Hybrid System(s): Eaton - Diesel Electric Hybrid Additional Description: Class 7 T370 is powered by a Cummins diesel engine...

390

Comparative Study on Engine Performance and Diesel Emissions with European Diesel Fuel (DF)?Diethylene Glycol Dimethyl Ether (DGM) and Fischer?Tropsch (FT)?DGM Blends  

Science Journals Connector (OSTI)

† Department of Energy and Process Engineering ... The general picture of the methyl- and methylene-related vibrations in the DF used here confirms the results of the GC analyses; i.e., that the DF resembles a n-alkane-dominated hydrocarbon mixture. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Rudolf Schmid; Johan Einar Hustad

2010-03-30T23:59:59.000Z

391

1 - The analytical design process and diesel engine system design  

Science Journals Connector (OSTI)

Abstract: Diesel engine system design (DESD) is an important and leading function in the design and development of modern low-emissions EGR diesel engines. It creates a paradigm shift in how engine design is carried out. It leads and integrates the designs from the system level to the component level by producing high-quality system design specifications with advanced analytical simulation tools. This chapter introduces the fundamental concepts in diesel engine system design and provides an overview on the theory and approaches in this emerging technical field. The central theme is how to design a good engine system performance specification at an early stage of the product development cycle. The chapter employs a systems engineering approach and applies the concepts of reliability and robust engineering to diesel engine system design to address the optimization topics encountered in design for target, design for variability, and design for reliability. An attribute-driven system design process is developed for advanced analytical engine design from the system level to the subsystem/component level in order to coordinate different design attributes and subsystems. Four system design attributes – performance, durability, packaging, and cost – are elaborated. The chapter also addresses competitive benchmarking analysis. By focusing on engine performance and system integration (EPSI), the technical areas, theoretical foundation, and tools in diesel engine system design are introduced.

Qianfan Xin

2013-01-01T23:59:59.000Z

392

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

80.8 75.7 76.2 67.5 71.8 77.4 83.7 75.0 64.4 See footnotes at end of table. 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District 242 Energy Information...

393

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

74.4 73.3 70.4 60.5 69.0 71.9 77.8 71.0 60.5 See footnotes at end of table. 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District 242 Energy Information...

394

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

... 71.1 77.5 78.8 79.6 75.7 66.7 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

395

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

... 66.6 71.5 74.5 75.7 71.4 61.6 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

396

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

397

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

398

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

399

Bacterial Targets as Potential Indicators of Diesel Fuel Toxicity in Subantarctic Soils  

Science Journals Connector (OSTI)

...the diesel fuel range (C9 to C28), with heavier hydrocarbons also present, originating from relic oil dumping and burn pits in the C29 to C36 range. However, the majority of the contamination originates from the widespread use of special Antarctic...

Josie van Dorst; Steven D. Siciliano; Tristrom Winsley; Ian Snape; Belinda C. Ferrari

2014-04-25T23:59:59.000Z

400

Population Dynamics within a Microbial Consortium during Growth on Diesel Fuel in Saline Environments  

Science Journals Connector (OSTI)

...MJ Research). The cycle parameters were as follows: 4 min at 94C and 30 cycles of 45 s at 94C, 1 min...with an E.Z.N.A. Cycle-Pure Kit (peqLab Biotechnologie...within this study, general shifts in composition...the key degraders of diesel fuel in the examined...

Sabine Kleinsteuber; Volker Riis; Ingo Fetzer; Hauke Harms; Susann Müller

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

SciTech Connect (OSTI)

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

Not Available

1991-12-01T23:59:59.000Z

402

Multivariate analysis of exhaust emissions from heavy-duty diesel fuels  

SciTech Connect (OSTI)

Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.

Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)

1996-01-01T23:59:59.000Z

403

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

404

Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks  

Science Journals Connector (OSTI)

Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (?7 and 22 °C) operating on two fuels (ultra low sulfur diesel and 20% soy biodiesel blend) over three driving cycles: cold start, warm start and heavy-duty urban dynamometer driving cycle. ... Different 2007+ aftertreatment technologies involving catalyst regeneration led to significant modifications of VOC emissions that were compound-specific and highly dependent on test conditions. ... However, emissions of other toxic partial combustion products such as carbonyls were not reduced in the modern diesel vehicles tested. ...

Ingrid J. George; Michael D. Hays; Richard Snow; James Faircloth; Barbara J. George; Thomas Long; Richard W. Baldauf

2014-11-13T23:59:59.000Z

405

Optimizing the design of a hydrogen engine with pilot diesel fuel ignition  

Science Journals Connector (OSTI)

A diesel engine was converted to dual-fuel hydrogen operation, ignition being started by a 'pilot' quantity of diesel fuel but with 65 to 90% of the energy being supplied as hydrogen. With later injection timing, use of delayed port admission of the gas, and a modified combustion chamber, thermal efficiencies were achieved nearly 15% greater than those for diesel as the sole fuel. A 'solid' water injection technique was used to curb knock under full load conditions when the power output equalled or exceeded that of a similar diesel engine. The indicator diagrams under these conditions closely approach those of the Otto cycle. The development was assisted by computer simulation using a novel self-ignition and flame propagation model. The very fast burning rates obtained with stoichiometric hydrogen-air mixtures show combustion to occur within 5 degrees of crank rotation yet Otto cycle thermal efficiency was not achieved. However, greenhouse gases are shown to be reduced by more than 80%, nitrogen oxides by up to 70%, and exhaust smoke by nearly 80%.

S.M. Lambe; H.C. Watson

1993-01-01T23:59:59.000Z

406

Chemical Kinetics Research on HCCI and Diesel Fuels  

Broader source: Energy.gov [DOE]

Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and computationally efficiecnt, accurate methodologies for modeling advanced combustion strategies.

407

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov [DOE]

This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

408

4 - Fundamentals of dynamic and static diesel engine system designs  

Science Journals Connector (OSTI)

Abstract: This chapter lays out the foundation of dynamic and static diesel engine system designs by linking the theoretical governing equations of the instantaneous engine in-cylinder cycle processes and the gas flow network of the air system. Engine manifold filling dynamics is discussed for dynamic system design. The chapter develops the theory of pumping loss and engine delta P, which are key design issues for modern high-EGR turbocharged diesel engines. The theory is used to predict engine hardware performance or determine hardware specifications to meet target performance. Four core equations for engine air system are proposed. Different theoretical options of engine air system design are summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

409

Fuel washout detection system  

DOE Patents [OSTI]

A system for detecting grossly failed reactor fuel by detection of particulate matter as accumulated on a filter.

Colburn, Richard P. (Pasco, WA)

1985-01-01T23:59:59.000Z

410

Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.  

SciTech Connect (OSTI)

Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

Liu, D.-J.; Krumpelt, M.; Chemical Engineering

2005-01-01T23:59:59.000Z

411

A two-component heavy fuel oil evaporation model for CFD studies in marine Diesel engines  

Science Journals Connector (OSTI)

Abstract The paper presents an evaporation model for Heavy Fuel Oil (HFO) combustion studies. In the present work, HFO is considered as a mixture of a heavy and a light fuel component, with the thermophysical properties of the heavy component calculated from the recently introduced model of Kyriakides et al. (2009) [1]. The model proposes a proper treatment of convective heat transfer to the evaporating fuel droplets. Computational Fluid Dynamics (CFD) simulations of HFO spray combustion in constant volume chambers are performed, utilizing a modified characteristic time combustion model. The results are in good agreement with literature experimental data. Computational results for a two-stroke marine Diesel engine also compare favorably against experiments. The present development yields a basis for detailed CFD studies of HFO combustion in large marine Diesel engines.

Nikolaos Stamoudis; Christos Chryssakis; Lambros Kaiktsis

2014-01-01T23:59:59.000Z

412

Effects of a Combustion Improver on Diesel Engine Performance and Emission Characteristics When Using Three-Phase Emulsions as an Alternative Fuel  

Science Journals Connector (OSTI)

The application of an emulsification technique to prepare the fuel has been considered to be one of the possible approaches to reduce the production of diesel engine pollutants, as well as the rate of fuel consumption. ... 8 The effects on engine performance and emission characteristics of diesel engines when using diglyme as an oxygenated additive for diesel fuels, W/O emulsions, and O/W/O emulsions are studied in this paper. ... A lower oxygen component was consumed for burning the O/W/O diesel emulsion, leading to a larger excess-oxygen concentration in the exhaust gas, compared to that of neat diesel fuel, as shown in Figure 7. ...

Cherng-Yuan Lin; Kuo-Hua Wang

2004-01-28T23:59:59.000Z

413

Fuel control system  

SciTech Connect (OSTI)

A fuel control system is described comprising: a fuel rack movable in opposite fuel-increasing and fuel-decreasing directions; a rack control member movable in opposite fuel-increasing and fuel-decreasing directions; servo system means for moving the fuel rack in response to movement of the rack control member an electrically energizable member movable in opposite fuel-increasing and fuel-decreasing directions, the electrically energizable member being urged to move in its fuel-decreasing direction when energized; first coupling means for connecting the electrically energizable member to the rack control member to move the rack control member in its fuel-decreasing direction in response to movement of the electrically energizable member in its fuel-decreasing direction; a mechanical governor control having a member movable in opposite fuel-increasing and fuel-decreasing directions; second coupling means for connecting the mechanical governor to the rack control member to move the rack control member in its fuel-decreasing direction in response to movement of the mechanical governor member in its fuel-decreasing direction; bias means for biasing the rack control member to move in its fuel-increasing direction.

Staniak, W.A.; Samuelson, R.E.; Moncelle, M.E.

1986-10-14T23:59:59.000Z

414

Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR? System for Retrofit of In-Use? Trucks  

Broader source: Energy.gov [DOE]

Reports on truck fleet emission test results obtained from retrofitting in-use? old class-8 trucks with IMETs GreenPower? DPF-Hydrated-EGR system

415

COST EFFECTIVE SIMULATION OF THE HYBRID SOLAR/WIND AND DIESEL ENERGY SYSTEM IN RURAL AREA  

Science Journals Connector (OSTI)

This paper describes the optimization of a hybrid energy system model. Currently in Sarawak people living in the rural areas still depend on diesel generators to generate electricity. This increases the demand for fossil fuel creates noise pollution and toxic gas is emitted to the environment. Hence hybrid energy systems were introduced to replace this conventional energy system as well as improving the living standard in the villages. In this paper several hybrid energy system configurations were investigated in order to find out the most cost effective hybrid system through Hybrid Optimization Model for Electric Renewability (Homer) software. Homer simulates optimizes and analyzes the sensitivity variables for each of the system configurations.

Ee. Y. Sim; Nader Barsoum

2008-01-01T23:59:59.000Z

416

Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode  

Science Journals Connector (OSTI)

Abstract With the gradual depletion of petroleum and environmental degradation, intensive research activity has been addressed to the utilization of alternative fuels in internal combustion engines. In the present work, an experimental investigation is carried out to study the effect of eucalyptus biodiesel and natural gas under dual fuel combustion mode on the performance and the exhaust emissions of a single cylinder DI diesel engine. The natural gas (NG) is inducted with the intake air through the inlet manifold. The liquid pilot fuel (eucalyptus biodiesel or diesel fuel) is injected into the combustion chamber to cover approximately 10% of the maximum power output. Then, keeping constant the pilot fuel flow rate, the power output is further increased using only natural gas. The combustion characteristics (cylinder pressure, ignition delay and heat release rate), performance and exhaust emissions of the dual fuel mode (NG–diesel fuel and NG–biodiesel) are compared with those of conventional diesel engine mode at various load conditions. The combustion analysis has shown that biodiesel as pilot fuel exhibits similar pressure–time history, with highest peak, as diesel fuel in conventional and dual fuel modes. The performance and pollutant emission results show that, compared to diesel fuel in dual fuel mode, the use of eucalyptus biodiesel as pilot fuel reduces the high emission levels of unburned hydrocarbon (HC), carbon monoxide (CO) and carbon dioxide (CO2) particularly at high engine loads. However this is accompanied by an increase in the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions, which can be explained by the lower calorific value and the oxygen presence in the molecule of the eucalyptus biodiesel, respectively.

L. Tarabet; K. Loubar; M.S. Lounici; K. Khiari; T. Belmrabet; M. Tazerout

2014-01-01T23:59:59.000Z

417

Advances in X-Ray Diagnostics of Diesel Fuel Sprays  

Broader source: Energy.gov [DOE]

Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

418

New Feedstocks and Replacement Fuel Diesel Engine Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and 21st Century Truck Programs. 2006deerfulton.pdf More Documents & Publications BiodieselFuelManagementBestPracticesReport.pdf Vehicle Technologies Office: 2008-2009...

419

Effect of stratified water injection on exhaust gases and fuel consumption of a direct injection diesel engine  

Science Journals Connector (OSTI)

The direct injection Diesel engine with its specific fuel consumption of about 200 g/kWh is one of the most efficient thermal engines. However in case of relatively low CH...x...concentration in the exhaust gas t...

Rainer Pauls; Christof Simon

2004-01-01T23:59:59.000Z

420

Enhanced biodegradation of diesel fuel through the addition of particulate organic carbon and inorganic nutrients in coastal marine waters  

Science Journals Connector (OSTI)

Diesel fuel pollution in coastal waters, resulting from recreational ... operations, is common and can adversely affect marine biota. The purpose of this study was...Spartina alterniflora...), inorganic nutrients...

Michael F. Piehler; Hans W. Paerl

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes?  

Science Journals Connector (OSTI)

The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace ... (2) the magnitude of toxicity of di...

Amor Hedfi; Fehmi Boufahja; Manel Ben Ali…

2013-06-01T23:59:59.000Z

422

Flex Fuel Vehicle Systems  

Broader source: Energy.gov (indexed) [DOE]

& Variable Advanced Management Injection Injection Sensors Control Units Fuel Supply & Plastic Parts Control Transmission Engineering Gasoline Systems GSENS, GSENS-NA System...

423

Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report  

SciTech Connect (OSTI)

The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

Not Available

1981-11-01T23:59:59.000Z

424

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

425

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

426

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

427

Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine  

Science Journals Connector (OSTI)

School of Engineering, San Francisco State University, San Francisco, California 94132, and Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 ... Additionally, data obtained from this study provide fundamental insights into NOx and PM formation mechanisms in diesel engines. ... Results show that increasing fuel oxygenation produces lower in-cylinder and engine-out soot levels, consistent with existing studies of the effects of fuel oxygenation on soot emissions from diesel engines. ...

A. S. (Ed) Cheng; Ansis Upatnieks; Charles J. Mueller

2007-05-25T23:59:59.000Z

428

Numerical and Experimental Analysis of Combustion and Exhaust Emissions in a Dual-Fuel Diesel/Natural Gas Engine  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, UTV, University of Rome Tor Vergata, Rome, Italy, and IM-CNR, Istituto Motori of Italian National Research Council, Naples, Italy ... Accordingly, the use of NG as primary fuel allows the same compression ratio of the conventional diesel engine; thus, existing diesel engines can be easily converted to dual-fuel operation. ... Thus, a more general combustion model (G-equation or EDC) could be considered to represent flame propagation. ...

Stefano Cordiner; Michele Gambino; Sabato Iannaccone; Vittorio Rocco; Riccardo Scarcelli

2008-02-21T23:59:59.000Z

429

An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions  

Science Journals Connector (OSTI)

Abstract Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO2 emission increase and \\{NOx\\} emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO2 emission and the decrease of \\{NOx\\} emission.

Jerzy Kowalski

2014-01-01T23:59:59.000Z

430

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

431

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

432

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

433

Performance of a direct diesel engine using aviation fuels blended with biodiesel  

Science Journals Connector (OSTI)

In this study, jet fuel (JF) and railroad fuel (D2) with SME blends (5%, 20%, 50%) were used in a four-cylinder, naturally aspirated, direct (DI) diesel engine. The engine was operated under full load and tested at various speeds to determine the engine's performance and exhaust emission characteristics. The experimental results show that as the SME ratio of the fuels increases, the break specific fuel consumption (BSFC) and exhaust temperature increase; the SME and its blends show a slight drop in engine performance. In this experiment, carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and smoke opacity values were measured for each fuel. The results of the emission tests revealed that the oxygen content of SME provided a significant reduction in CO and smoke opacity emissions. However, when the test engine was fuelled by SME and its blends, NOx emissions increased.

Burak Gökalp; Hakan Serhad Soyhan; Halil ?brahim Sarac

2012-01-01T23:59:59.000Z

434

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov (indexed) [DOE]

Fuel LNT (Generates Ammonia) Exhaust Selective Catalytic DPF Valve Reduction Catalyst (SCR) 2 DEER 2007 Bypass V2 LNT V1 Reformer SCR Bypass V2 LNT V1 SCR Reformer * NOx storage...

435

New Feedstocks and Replacement Fuel Diesel Engine Challenges  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

436

Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel...  

Office of Environmental Management (EM)

this process, known as regeneration, to only occur when needed, thereby reducing fuel consumption and enabling longer filter life. The RF-DPF can be used with light- and...

437

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed  

E-Print Network [OSTI]

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R · Produce fuel (H2-rich gas) for PEM and/or solid oxide fuel cells (SOFCs) · Reduce NOx emissions through

438

Dual Tank Fuel System  

DOE Patents [OSTI]

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

439

Application of advanced diesel technology to inland waterway towboats. variable timing, electronic fuel injection. Final report, September 1985-January 1989  

SciTech Connect (OSTI)

This report represents the test and evaluation of advanced diesel technology components on the DDC Series 149 Marine engine. The tests were conducted on an inland-waterways towboat and consist of over 20,000 engine hours of operation during the testing. The Detroit Diesel Series 16V-149 engine rated at 900 SHP was tested aboard the M/V ESCATAWPA owned and operated by Warrior and Gulf Navigation Company. Both port and starboard engines were instrumented to measure engine operating parameters, propeller-shaft torque, and fuel consumption. The data were collected by a computer-based data-acquisition system and written to floppy disc for analysis. The tasks included: (1) baseline evaluation of naturally-aspirated (NA) engines; (2) upgrade both engines to turbocharged intercooled and blower bypassed (TIB) configuration and measure performance; (3) upgrade port engine with Detroit Diesel electronic control (DDEC) and measure performance; (4) change port engine to high-torque rise governor setting and measure performance; (5) upgrade starboard engine with DDEC.

Rowland, D.P.

1989-03-01T23:59:59.000Z

440

A Novel Simulation System for Marine Main Diesel Propulsion Remote Control  

Science Journals Connector (OSTI)

The purpose of the paper is to develop a novel simulation system for ship propulsion plant. The nonlinear mathematical model of main propulsion system of a large container ship is established, consisting of the large low speed two-stroke diesel engine, ... Keywords: simulation system, large-scale low-speed two-stroke diesel engine, marine main diesel propulsion

Yang Yang; Chen Guo; Jian-bo Sun; De-wen Yan

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Relationship between ignition processes and the lift-off length of diesel fuel jets.  

SciTech Connect (OSTI)

The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization. Experiments were performed in the same optically-accessible combustion vessel as the previous lift-off research. The experimental results show that the ignition quality of a fuel affects lift-off. Fuels with shorter ignition delays generally produce shorter lift-off lengths. In addition, a cool flame is found upstream of, or near the same axial location as, the quasi-steady lift-off length, indicating that first-stage ignition processes affect lift-off. High-speed chemiluminescence imaging also shows that high-temperature self-ignition occasionally occurs in kernels that are upstream of, and detached from, the high-temperature reaction zone downstream, suggesting that the lift-off stabilization is not by flame propagation into upstream reactants in this instance. Finally, analysis of the previous lift-off length database shows that the time-scale for jet mixing from injector-tip orifice to lift-off length collapses to an Arrhenius-type expression, a common method for describing ignition delay in diesel sprays. This Arrhenius-based lift-off length correlation shows comparable accuracy as a previous power-law fit of the No.2 diesel lift-off length database.

Siebers, Dennis L.; Idicheria, Cherian A.; Pickett, Lyle M.

2005-06-01T23:59:59.000Z

442

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

443

Abrasive wear by coal-fueled diesel engine and related particles  

SciTech Connect (OSTI)

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

444

Diesel fuel quality is improving in most European countries  

SciTech Connect (OSTI)

Associated Octel Co. Ltd. has surveyed the quality of 96 European winter-grade fuels, collected between November 1991 and February 1992. With the continuing interest in exhaust emissions, the trend toward lower sulfur and higher cetane quality has been maintained in most regions. Concerns about the reliability of the cold filter plugging point (CFPP) test as a measure of low-temperature operability are reflected in closer control of fuel cloud point. Octel reported great differences in fuel stability, corrosion, and foaming tendency of gas oil products within many marketing areas. Additive packages are widely used to improve these properties and reduce exhaust emissions. The article describes the changes in quality since Octel's last survey.

Not Available

1993-03-08T23:59:59.000Z

445

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of di?erent sizes of direct-hydrogen PEM fuel cell

2002-01-01T23:59:59.000Z

446

Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

447

Antiwear properties of water-fuel emulsions for marine diesel engines  

SciTech Connect (OSTI)

Water-fuel emulsions (WFEs) were prepared by hydrodynamic mixing of fuel, water and additive. The physicochemical characteristics of the WFE with 20% water were analyzed and the tests were performed in an MI-1 friction tester and in a 1 Ch 10.5/13 test-stand diesel; rubbing parts made of ShKh15 steel were in the tester. Engine test results show that introduction of water into fuel gives an increase in the rate of wear. With the introduction of 0.03% synthetic fatty acid still residues, the fuel consumption in the 2 Ch 8.5/11 engine is reduced by approximately 2% over a certain period of time.

Danilov, A.M.; Selyagina, A.A.; Karyakin, K.B.; Gorbachev, Yu.A.

1988-03-01T23:59:59.000Z

448

Mechanisms of synfuel degradation. 3. Interactive effects in nitrogen compound induced storage instability in shale derived diesel fuel  

SciTech Connect (OSTI)

Deterioration in fuel quality upon storage has been a continuing problem in the utilization of middle distillate fuels. For diesel fuels, instability is usually defined by the formation of insoluble sediments and gums and by the accumulation of hydroperoxides. Gravimetric accelerated storage stability tests conducted with model compounds as dopants in otherwise stable distillate fuels have demonstrated that oxidative condensation reactions of polar heterocycles are deleterious to stability. In particular, nitrogen containing aromatics (pyrroles, pyridines, indoles, etc.) appear to be very harmful.

Cooney, J.V.; Beal, E.J.; Beaver, B.D.

1986-01-01T23:59:59.000Z

449

A photographic study of the combustion of low cetane fuels in a Diesel engine aided with spark assist  

SciTech Connect (OSTI)

An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions. Results indicate that controlled combustion of extended fuel blends in a Diesel engine may be possible without inlet air preconditioning and that engine knock may be avoided when heat release is optimized with proper spark and injection timing.

Abata, D.L.; Fritz, S.G.; Stroia, B.J.

1986-01-01T23:59:59.000Z

450

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

451

10 - Friction and lubrication in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: This chapter addresses engine friction and lubrication dynamics modeling in diesel engine system design. It starts by introducing important fundamental principles of engine tribology and builds up a three-level system modeling approach of engine friction. The chapter summarizes the friction characteristics and friction-reduction design measures for both the overall engine system and individual subsystems such as the piston assembly, the piston rings, the bearings, and the valvetrain.

Qianfan Xin

2013-01-01T23:59:59.000Z

452

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

SciTech Connect (OSTI)

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

453

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect (OSTI)

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

454

SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER  

SciTech Connect (OSTI)

New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell industry is in the role of third party independent testing. In order for tests to be conducted, hardware must be purchased and delivered. The fuel cell industry is still in a pre-commercial state, however. Commercial products are defined as having a fixed set of specifications, fixed price, fixed delivery date, and a warrantee. Negotiations with fuel cell companies over these issues are often complex, and the results of these discussions often reveal much about the state of development of the technology. This work includes some of the results of these procurement experiments. Fuel cells may one day replace heat engines as the source of electrical power in remote areas. However, the results of this program to date indicate that currently available hardware is not developed sufficiently for these environments, and that significant time and resources will need to be committed for this to occur.

Dennis Witmer

2003-12-01T23:59:59.000Z

455

A time-temperature-concentration matrix for induced sediment formation in shale diesel fuel  

SciTech Connect (OSTI)

Deterioration in fuel quality with time has been a continuing problem in the utilization of middle distillate fuels. These stability problems will intensify as we develop alternative sources of fuel, such as shale oil and coal. Present knowledge has suggested that for some fuels, nitrogen heterocycles may play a causative role in the formation of insoluble sediments and gums under conditions of ambient and accelerated storage. In light of the high costs of fuel processing, substantial savings could be realized if it were possible to identify those nitrogen heterocycles which are most actively involved in the formation of insoluble material. Currently, it appears that relatively non-basic nitrogen heterocycles, particularly those which contain alkyl groups in certain positions, may be the most troublesome. However, in other fuels and under different test conditions, basic nitrogen compounds may play a significant role. In addressing this subject, we are defining the stability of shale-derived diesel fuel marine (DFM), stressing the sample under accelerated storage conditions, and determining the amount of total insoluble material produced. This report describes results obtained when 2,5-dimethylpyrrole (DMP) was used as a dopant in a time-temperature-concentration matrix. Results of a survey of other nitrogen compounds as fuel additives are also presented.

Cooney, J.V.; Beal, E.J.; Hazlett, R.N.

1983-09-01T23:59:59.000Z

456

Experimental investigation on the characteristics of diesel oxygenated fuel blends in a di diesel engine using two spring split injection;.  

E-Print Network [OSTI]

??Diesel engines are efficient prime movers for heavy duty vehicles, so they have attracted many automobile and research institutions for their use as main prime… (more)

Kumaresan M

2013-01-01T23:59:59.000Z

457

2 - Durability and reliability in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: Consideration of durability and reliability is necessary at the earliest stage of system design. This chapter presents the theory and analysis methods of durability and reliability in diesel engine system design. It begins by describing engine durability issues, followed by an elaboration on the relationship between performance and durability through the discussions on system-level loading and durability design constraints. It then provides a systematic introduction on the fundamentals of thermo-mechanical failures and the applications on diesel engine cylinder head, exhaust manifold, valvetrain, piston, turbocharger and aftertreatment devices, followed by discussions on cylinder liner cavitation, engine wear, and EGR cooler durability. An integrated analysis approach on system durability–reliability is finally summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

458

Control Oriented Modeling and System Identification of a Diesel Generator Set (Genset)  

E-Print Network [OSTI]

Cheong, Perry Y. Li and Jicheng Xia Abstract-- A diesel generator set (genset) refers to a diesel engineControl Oriented Modeling and System Identification of a Diesel Generator Set (Genset) Kai Loon dependence on the field current; the engine speed governor is found to be a first order controller

Li, Perry Y.

459

Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans  

SciTech Connect (OSTI)

Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

Lammert, M.

2009-12-01T23:59:59.000Z

460

Improvement and Simplification of Diesel Particulate Filter System...  

Broader source: Energy.gov (indexed) [DOE]

FBC Improve the ash management (filter) Simplify the onboard dosing system and decrease cost and Chemist Ceramist Fuel system specialist Improve the vehicle integration for a Fit...

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

462

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

463

Innovative coal-fueled diesel engine injector. Final report  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

464

Verification of Shell GTL Fuel as CARB Alternative Diesel  

Broader source: Energy.gov (indexed) [DOE]

with existing infrastructure GTL provides a bridge to Biomass to Liquids and Coal to Liquids technologies Life cycle analysis: GTL vs. Refinery system GTL less...

465

Module 5: Fuel Cell Systems  

Broader source: Energy.gov [DOE]

This course covers the systems required to operate a fuel cell engine, the components and functionality of each fuel cell system

466

ULTRA-CLEAN DIESEL FUEL: U.S. PRODUCTION AND DISTRIBUTION CAPABILITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

91 91 ULTRA-CLEAN DIESEL FUEL: U.S. PRODUCTION AND DISTRIBUTION CAPABILITY G.R. Hadder Center for Transportation Analysis Oak Ridge National Laboratory Oak Ridge, TN B.D. McNutt U.S. Department of Energy Washington, DC August 2000 Prepared for Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ii iii TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

467

Influence of Early Fuel Injection Timings on Premixing and Combustion in a Diesel Engine  

Science Journals Connector (OSTI)

Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, YuSeong-Gu, Daejeon 305-701, Republic of Korea ... Even with the same fueling rate, faster engine speed would need more advanced injection for achieving 6.5 ms of ?id; more than 100 CAD of ?id was needed at 3000 rpm, and it was increased to 200 CAD at 5000 rpm, which was quite occasional in modern automotive diesel engines. ... Several general observations may be made. ...

Sanghoon Kook; Seik Park; Choongsik Bae

2007-12-12T23:59:59.000Z

468

Identification of alkane monoxygenase genes inAcinetobacter venetianus VE-C3 and analysis of mutants impaired in diesel fuel degradation  

Science Journals Connector (OSTI)

Cells ofAcinetobacter venetianus...strain VE-C3 are able to degrade diesel fuel oil by a complex mechanism requiring the formation of cell aggregates and their further adhesion to fuel oil drops. In this work the...

Francesca Decorosi; Alessio Mengoni; Franco Baldi; Renato Fani

2006-09-01T23:59:59.000Z

469

Marine diesel generator from Yanmar  

SciTech Connect (OSTI)

A diesel generator series now available from Yanmar Diesel Engine Co. is designed to provide low fuel costs, direct burning of heavy fuel oil and long life in marine applications from 320 to 600 kW output. The new 6N18L generator sets are based on a six-cylinder, four-stroke, water-cooled engine (bore 180 x stroke 280 mm), which has rated speeds of 720 and 900 r/min. Compatible with mono-fuel ships, the generator engines are designed for operation on heavy fuels to 700 cSt (50{degree}C). This paper describes briefly the design and innovation of this system.

NONE

1996-03-01T23:59:59.000Z

470

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

471

Engine performance and emissions from the combustion of low-temperature Fischerâ??Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends  

Science Journals Connector (OSTI)

The combustion of oxygenated biodiesel (rapeseed methyl ester (RME)) improves the engine-out particulate matter, hydrocarbon and carbon monoxide (CO) emissions, while the low-temperature Fischerâ??Tropsch synthetic paraffinic diesel fuel improves engine-out NOx, CO, hydrocarbon and particulate matter emissions. Blending synthetic diesel (SD) fuel with oxygenated biodiesel could unlock potential performance synergies in the fuel properties (e.g. O2 content in RME and high cetane number of the synthetic fuels) of such blends and benefit engine performance and emissions. The combustion of synthetic diesel fuel/RME blend, named synthetic diesel B50, has shown similar combustion characteristics to diesel fuel, while simultaneous improvements in engine efficiency and smoke-NOx trade-off were achieved by taking advantage of the fuel's properties. The engine thermal efficiency was dependent on the fuel type, and followed the general trend: synthetic diesel > SDB50 > diesel > RME. Therefore, it has been shown that the design of a synthetic fuel with properties similar to the fuel blends presented in this work could improve engine-out NOx, smoke and hydrocarbon emissions and maintain or improve engine performance.

Kampanart Theinnoi; Athanasios Tsolakis; Sathaporn Chuepeng; Andrew P.E. York; Roger F. Cracknell; Richard H. Clark

2009-01-01T23:59:59.000Z

472

Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles  

SciTech Connect (OSTI)

This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei [Department of Mechanical System Engineering, University of Hiroshima, Higashi-Hiroshima, 739-8527 (Japan); Zhang, Yuyin [Department of Mechanical Engineering, Tokyo Denki University, Tokyo, 101-8457 (Japan)

2009-06-15T23:59:59.000Z

473

Development, Optimization and Validation of Gas Chromatographic Fingerprinting of Brazilian Commercial Diesel Fuel for Quality Control  

Science Journals Connector (OSTI)

......hydrocarbon groups in diesel can be obtained coupling...chromatographic analysis of diesel sometimes requires complex...operating parameters of diesel engines (10) such as speed...requires knowledge of more fundamental thermodynamics (14-15......

Bruno César Diniz Brito dos Santos; Danilo Luiz Flumignan; José Eduardo de Oliveira

2012-10-01T23:59:59.000Z

474

Development, Optimization and Validation of Gas Chromatographic Fingerprinting of Brazilian Commercial Diesel Fuel for Quality Control  

Science Journals Connector (OSTI)

......of the representative diesel oil samples. Gas chromatographic...representative commercial diesel samples showed the same...peaks (Table-I). All general fingerprinting data were...high-speed direct-injection diesel engine equipped with a common......

Bruno César Diniz Brito dos Santos; Danilo Luiz Flumignan; José Eduardo de Oliveira

2012-10-01T23:59:59.000Z

475

Performance, emission and combustion characteristics of DI diesel engine running on blends of calophyllum inophyllum linn oil (honne oil)/diesel fuel/kerosene  

Science Journals Connector (OSTI)

Kerosene (K)/diesel fuel (D)/honne oil (H) blends have a potential to improve the performance and emissions and to be alternatives to neat diesel fuel (ND) and has not been reported in the literature. Experiments have been conducted on DI diesel engine when fuelled with ND, H10 (10%H + 90%D, by volume) to H30, HK10 (10%H + 45%K + 45%D), HK20 (20%H + 40%K + 40%D) and HK30 (30%H + 35%K + 35%D). The emissions [CO, HC and smoke density (SD)] of fuel blend HK20 are found to be lowest, with CO and HC dropping significantly. The NOx level is higher with HK10 to HK30 compared to ND and H10 to H30. The brake thermal efficiency of HK10 to HK30 is almost the same and it is higher as compared to ND and H10 to H30. There is a good trade off between NOx and SD. Peak cylinder pressure and premixed combustion phase increases as kerosene content increases.

B.K. Venkanna; C. Venkataramana Reddy

2011-01-01T23:59:59.000Z

476

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

477

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

478

Experimental Investigation in Optimizing the Hydrogen Fuel on a Hydrogen Diesel Dual-Fuel Engine  

Science Journals Connector (OSTI)

Lee et al.(8) studied the performance of a dual-injection hydrogen-fueled engine by using solenoid in-cylinder injection and an external fuel injection technique. ... Zuohua, H.; Jinhua, W.; Bing, L.; Ke, Z.; Jinrong, Y.; Deming, J. Combustion Characteristics of a Direct-Injection Engine Fueled with Natural Gas-Hydrogen Mixtures Energy Fuels 2006, 20 ( 2) 540– 546 ... Timed manifold injection (TMI) has the potential of being the most appropriate fueling strategy. ...

N. Saravanan; G. Nagarajan

2009-04-10T23:59:59.000Z

479

Fuel processor for fuel cell power system  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

480

Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3  

SciTech Connect (OSTI)

This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

2004-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "diesel fuel system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Fueling Systems and Infrastructure  

E-Print Network [OSTI]

Infrastructure Development TIAX Sunline LAX, Praxair · Fuels Choice · Renewable Energy Transportation System

482

Air charge system emulation for diesel engine.  

E-Print Network [OSTI]

??The work presented in this thesis details a novel engine evaluation approach utilising real-time simulation and advanced engine testing systems for general applicability to new… (more)

Zhang, Kai

2010-01-01T23:59:59.000Z

483

Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 2003 DEER Conference Presentation: Ford Motor Company 2003deerhammerle.pdf More Documents &...

484