National Library of Energy BETA

Sample records for diesel fuel oil

  1. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  2. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  3. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  4. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  5. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural ...

  6. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural ...

  7. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  8. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas; Garcia, Manuel; Geller, Dan; Goodrum, John W.; Pendergrass, Joshua T.

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  9. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  10. Gasoline and Diesel Fuel Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects ...

  11. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  12. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect (OSTI)

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  13. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  14. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  15. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of

  16. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect (OSTI)

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  17. Response of Oil Sands Derived Fuels in Diesel HCCI Operation

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  19. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  20. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...

    U.S. Energy Information Administration (EIA) Indexed Site

    for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End ...

  1. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG ...

  2. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  3. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  4. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    On-Highway Diesel Fuel Prices & Coefficients of Variation Report

  6. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  7. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End ...

  8. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices

  9. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  10. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  11. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  12. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  13. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  14. Diesel Engine Oil Technology Insights and Opportunities | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant technologiy are examined with respect to protection and fuel economy benefits. PDF icon deer08_arcy.pdf More Documents & Publications Development of High Performance Heavy Duty Engine Oils Verification of Shell GTL Fuel as CARB Alternative Diesel Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion

  15. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) May-02 1.305 5.1 11.3 36.9 46.6 Jun-02 1.286 6.6 11.2 37.5 44.7 Jul-02 1.299 5.3 12.1 37.1 45.5 Aug-02 1.328 8.6 7.8 36.3 47.4 Sep-02 1.411 12.0 7.5 34.2 46.3 Oct-02 1.462 11.4 10.9 33 44.8 Nov-02 1.420 12.0 12.8 33.9 41.2 Dec-02 1.429 12.7 9.3 33.7 44.3 Jan-03 1.488 10.7

  16. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  17. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  18. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  19. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  20. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from

  1. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops.

  2. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine ...

  3. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  4. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  11. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  12. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  13. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Impacts on Soot Nanostructure and Reactivity Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters Biodiesel Research Update

  14. Chemical Kinetic Research on HCCI & Diesel Fuels

    Energy Savers [EERE]

    Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI), Charles ... and emission formation processes * Chemical kinetic models are critical for improved ...

  15. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  16. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  17. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  18. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications Title A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition...

  19. Chemical Kinetic Research on HCCI & Diesel Fuels | Department...

    Office of Environmental Management (EM)

    More Documents & Publications Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: ...

  20. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference ...

  1. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  2. Combination of Diesel fuel system architectures and Ceria-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications ...

  3. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins ...

  4. Pyrochem Catalysts for Diesel Fuel Reforming - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Return to Search Pyrochem Catalysts for Diesel Fuel Reforming National Energy Technology...

  5. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION...

    Office of Scientific and Technical Information (OSTI)

    ... Charbonneau, P., Slodowske, W., Mikkelson, S.-E., and McCandless, J., "A New Clean Diesel Technology: Demonstration of ULEV Emissions on a Navistar Diesel Engine Fueled with ...

  6. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the

  7. Fuel and Fuel Additive Registration Testing of Ethanol-Diesel Blend for O2Diesel, Inc.

    SciTech Connect (OSTI)

    Fanick, E. R.

    2004-02-01

    O2 Diesel Inc. (formerly AAE Technologies Inc.) tested a heavy duty engine with O2Diesel (diesel fuel with 7.7% ethanol and additives) for regulated emissions and speciation of vapor-phase and semi-volatile hydrocarbon compounds. This testing was performed in support of EPA requirements for registering designated fuels and fuel additives as stipulated by sections 211(b) and 211(e) of the Clean Air Act.

  8. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative

  9. Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Use Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data

  10. Natural Oils - The Next Generation of Diesel Engine Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil ...

  11. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  12. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  13. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  14. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  15. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  16. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions Statistical models developed from designed esperiments (varying fuel properties and ...

  17. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  18. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  19. Emission Performance of Modern Diesel Engines Fueled with Biodiesel |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This study presents full quantification of biodiesels impact on emissions and fuel economy with the inclusion of DPF regeneration events. PDF icon p-21_williams.pdf More Documents & Publications Impact of Biodiesel on Modern Diesel Engine Emissions Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies Biodiesel Impact on Engine Lubricant Oil Dilution

  20. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.62 a gallon on Monday. That's down 5.1 cents from a week ago, based on ...

  1. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.62 a gallon on Monday. That's down 2-tenths of a penny from a week ago, ...

  2. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.67 a gallon on Monday. That's down 5 cents from a week ago, based on ...

  3. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease; fall to lowest level since March 2009 The U.S. average retail price for on-highway diesel fuel fell to 2.03 a gallon on Monday. That's ...

  4. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.28 a gallon on Monday. That's down 5.4 cents from a week ago, based on ...

  5. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.34 a gallon on Monday. That's down 4.1 cents from a week ago, based on ...

  6. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.24 a gallon on Monday. That's down 4.9 cents from a week ago, based on ...

  7. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.81 a gallon on Monday. That's down 1.8 cents from a week ago, based on ...

  8. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.07 a gallon on Monday. That's down 4.1 cents from a week ago, based on ...

  9. U.S. diesel fuel prices decrease from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease from previous week The U.S. average retail price for on-highway diesel fuel fell to 2.87 a gallon on Monday. That's down 1.4 cents from a week ago, ...

  10. U.S. diesel fuel prices decrease from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices decrease from previous week The U.S. average retail price for on-highway diesel fuel fell to 2.88 a gallon on Monday. That's down 2.5 cents from a week ago, ...

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.54 a gallon on Monday. That's down 7 cents from a week ago, based on the ...

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.48 a gallon on Monday. That's down 1.7 cents from a week ago, based on ...

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 1.4 cents from a week ago, based on ...

  14. U.S. diesel fuel prices stable from previous week

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices stable from previous week The U.S. average retail price for on-highway diesel fuel fell slightly to 2.91 a gallon on Monday. That's down half a penny from a ...

  15. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    April 6, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.78 a gallon on Monday. That's down 4 cents from a ...

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.56 a gallon on Monday. That's down 5.4 cents from a week ago, based on ...

  17. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.63 a gallon on Monday. That's down 3.3 cents from a week ago, based on ...

  18. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.49 a gallon on Monday. That's down 2.4 cents from a week ago, based on ...

  19. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.12 a gallon on Monday. That's up 2-tenths of a penny from a week ago, ...

  20. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.49 a gallon on Monday. That's down 1.3 cents from a week ago, based on ...

  1. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.18 a gallon on Monday. That's down 3.4 cents from a week ago, based on ...

  2. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2016 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.11 a gallon on Monday. That's down 6 cents from a week ...

  3. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.21 a gallon on Monday. That's down 2.4 cents from a week ago, based on ...

  4. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.78 a gallon on Monday. That's down 3.2 cents from a week ago, based on ...

  5. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.50 a gallon on Monday. That's down 3.3 cents from a week ago, based on ...

  6. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago, ...

  7. U.S. diesel fuel price falls under $3

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price falls under 3 The U.S. average retail price for on-highway diesel fuel fell 12 cents from a week ago to 2.93 a gallon on Monday. This marks the first time since ...

  8. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.61 a gallon on Monday. That's down 2.3 cents from a week ago, based on ...

  9. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.91 a gallon on Memorial Day Monday. That's up a penny from a week ago, ...

  10. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.83 a gallon on Monday. That's down 1.1 cents from a week ago, based on ...

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.72 a gallon on Monday. That's down 5.9 cents from a week ago, based on ...

  12. DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awarded Patent for Reformulated Diesel Fuel DOE Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of Energy today announced that it has developed, patented, and made commercially available reformulated diesel fuels which when used can reduce nitrogen oxides up to 10% and particulate matter up to 22% compared to those currently available. The diesel fuel formulations covered

  13. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_baranescu.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  14. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  15. Isoprenoid based alternative diesel fuel

    DOE Patents [OSTI]

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  16. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  17. Natural Oils - The Next Generation of Diesel Engine Lubricants...

    Energy Savers [EERE]

    Oils - The Next Generation of Diesel Engine Lubricants? JOE PEREZ 1 & SHAWN WHITACRE 2 1 The ... TEST PURPOSE COMMENT BOSCH INJECTOR HIGH TEMPERATURE - HIGH SHEAR BOSCH INJECTOR SHEAR ...

  18. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  19. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  20. Fuel Additivies for Improved Performance of Diesel Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Impact of Fuel-Borne Catalysts on Diesel Aftertreatment ... system architectures and Ceria-based fuel-borne catalysts for improvement and ...

  1. Application of Synthetic Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_schaberg.pdf More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  2. Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DEER Conference Presentation: Ethyl PDF icon 2002_deer_human.pdf More Documents & Publications Impact of Fuel-Borne Catalysts on Diesel Aftertreatment Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications

  3. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  4. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  5. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  6. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel ... More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter ...

  7. Coal-fueled diesel locomotive test

    SciTech Connect (OSTI)

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  8. PCR+ In Diesel Fuels and Emissions Research

    SciTech Connect (OSTI)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  9. Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions

    Broader source: Energy.gov (indexed) [DOE]

    and Emission Control | Department of Energy 3 DEER Conference Presentation: The Pennsylvania State University PDF icon 2003_deer_boehman.pdf More Documents & Publications Fuel Impacts on Soot Nanostructure and Reactivity Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters Biodiesel Research Update

  10. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  11. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 ...

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fell to 2.38 a gallon on Monday. That's down 4.2 cents from a week ago, based on the ...

  13. Diesel Fuel: Use, Manufacturing, Supply and Distribution | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_williams.pdf More Documents & Publications Marathon Sees Diesel Fuel in Future Diesel vs Gasoline Production Fueling U.S. Light Duty Diesel Vehicles

  14. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  15. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  16. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  17. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  18. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  19. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Crude Oil and Petroleum Products 12,645 13,446 13,070 11,827 13,128 11,470 1986-2016 Crude Oil 121 152 113 126 115 90 1986-2016 Petroleum Products 12,524 13,294 12,957 11,701 13,013 11,380 1986-2016 Pentanes Plus 11 10 10 11 10 10 2009-2016 Liquefied Petroleum Gases 2,828 2,956 3,262 3,331 3,947 3,528 1986-2016 Ethane/Ethylene 2,766 2,893 3,200 3,269 3,884 3,465 2013-2016 Propane/Propylene 44 45 44 44 45 45 2005-2016 Isobutane/Isobutylene 13

  20. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee

  1. Chemical Kinetic Research on HCCI & Diesel Fuels | Department...

    Energy Savers [EERE]

    More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine ...

  2. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Broader source: Energy.gov (indexed) [DOE]

    was used to study how selected oxygenated fuels affect combustion and emissions in a modern diesel engine during conventional combustion and low-temperature combustion (LTC). ...

  3. Isoprenoid based alternative diesel fuel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Isoprenoid based alternative diesel fuel Citation Details In-Document Search ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  4. Effect of GTL Diesel Fuels on Emissions and Engine Performance | Department

    Broader source: Energy.gov (indexed) [DOE]

    Wear | Department of Energy Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine. PDF icon deer08_ajayi.pdf More Documents & Publications Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear AVTA: Oil Bypass Filter Specifications and Test Procedures of

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550

  6. Isoprenoid based alternative diesel fuel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Isoprenoid based alternative diesel fuel Citation Details In-Document Search Title: Isoprenoid based alternative diesel fuel Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001## Authors: Lee, Taek Soon ; Peralta-Yahya, Pamela ; Keasling, Jay D. Publication Date: 2015-08-18 OSTI Identifier: 1210882 Report

  7. EXPLORING LOW EMISSION DIESEL ENGINE OILS WORKSHOP - A SUMMARY REPORT

    SciTech Connect (OSTI)

    Perez, Joseph

    2000-08-20

    This paper discusses and summarizes some of the results of the title workshop. The workshop was held January 31-February 2, 2000 in Phoenix, Arizona. The purpose of the workshop was ''To craft a shared vision for Industry-Government (DOE) research and development collaboration in Diesel Engine Oils to minimize emissions while maintaining or enhancing engine performance''. The final report of the workshop (NREL/SR-570-28521) was issued in June 2000 by the National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393. There were some 95 participants at the workshop representing industry, government and academia, Figure 1. The format for the workshop is described in Figure 2. This format allowed for considerable discussion of the various issues prior to deliberations in breakout groups. This process resulted in recommendations to solve the issues related to the next generation of diesel engine oils. Keynote addresses by SAE President Rodica Baranescu (International Truck and Engine Corporation), James Eberhardt of DOE and Paul Machiele of EPA focused on diesel progress, workshop issues and regulatory fuel issues. A panel of experts further defined the issues of interest, presenting snapshots of the current status in their areas of expertise. A Q&A session was followed by a series of technical presentations discussing the various areas. Some two dozen presentations covered the technical issues, Figure 3. An open forum was held to allow any participant to present related studies or comment on any of the technical issues. The participants broke into work groups addressing the various areas found on Figure 2. A group leader was appointed and reported on their findings, recommendations, suggested participants for projects and on related items.

  8. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  9. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  10. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Control | Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems PDF icon 2004_deer_catalytica.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Retrofit Diesel Emissions Control System Providing 50% NOxControl

  11. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.17 a gallon on Monday. That's up 3.7 cents from a week ago, based on the ...

  12. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.84 a gallon on Monday. That's down 1.6 cents from a week ...

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.81 a gallon on Monday. That's down 7-tenths of a penny from ...

  14. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.90 a gallon on Monday. That's up 2.6 cents from a week ago, based on the ...

  15. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.64 a gallon on Monday. That's down 2.1 cents from a week ...

  16. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.85 a gallon on Monday. That's up 4.3 cents from a week ago, based on the ...

  17. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices falls under 2 The U.S. average retail price for on-highway diesel fuel fell 2.8 cents from a week ago to 1.98 a gallon on Monday. This marks the first time ...

  18. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.88 a gallon on Monday. That's up 2.4 cents from a week ago, based on the ...

  19. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.56 a gallon on Monday. That's up 6.4 cents from a week ago, based on the ...

  20. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.20 a gallon on Monday. That's up 3.3 cents from a week ago, based on the ...

  1. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    20, 2014 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.66 a gallon on Monday. That's down 4.2 cents from a week ...

  2. Gasoline and Diesel Fuel Update - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. On-Highway Diesel Fuel Prices* (dollars per gallon)full history Change from 032116 ... collected on a gallon of fuel that are paid to the federal, state, or local government. ...

  3. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection

    Broader source: Energy.gov [DOE]

    Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

  4. Comparing liquid fuel costs: grain alcohol versus sunflower oil

    SciTech Connect (OSTI)

    Reining, R.C.; Tyner, W.E.

    1983-08-01

    This paper compares the technical and economic feasibility of small-scale production of fuel grade grain alcohol with sunflower oil. Three scales of ethanol and sunflower oil production are modeled, and sensitivity analysis is conducted for various operating conditions and costs. The general conclusion is that sunflower oil costs less to produce than alcohol. Government subsidies for alcohol, but not sunflower oil, could cause adoption of more expensive alcohol in place of cheaper sunflower oil. However, neither sunflower oil nor alcohol are competitive with diesel fuel. 7 references.

  5. NREL and California Air Agency to Test Clean Diesel Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Air Agency to Test Clean Diesel Fuels For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Oct. 4, 2000 - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will test Fischer-Tropsch synthetic diesel fuel for California's South Coast Air Quality Management District (SCAQMD) to determine if using the fuel can help reduce air pollution. Fischer-Tropsch fuels can be produced from natural gas, biomass or coal. They

  6. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  7. On-farm production of soybean oil and its properties as a fuel

    SciTech Connect (OSTI)

    Suh, S.R.

    1983-01-01

    This study presents the design of a system for on-farm production of soybean oil for use as a fuel in compression ignition engines. The soybean oil production system consists of a heat exchanger to heat the beans with the exhaust gas of an engine, a screw press and a system for water degumming and drying the expressed crude oil. Optimum parameters of the oil production system were found. The rheological properties of soybean oil, ester of soybean oil and blends of the above with diesel fuel and diesel fuel additives are given. Data on soybean temperature, outlet gas temperature and thermal efficiency were obtained from a developed mathematical model of the heat exchanger. Chemical analyses show that crude oil from the press is similar to that of commercially degummed oil. The degumming process is not needed for the crude oil to be used as a fuel in compression ignition engines. Rheological properties of the soybean oil and soybean oil diesel fuel mixture show that the fluids have viscosities of time independent characteristics and are Newtonian fluids. Diesel fuel additives having low viscosities can be used to lower the viscosity of soybean oil and blends with diesel fuel but the effect is insignificant.

  8. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  9. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  10. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect (OSTI)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  11. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2015 U.S. diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fell to 2.42 a gallon on Monday. That's down 2.4 cents from a week ago, ...

  12. DOE Awarded Patent for Reformulated Diesel Fuel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of...

  13. U.S. diesel fuel price continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel rose to 2.94 a gallon on Monday. That's up 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. ...

  14. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel rose to 1.99 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. ...

  15. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardBiomassBasedDiesel Jump to: navigation, search This is a property of type Number. Pages...

  16. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    decrease; fall to lowest level in nearly 11 years The U.S. average retail price for on-highway diesel fuel fell to its lowest level in nearly 11 years to 2.01 a gallon on Monday. ...

  17. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect (OSTI)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  18. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect (OSTI)

    Wagner, G.L.; Peterson, C.L.

    1982-01-01

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  19. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  20. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.27 a gallon on Monday. That's up half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.49 a gallon, up 1.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.13 a gallon, down 6-tenths of a penny. This is Amerine Woodyard

  1. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.30 a gallon on Monday. That's up 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.53 a gallon, up 3.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.16 a gallon, up 2.6 cents. This is Amerine Woodyard

  2. U.S. diesel fuel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $2.36 a gallon on Monday. That's up 6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.60 a gallon, up 6.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.23 a gallon, up 7.6 cents. This is Amerine Woodyard

  3. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engineswith Comprehensive Fuel & Emission Control A Universal Dual-Fuel Controller ... Active DPF for Off-Road Particulate Matter (PM) Control Propane-Diesel Dual Fuel for CO2 ...

  4. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  5. Effect of EGR contamination of diesel engine oil on wear.

    SciTech Connect (OSTI)

    Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

    2007-09-01

    Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

  6. Nitrogen oxide removal using diesel fuel and a catalyst

    DOE Patents [OSTI]

    Vogtlin, George E.; Goerz, David A.; Hsiao, Mark; Merritt, Bernard T.; Penetrante, Bernie M.; Reynolds, John G.; Brusasco, Ray

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  7. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace013_pitz_2011_o.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels

  8. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  9. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  10. Economic feasibility of diesel fuel substitutes from oilseeds in New York State

    SciTech Connect (OSTI)

    Lazarus, W.F.; Pitt, R.E.

    1984-11-01

    The feasibility of producing oilseeds for feed and for a diesel fuel substitute has primarily been discussed in terms of the major oilseed producing areas. The Northeast region of the United States is a major agricultural producing area which imports large quantities of soybean meal for cattle feed. This paper considers the technical and economic feasibility of producing oilseeds for feed and fuel in New York State, which is selected as a case study for the region. The possible crops considered for expanded production are sunflowers, soybeans, and flax. It is found that if enough oilseeds are grown to replace 25% of the diesel fuel used on farms, then at most 5% of the cropland would have to be converted to oilseeds, and meal would not be produced in excess of the amount currently used. The cost of producing oil is calculated as the cost of producing the seed plus the cost of processing minus the value of the meal. Enterprise budgets are developed for estimating oilseed production costs in New York State. The cost of processing is estimated for both an industrial-size plant, which does not now exist in New York, and a small on-farm plant. It is found that the diesel fuel and vegetable oil prices would have to rise substantially before oilseeds were produced in the Northeast region for feed and fuel. Moreover, the construction of an oilseed processing facility would not necessarily stimulate production of oilseeds in the region. 22 references.

  11. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.70 ...

  12. U.S. diesel fuel price decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Midwest states at 3.79 a ...

  13. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.70 a ...

  14. U.S. diesel fuel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 1.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.73 a ...

  15. Marathon Sees Diesel Fuel in Future

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  17. U.S. average gasoline and diesel fuel prices expected to be slightly...

    U.S. Energy Information Administration (EIA) Indexed Site

    average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 ... Diesel fuel will continue to cost more than gasoline because of strong global demand for ...

  18. Advanced Research in Diesel Fuel Sprays Using X-rays from the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER ...

  19. The U.S. average retail price for on-highway diesel fuel rose...

    U.S. Energy Information Administration (EIA) Indexed Site

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's ...

  20. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles ...

  1. U.S. diesel fuel prices increase for first time in a month

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices increase for first time in a month The U.S. average retail price for on-highway diesel fuel rose for the first time in a month to 2.50 a gallon on Monday. ...

  2. U.S. diesel fuel price increase for first time since November

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increase for first time since November The U.S. average retail price for on-highway diesel fuel rose to 2.84 a gallon on Monday. That's up 4 tenths of a penny ...

  3. U.S. diesel fuel price increases for first time in 6 weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increases for first time in 6 weeks The U.S. average retail price for on-highway diesel fuel rose for the first time in 6 weeks to 2.78 a gallon on Monday. ...

  4. U.S. diesel fuel price increases for the first time in a month

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increases for the first time in a month The U.S. average retail price for on-highway diesel fuel rose for the first time in a month to 2.49 a gallon on Monday. ...

  5. U.S. diesel fuel price decreases for first time in six weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.75 a gallon on Monday. That's down 3 cents from a week ago, based on the ...

  6. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  7. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect (OSTI)

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  8. Shale oil deemed best near-term synfuel for unmodified diesels and gas turbines. [More consistent properties, better H/C ratios

    SciTech Connect (OSTI)

    Not Available

    1980-06-16

    Among synthetic fuels expected to be developed in the next decade, shale oil appears to be the prime near-term candidate for use in conventional diesel engines and gas turbines. Its superiority is suggested in assessments of economic feasibility, environmental impacts, development lead times and compatibility with commercially available combustion systems, according to a report by the Exxon Research and Engineering Co. Other studies were conducted by the Westinghouse Electric Corp., the General Motors Corp., the General Electric Co. and the Mobil Oil Co. Coal-derived liquids and gases also make excellent fuel substitutes for petroleum distillates and natural gas, these studies indicate, but probably will be economic only for gas turbines. Cost of upgrading the coal-derived fuels for use in diesels significantly reduces economic attractiveness. Methane, hydrogen and alcohols also are suitable for turbines but not for unmodified diesels. The Department of Energy supports studies examining the suitability of medium-speed diesels for adaptation to such fuels.

  9. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  10. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  11. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  12. Combination of Diesel fuel system architectures and Ceria-based fuel-borne

    Broader source: Energy.gov (indexed) [DOE]

    catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications | Department of Energy 03 DEER Conference Presentation: PHODIA Electronics & Catalysis Inc., INERGY Automotive Systems PDF icon 2003_deer_civiello.pdf More Documents & Publications Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Diesel Particulate Filter: A Success for Faurecia Exhaust Systems

  13. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  14. Renewable Diesel Fuels: Status of Technology and R&D Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deermccormick.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Return Condensate to the Boiler BiodieselFuelManagementBestPracticesReport.pdf

  15. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect (OSTI)

    Ives, L.K. )

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  16. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  17. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect (OSTI)

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  18. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear

    Broader source: Energy.gov [DOE]

    Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

  19. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced

    Broader source: Energy.gov (indexed) [DOE]

    Emissions and Improved Fuel Efficiency | Department of Energy An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel. PDF icon deer08_zajac.pdf More Documents & Publications Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine Evaluation of Variable Compression Ratio on Energy Efficiency

  20. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect (OSTI)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  1. Chemical Kinetic Research on HCCI & Diesel Fuels

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  3. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_bonadies.pdf More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Delphi On-board Ammonia Generation (OAG) On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

  4. Impact of Fuel-Borne Catalysts on Diesel Aftertreatment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2003 DEER Conference Presentation: Ethyl Petroleum Additives PDF icon 2003_deer_human.pdf More Documents & Publications Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems

  5. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ...

  6. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  7. Gasoline and Diesel Fuel Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    all petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: May 23, 2016 | Next Release Date: May 31, 2016 Diesel Fuel Release Date: May 23, 2016 | Next Release Date: May 31, 2016 U.S. Regular Gasoline Prices* (dollars per gallon)full history Change from 05/09/16 05/16/16 05/23/16 week ago year ago U.S. 2.220 2.242 2.300 values are up 0.058 values are down -0.474 East Coast (PADD1) 2.217 2.216 2.248 values are up 0.032 values are down -0.418 New England (PADD1A) 2.270 2.263

  8. New Diesel Feedstocks and Future Fuels

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  9. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect (OSTI)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  10. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_13_pitz.pdf More Documents & Publications Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on

  11. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  12. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    using Model-Based Transient Calibration | Department of Energy atkinson.pdf More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Next Generation Diesel Engine Control

  13. Propane-Diesel Dual Fuel for CO2 and Nox Reduction

    Broader source: Energy.gov [DOE]

    Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine.

  14. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    "Resellers'Retailers' Monthly Petroleum Product Sales Report." 16. U.S. No. 2 Diesel Fuel Prices by Sales Type 30 Energy Information Administration Petroleum Marketing Annual...

  15. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    of fuel properties on engine out emissions and performance of low temperature premixed compression ... An Experimental Investigation of Low Octane Gasoline in Diesel ...

  16. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1996 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  17. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1997 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  18. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1996 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  19. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1997 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  20. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER ...

  1. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect (OSTI)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  2. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  3. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect (OSTI)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  4. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Collaboration | Department of Energy Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration August 28, 2014 - 9:51am Addthis Pictured here is a clean diesel engine for light trucks that was part of Cummins research and development effort from 1997-2004. Supported with funding by the Energy Department, this engine is as clean and quiet as a gasoline

  5. Diesel engine performance and emissions using different fuel/additive combinations

    SciTech Connect (OSTI)

    Sutton, D.L.; Rush, M.W.; Richards, P.

    1988-01-01

    It is probable that diesel fuel quality in Europe will fall as the need to blend conversion components into the diesel pool increases. In particular diesel ignition quality and stability could decrease and carbon residue and aromatic content increase. This paper discusses the effects of worsening fuel quality on combustion, injection characteristics and emissions and the efficacy of appropriate additives in overcoming these effects. Both direct injection and indirect injection engines were used in the investigations.

  6. Oil Shale and Other Unconventional Fuels Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on ...

  7. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  8. U.S. diesel fuel prices falls to lowest level since mid-July...

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2014 U.S. diesel fuel prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to 3.70 a gallon on Monday. That's down 3 ...

  9. U.S. diesel fuel prices increase for first time since mid-May

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices increase for first time since mid-May The U.S. average retail price for on-highway diesel fuel rose for the first time since mid-May to 2.53 a gallon on Monday. ...

  10. U.S. diesel fuel price decreases for first time in six weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price decreases for first time in six weeks The U.S. average retail price for on-highway diesel fuel fell to 2.92 a gallon on Monday. That's down 2.7 cents from a week ...

  11. U.S. diesel fuel price decreases for first time in six weeks

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 2.81 a gallon on Monday. That's up 3.1 cents from a week ago, based on the ...

  12. U.S. Diesel Fuel Price Increases for First Time Since June

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price increase for first time since June The U.S. average retail price for on-highway diesel fuel rose to 3.68 a gallon on Monday. That's up 5.4 cents from a week ago ...

  13. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  14. U.S. diesel fuel price falls to lowest level since July 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel price falls to lowest level since July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest point since July 2012 at 3.80 a gallon on Monday. ...

  15. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by ...

  16. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High

    Office of Energy Efficiency and Renewable Energy (EERE)

    According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in...

  17. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  18. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Assessment of Current Commercial Scale Fisher-Tropsch (F-T) Technologies for the Conversion of Syngas to Fuels; (4) An Overview of CO2 Capture Technologies from Various Industrial Sources; and (5) Lifecycle Analysis for the Capture and Conversion of CO2 to Synthetic Diesel Fuel. Commercial scale Sunexus CO2 Solar Reformer plant designs, proposed in this report, should be able to utilize waste CO2 from a wide variety of industrial sources to produce a directly usable synthetic diesel fuel that replaces petroleum derived fuel, thus improving the United States energy security while also sequestering CO2. Our material balance model shows that every 5.0 lbs of CO2 is transformed using solar energy into 6.26 lbs (1.0 U.S. gallon) of diesel fuel and into by-products, which includes water. Details are provided in the mass and energy model in this report.

  19. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  20. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  1. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate ... Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur ...

  2. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  3. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  4. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  5. Chemical Kinetics Research on HCCI and Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace013_pitz_2010_o.pdf More Documents & Publications Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review

  6. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Broader source: Energy.gov (indexed) [DOE]

    Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics ...

  7. Proposed premium diesel fuel spec elicits calls for tougher, better defined parameters

    SciTech Connect (OSTI)

    Peckham, J.

    1998-01-01

    The debate over the definition of premium diesel fuel - what it is and what it should be - is heating up in industry circles. A number of automotive associations, additive makers and standards-setting organizations have jumped into the fray, and the fight is likely to turn volcanic when it comes down to deciding exactly what will constitute a premium diesel and how its properties will be measured. This story details some recent developments in and responses to the ongoing conflict. The Engine Manufacturers Association (EMA), representing 33 international diesel engine makers, recently launched a survey of U.S. diesel fuel marketers to see which ones will offer a fuel meeting EMA`s revised {open_quotes}FQP-1A{close_quotes} premium diesel fuel recommendations. Following the survey, EMA intends to publicize which companies offer such a fuel. The EMA premium fuel specifications are much tougher than the US standard ASTM D 975 fuel and tougher than the newly proposed {open_quotes}premium{close_quotes} diesel fuel from the National Conference of Weights & Measures (NCWM) task force. Earlier this year, Amoco became the first (and so far only) US refiner to offer a fuel meeting all the FQP specifications, but only in certain Midwest markets.

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which assigns a RIN to each gallon of renewable fuel. Entities regulated by RFS include oil refiners, blenders, and gasoline and diesel importers. The volumes required of each...

  9. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts

    Broader source: Energy.gov [DOE]

    Investigates impact of metal impurities in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems

  10. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  11. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  12. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Broader source: Energy.gov [DOE]

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  13. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    57.8 42.0 See footnotes at end of table. 200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  14. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.6 47.4 See footnotes at end of table. 200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  15. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.4 65.5 51.3 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  16. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    51.8 See footnotes at end of table. 242 Energy Information Administration Petroleum Marketing Annual 1995 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  17. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    64.6 54.0 See footnotes at end of table. Energy Information Administration Petroleum Marketing Annual 1995 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  18. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    60.4 60.0 45.2 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  19. U.S. diesel fuel price falls to lowest level since January 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    price falls to lowest level since January 2011 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since January 2011 at 3.42 a gallon on Monday. ...

  20. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Broader source: Energy.gov [DOE]

    A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the...

  1. ,"No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"4272016 1:55:49 PM" "Back to Contents","Data 1: No. 2 Diesel Fuel Sales to End ...

  2. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Reports and Publications (EIA)

    1993-01-01

    The Clean Air Act Amendments of 1990 established a new, sharply lower standard for the maximum sulfur content of on-highway diesel fuel, to take effect October 1, 1993.

  3. Eco-Hybrid Diesel/Glycerin Based Emulsion Fuel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Diesel/Glycerin Emulsion fuel preparation, properties, and combustion PDF icon p-09_kimball.pdf More Documents & Publications Department of the Navy, DPA Presentation Advanced Drop-In Biofuels Initiative Agenda Development of Marine Thermoelectric Heat Recovery

  4. Impact of Lube-oil Phosphorus on Diesel Oxidation Catalysts

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  5. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel...

    Office of Environmental Management (EM)

    Microwave, Detroit Diesel, Oak Ridge National Laboratory (ORNL), New York City Department of Sanitation EERE Investment 2 million Clean Energy Sector Sustainable transportation...

  6. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  7. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  8. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  9. EERE Success Story-Refining Bio-Oil alongside Petroleum | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of technologies that enable the processing of bio-oils in petroleum refineries. ... readily for gasoline, conventional diesel fuel, and jet fuel) brings significant ...

  10. Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation

    Broader source: Energy.gov [DOE]

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

  11. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  12. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_zirker.pdf More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Development of Partial Filter Technology for HDD Retrofit Comparing Emissions Benefits from Regulating Heavy Vehicle Idling

  13. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    SciTech Connect (OSTI)

    Assanis, D.N.; Baker, D. ); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. )

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  14. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines PDF icon deer10_tatur.pdf More Documents & Publications An Experimental Investigation of Low Octane Gasoline in Diesel Engines Use of Low Cetane Fuel to Enable Low Temperature Combustion Vehicle Technologies Office Merit Review 2015: Use of Low Cetane Fuel to Enable

  15. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  16. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  17. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves » Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a

  18. Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced

    Broader source: Energy.gov (indexed) [DOE]

    Photon Source | Department of Energy 3 DEER Conference Presentation: Argonne National Laboratory PDF icon 2003_deer_powell.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry Fuel Injection and Spray Research Using X-Ray Diagnostics

  19. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements PDF icon deer11_johnson.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems Vehicle

  20. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Stocks by Type Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils,

  1. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion...

    Office of Scientific and Technical Information (OSTI)

    chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel ...

  2. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic ...

  3. U.S. diesel fuel prices continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.31 a ...

  4. U.S. diesel fuel price hits 2014 low

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 1.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.04 ...

  5. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at ...

  6. U.S. diesel fuel prices remain stable

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.33 a ...

  7. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 7.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.29 a ...

  8. U.S. diesel fuel price continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 3.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest at 3.29 a gallon in the New England ...

  9. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.65 a ...

  10. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.37 ...

  11. U.S. Diesel Fuel Price Continues to Increase

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England and Central ...

  12. U.S. diesel fuel price continues to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.17 a ...

  13. U.S. diesel fuel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.22 a ...

  14. U.S. diesel fuel prices remain stable

    U.S. Energy Information Administration (EIA) Indexed Site

    That's based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 2.32 a gallon, up 2-tenths of a penny ...

  15. U.S. diesel fuel price continues to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 7.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at ...

  16. Hydrogen as a Supplemental Fuel in Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. Verification of Shell GTL Fuel as CARB Alternative Diesel

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Peanut varieties: potential for fuel oil

    SciTech Connect (OSTI)

    Hammons, R.O.

    1981-01-01

    Research is beginning in farm crushing of peanuts into fuel oil, the high-protein residue being used as livestock feed. Thirty peanut genotypes were investigated for oil and protein yields in field trials in Georgia. For 11 varieties in an irrigated test, mean oil contents (dry base) were in the 49.7-52.7% range, and the level of protein was in the 22.60-26.70% range. Wider variations in oil and protein contents were found in 19 other genotypes selected for possible use as an oil crop. Breeding for high oil yield has not been practiced in US peanut breeding programs. Convergent improvement to attain higher levels of oil content, shell-out percentage, and stable yield will require 6-10 generations of crossing, backcrossing, selection, and testing.

  19. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  20. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  1. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  2. Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel

    Broader source: Energy.gov [DOE]

    Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

  3. The Biofuel Project: Creating Bio-diesel

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity introduces students to alternative fuels and gives them an opportunity to produce their own biodiesel fuel. The text of the exercise gives students a brief background in the environmental benefits of using biodiesel as a diesel substitute. The lab portion of this exercise demonstrates the basic chemistry involved in making biodiesel from vegetable oils and waste oils.

  4. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil...

  5. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  6. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  7. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  8. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect (OSTI)

    1994-01-31

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  9. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Impact of Biodiesel on Ash Emissions and Lubricant Properties ...

  10. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  11. Final Report for NFE-07-00912: Development of Model Fuels Experimental...

    Office of Scientific and Technical Information (OSTI)

    New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil ...

  12. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  13. New Feedstocks and Replacement Fuel Diesel Engine Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications BiodieselFuelManagementBestPracticesReport.pdf Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report Biodiesel Basics ...

  14. U.S. Residual Fuel Oil Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes ...

  15. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day ...

  16. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  17. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  18. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  19. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  20. U.S. diesel fuel prices falls to lowest level since mid-July...

    U.S. Energy Information Administration (EIA) Indexed Site

    prices falls to lowest level since mid-July 2012 The U.S. average retail price for on-highway diesel fuel fell to its lowest level since mid-July 2012 at 3.73 a gallon on Monday. ...

  1. EIA Estimates of Crude Oil and Liquid Fuels Supply Disruptions

    Reports and Publications (EIA)

    2013-01-01

    Short-Term Energy Outlook Supplement: Energy Information Administration estimates of crude oil and liquid fuels supply disruptions

  2. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  3. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace013_pitz_2012_o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

  4. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  5. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  6. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  7. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect (OSTI)

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  8. Comparing the Performance of SunDiesel and Conventional Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Variable ...

  9. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect (OSTI)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  10. ,"U.S. On-Highway Diesel Fuel Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    On-Highway Diesel Fuel Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","W Diesel Prices - All Types",11,"Weekly","5/23/2016","3/21/1994" ,"Data 2","M Diesel Prices - All Types",11,"Monthly","4/2016","3/15/1994" ,"Data 3","W

  11. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  12. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  13. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect (OSTI)

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  14. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect (OSTI)

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  15. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  16. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  17. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  18. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  19. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  20. Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and uses any fuel. PDF icon deer08zajac.pdf More Documents & Publications Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies High Thermal ...

  1. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control

    Broader source: Energy.gov [DOE]

    Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

  2. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC)

    Broader source: Energy.gov (indexed) [DOE]

    Activity | Department of Energy 3 DEER Conference Presentation: National Renewable Energy Laboratory PDF icon deer_2003_thornton.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel APBF-DEC Light-duty NOx Adsorber/DPF Project

  3. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Response of Oil Sands Derived Fuels in Diesel HCCI Operation Combustion, Efficiency, and Fuel Effects in a ...

  4. The second generation of electronic diesel fuel injection systems - Investigation with a rotary pump

    SciTech Connect (OSTI)

    Yamada, K.; Oshizawa, H.

    1986-01-01

    This paper describes concepts of the next generation of electronic diesel fuel injection (EDFI) systems, and the test results of the prototype, named ''Model-1.'' Important characteristics of the next generation of EDFI will be; mechanical simplicity, direct control and pump intelligence. Direct spill control using a high speed solenoid valve for injection regulation and pump mounted electronic circuits were used in the ''Model-1'' system. The test results demonstrate the advantages of this system, and suggest possibilities of new function such as individual cylinder control, pilot injection and multi fuel usage.

  5. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  6. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  7. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  8. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  9. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,..."Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Nat...

  10. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,..."Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Nat...

  11. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect (OSTI)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

  12. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oil or animal fats and that meets ASTM D6751. Green diesel is ...

  14. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  15. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  16. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  17. Fabrication and characterization of micro-orifices for diesel fuel injectors.

    SciTech Connect (OSTI)

    Fenske, G.; Woodford, J.; Wang, J.; El-Hannouny, E.; Schaefer, R.; Hamady, F.; National Vehicle and Fuel Emissions Lab.

    2007-04-01

    Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 gmm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated, micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.

  18. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  19. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel

  20. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  1. Combined process for heavy oil, upgrading and synthetic fuel production

    SciTech Connect (OSTI)

    Polomski, R.E.

    1984-06-05

    A process for upgrading heavy oil to fuel products comprises deasphalting the heavy oil with an oxygenated solvent and simultaneously converting the oxygenated solvent and deasphalted oil over a ZSM-5 type catalyst to produce gasoline and distillate boiling range hydrocarbons.

  2. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  3. Net Imports of Total Crude Oil and Products into the U.S. by Country

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500

  4. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect (OSTI)

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  5. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    DOE Patents [OSTI]

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  6. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect (OSTI)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  7. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions

  8. Process for Converting Algal Oil to Alternative Aviation Fuel - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. Technology Marketing Summary Conversion of triglyceride oils extracted from algae-derived lipids into

  9. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  10. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  11. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  12. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Elect. ...

  13. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  14. Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source

    SciTech Connect (OSTI)

    Powell, C

    2003-08-24

    The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure increases. This is counter to visible light spray measurements, and current work is underway in an effort to understand this effect.

  15. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  16. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  17. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  18. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  19. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  20. Diesel Health Impacts & Recent Comparisons to Other Fuels | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Natural Resources Defense Council PDF icon 2002_deer_bailey.pdf More Documents & Publications Summary of Swedish Experiences on CNG and "Clean" Diesel Buses CNG and Diesel Transite Bus Emissions in Review ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses

  1. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  2. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size

    Broader source: Energy.gov (indexed) [DOE]

    Distributions and Detailed Exhaust Chemical Composition | Department of Energy 3 DEER Conference Presentation: University of Wisconsin-Madison PDF icon 2003_deer_foster.pdf More Documents & Publications Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics of Diesel Aerosol

  3. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  4. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fascinating things of my job is contemplating questions like: What will the future energy mix look like? This is difficult to predict but it is fair to argue that oil will...

  5. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  6. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect (OSTI)

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  7. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

    Broader source: Energy.gov [DOE]

    A 2014 survey of over 110,000 refueling stations in the U.S. and Canada shows that over half of all refueling stations sell diesel fuel. The survey results are shown for five different regions of...

  8. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... storage of usable alternative fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less ...

  9. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... storage of usable alternative fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less ...

  10. Fuel Oil and Kerosene Sales - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ See All Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2014 | Release Date: December 22, 2015 | Next Release Date: November 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go EIA is considering changes to the survey Form EIA-821, "Annual Fuel Oil and Kerosene Sales Report," such as deleting kerosene and adding propane. If you would like to participate in a discussion on these proposed changes

  11. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  12. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect (OSTI)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  13. Lean methane premixed laminar flames doped by components of diesel fuel II: n-propylcyclohexane

    SciTech Connect (OSTI)

    Pousse, E.; Porter, R.; Warth, V.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2010-01-15

    For a better understanding of the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-propylcyclohexane has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.81% n-propylcyclohexane (C{sub 9}H{sub 18}), corresponding to an equivalence ratio of 0.68 and a C{sub 9}H{sub 18}/CH{sub 4} ratio of 11.4%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 17 C{sub 3}-C{sub 5} hydrocarbons, seven C{sub 1}-C{sub 3} oxygenated compounds, and only four cyclic C{sub 6+} compounds, namely benzene, 1,3-cyclohexadiene, cyclohexene, and methylenecyclohexane. A new mechanism for the oxidation of n-propylcyclohexane has been proposed. It allows the proper simulation of profiles of most of the products measured in flames, as well as the satisfactory reproduction of experimental results obtained in a jet-stirred reactor. The main reaction pathways of consumption of n-propylcyclohexane have been derived from rate-of-production analysis. (author)

  14. A lean methane premixed laminar flame doped with components of diesel fuel. I. n-Butylbenzene

    SciTech Connect (OSTI)

    Pousse, E.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2009-05-15

    To better understand the chemistry involved in the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-butylbenzene has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.96% n-butylbenzene corresponding to an equivalence ratio of 0.74 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 13.5%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} hydrocarbons, and 7 C{sub 1}-C{sub 3} oxygenated compounds, as well as 20 aromatic products. A new mechanism for the oxidation of n-butylbenzene is proposed whose predictions are in satisfactory agreement with measured species profiles in flames and flow reactor experiments. The main reaction pathways of consumption of n-butylbenzene have been derived from flow rate analyses. (author)

  15. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis ...

  16. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis...

  17. RECS Fuel Oil Usage Form_v1 (Draft).xps

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery ... Form EIA 457G OMB No. 1905-0092 Expires 13113 2009 RECS Fuel Oil and Kerosene Usage Form ...

  18. EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - ...

  19. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel ...

  20. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  1. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    of Energy Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development PDF icon Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development More Documents & Publications Oil Shale RD&D Leases in the United States National Strategic Unconventional Resource Model Oil Shale

  2. Diesel Use in California | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DEER Conference Presentation: California Energy Commission PDF icon 2002_deer_boyd.pdf More Documents & Publications Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Diesel Fuel: Use, Manufacturing, Supply and Distribution Cleaning Up Diesel Engines

  3. An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998

    SciTech Connect (OSTI)

    MacCarley, C.A.

    1999-01-26

    Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

  4. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update (EIA)

    Randall Luthi, President www.noia.org National Ocean Industries Association The Future of OCS After Macondo 2011 EIA Conference Washington, DC April 26, 2011 NOIA represents the full spectrum of U.S. businesses that produce energy offshore Last year's view through the crystal ball was far different than today's * A year ago, the off shore oil and gas industry was poised to come out of the economic doldrums * Spurred by earlier deep water discoveries, the future looked promising * The Obama

  5. Future Fuels: Issues and Opportunities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    beard.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Effect of GTL Diesel Fuels on Emissions and Engine Performance Application of Synthetic Diesel Fuels

  6. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  7. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  8. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  9. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  10. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  11. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  12. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  13. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    Product Guide Category Prices Volumes Crude oil Refiner acqusistion cost 1,1A - Domestic first purchases 1 - from selected states 18 - by API gravity 20 - for selected crude streams 19 - Imports F.O.B. cost 1 - from selected states 21 - by API gravity 23 - for selected crude streams 26 - Landed costs 1 - from selected states 22 - by API gravity 24 - for selected crude streams 27 - Percentage by gravity band 25 - - Motor gasoline all sellers 28 - refiners 2,4,6,31 3,5,7,39,40 prime suppliers - 45

  14. Fact# 905: December 28, 2015 Alternative Fuels Account for One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2013. Beginning in the mid-2000's biodiesel, a diesel fuel based on vegetable oil or animal fat was also used in transit buses. Biodiesel is typically blended with ...

  15. Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. U.S. diesel fuel price continue to decrease; lowest level since...

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at ...

  17. U.S. diesel fuel price shows no movement from a week ago

    U.S. Energy Information Administration (EIA) Indexed Site

    The average price remained flat at 3.81 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West ...

  18. U.S. diesel fuel price decreases for the second week in a row

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 5.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at ...

  19. U.S. diesel fuel price continue to decrease; lowest level since...

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 6.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at ...

  20. U.S. diesel fuel price falls to lowest level since February 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast region at 3.79 a ...

  1. U.S. diesel fuel price falls to lowest level in four years

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 13.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.43 ...

  2. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads PDF icon deer09_li.pdf More Documents & Publications Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Status of APBF-DEC NOx Adsorber/DPF Projects Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology

  3. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

  4. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    October ... 14,752.6 69,758.6 7,217.1 15,271.7 21,969.7 85,030.3 3,137.2 25,623.2 25,106.9 110,653.4 November ... 14,904.2...

  5. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Machine Drive",2,4,14,6,21,4 ," Electro-Chemical Processes",1,0,0,0,0,0 ," Other Process ... Machine Drive",4,0,45,45,78,0 ," Electro-Chemical Processes",73,0,0,0,0,0 ," Other Process ...

  6. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    25,794.3 125,232.3 November ... 14,453.5 66,101.3 8,392.5 14,607.4 22,846.0 80,708.7 3,071.6 38,342.1 25,917.7 119,050.8 December ......

  7. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    I January ... 3,767.8 15,166.2 1,271.9 3,441.5 5,039.7 18,607.8 1,103.3 23,611.9 6,143.0 42,219.7 February ... 4,023.0 15,858.8...

  8. The Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States A. Milbrandt, C. Kinchin, and R. McCormick National Renewable Energy Laboratory Technical Report NREL/TP-6A20-58015 December 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  9. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  10. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  11. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  12. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  13. Assessment of the O2Diesel Operational Safety Program: December 23, 2002 -- June 30, 2007

    SciTech Connect (OSTI)

    TIAX LLC

    2006-06-01

    This report assesses O2Diesel's operational safety program using its ethanol-diesel blended fuel product.

  14. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  15. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  16. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  17. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  18. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  19. Solid fuel applications to transportation engines

    SciTech Connect (OSTI)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  20. Dieselgreen Fuels | Open Energy Information

    Open Energy Info (EERE)

    Dieselgreen Fuels Jump to: navigation, search Logo: DieselGreen Fuels Name: DieselGreen Fuels Place: Austin, Texas Region: Texas Area Sector: Biofuels Product: Grease collection...

  1. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

  2. Experimental plan for the fuel-oil study

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  3. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel ...

  4. BETO-Funded Study Finds Increased Carbon Intensity from Canadian Oil Sands

    Broader source: Energy.gov [DOE]

    A recently released study from Argonne National Laboratory shows that gasoline and diesel refined from Canadian oil sands have a higher carbon impact than fuels derived from conventional domestic crude sources.

  5. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  6. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as

    Broader source: Energy.gov (indexed) [DOE]

    Reductants | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_marshall.pdf More Documents & Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis

  7. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions

    Broader source: Energy.gov [DOE]

    Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

  8. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  9. Fabrication of Micro-Orifices for Diesel Fuel Injectors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Scuffing resistance of a MoN-Cu nano-composite coating under exteme loading condidtions do not show scuffing within the load limit of the testing device. PDF icon deer08_fenske.pdf More Documents & Publications Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) Fuel Injector Holes Fuel Injector Holes

  10. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  11. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  12. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  13. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  14. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  15. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels, executive summary

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study was carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from syncrude. The findings from the search were presented and discussed in detail in the main report (Ricardo DP.81/539). In this executive summary, the conclusions and recommendations from the main report are presented.

  16. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2009-01-01

    An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

  17. Improvement and Simplification of Diesel Particulate Filter System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel ...

  18. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOE Patents [OSTI]

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  19. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOE Patents [OSTI]

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  20. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect (OSTI)

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  1. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    Volumes 4,546.1 3,741.4 4,403.1 3,994.1 4,103.1 4,101.4 1983-2016 Sulfur Less Than or Equal to 1% W NA W W W NA 1983-2016 Sulfur Greater Than 1% W 2,878.7 W W W 3,613.7 1983-2016 No. 4 Fuel Oil W - - - W -

  2. Efficiency Considerations of Diesel Premixed Charge Compression...

    Broader source: Energy.gov (indexed) [DOE]

    in a Medium-Duty Diesel Engine Fuel-Induced System Responses The Role Unconventional Fuels May Play in Altering Exhaust Conditions from Conventional and Low Temperature ...

  3. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  4. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  5. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  6. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel

    Broader source: Energy.gov [DOE]

    The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized...

  7. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

    SciTech Connect (OSTI)

    Bunting, Bruce G; Eaton, Scott J; Crawford, Robert W

    2009-01-01

    The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

  9. Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

    2004-12-31

    This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

  10. DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS

    SciTech Connect (OSTI)

    E.T. Robinson; James P. Meagher; Ravi Prasad

    2001-10-31

    This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

  11. Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Engines Using Diesel and Biodiesel Fuels Investigation on continuous soot ... Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

  12. Storage Tanks and Dispensers for E85 and Bio-Diesel

    SciTech Connect (OSTI)

    Webster, Michael; Frederick, Justin

    2014-02-10

    Project objective is to improve the District's alternative fueling infrastructure by installing storage tanks and dispensers for E-85 and Bio-Diesel at the existing Blackwell Forest Preserve Alternative Fuel Station. The addition of E-85 and Bio-Diesel at this station will continue to reduce our dependency on foreign oil, while promoting the use of clean burning, domestically produced, renewable alternative fuels. In addition, this station will promote strong intergovernmental cooperation as other governmental agencies have expressed interest in utilizing this station.

  13. EERE Success Story—Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  14. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and

    Broader source: Energy.gov (indexed) [DOE]

    Emissions | Department of Energy Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Response of Oil Sands Derived Fuels in Diesel HCCI Operation Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine

  15. Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC

    Broader source: Energy.gov (indexed) [DOE]

    on a Multi-Cylinder Light Duty Diesel Engine | Department of Energy Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-06_curran.pdf More Documents & Publications High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High-Efficiency Clean Combustion in

  16. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived

    Broader source: Energy.gov (indexed) [DOE]

    Fuels | Department of Energy 3 DEER Conference Presentation: National Research Council Canada, Ottawa, Ontario, Canada PDF icon 2003_deer_neill.pdf More Documents & Publications Development of Advanced Combustion Technologies for Increased Thermal Efficiency Biodiesel Research Update Effect of the Composition of Hydrocarbon Streams on HCCI Performance

  17. Philippine refiner completes diesel desulfurization project

    SciTech Connect (OSTI)

    Candido, S.S.; Crisostomo, E.V.

    1997-01-27

    In anticipation of tightening sulfur specifications on diesel fuel, Petron Corp. built a new 18,000 b/sd gas oil desulfurization unit (GODU) at its refinery in Bataan, Philippines. The GODU gives Petron sufficient diesel oil desulfurization capacity to meet demand for lower-sulfur diesel in the country. The project places the refinery in a pacesetter position to comply with the Philippine government`s moves to reduce air pollution, especially in urban centers, by reducing the sulfur specification for diesel to 0.5 wt% in 1996 from 0.7 wt% at the start of the project. Performance tests and initial operations of the unit have revealed a desulfurization efficiency of 91% vs. a guaranteed efficiency of 90%. A feed sulfur content of 1.33 wt% is reduced to 0.12 wt% at normal operating conditions. Operating difficulties during start-up were minimized through use of a detailed prestartup check conducted during the early stages of construction work.

  18. Development of HC-SCR System Using Diesel Fuel as a Reductant | Department

    Broader source: Energy.gov (indexed) [DOE]

    in Gas Turbines - Fact Sheet, May 2014 | Department of Energy GE Global Research developed and tested new fuel-flexible gas turbine nozzle technology concepts that will enable end users to efficiently generate power and heat from industrial off-gases and gasified industrial, agricultural, or municipal waste streams, as well as blends of these opportunity fuels with readily available pipeline gases. PDF icon fuel-flexible_combustion_systems_factsheet.pdf More Documents & Publications

  19. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  20. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption

    Broader source: Energy.gov [DOE]

    Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps