National Library of Energy BETA

Sample records for diesel fuel blends

  1. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

  2. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  3. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  4. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  5. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  6. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  7. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  8. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect (OSTI)

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  9. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  10. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  11. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  12. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection

    Broader source: Energy.gov [DOE]

    Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

  13. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  14. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _ _ ORNL-6161Annual

  15. Durability testing of a diesel fuel, methyl tallowate, and ethanol blend in a Cummins N14-410 diesel engine

    SciTech Connect (OSTI)

    Ali, Y.; Hanna, M.A. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-05-01

    A Cummins N14-410 diesel engine was operated on an 80:13:7% (v/v) blend of diesel fuel: methyl tallowate: ethanol. The standard 200-h Engine Manufacturers Association (EMA) test procedure was followed to test engine durability. Engine performance was evaluated in terms of power produced at rated speed, peak torque produced at a speed of 1200 rpm, and brake specific fuel consumption at both speeds. Engine exhaust emissions analyses were performed, and the engine oil was analyzed for accumulation of heavy metals at 45 h intervals. It was observed that engine performance was satisfactory for 148 h at which time the injector in cylinder 2 failed. The injector was changed, and after an additional 11 h (159 h total) of operation the injector in cylinder 5 failed. That injector was also replaced, and the 200-h procedure was continued. The test was discontinued after 197 h when the supply of the fuel blend was exhausted. The injectors were removed and the injector in cylinder 1 was observed to be coked. This injector was sent to the Cummins Engine Co. for analysis. It was found that failure of this injector was not because of the fuel used, but because of a crack had developed across the tip due to an excessively tight overhead adjustment. Engine oil analyses performed for accumulation of wear metals did not reveal any excessive wear on the engine parts. 12 refs., 4 figs., 3 tabs.

  16. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  17. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect (OSTI)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  18. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  19. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    DOE Patents [OSTI]

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  20. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  1. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect (OSTI)

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  2. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngine Applications |

  3. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  4. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  5. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  6. Key Benefits in Using Ethanol-Diesel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits in Using Ethanol-Diesel Blends Key Benefits in Using Ethanol-Diesel Blends Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER...

  7. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  8. Peanut oil as an emergency diesel fuel

    SciTech Connect (OSTI)

    Goodrum, J.W.

    1983-06-01

    Two elements of an emergency fuel system are discussed. A CeCoCo mechanical oil expeller's efficiency is related to temperature, moisture, and pressure conditions. Durability test on 20:80 and 80:20 peanut oil: diesel blends show injector coking and effects on exhaust temperature, specific fuel, and crankcase oil.

  9. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun [ORNL

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  10. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian the first major milestone in this direction for its fleet of Diesel Locomotives. Introduction The first

  11. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  12. Diesel engine fuel systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  13. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  14. Diesel injector carbonization by three alternative fuels

    SciTech Connect (OSTI)

    Goodrum, J.W.; Patel, V.C.; McClendon, R.W. [Univ. of Georgia, Athens, GA (United States)

    1996-05-01

    Three alternative diesel fuels were screened by analysis of fuel injector tip deposits. The test engines were operated on the Peterson (torque) test cycle; the average carbon deposit volume on an injector tip was measured by a computer vision method. Relative coke deposit quantity was obtained by area analysis of injector tip images. Repetitive image areas varied less than 1%. Coke deposit areas for repetitive fuel tests also varied less than 1%. Injector coking tendencies of tested fuels decreased in the following order: peanut oil, no. 2 diesel, tricaprylin, and tributyrin/no. 2 diesel blend. The observed dependence of the relative coke quantity on fuel type was consistent with the results from a photographic technique used previously for fuel screening. 10 refs., 2 figs., 2 tabs.

  15. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  16. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations

  17. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  18. Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels Mohammed of the oxidation of two blend surrogates for diesel and biodiesel fuels, n-decane/n-hexadecane and n-alkanes and methyl esters. Keywords: Oxidation; Diesel; Biodiesel; Methyl esters; n-Decane; n-Hexadecane; Methyl

  19. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel the closed-loop air-to-fuel ratio (AFR) control which maintains automatically operation around

  20. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  1. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4thwritesOfficeEstimation

  2. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  3. Formulation of stable mixtures of diesel fuels with methanol

    SciTech Connect (OSTI)

    Azev, V.S.; Gerasimova, G.N.; Luneva, V.V.

    1986-07-01

    This paper presents an investigation of the possibility of formulating stable blends of diesel fuel and methanol. Two commercial products (diesel fuel L-0.5 and methanol) were used. In studying the influence of hydrocarbon composition on the solubility of methanol, certain individual aromatic hydrocarbons were used: toluene, cumene, and a-methylnaphthalene. It is shown that the most stable formulations are 5% methanol and 0.5% water; 5% methanol, 0.5% water, and 0.25% surfactant. Higher alcohols, particularly butanol, can be used to stabilize blends of methanol with diesel fuel. The butanol/methanol ratio should be no lower than 2/1, and this cannot be justified economically.

  4. Analysis of Nitro-Polycyclic Aromatic Hydrocarbons in Conventional Diesel and Fischer--Tropsch Diesel Fuel Emissions Using Electron Monochromator-Mass Spectrometry

    SciTech Connect (OSTI)

    Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.

    2006-01-01

    The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015ValuesEFuel OilDiesel Fuel Pump

  6. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015ValuesEFuel OilDiesel Fuel

  7. Hydrogen as a Supplemental Fuel in Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

  8. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  9. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  10. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  11. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  12. An Integrated Approach for Creating Model Diesel Fuels Ioannis P. Androulakis, Mark D. Weisel, Chang S. Hsu, Kuangnan Qian,

    E-Print Network [OSTI]

    Androulakis, Ioannis (Yannis)

    algorithm to formulate well-characterized diesel fuel blends and an analytical method to characterize diesel for different parts of the drive cycle. For example, highly aromatic, high-octane fuels have been shown-aromatic, lower-octane fuels are optimal under low-load, stratified operation.1 Understanding the effects of fuel

  13. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  14. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect (OSTI)

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  15. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  16. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

  17. Dual-fueling diesel/NGV technology

    SciTech Connect (OSTI)

    Heenan, J.; Gettel, L

    1988-01-01

    The use of natural gas as a transportation fuel reduces operating costs and emissions and contributes to security of supply. Natural gas for vehicles (NGV) can be used in rail, road, marine and off-road applications as a replacement for diesel fuel either stored as liquefied natural gas (LNG) or compressed natural gas (CNG). These applications have large energy consumptions per engine which makes them attractive target markets. When NGV replaces diesel as a fuel, either engines are converted to spark ignition (Otto Cycle) or a small amount of diesel fuel is used as for pilot ignition (Dual fuel).

  18. Combination of Diesel fuel system architectures and Ceria-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

  19. Fabrication of Small Diesel Fuel Injector Orifices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Diesel Fuel Injector Orifices Fabrication of Small Diesel Fuel Injector Orifices Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  20. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

  1. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel...

    Office of Environmental Management (EM)

    Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D...

  2. Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks

    E-Print Network [OSTI]

    2002-01-01

    reduced diesel fuel consumption, lubricant changes, anddiesel consumption Diesel fuel cost Lubricant cost Engine

  3. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  4. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

  5. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

    2010-01-01

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  6. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

  7. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  8. Pyrochem Catalysts for Diesel Fuel Reforming - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Return to Search Pyrochem Catalysts for Diesel Fuel Reforming National Energy Technology...

  9. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  10. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  11. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  12. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    products include gasoline, diesel, jet fuel, and blendingReformulated Gasoline Blendstock for Oxygenate Blending).the ubiquitous blending of ethanol in gasoline. Biodiesel is

  13. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01

    products include gasoline, diesel, jet fuel, and blendingReformulated Gasoline Blendstock for Oxygenate Blending).the ubiquitous blending of ethanol in gasoline. Biodiesel is

  14. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  15. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  16. Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression-ignition engine

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression phytol (C20H40O) with diesel in 5%, 10%, and 20% by volume blends. 3-D, transient, turbulent nozzle flow and emissions experiments of the different phytol/diesel blends. Combustion event depicted by high

  17. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect (OSTI)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  18. Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2 Feedstock Petroleum Petroleum & Natural Gas Natural Gas Petroleum & Coal Coal Sulfur (ppm by mass) 1148 699 19 658 22 Alkanes (% vol.) 50

  19. Diesel Locomotive Fueling Problem (LFP) in Railroad Operations

    E-Print Network [OSTI]

    Murty, Katta G.

    Chapter 2 Diesel Locomotive Fueling Problem (LFP) in Railroad Operations Bodhibrata Nag Katta G their operating costs low. About 75% of transport by railroads in the world is based on diesel locomotives by diesel locomotives. One of the major compo- nents in the operating cost of diesel powered rail transport

  20. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.51 a gallon on Monday. That's down 4.7 cents from a week ago, based on...

  1. Chemical Kinetic Research on HCCI & Diesel Fuels | Department...

    Office of Environmental Management (EM)

    alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI & Diesel Fuels...

  2. U.S. diesel fuel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014diesel

  3. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  4. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6Fuel OilSampling

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6Fuel OilSamplingPrice

  6. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6Fuel

  7. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6FuelCounties included in

  8. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6FuelCounties included

  9. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6FuelCounties

  10. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6FuelCountiesOn-Highway

  11. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore »for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  12. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up for email168

  14. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up for

  15. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up for Retail motor

  16. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up for Retail

  17. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up for RetailLearn

  18. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up for

  19. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign up forHoliday Release

  20. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015ValuesEFuel Oil andSampling

  1. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015ValuesEFuel Oil

  2. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  3. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  4. Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion Potential of Olefin Impact in a Diesel Base Fuel D. Alseda1,2, X. Montagne1 and P. Dagaut2 1 -- Combustion en mode HCCI : impact de la formulation d'un carburant Diesel sur l'initiation et la combustion

  5. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

  6. Diesel Health Impacts & Recent Comparisons to Other Fuels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Impacts & Recent Comparisons to Other Fuels Diesel Health Impacts & Recent Comparisons to Other Fuels 2002 DEER Conference Presentation: Natural Resources Defense Council...

  7. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  8. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  9. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  10. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect (OSTI)

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff (The Lubrizol Corp.)

    2005-07-01

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  11. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  12. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Universal Dual-Fuel Controller for OEMAftermarket Diesel Engineswith Comprehensive Fuel & Emission Control A Universal Dual-Fuel Controller for OEMAftermarket Diesel Engineswith...

  13. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel

    Broader source: Energy.gov [DOE]

    This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine.

  14. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  15. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Broader source: Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  16. Eco-Hybrid Diesel/Glycerin Based Emulsion Fuel | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eco-Hybrid DieselGlycerin Based Emulsion Fuel Eco-Hybrid DieselGlycerin Based Emulsion Fuel DieselGlycerin Emulsion fuel preparation, properties, and combustion p-09kimball.pdf...

  17. ORNL/TM-2000/191 ULTRA-CLEAN DIESEL FUEL

    E-Print Network [OSTI]

    ORNL/TM-2000/191 ULTRA-CLEAN DIESEL FUEL: U.S. PRODUCTION AND DISTRIBUTION CAPABILITY G.R. Hadder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. CURRENT DIESEL FUEL MARKET STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. SMALL MARKET: LIGHT DUTY DIESEL FUEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3

  18. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect (OSTI)

    Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

    2012-06-21

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

  19. Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel. deer08zajac.pdf More Documents & Publications Impact...

  20. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

    2008-01-01

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  4. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  5. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  6. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  7. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Broader source: Energy.gov (indexed) [DOE]

    is as clean and quiet as a gasoline engine, while delivering up to 30 percent better fuel economy. | Photo courtesy of Cummins. Pictured here is a clean diesel engine for light...

  8. Marathon Sees Diesel Fuel in Future

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Diesel Fuel: Use, Manufacturing, Supply and Distribution

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerbonadies.pdf More Documents & Publications Application of a Diesel Fuel Reformer for...

  11. A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

    Broader source: Energy.gov [DOE]

    A single-cylinder engine was used to study how selected oxygenated fuels affect combustion and emissions in a modern diesel engine during conventional combustion and low-temperature combustion (LTC).

  12. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect (OSTI)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    safety, or law enforcement needs. Additionally, the state must develop procedures for diesel fleet vehicles to use biodiesel fuel blends of the highest practical percent....

  14. Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel

    Broader source: Energy.gov [DOE]

    In 1995, over 95% of the fuel used in transit buses was diesel. In 2006, diesel fuel constituted just under 75% of the fuel used by transit buses while other fuel types such as compressed natural...

  15. Alternative Fuels Data Center: Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someoneElectricity

  16. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  17. Mid-Blend Ethanol Fuels – Implementation Perspectives

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification Bill Woebkenberg, Fuels Technical and Regulatory Affairs Senior Engineer, Mercedes-Benz

  18. Alternative Fuels Data Center: Biodiesel Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle Fuel BenefitsBenefits

  19. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  20. Nitrogen oxide removal using diesel fuel and a catalyst

    DOE Patents [OSTI]

    Vogtlin, George E. (Fremont, CA); Goerz, David A. (Brentwood, CA); Hsiao, Mark (San Jose, CA); Merritt, Bernard T. (Livermore, CA); Penetrante, Bernie M. (San Ramon, CA); Reynolds, John G. (San Ramon, CA); Brusasco, Ray (Livermore, CA)

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  1. Propane-Diesel Dual Fuel for CO2 and Nox Reduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane-Diesel Dual Fuel for CO2 and Nox Reduction Propane-Diesel Dual Fuel for CO2 and Nox Reduction Test results show significant CO2 and NOx emission reductions, fuel economy...

  2. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.

  3. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  4. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  5. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  6. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect (OSTI)

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

    2012-07-26

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found. This paper is dedicated to the memory of our friend and colleague Jim Franz. Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, and by the Coordinating Research Council (CRC) and the companies that employ the CRC members. The study was conducted under the auspices of CRC. The authors thank U.S. DOE program manager Kevin Stork for supporting the participation of the U.S. national laboratories in this study.

  7. Thin fuel film reactor testing for characterization of diesel fuel deposit formation

    E-Print Network [OSTI]

    Welling, Orian (Orian Z.)

    2009-01-01

    The need for specialized diesel fuel injectors is growing with increased efficiency and emissions regulation. These specialized fuel injectors have nozzle diameters of 150-200[mu]m which are susceptible to clogging from ...

  8. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  9. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  10. Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels

    Broader source: Energy.gov [DOE]

    Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

  11. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  12. Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel Versus Petroleum Diesel

    E-Print Network [OSTI]

    Frey, H. Christopher

    Versus Petroleum Diesel By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction 2006 Annual Meeting CD-ROM Paper revised from original submittal. #12;Frey and Kim 1 ABSTRACT Diesel-world in-use on-road emissions of selected diesel vehicles, fueled with B20 biodiesel and petroleum diesel

  13. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNatural

  14. The effect of triethyl phosphate on the biodegradation of diesel fuel 

    E-Print Network [OSTI]

    Lott, Heather Leianne

    1999-01-01

    on the biodegradation of diesel fuel. Three types of treatments (sterile soil with diesel and TEP, a pictorially active soil with diesel, and a pictorially active soil with diesel and TEP) were set up in microcosms and housed in a controlled temperature chamber for 48...

  15. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single...

  16. Advanced Research in Diesel Fuel Sprays Using X-rays from the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER...

  17. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

  18. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles...

  19. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the...

  20. U.S. diesel fuel price hits 2014 low

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5, 2014diesel fuel

  1. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S. diesel fuel

  2. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.diesel fuel prices

  3. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.diesel fuel

  4. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014diesel fuel prices

  5. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014diesel fuel

  6. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014diesel fueldiesel fuel

  7. U.S. diesel fuel prices stable from previous week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7,diesel fuel prices

  8. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect (OSTI)

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  9. U.S. diesel fuel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014dieseldiesel fuel

  10. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  11. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  12. APPLIED ISSUES Spatial and temporal impacts of a diesel fuel spill

    E-Print Network [OSTI]

    McIntosh, Angus

    APPLIED ISSUES Spatial and temporal impacts of a diesel fuel spill on stream invertebrates DAVID A, Cornell University, Ithaca, New York, U.S.A. SUMMARY 1. We assessed the effects of a 26 500 L diesel fuel, but the degree of dominance was twice as large at the impact site. 5. We concluded that the diesel fuel spill

  13. A LEAN METHANE PREMIXED LAMINAR FLAME DOPED WITH COMPONENTS OF DIESEL FUEL

    E-Print Network [OSTI]

    Boyer, Edmond

    A LEAN METHANE PREMIXED LAMINAR FLAME DOPED WITH COMPONENTS OF DIESEL FUEL PART I: N-BUTYLBENZENE E better understand the chemistry involved during the combustion of components of diesel fuel flow rate analyses. Keywords: Premixed laminar flame, methane, n-butylbenzene, modelling, diesel fuel

  14. ORNL/TM-2002/16 PCR+ in Diesel Fuels and Emissions

    E-Print Network [OSTI]

    ORNL/TM-2002/16 PCR+ in Diesel Fuels and Emissions Research MARCH 2002 Prepared by H. T. Mc. #12;ORNL/TM-2002/16 PCR+ IN DIESEL FUELS AND EMISSIONS RESEARCH H. T. McAdams AccaMath Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 DIESEL FUEL AND EMISSIONS DATABASES

  15. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

  16. U.S. diesel fuel price continues to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:diesel fuel price

  17. U.S. diesel fuel price continues to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:diesel fuel

  18. U.S. diesel fuel price falls under $3

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5, 2014 U.S.diesel

  19. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5, 2015diesel

  20. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5,April 6,diesel

  1. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S. diesel fueldiesel

  2. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S. diesel

  3. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.diesel fueldiesel

  4. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.diesel

  5. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014diesel fueldiesel

  6. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014diesel fueldieseldiesel

  7. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2005-02-01

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

  8. U.S. diesel fuel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014dieseldiesel fueldiesel

  9. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect (OSTI)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  10. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD e s

  11. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gasPurchase,PyFEHM PyFEHM

  12. U.S. diesel fuel price decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:dieseldieseldiesel

  13. Differences in the Physical Characteristics of Diesel PM with Increasing Biofuel Blend Level

    Broader source: Energy.gov [DOE]

    Measure physical characteristics, carbon state, and surface bound oxygen of soot from biodiesel blends.

  14. U.S. diesel fuel price continues to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:diesel fueldiesel

  15. U.S. diesel fuel price continues to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:diesel

  16. New Diesel Feedstocks and Future Fuels

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  17. Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and

    E-Print Network [OSTI]

    Tullos, Desiree

    112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP, deterioration or damage. Never store fuel in food or drink containers. When transferring farm fuels, bond

  18. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  19. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Lu Sun; Chunshan Song

    2001-09-01

    Due to the increasingly stricter regulations for deep reduction of fuel sulfur content, development of new deep desulfurization processes for liquid transport fuels has become one of the major challenges to the refining industry and to the production of hydrocarbon fuels for fuel cell applications. The sulfur compounds in the current transport fuels corresponding to the S level of 350-500 ppm account for only about 0.12-0.25 wt % of the fuel. The conventional hydrotreating approaches will need to increase catalyst bed volume at high-temperature and high-pressure conditions for treating 100 % of the whole fuel in order to convert the fuel mass of less than 0.25 wt %. In the present study, we are exploring a novel adsorption process for desulfurization at low temperatures, which can effectively reduce the sulfur content in gasoline, jet fuel and diesel fuel at low investment and operating cost to meet the needs for ultra-clean transportation fuels and for fuel cell applications. Some adsorbents were prepared in this study for selective adsorption of sulfur compounds in the fuels. The adsorption experiments were conducted by using a model fuel and real fuels. The results show that the adsorbent (A-1) with a transition metal compound has a significant selectivity for sulfur compounds with a saturated adsorption capacity of {approx}0.12 mol of sulfur compounds per mol of the metal compound. Most sulfur compounds existing in the current commercial gasoline, jet fuel and diesel fuel can be removed by the adsorption using adsorbent A-1. On the basis of the preliminary results, a novel concept for integrated process for deep desulfurization of liquid hydrocarbons was proposed.

  20. Effect of engine operating parameters and fuel characteristics on diesel engine emissions

    E-Print Network [OSTI]

    Acar, Joseph, 1977-

    2005-01-01

    To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

  1. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  2. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect (OSTI)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  3. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

  4. Kalman Filtering for Real-Time Individual Cylinder Air Fuel Ratio Observer on a Diesel Engine Test Bench

    E-Print Network [OSTI]

    propose an estimator of the individual cylinder air fuel ratios in a turbocharged Diesel Engine using

  5. Feedback control and optimization for the production of commercial fuels by blending

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    propose can be used in various situations where non-reactive components are blended and linearly impactFeedback control and optimization for the production of commercial fuels by blending M. Ch`ebre, Y presents a control algorithm for blending systems. Such systems are used in refining to produce mixtures

  6. Identification and quantification of organic chemicals in supplemental fuel blends

    SciTech Connect (OSTI)

    Salter, F.

    1996-12-31

    Continental Cement Company, Inc. (Continental) burns waste fuels to supplement coal in firing the kiln. It is to be expected that federal and state agencies want an accounting of the chemicals burned. As rules and regulations become more plentiful, a company such as Continental must demonstrate that it has made a reasonable attempt to identify and quantify many specific organic compounds. The chemicals on the SARA 313 list can change frequently. Also the number and concentrations of compounds that can disqualify a material from consideration as a supplemental fuel at Continental continues to change. A quick and reliable method of identifying and quantifying organics in waste fuel blends is therefore crucial. Using a Hewlett-Packard 5972 GC/MS system Continental has developed a method of generating values for the total weight of compounds burned. A similar procedure is used to verify that waste streams meet Continental`s acceptance criteria.

  7. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Catalysts Investigates impact of metal impurities in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems...

  8. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study

    E-Print Network [OSTI]

    Walter, M.Todd

    Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study Julian Deissa potential of lead (Pb) and diesel range organics (DRO) in palustrine slope wetlands near Juneau, AK; Lead (Pb); Diesel range organic (DRO); Macropore; Rifle range; Wetland 0169-7722/$ - see front matter D

  9. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  10. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  11. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOE Patents [OSTI]

    Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  12. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

  13. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  14. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  15. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon Excluding...

  16. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon Excluding...

  17. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding...

  18. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding...

  19. Renewable Diesel Fuels: Status of Technology and R&D Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications New Diesel Feedstocks and Future Fuels Return Condensate to the Boiler Analysis of the Efficiency of the U.S. Ethanol Industry 2007...

  20. Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel

    E-Print Network [OSTI]

    Pacheco, Jose Rafael

    droplets of the fuel were allowed to fall in a controlled environment on a heated metallic plateIncreased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel Himanshu Tyagi, Patrick April 2, 2008 ABSTRACT The present study attempts to improve the ignition properties of diesel fuel

  1. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    competitive at 2013 prices of diesel fuel and LNG. The fuelcompetitive at 2013 prices of diesel fuel and LNG. The fuelcompetitive at 2013 prices of diesel fuel and LNG. The fuel

  2. NIST Handbook 112 (2015) EPO No. 22 Retail Motor-Fuel Dispensers Blended Products

    E-Print Network [OSTI]

    2015-01-01

    NIST Handbook 112 (2015) EPO No. 22 ­ Retail Motor-Fuel Dispensers ­ Blended Products RMFD - Blenders (Rev 09/14) DRAFT Page 1 of 12 2015 NIST EPO No. 22 Examination Procedure Outline for Retail Motor-Fuel, and consoles. For non-blending single, dual, and multi-product dispensers, see EPO No. 21. Nonretroactive

  3. Comparative analysis of plant oil based fuels

    SciTech Connect (OSTI)

    Ziejewski, M.; Goettler, H.J.; Haines, H.; Huong, C.

    1995-12-31

    This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.

  4. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  5. Sterling Technology ultra-pure filtered diesel fuel. Final report, April 1984-April 1988

    SciTech Connect (OSTI)

    Adams, E.C.

    1988-05-01

    This report details testing done on ultra-pure filtered diesel fuel and unfiltered diesel fuel. Several barrels of filtered fuel, shipped from the manufacturer--Sterling Technology, Inc., Jacksonville, Florida--were tested using the 690-in. Deutz F-8L-413A Air Cooled V8 Engine. No significant difference was found, but due to a delay in starting the tests, it was suspected that some deterioration might have occurred in the fuel. The objective was to investigate the possible benefits of the ultra-pure filtered diesel fuel in power improvement and reduction of exhaust smoke.

  6. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  7. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  8. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  9. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High

    Broader source: Energy.gov [DOE]

    According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in...

  10. DOE Awarded Patent for Reformulated Diesel Fuel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    please visit http:www.osti.govdublincoregencnclindex.jsp. Media contact(s): Megan Barnett, (202) 586-4940 Addthis Related Articles DOE Awarded Patent for Reformulated Diesel...

  11. Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions

    E-Print Network [OSTI]

    : gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG operating on gasoline arrd a similar non-FF\\-. llir:s rs a in-al ethanol composition blend requires vehicle in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels

  12. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

  13. Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability

    SciTech Connect (OSTI)

    Hadder, G.R.

    2001-02-15

    Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9 cents per gallon) for the U.S. Gulf Coast alone, financing, engineering, and construction and material availability are major issues that must be addressed, for both refinery and GTL investments.

  14. Alcohol injection cuts diesel consumption on turbocharged tractors

    SciTech Connect (OSTI)

    Edson, D.V.

    1980-07-21

    M and W Gear Co. of Gibson City, IL, are marketing a new alcohol- injection system that permits turbocharged diesel engines to burn alcohol and claims to cut diesel consumption by 30% and more. The alcohol fuel, a blend of alcohol and water, does not meet the diesel fuel until the alcohol has been atomized and sprayed through the intake manifold into the cylinders. It permits farmers to use home- still-produced ethanol without the added expense of refining to anhydrous composition.

  15. iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow-

    E-Print Network [OSTI]

    Lee, Tonghun

    L iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow- ering our transportation systems in the foreseeable future. Transportation fuels derived from-derived transportation fuels are to substitute (on a large scale) for petroleum-based fuels. For example, how do we

  16. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

  17. Proposed premium diesel fuel spec elicits calls for tougher, better defined parameters

    SciTech Connect (OSTI)

    Peckham, J.

    1998-01-01

    The debate over the definition of premium diesel fuel - what it is and what it should be - is heating up in industry circles. A number of automotive associations, additive makers and standards-setting organizations have jumped into the fray, and the fight is likely to turn volcanic when it comes down to deciding exactly what will constitute a premium diesel and how its properties will be measured. This story details some recent developments in and responses to the ongoing conflict. The Engine Manufacturers Association (EMA), representing 33 international diesel engine makers, recently launched a survey of U.S. diesel fuel marketers to see which ones will offer a fuel meeting EMA`s revised {open_quotes}FQP-1A{close_quotes} premium diesel fuel recommendations. Following the survey, EMA intends to publicize which companies offer such a fuel. The EMA premium fuel specifications are much tougher than the US standard ASTM D 975 fuel and tougher than the newly proposed {open_quotes}premium{close_quotes} diesel fuel from the National Conference of Weights & Measures (NCWM) task force. Earlier this year, Amoco became the first (and so far only) US refiner to offer a fuel meeting all the FQP specifications, but only in certain Midwest markets.

  18. Theoretical study of Diesel fuel reforming by a non-thermal arc discharge A. Lebouvier1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Theoretical study of Diesel fuel reforming by a non-thermal arc discharge A. Lebouvier1,2 , G anti-pollution norm namely for Diesel powered vehicles. NOx (NO, NO2,...) are very irritant pollutants- nologies purge is the use of non-thermal plasma. Plasma reforming of diesel fuel and exhaust gas mix- ture

  19. KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI combustion mode (Homogeneous Charge Compression Ignition) have the potential to provide both diesel

  20. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  1. Clean Diesel: Overcoming Noxious Fumes

    E-Print Network [OSTI]

    Brodrick, Christie-Joy; Sperling, Daniel; Dwyer, Harry A.

    2001-01-01

    emissions and by low diesel-fuel prices, relatively gentleand the absence of diesel fuel price terize and measureattraction where diesel fuel prices are lower than gasoline

  2. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Broader source: Energy.gov [DOE]

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  3. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for...

  4. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  5. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Broader source: Energy.gov [DOE]

    A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the...

  6. Verification of Shell GTL Fuel as CARB Alternative Diesel

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status of APBF-DEC NOx AdsorberDPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car...

  8. On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Response of Oil Sands Derived Fuels in Diesel HCCI Operation

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

  11. Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine 

    E-Print Network [OSTI]

    Yarbrough, Charles Michael

    1984-01-01

    OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

  12. Exhaust emission and fuel consumption of CNG/diesel fueled city buses calculated using a sample driving cycle

    SciTech Connect (OSTI)

    Ergeneman, M.; Sorusbay, C.; Goektan, A.G. [Technical Univ. of Istanbul (Turkey). Dept. of Mechanical Engineering

    1999-04-01

    In this study the reduction of pollutant emissions from city buses converted to dual fuel operation was investigated. Exhaust emission and fuel consumption maps were obtained under laboratory conditions for an engine converted to CNG/diesel fuel operation. These values are then used in the simulation model to predict the total exhaust emission and fuel consumption on a driving cycle evaluated from actual recordings. Calculations showed a significant decrease in particulate matter (PM) emissions as expected, while the total CO emissions minor changes have been observed. For dual fuel operation NO{sub x} emissions were kept at the same level as in pure diesel operation with retarded pilot injection. Fuel cost calculations showed a decrease up to 30% with current prices of diesel fuel and CNG.

  13. Development and use of an advanced coal-fueled diesel cycle simulation with group effects 

    E-Print Network [OSTI]

    Branyon, David Pratt

    1989-01-01

    for the degree of MASTER OF SCIENCE August 1989 Major Subject: Mechanical Engineering DEVELOPMENT AND USE OF AN ADVANCED COAL-FUELED DIESEL CYCLE SIMULATION WITH GROUP EFFECTS A Thesis by DAVID PRATT BRANYON Approved ss to style and content by: Jerald A... lower than the price of diesel on an energy basis, coal in its rsw form is not suitable for use in a reciprocating engine. The price of coal is enough lower than the price of diesel, however, to provide for the refinement oi' the coal into a form...

  14. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect (OSTI)

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  15. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  16. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  17. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  18. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    mandated envision that blending gasoline (or diesel) withemission intensity as blending gasoline from crude oil with

  19. Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation

    Broader source: Energy.gov [DOE]

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

  20. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels 

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16

    In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels. The world?s energy demand is commencing its dependency on alternative fuels. ...

  1. Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration

    E-Print Network [OSTI]

    Boyer, Edmond

    , coming into force in September 2014, set a 56 % reduction of NOx emissions compared to Euro stage V (80 trap technology, also called NOx Storage and Reduction (NSR), was first developed by Toyota in 199411 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration

  2. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  3. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  4. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect (OSTI)

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  5. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    SciTech Connect (OSTI)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  6. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  7. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore »imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  8. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  9. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  10. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  11. Detailed HCCI Exhaust Speciation- ORNL Reference Fuel Blends

    Broader source: Energy.gov [DOE]

    ·Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI engine emissions.

  12. Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Downsized SI Engines Using Alcohol DI for Knock Avoidance Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and...

  13. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  14. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  15. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump DispensersEmerging Fuels Printable Version

  16. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  17. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

  18. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1Comments fromRegionalContamination in aApplication

  19. INFLUENCE OF EGR COMPOUNDS ON THE OXIDATION OF AN HCCI-DIESEL SURROGATE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) and methanol (CH3OH), on the oxidation of a n-heptane/toluene blend was studied over a wide range reactions of NO, methanol (CH3OH) and ethylene (C2H4) and is used to explain the obtained experimental data a cetane number close to diesel and toluene representing the aromatic fraction of a diesel fuel

  20. Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel

    Broader source: Energy.gov [DOE]

    Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

  1. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  2. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  3. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  4. Economic implications of substituting plant oils for diesel fuel. Volume 2. Final report

    SciTech Connect (OSTI)

    Griffin, R.C.; Collins, G.S.; Lacewell, R.D.; Chang, H.C.

    1983-08-01

    This study of expected economic impacts of substituting plant oils for diesel fuel consisted of two components: (1) analysis of oilseed production and oilseed crushing capacity in the US and Texas and (2) simulation of impacts on US cropping patterns, crop prices, producer rent, and consumer surplus. The primary oilseed crops considered were soybeans, cottonseed, sunflowers, and peanuts. 19 references, 2 figures, 14 tables.

  5. U.S. diesel fuel prices increase for first time since mid-May

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7,diesel fuel prices increase

  6. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  7. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||Department ofRequest forTools |Racing

  8. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    -source simulations imply that high-ethanol blends (e.g., E85) pose a lower risk of benzene reaching a receptor via gasoline, 15 years for E10, 9 years for E50, and 3 years for E85), indicating greater natural attenuationModeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels

  9. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuediesel fuel prices

  10. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuediesel fuel

  11. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuedieseldiesel fuel

  12. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S. dieseldiesel fuel

  13. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.dieseldiesel fuel

  14. U.S. diesel fuel prices decrease from previous week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014dieseldieseldiesel fuel

  15. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to shareNatural GasToolsBiodiesel

  16. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Using Ethanol-Diesel Blends Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration Strategies Diesel Injection Shear-Stress Advanced Nozzle (DISSAN)...

  17. Chemical Kinetics Research on HCCI and Diesel Fuels

    Broader source: Energy.gov [DOE]

    Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and computationally efficiecnt, accurate methodologies for modeling advanced combustion strategies.

  18. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov [DOE]

    This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

  19. U.S. diesel fuel price increase for first time since November

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5, 2014diesel

  20. Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland Conserves Fuel With HybridVehiclesUse

  1. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE| DepartmentEnergyDepartment

  2. U.S. diesel fuel price continues to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:dieseldiesel fuel

  3. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5,

  4. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5,April 6, 2015

  5. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5,April 6,

  6. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5,April

  7. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5,Aprildiesel

  8. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue

  9. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuediesel fueldiesel

  10. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuediesel

  11. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuedieseldiesel

  12. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuedieseldieseldiesel

  13. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continuedieseldieseldiesel20,

  14. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices

  15. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S. dieseldiesel

  16. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.

  17. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.dieseldiesel

  18. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014 U.S.dieseldieseldiesel

  19. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014

  20. U.S. diesel fuel prices decrease from previous week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014dieseldiesel

  1. Multivariate analysis of exhaust emissions from heavy-duty diesel fuels

    SciTech Connect (OSTI)

    Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)

    1996-01-01

    Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.

  2. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    SciTech Connect (OSTI)

    Alleman, T. L.; McCormick, R. L.

    2006-01-01

    NREL tested Philippines coconut biodiesel samples of neat and blended fuels. Results show that the current fuel quality standards were met with very few exceptions. Additional testing is recommended.

  3. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  4. Gasoline and Diesel Fuel Update - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYearEnergyPresentations &Lycoming College OctoberAPlant Retail motorall

  5. Gasoline and Diesel Fuel Update Data Revision Notice

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved ReservesYearperDataGasoline

  6. Isoprenoid based alternative diesel fuel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(JournalTechnical Report: IsLi2SO4(aq) at T =Patent:

  7. Isoprenoid based alternative diesel fuel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(JournalTechnical Report: IsLi2SO4(aq) at T

  8. Chemical Kinetic Research on HCCI & Diesel Fuels

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapter 9DesertVersionCPLaboratory

  9. U.S. Diesel Fuel Price Continues to Increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General

  10. U.S. diesel fuel price continues to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:dieseldiesel

  11. No. 2 Diesel Fuel Prices - Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 200820087 DOE/NASEO

  12. No. 2 Diesel Fuel Prices - Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr MayDecadeFeet) Decade Year-08 2.415

  13. Gasoline and Diesel Fuel Update - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0d Form736

  14. DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathasBestI) April 2012 1 I.

  15. New Feedstocks and Replacement Fuel Diesel Engine Challenges

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  16. New Feedstocks and Replacement Fuel Diesel Engine Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerfulton.pdf More Documents & Publications...

  17. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  18. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  19. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  20. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Electric Drivetrain Conv. Diesel Diesel Hyb. Conv. LNG-SI LNG-SI Hyb.Conv. LNG-CI LNG-CI Hyb. Battery EV Fuel Cell Short Haul

  1. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  2. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Applications of Natural Gas as Transportation Engine Fuel,duty vehicle transportation sector, but current natural gasnatural gas to displace fossil diesel fuel in the freight transportation

  3. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect (OSTI)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

  4. Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Nuclear Engineering Division

    2005-04-29

    Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

  5. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  6. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  7. The second generation of electronic diesel fuel injection systems - Investigation with a rotary pump

    SciTech Connect (OSTI)

    Yamada, K.; Oshizawa, H.

    1986-01-01

    This paper describes concepts of the next generation of electronic diesel fuel injection (EDFI) systems, and the test results of the prototype, named ''Model-1.'' Important characteristics of the next generation of EDFI will be; mechanical simplicity, direct control and pump intelligence. Direct spill control using a high speed solenoid valve for injection regulation and pump mounted electronic circuits were used in the ''Model-1'' system. The test results demonstrate the advantages of this system, and suggest possibilities of new function such as individual cylinder control, pilot injection and multi fuel usage.

  8. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  9. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control

    Broader source: Energy.gov [DOE]

    Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

  10. Diesel engine combustion and emissions from fuel to exhaust aftertreatment. SP-1113

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    There are many dimensions involved in any study of Diesel Engine Emissions. These dimensions include: the fuel used, how the fuel is presented into the combustion chamber, how the air is presented into the combustion chamber, the actual process of combustion and emissions formation, the treatment of the emissions after combustion, and the test methods used to quantify the emissions. All of these dimensions are covered in this publication. The fuel topics include: plant oil based fuels and gas dissolved in fuel oil. The air delivery to the combustion chamber is effected by both port performance and geometry and ambient conditions and these topics are included. The thermodynamics of the combustion process and modeling are included in this publication. Aftertreatment is included with a paper on particulate filters. A correlation study using the ISO8178 testing method is also included. All nine papers have been processed separately for inclusion on the database.

  11. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect (OSTI)

    Wagner, G.L.; Peterson, C.L.

    1982-01-01

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  12. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  13. Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles

    SciTech Connect (OSTI)

    Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei [Department of Mechanical System Engineering, University of Hiroshima, Higashi-Hiroshima, 739-8527 (Japan); Zhang, Yuyin [Department of Mechanical Engineering, Tokyo Denki University, Tokyo, 101-8457 (Japan)

    2009-06-15

    This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

  14. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  15. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    million barrels, and nearly 9 million of that is gasoline. With fuel prices rising, consumers are lookingConverting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary

  16. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  17. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect (OSTI)

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both ?13C and ?D values for the n-alkanes were then determined by CSIA in each sample. Plots of ?D versus ?13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with ?13C, ?D, or combined ?13C and ?D data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the ?13C and ?D values.

  18. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  19. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  20. Fabrication and characterization of micro-orifices for diesel fuel injectors.

    SciTech Connect (OSTI)

    Fenske, G.; Woodford, J.; Wang, J.; El-Hannouny, E.; Schaefer, R.; Hamady, F.; National Vehicle and Fuel Emissions Lab.

    2007-04-01

    Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 gmm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated, micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.

  1. Methanol/ethanol/gasoline blend-fuels demonstration with stratified-charge-engine vehicles: Consultant report. Final report

    SciTech Connect (OSTI)

    Pefley, R.; Adelman, H.; Suga, T.

    1980-03-01

    Four 1978 Honda CVCC vehicles have been in regular use by California Energy Commission staff in Sacramento for 12 months. Three of the unmodified vehicles were fueled with alcohol/gasoline blends (5% methanol, 10% methanol, and 10% ethanol) with the fourth remaining on gasoline as a control. The operators did not know which fuels were in the vehicles. At 90-day intervals the cars were returned to the Univerity of Santa Clara for servicing and for emissions and fuel economy testing in accordance with the Federal Test Procedures. The demonstration and testing have established the following: (1) the tested blends cause no significant degradation in exhaust emissions, fuel economy, and driveability; (2) the tested blends cause significant increases in evaporative emissions; (3) analysis of periodic oil samples shows no evidence of accelerated metal wear; and (4) higher than 10% alcohols will require substantial modification to most existing California motor vehicles for acceptable emissions, performance, and fuel economy. Many aspects of using methanol and ethanol fuels, both straight and in blends, in various engine technologies are discussed.

  2. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect (OSTI)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  3. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  4. Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed

    E-Print Network [OSTI]

    , steam and water prior to catalyst bed 3-fluid nozzle delivers a fine mist of fuel #12;ReformingReforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed Argonne National Laboratory Applications of diesel fuel reforming

  5. Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry

    Broader source: Energy.gov [DOE]

    Accurate fuel models with hundreds of species in advanced CFD with reasonable simulation times. Reaction workbench used for surrogate blend formulation and model reduction. FORTE CFD used for HCCI and LTC diesel engine and validated for PRF-ethanol and diesel

  6. Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals

    SciTech Connect (OSTI)

    Xiaodong Yang; Napier, J.; Sisk, B.; Wei-Ping Pan; Riley, J.T.; Lloyd, W.G.

    1996-12-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR and MS systems. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GUMS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic; compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  7. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  8. The effect of fuel and engine design on diesel exhaust particle size distributions

    SciTech Connect (OSTI)

    Baumgard, K.J.; Johnson, J.H. [Michigan Technological Univ., Houghton, MI (United States)

    1996-09-01

    The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H{sub 2}O and H{sub 2}SO{sub 4} vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine`s particle size distributions. The results indicated that nuclei mode particles (0.0075--0.046 {micro}m) are formed in the dilution tunnel and consist of more than 80% H{sub 2}O-H{sub 2}SO{sub 4} particles when using the 1988 engine and 0.29 wt% sulfur fuel. Nucleation theory indicated that H{sub 2}O-H{sub 2}SO{sub 4} particles may form during dilution at 0.03 wt% fuel sulfur levels and above. The 1991 engine was designed for lower particulate emissions than the 1988 engine and the 1991 engine`s accumulation mode particles (0.046-1.0 {micro}m) were reduced more than 80% by volume compared to the 1988 engine using the same low sulfur fuel. The particle size composition model indicated that using low sulfur fuel and the 1991 engine, the nuclei mode contained more than 45% of the total solid particles and over 85% of the soluble organic fraction.

  9. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  10. Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines

    E-Print Network [OSTI]

    Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires

    2007-01-01

    The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and ?-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

  11. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  12. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

  13. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect (OSTI)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  14. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  15. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  16. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  17. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  18. NOVEL DATA ANALYSIS TECHNIQUE TO EVALUATE FIELD NOx AND CO2 CONTINUOUS EMISSION DATA, BASED ON THE EVALUATION OF: (1) AN OFF-ROAD DIESEL COMPACTOR RUNNING ON THREE FUEL TYPES AND (2) TWO COMPACTORS RUNNING ON DIESEL FUEL

    E-Print Network [OSTI]

    Guerra, Sergio

    2012-12-31

    profiles; (4) evaluate the emission variability between two pieces of equipment of the same model; and (5) develop a standard, systematic analysis for handling large emission data sets. The study is based on the tailpipe emission sampling of a diesel fueled...

  19. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  20. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1 57,015.7

  3. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1

  4. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1872.2

  5. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1872.2956.0

  6. Conceptual design of coal-fueled diesel system for stationary power applications

    SciTech Connect (OSTI)

    Not Available

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  7. Characterization of vegetable oils for use as fuels in diesel engines

    SciTech Connect (OSTI)

    Ryan, T.W. III.; Callahan, T.J.; Dodge, L.G.

    1982-01-01

    The current specifications for petroleum fuels have evolved over the history of the petroleum industry and the development of the internal combustion engine. Present day fuel specifications are based on a wealth of empirical data and practical experience. A similar data base is only now being developed for the specification of vegetable oil fuels for diesel engines. Four different types of vegetable oil (soy, sunflower, cottonseed and peanut) have been obtained, each in at least three different stages of processing. All of the oils (14) have been characterized with respect to their physical and chemical properties. The spray characteristics of five of the oils have been determined at a variety of fuel temperatures using a high-pressure, high-temperature injection bomb and high-speed motion picture camera. These same oils have been tested in a direct injection farm tractor engine. The engine data consists of the normal performance measurements as well as the determination of heat release rates from cylinder pressure data. 3 figures, 7 tables.

  8. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  9. The John Deere E diesel Test & Research Project

    SciTech Connect (OSTI)

    Fields, Nathan; Mitchell, William E.

    2008-09-23

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  10. Diesel prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDieselDieselDiesel

  11. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    diesel engine truck, diesel hybrid-electric, conventionalfor conventional diesel and diesel hybrid trucks; dual 150The economics of the hybrid-electric diesel and LNG Class 8

  12. Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock 

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2011-02-22

    in the total hydrocarbon and CO2 emissions, as blends were increased from B20 to B100, was also found to be an indication of better combustion using biodiesel fuels than petroleum diesel. However, NOx emissions were higher, predominantly at low speeds for most...

  13. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect (OSTI)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  14. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    E-Print Network [OSTI]

    Sedarsky, David; Blaisot, Jean-Bernard; Rozé, Claude

    2013-01-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the 'fast' and 'slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the 'fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization b...

  15. Lean methane premixed laminar flames doped by components of diesel fuel II: n-propylcyclohexane

    SciTech Connect (OSTI)

    Pousse, E.; Porter, R.; Warth, V.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2010-01-15

    For a better understanding of the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-propylcyclohexane has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.81% n-propylcyclohexane (C{sub 9}H{sub 18}), corresponding to an equivalence ratio of 0.68 and a C{sub 9}H{sub 18}/CH{sub 4} ratio of 11.4%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 17 C{sub 3}-C{sub 5} hydrocarbons, seven C{sub 1}-C{sub 3} oxygenated compounds, and only four cyclic C{sub 6+} compounds, namely benzene, 1,3-cyclohexadiene, cyclohexene, and methylenecyclohexane. A new mechanism for the oxidation of n-propylcyclohexane has been proposed. It allows the proper simulation of profiles of most of the products measured in flames, as well as the satisfactory reproduction of experimental results obtained in a jet-stirred reactor. The main reaction pathways of consumption of n-propylcyclohexane have been derived from rate-of-production analysis. (author)

  16. A lean methane premixed laminar flame doped with components of diesel fuel. I. n-Butylbenzene

    SciTech Connect (OSTI)

    Pousse, E.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2009-05-15

    To better understand the chemistry involved in the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-butylbenzene has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.96% n-butylbenzene corresponding to an equivalence ratio of 0.74 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 13.5%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} hydrocarbons, and 7 C{sub 1}-C{sub 3} oxygenated compounds, as well as 20 aromatic products. A new mechanism for the oxidation of n-butylbenzene is proposed whose predictions are in satisfactory agreement with measured species profiles in flames and flow reactor experiments. The main reaction pathways of consumption of n-butylbenzene have been derived from flow rate analyses. (author)

  17. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    be propelled by the engine, the electric machine, or both atwith SI and CI engines, battery electric trucks, and fuelCI combustion engines, hybrid-electric vehicles with diesel

  18. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

    Broader source: Energy.gov [DOE]

    A 2014 survey of over 110,000 refueling stations in the U.S. and Canada shows that over half of all refueling stations sell diesel fuel. The survey results are shown for five different regions of...

  19. Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998

    SciTech Connect (OSTI)

    MacCarley, C.A.

    1999-01-26

    Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

  1. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  2. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  3. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  4. Studies on the practical application of producer gas from agricultural residues as supplementary fuel for diesel engines

    SciTech Connect (OSTI)

    Cruz, I.E.

    1980-01-01

    Gasification of various agricultural residues in down-draft, fixed bed gas producers and the utilization of the gas in small diesel engines converted for dual-fuel operation were studied at the College of Engineering, University of the Philippines. Such agricultural residues as coconut shells, wood waste, rice hulls and corn cobs were readily gasified in gas producers of simple design. Cleaning of the gas before its use in diesel engines presented some problems. Use of charcoal in the gas producers to provide gas to a 5-brake horsepower single cylinder engine and a 65-brake horsepower six cylinder engine proved satisfactory. With charcoal as fuel, the percentage of the total energy from diesel oil replaced by producer gas and utilized in the single cylinder engine was higher (79%) compared to that in the six cylinder engine (73%). The thermal efficiency of the bigger gas producer, however was significantly better (85%) compared to the smaller gas producer (70%). The total gasification rate of the bigger reactor (20 kg/h) was 8 times that (2.5 kg/h) of the smaller reactor.

  5. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  6. Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel

    SciTech Connect (OSTI)

    Harvey, Scott D.; Wright, Bob W.

    2011-10-30

    The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

  7. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  8. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  9. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDieselDieselDiesel

  10. Diesel prices flat nationally

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDieselDiesel prices

  11. Diesel prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDieselDiesel

  12. Diesel prices slightly increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increaseDieselDieselDiesel

  13. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  14. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high?fidelity models that served as the basis for the reduced order models used for internal state estimation. The high?fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high?fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  15. Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Rhodia Electronics and Catalysis

  16. Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85 FuelDispenser

  17. Blend Membranes of Highly Phosphonated Polysulfone and Polybenzimidazoles for High Temperature Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Potrekar, Ravindra

    2014-01-01

    Energy, Office of Hydrogen, Fuel Cells and InfrastructureD. Kreuer, and J. Maier, Fuel Cells 5, 335 2. M. A. Hickner,Proton Exchange Membrane Fuel Cells R. A. Potrekar † , K. T.

  18. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  19. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA - ExternalCESPOMERCNG Exports by Truck|

  20. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  1. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  2. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  3. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    Compressed Natural Gas (CNG), synthetic diesel, methanol,FCX Fuels Gasoline, Diesel, CNG, FT diesel, methanol, H2,H2, electricity Gasoline, diesel, CNG, biogas, LPG, ethanol,

  4. Alumina catalysts for reduction of NOx from methanol fueled diesel engine

    SciTech Connect (OSTI)

    Yamamoto, Toshiro; Noda, Akira; Sakamoto, Takashi; Sato, Yoshio [Ministry of Transport of Japan, Kumamoto (Japan)

    1996-09-01

    NOx selective reducing catalysts are expected to be used for lean-burn gasoline engines and diesel engines as an effective NOx reduction measure. The authors are interested in the combination of methanol, as a reducing agent, and alumina catalyst, and have considered the NOx reduction method using effectively much unburned methanol. In this report, in order to investigate the effect of NOx reduction by the alumina catalyst, the experiment was carried out by feeding the actual exhaust gas from the methanol engine into the alumina catalyst. As a result, it was confirmed that, without addition of any other reducing agents into the exhaust gas, the alumina catalyst has activity to reduce NOx.

  5. ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL, TUNING AND SENSITIVITY

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL periods of intense interest in using ethanol as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol

  6. The use of CETANER{trademark} for the reduction of particulate matter emissions in a turbocharged direct injection (TDI) diesel engine

    SciTech Connect (OSTI)

    Hess, H.S.; Chiodo, J.A.; Boehman, A.L.; Tijim, P.J.A.; Waller, F.J.

    1999-07-01

    In this experimental study, the effects of the addition of CETANER{trademark} to a premium diesel fuel at various blend levels (5%, 10% and 15% by weight) were evaluated using a 1.9 liter turbocharged direct injection diesel engine. CETANER{trademark}, a product developed by Air Products and Chemicals, Inc., can be manufactured from coal-derived syngas through a two-stage process: (i) Liquid Phase DiMethyl Ether synthesis (LPDME); and (ii) oxidative coupling of DiMethyl Ether (DME) to form long chain linear ethers. When compared to other oxygenated components currently being researched, CETANER has several key advantages: (1) it is derived from a non-petroleum feedstock; (2) it has a cetane number greater than 100; and (3) it will have a cost comparable to diesel fuel. Particulate matter emissions and exhaust gas composition (NOx and CO), were determined at six steady-state engine operating conditions. In addition, fuel properties (viscosity, cloud point, pour point, density, flash point and calorific value) of the various blends were also determined. Engine test results indicate that CETANER is effective in reducing particulate matter emissions at all blend levels tested, without any modifications to engine operating parameters. At the highest blend level (15% CETANER by weight), particulate matter emissions were reduced by greater than 20% when compared to premium diesel fuel.

  7. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  8. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

  9. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions

    Broader source: Energy.gov [DOE]

    Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

  10. Water consumption footprint and land requirements of alternative diesel and jet fuel

    E-Print Network [OSTI]

    Staples, Mark Douglas

    2013-01-01

    The Renewable Fuels Standard 2 (RFS2) is an important component of alternative transportation fuels policy in the United States (US). By mandating the production of alternative fuels, RFS2 attempts to address a number of ...

  11. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  12. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDiesel pricesDiesel

  13. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDieselDiesel prices

  14. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDieselDiesel

  15. Diesel prices decrease slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDiesel prices

  16. Diesel prices flat

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDiesel

  17. ,"U.S. On-Highway Diesel Fuel Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYatescloudDataAge Refining AirA1.

  18. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject DevelopsforReportingResourcesDepartment of

  19. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to:

  20. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of

  1. Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCEPueblo, New Mexico |

  2. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  3. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOE Patents [OSTI]

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  4. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart of breakout of funds by majorEnergy 12 DOE

  5. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart of breakout of funds by majorEnergy 12 DOE1 DOE

  6. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel

    Broader source: Energy.gov [DOE]

    The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized...

  7. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

  8. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. U.S. diesel fuel price decreases for first time in six weeks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global

  10. ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

  11. ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01

    Office of Energy Efficiency and Renewable Energy (EERE)

     The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

  12. ,"No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1Sales to End Users Refiner Sales

  13. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,Biofuels for MilitarySecretary of Energy PonemanEngines |

  14. U.S. Diesel Fuel Price Increases for First Time Since June

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Generaldiesel fuel price increase for

  15. U.S. diesel fuel price decreases for first time in six weeks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to decrease The U.S.

  16. U.S. diesel fuel price decreases for first time in six weeks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to decrease The

  17. U.S. diesel fuel price decreases for the second week in a row

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to decrease

  18. U.S. diesel fuel price falls to lowest level in four years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to decreasediesel

  19. U.S. diesel fuel price falls to lowest level since February 2011

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to decreasediesel,

  20. U.S. diesel fuel price falls to lowest level since January 2011

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to

  1. U.S. diesel fuel price falls to lowest level since July 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5, 2014 U.S.

  2. U.S. diesel fuel price increases for first time in 6 weeks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,

  3. U.S. diesel fuel price increases for the first time in a month

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5, 2015 U.S.

  4. U.S. diesel fuel price shows no movement from a week ago

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices continue to5,5, 2015

  5. U.S. diesel fuel prices falls to lowest level since mid-July 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014dieseldieseldiesel

  6. U.S. diesel fuel prices falls to lowest level since mid-July 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7, 2014dieseldieseldiesel4,

  7. U.S. diesel fuel prices increase for first time in a month

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldiesel fuel prices7,

  8. Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

  9. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption

    Broader source: Energy.gov [DOE]

    Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps

  10. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January1 Table3

  11. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January1 Table3

  12. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January1 Table3

  13. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January1 Table3

  14. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January1

  15. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  16. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  17. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  18. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1996

  19. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  20. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.9 70.53.33Emission55.8

  1. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.9

  2. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.1 83.7

  3. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.1 83.757.1

  4. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.1

  5. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.156.9 63.4

  6. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.156.9

  7. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.156.976.6

  8. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7

  9. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2 48.3 51.7

  10. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapter

  11. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapterace013_pitz_2013_o.pdf More

  12. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 CreatedDemand and

  13. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent396,0138.62(96)The U.S.

  14. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent396,0138.62(96)The

  15. U.S. diesel fuel price continue to decrease; lowest level since February 2010

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area: U.S.crudecrude

  16. U.S. diesel fuel price continue to decrease; lowest level since March 2010

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15Area:

  17. No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 200820087 DOE/NASEONA NA NA NA

  18. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) charging station in Rhode Island. |Moreit

  19. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  20. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.