National Library of Energy BETA

Sample records for diesel engine exhaust

  1. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Pacific Northwest Laboratory 2004_deer_muntean.pdf (922.09 KB) More Documents & Publications The State of the Science in Diesel Particulate Control APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update Measurement and Characterization of Lean NOx Adsorber

  2. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  3. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate and Semi-Volatile Organic Compound Materials | Department of Energy Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 DEER Conference Presentation: U.S. Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health 2002_deer_wallace.pdf (114.23 KB) More Documents

  4. Prediction of transient exhaust soot for a turbocharged diesel engine

    SciTech Connect (OSTI)

    Xiaoping, B.; Shu, H.

    1995-12-31

    A generalized computer model for prediction of transient exhaust soot and response of turbocharged diesel engines is developed. It includes detailed thermodynamic and dynamic processes. This model utilizes a multi-zone combustion submodel that emphasizes simple and economical calculations for combustion behavior and zonal soot, so overall transient exhaust soot can be predicted. This model is applied to a turbocharged diesel engine. The steady state exhaust soot and performance are calculated and validated, and on the basis, the exhaust soot and response under three classes of transient operating conditions are predicted. The parametric study is carried out by using this model. The effects of valve overlap period, exhaust manifold volume, turbocharger inertia and ambient pressure are predicted. Applications of this model have proved that it is a convenient analytical tool in the study for turbocharged diesel engines. 18 refs., 14 figs., 2 tabs.

  5. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  6. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear

    Broader source: Energy.gov [DOE]

    Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

  7. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Office of Environmental Management (EM)

    on diesel engine oil during standard test with an API Cummins M-11 engine. ... Fuel Economy and Engine Wear AVTA: Oil Bypass Filter Specifications and Test Procedures

  8. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Driven Rankine Cycle for a Heavy Duty Diesel Engine Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust deer11_singh.pdf (2.07 MB) More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

  9. The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_millo.pdf (766.54 KB) More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck Applications Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve

  10. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine ...

  11. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  12. Control method for turbocharged diesel engines having exhaust gas recirculation

    SciTech Connect (OSTI)

    Kolmanovsky, I.V.; Jankovic, M.J.; Jankovic, M.

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  13. Fate of SO{sub 2} During Plasma Treatment of Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

    1999-10-25

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO{sub 2} to achieve efficient reduction of NO{sub x} and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO{sub 2} is also active in converting SO{sub 2} to SO{sub 3}. A non-thermal plasma can be used for the selective partial oxidation of NO to NO{sub 2} in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO{sub 2} without oxidizing SO{sub 2} to SO{sub 3}. It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO{sub 2}.

  14. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect (OSTI)

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

  15. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect (OSTI)

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

  16. Intercooling effects of methanol on turbocharged diesel engine performance and exhaust emissions

    SciTech Connect (OSTI)

    Saito, T.; Daisho, Y.; Aoki, Y.; Kawase, N.

    1984-01-01

    From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower nox and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are involved.

  17. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  18. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    SciTech Connect (OSTI)

    Dane, J.; Voorhees, K. J.

    2010-06-01

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  19. Update on Diesel Exhaust Emission Control Technology and Regulations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning 2004_deer_johnson2.pdf (1.48 MB) More Documents & Publications Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission Control Technology Update on Diesel Exhaust Emission Control

  20. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genotoxicity Studies to Support Engineering Development of Emission Controls | Department of Energy Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER

  1. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel ...

  2. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines 2009 DOE ...

  3. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  4. Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions: | Department of Energy Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_plumley.pdf (398.5 KB) More Documents & Publications Detailed Characterization of Lubricant-Derived Ash-Related Species in Diesel Exhaust and Aftertreatment Systems Unraveling DPF Degradation using Chemical

  5. An Accelerated Aging Method for Diesel Exhaust Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in ...

  6. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Broader source: Energy.gov (indexed) [DOE]

    Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics ...

  7. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

    SciTech Connect (OSTI)

    Al-Qurashi, Khalid; Boehman, Andre L.

    2008-12-15

    This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

  8. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect (OSTI)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  9. Catalytic Filter for Diesel Exhaust Purification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Filter for Diesel Exhaust Purification Catalytic Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate filter. deer09_fokema.pdf (869.13 KB) More Documents & Publications Active Soot Filter Regeneration Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation Process

  10. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications

    SciTech Connect (OSTI)

    Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

    2002-08-25

    Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

  11. An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-01_bartley.pdf (272.2 KB) More Documents & Publications Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report The Development of Rapid Aging and Poisoning

  12. Hydrogen generation from plasmatron reformers and use for diesel exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aftertreatment | Department of Energy generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003 DEER Conference Presentation: Massachusetts Institute of Technology 2003_deer_bromberg.pdf (739.71 KB) More Documents & Publications H2-Assisted NOx Traps: Test Cell Results Vehicle Installations Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

  13. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed ...

  14. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the ...

  15. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology ... Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission ...

  16. Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new type of emission control technology was presented for the small engines used in APU's and TRU's.

  17. Diesel emission reduction using internal exhaust gas recirculation

    DOE Patents [OSTI]

    He, Xin; Durrett, Russell P.

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  18. An Information Dependant Computer Program for Engine Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants. ...

  19. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributions and Detailed Exhaust Chemical Composition | Department of Energy Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition 2003 DEER Conference Presentation: University of Wisconsin-Madison 2003_deer_foster.pdf (1.18 MB) More Documents & Publications Mass Correlation of Engine Emissions with

  20. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission ...

  1. Diesel Particulate Filter: A Success for Faurecia Exhaust Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter: A Success for Faurecia Exhaust Systems Diesel Particulate Filter: A Success for ... More Documents & Publications Combination of Diesel fuel system architectures and ...

  2. SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High SCR Loadings | Department of Energy SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings Presents laboratory and engine bench test results from integrating the SCR catalyst into the diesel filter as one multifunctional unit. deer12_folic.pdf (1.36 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003_deer_algrain.pdf (5.77 MB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  4. Update on Diesel Exhaust Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Update on Diesel Exhaust Emission Control 2003 DEER Conference Presentation: Corning, Inc. deer_2003_johnson.pdf (1.53 MB) More Documents & Publications Review of Diesel Emission Control Technology Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives

  5. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  6. Natural Oils - The Next Generation of Diesel Engine Lubricants? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Oils - The Next Generation of Diesel Engine Lubricants? Natural Oils - The Next Generation of Diesel Engine Lubricants? 2002 DEER Conference Presentation: The Pennsylvania State University 2002_deer_perez.pdf (315.66 KB) More Documents & Publications Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Future Engine Fluids Technologies: Durable,

  7. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Broader source: Energy.gov (indexed) [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  8. Partitioning of Volatile Organics in Diesel Particulate and Exhaust |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partitioning of Volatile Organics in Diesel Particulate and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in diesel exhaust deer08_strzelec.pdf (209.9 KB) More Documents & Publications Trends in Particulate Nanostructure Method Development: Identification of the Soluble Organic Fraction of Particulate Matter on DPF Soot Diesel Particulate Oxidation

  9. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    SciTech Connect (OSTI)

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  10. An Information Dependant Computer Program for Engine Exhaust Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Heating | Department of Energy An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants. deer09_avadhanula.pdf (95.11 KB) More Documents & Publications Modular Low Cost High Energy Exhaust Heat

  11. Clean Diesel Engine Component Improvement Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Component Improvement Program Clean Diesel Engine Component Improvement Program 2005_deer_may.pdf (547.13 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma Assisted Catalysis System for NOx Reduction Unique Catalyst System for NOx Reduction in Diesel Exhaust

  12. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC

    Broader source: Energy.gov [DOE]

    Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator.

  13. The Effect of Changes in Diesel Exhaust Composition and After...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology on Lung Inflammation and Resistance to Viral Infection The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and ...

  14. Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications IN VITRO MUTAGENIC AND DNA AND CHROMOSOMAL DAMAGE ACTIVITY BY SURFACTANT DISPERSION OR SOLVENT EXTRACT OF A REFERENCE DIESEL EXHAUST PARTICULATE ...

  15. The Potential of GTL Diesel to Meet Future Exhaust Emission Limits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GTL Diesel to Meet Future Exhaust Emission Limits The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_schaberg.pdf (902.49 KB) More Documents & Publications Application of Synthetic Diesel Fuels Effect of GTL Diesel Fuels on Emissions and Engine Performance Cold-Start

  16. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DEER Conference Presentation: Caterpillar Inc. 2002_deer_hopmann.pdf (828.29 KB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  18. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact and Control Diesel Engines: Environmental Impact and Control 2002 ... More Documents & Publications Cleaning Up Diesel Engines DIesel Emission Control ...

  19. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Measurements. | Department of Energy A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-08_nevius.pdf (63.6 KB) More Documents & Publications Complex System Method to Assess Commercial Vehicle Fuel

  20. NO2 Management in Diesel Exhaust System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Management in Diesel Exhaust System NO2 Management in Diesel Exhaust System The project discusses the use of an NO2 mitigator for catalytic NO2 reduction deer09_roberts.pdf (199.46 KB) More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Low Temperature Catalyst for Fuel Injection System Leading Edge Technology in Diesel Emissions Control

  1. Unique Catalyst System for NOx Reduction in Diesel Exhaust | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_slone.pdf (64.66 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma

  2. CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components | Department of Energy CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_maziasz.pdf (639.25 KB) More

  3. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems p-31williams.pdf (402.04 KB) More Documents & Publications Impact of Biodiesel ...

  4. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  5. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_witherspoon.pdf (333.11 KB) More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines DIesel Emission Control Technology Developments The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

  6. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  7. Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

    SciTech Connect (OSTI)

    Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.; Breder, K.

    2000-02-01

    The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

  8. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  10. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  11. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  12. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  13. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions ...

  14. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine ...

  15. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale ...

  16. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  17. Integrated diesel engine NOx reduction technology development

    SciTech Connect (OSTI)

    Hoelzer, J.; Zhu, J.; Savonen, C.L.; Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J.

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  18. Exhaust Heat Recovery for Rural Alaskan Diesel Generators

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  20. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  1. Engine exhaust control system and method

    SciTech Connect (OSTI)

    Billington, W.G.

    1990-04-03

    This patent describes an exhaust gas control apparatus for an internal combustion engine. It comprises: a rotary fan blade assembly having a hollow hub and plurality of hollow blades, each having a plurality of apertures in a trailing edge; drive means for driving the rotary fan blade assembly; feed means feeding exhaust gases from the engine into the hollow hub and hollow blades; air intake means for feeding intake air to the rotary fan blade assembly from a direction opposite to the direction of flow of the exhaust gases into the hollow hub of the rotary fan blade assembly; exhaust means for exhausting a mixture of air and the exhaust gases; whereby the flow of exhaust gases through the rotary fan blade assembly and out through the exhaust means reduces back-pressure, exhaust noise, exhaust temperature and exhaust pollutants.

  2. BPM Diesel Engineering | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: WR12 7NL Product: Converts diesel engines to operate on Dual Fuel using a digital generic system. References: BPM Diesel Engineering1 This article is a stub. You can...

  3. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  4. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  5. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  6. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  7. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  8. Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Engines Using Diesel and Biodiesel Fuels Investigation on continuous soot ... Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

  9. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  10. The development of a prechamber diesel engine family

    SciTech Connect (OSTI)

    Filtri, G.; Morello, L.; Stroppiana, B.

    1989-01-01

    The development of a new family of prechamber diesel engines, based on a technological commonalty with the gasoline engines is reported. The range of diesel engines, all of them four-cylinder-in line, consist of 3 displacements: 1365cc - 1697cc - 1930cc either naturally aspirated or turbocharged. Mention is also made of their most significant technical innovations about their architecture and combustion chambers, and the main components such as block cylinder, head, crankshaft, connecting rods, pistons, timing gear and injection pump control, intake and exhaust manifolds.

  11. Turbocharged engine exhaust gas recirculation system

    SciTech Connect (OSTI)

    Stachowicz, R.W.

    1984-01-24

    Improved exhaust gas recirculation systems for turbocharged gas engines that include an exhaust pipe, a turbocharger connected thereto, and a carburetor connected with a source of gas for the engine. The recirculation system includes an air conduit extending from the turbocharger compressor discharge to a venturi, an exhaust gas conduit that extends from a connection with the exhaust pipe between the engine and the turbocharger to the venturi, a second air conduit that extends from the exhaust pipe to a connection with the first air conduit, and control valves located in the exhaust gas conduit and in the second air conduit. The valves are closed when the engine is being started or idling at no load and open when a load is imposed or when engine rpm's are increased. No pumps, blowers, etc. are needed because the system operates on a differential in pressure created within the system to cause the exhaust gas recirculation.

  12. The Impact of Lubricant on Emissions from a Medium-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy on Emissions from a Medium-Duty Diesel Engine The Impact of Lubricant on Emissions from a Medium-Duty Diesel Engine 2002 DEER Conference Presentation: National Renewable Energy Lab 2002_deer_whitacre.pdf (355.38 KB) More Documents & Publications Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies

  13. Diesel Engine Light Truck Application

    SciTech Connect (OSTI)

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  14. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect (OSTI)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  15. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  16. Diesel engine emissions reduction by multiple injections having increasing pressure

    SciTech Connect (OSTI)

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  17. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA ... More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines ...

  18. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  19. Engine control with exhaust gas recirculation

    SciTech Connect (OSTI)

    Kodama, K.; Yamazoe, H.

    1987-02-03

    This patent describes an apparatus for controlling the amount of exhaust gases to be recirculated from an exhaust passage of an internal combustion engine to an intake passage of the same, comprising: (a) means for detecting various engine parameters; (b) gas sensor means for detecting the concentration of an exhaust gas in the exhaust passage; (c) means for forcibly interrupting exhaust gas recirculation when the engine is under air/fuel ratio feedback control and exhaust gas recirculation is being performed; and (d) computing means for computing a value representing a desired amount of exhaust to be recirculated using engine parameters and for: (1) producing a correction factor using an output signal from the gas sensor means; (2) obtaining a first mean value of a first plurality of feedback correction factor values during feedback control of air/fuel ratio and during exhaust gas recirculation control; (3) interrupting exhaust gas recirculation during air/fuel ratio feedback control; and (4) obtaining a second mean value of second feedback correction factor values when exhaust gas recirculation is being interrupted.

  20. Diesel Engine Alternatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternatives Diesel Engine Alternatives 2003 DEER Conference Presentation: Southwest Research Institute PDF icon 2003deerryan.pdf More Documents & Publications Combustion Targets ...

  1. Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO

    Broader source: Energy.gov [DOE]

    This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine.

  2. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOE Patents [OSTI]

    Aardahl, Christopher L.; Balmer-Miller, Mari Lou; Chanda, Ashok; Habeger, Craig F.; Koshkarian, Kent A.; Park, Paul W.

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  3. Respiratory effects of diesel exhaust in salt miners

    SciTech Connect (OSTI)

    Gamble, J.F.; Jones, W.G.

    1983-09-01

    The respiratory health of 259 white males working at 5 salt (NaCl) mines was assessed by questionnaire, chest radiographs, and air and He-O/sup 2/ spirometry. Response variables were symptoms, pneumoconiosis, and spirometry. Predictor variables included age, height, smoking, mine, and tenure in diesel-exposed jobs. The purpose was to assess the association of response measures of respiratory health with exposure to diesel exhaust. There were only 2 cases of Grade 1 pneumoconiosis, so no further analysis was done. Comparisons within the study population showed a statistically significant dose-related association of phlegm and diesel exposure. There was a nonsignificant trend for cough and dyspnea, and no association with spirometry. Age- and smoking-adjusted rates of cough, phlegm, and dyspnea were 145, 159, and 93% of an external comparison population. Percent predicted flow rates showed statistically significant reductions, but the reductions were small and there were no dose-response relations. Percent predicted FEV1 and FVC were about 96% of predicted.

  4. Comparison of direct exposure of human lung cells to modern engine exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    partricles | Department of Energy direct exposure of human lung cells to modern engine exhaust partricles Comparison of direct exposure of human lung cells to modern engine exhaust partricles 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_storey.pdf (983.94 KB) More Documents & Publications Pro-Inflammatory Cytokine Responses to Exposure to Diesel Soot Relationship Between Composition and Toxicity of Engine Emissions Comparative Toxicity of Combined Particle

  5. An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Measurements | Department of Energy An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements 2003 DEER Conference Presentation: TSI Incorporated 2003_deer_johnson.pdf (502.83 KB) More Documents & Publications Making Mobile Measurement Using an EEPS Spectrometer Mass Correlation of Engine Emissions with Spectral Instruments Measurement of diesel solid

  6. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_kruiswyk.pdf (1.21 MB) More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery Engine System Approach to Exhaust Energy

  7. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  8. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  9. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  10. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    SciTech Connect (OSTI)

    Storey, John Morse; Sluder, Scott; Lance, Michael J; Styles, Dan; Simko, Steve

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.

  11. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Improve Low Temperature Diesel Engine Combustion Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24, ...

  12. Diesel Engine Oil Technology Insights and Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Technology Insights and Opportunities Diesel Engine Oil Technology Insights and Opportunities Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant ...

  13. Design Challenges of Locomotive Diesel Engines | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerprimus.pdf (145.61 KB) More Documents & Publications Future Diesel Engine Thermal ...

  14. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  15. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime ...

  16. Update on Modeling for Effective Diesel Engine Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment ...

  17. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  18. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  19. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  20. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  1. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  2. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack ...

  3. Effect of EGR contamination of diesel engine oil on wear.

    SciTech Connect (OSTI)

    Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

    2007-09-01

    Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

  4. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management 2004_deer_block.pdf (36.26 KB) More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Milestones | Department of Energy DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems deer09_wagner.pdf (224.99 KB) More Documents & Publications Achieving

  6. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  7. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system deer09_briggs.pdf (291.32 KB) More Documents & Publications Performance of an

  8. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

  10. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  11. Exhaust gas system for internal combustion engines

    SciTech Connect (OSTI)

    Jans, K.; Ohlendorf, R.; Schuster, H.

    1981-09-08

    An exhaust gas system is disclosed for a multi-cylinder internal combustion engine, in which some cylinders are adapted to be effectively disconnected; the exhaust gas system includes in a common exhaust line, an O/sub 2/-probe and two series-connected catalysts while a separate exhaust gas line is coordinated to the cylinders adapted to be effectively disconnected; a control member operable as a function of load opens three separate branch connections from the separate exhaust line to the common exhaust line in such a manner that when all cylinders are firing, the branch connection terminating upstream of the O/sub 2/-probe is opened; the branch terminating in the common exhaust line between the O/sub 2/-probe and the first of the series-connected catalysts is opened when at least one of the cylinders is effectively disconnected and when the internal combustion engine is still relatively cold or warms up to a middle temperature; at temperatures exceeding the middle operating temperature, the branch connection terminating between the two catalysts is opened.

  12. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and ...

  13. Multicylinder Diesel Engine Design for HCCI Operation

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_baranescu.pdf (87.57 KB) More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  15. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation Air handling system model for multi-cylinder variable geometry turbocharged diesel ...

  16. The Effect of Changes in Diesel Exhaust Composition and After-Treatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology on Lung Inflammation and Resistance to Viral Infection | Department of Energy The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and Resistance to Viral Infection The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and Resistance to Viral Infection 2003 DEER Conference Presentation: Lovelace Respiratory Research Institute 2003_deer_mcdonald.pdf (140.75 KB) More Documents &

  17. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_depetrillo.pdf (184.51 KB) More Documents & Publications Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature

  18. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  19. Computational Fluid Dynamics Modeling of Diesel Engine Combustion and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_reitz.pdf (682.47 KB) More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines Comparison of Conventional Diesel and Reactivity Controlled Compression

  20. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closed-loop Control | Department of Energy Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion p-20_ramond.pdf (459.53 KB) More Documents & Publications Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Diesel Combustion Control with

  1. Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses 2003 DEER Conference Presentations: French Agency of Environment and Energy Management deer_2003_seguelong.pdf (468.36 KB) More Documents & Publications Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty

  2. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  3. Consider the DME alternative for diesel engines

    SciTech Connect (OSTI)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEV standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.

  4. 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 29-September 2, 2004 Coronado, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: Diesel Efficiency and Emissions Policy Session 7: Combustion and Homogeneous Charge Compression Ignition Regimes Session 1: Emerging Diesel Technologies Session 8A: Diesel Engine

  5. Performance of a High Speed Indirect Injection Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies The Linear Engine Pathway of Transformation High Fuel Economy Heavy-Duty Truck Engine

  6. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. deer09_stanton.pdf (1.7 MB) More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

  7. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen substitution on engine performance and reducing NOx emissions in a diesel engine deer09_boehman.pdf (150.76 KB) More Documents & Publications Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Advanced Diesel Combustion with Low Hydrocarbon and Carbon

  8. Comparative Study on Exhaust Emissions from Diesel-and CNG-powered...

    Office of Scientific and Technical Information (OSTI)

    ... Thanks to its characteristics, this gas is compatible with current alternative engines (octane number above 110, mass thermal power 10% above Diesel fuels). The main implementation ...

  9. Chemical and Physical Characteristics of Diesel Aerosol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Correlation of Engine Emissions with Spectral Instruments The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical ...

  10. Zone heated inlet ignited diesel particulate filter regeneration...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Zone heated inlet ignited diesel particulate filter ... An exhaust system that processes exhaust generated by an engine is provided. The system ...

  11. Two stroke engine exhaust emissions separator

    DOE Patents [OSTI]

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  12. Two stroke engine exhaust emissions separator

    DOE Patents [OSTI]

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  13. U.S. Navy Marine Diesel Engines and the Environment - Part 2 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 U.S. Navy Marine Diesel Engines and the Environment - Part 2 2002 DEER Conference Presentation: NAVSEA 2002_deer_osborne2.pdf (1.14 MB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1

  14. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    SciTech Connect (OSTI)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  15. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  16. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  17. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  18. Internal combustion engine with an exhaust gas turbocharger

    SciTech Connect (OSTI)

    Hiereth, H.; Withalm, G.

    1981-06-09

    An internal combustion engine with an exhaust-gas turbocharger, particularly a mixture-compressing internal combustion engine, is disclosed in which a bleeder valve is provided which during the operation of the internal combustion engine in the partial load range conducts the exhaust gases in bypassing relationship to the turbine of the exhaust gas turbocharger.

  19. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  20. 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 25-29, 2002 San Diego, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Session 1: Diesel Engine Emissions Reduction Strategies Session 7: Emissions-Related Technologies and Regulations Session 2: Applied Thermoelectric Generator R&D Session 8: Emerging Diesel Engine Technology

  1. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  2. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect (OSTI)

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  3. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Interim report, October 1997--April 1998

    SciTech Connect (OSTI)

    Sirman, M.B.; Owens, E.C.; Whitney, K.A.

    1998-09-01

    Exhaust emissions mappings were conducted for six alternative diesel fuels in a Daimler-Benz (DB) OM6l1 diesel engine. The OM6l 1 engine is a 2.2L, direct-injection diesel with a Bosch, high-pressure, common-rail, fuel-injection system. The engine design closely matches the specifications of the Partnership for a New Generation Vehicle (PNGV) target compression-ignition engine. Triplicate 13-mode, steady-state test sequences were performed for each fuel, with a 2-D control fuel serving as the baseline. No adjustments were made to the engine to compensate for any performance differences resulting from fuel property variations.

  4. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  5. New 11 liter Komatsu diesel engine

    SciTech Connect (OSTI)

    Mizusawa, M.; Tanosaki, T.; Kawase, M.; Oguchi, T.

    1984-01-01

    New 6 cylinder direct injection 11 liter diesel engines which have naturally aspirated, turbocharged, and turbocharged-aftercooled versions have been developed and moved in production at the end of 1983. The highest output of the turbocharged-aftercooled version is 276 kW (375 ps) at 2200 RPM. Based on Komatsu new technologies 125 mm bore diesel has been designed to meet the users' demands, such as compact in size, light in weight, extremely high performance, high reliability and durability. The turbocharged and turbocharged-aftercooled engines are characterized by the adoption of the ductile cast iron piston which is the first application into the high speed, four cycle diesels in production in the world, and which was enabled by Komatsu design and precision casting technologies. This paper also covers the other design aspects and performance characteristics.

  6. An Engine Exhaust Particle SizerTM Spectrometer for Transient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Correlation of Engine Emissions with Spectral Instruments Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol

  7. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect (OSTI)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  8. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  9. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect (OSTI)

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  10. Oxygen-Enriched Combustion for Military Diesel Engine Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion deer09_yelvington.pdf (196.85 KB) More Documents & Publications Development Methodology for Power-Dense Military Diesel Engine Oxygen-Enriched Combustion Emission Control Strategy for Downsized Light-Duty Diese

  11. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Broader source: Energy.gov (indexed) [DOE]

    The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle ...

  12. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  13. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  14. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  15. Potentiality of small DI diesel engines under consideration of emissions and noise control

    SciTech Connect (OSTI)

    Sugihara, K.; Matusi, Y.; Saegusa, S.

    1985-01-01

    The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noise levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 db (a) higher than those of the IDI engine. It was suggested from these results that in those countries which have stringent emission and noise regulations several years would be required to introduce small, high speed DI diesel engines for passenger cars to meet with these regulations.

  16. The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions ...

  17. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lean-NOx Catalyst Development for Diesel Engine Applications Lean-NOx Catalyst Development for Diesel Engine Applications 2002 DEER Conference Presentation: Caterpillar Inc. 2002_deer_park.pdf (302.37 KB) More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  18. The regenerable trap oxidizer-An emission control technique for diesel engines

    SciTech Connect (OSTI)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.; Loose, G.

    1985-01-01

    Daimler-Benz made an early start with the development of systems for the aftertreatment of the exhaust gas emitted by diesel engines. The more important limiting conditions could best be met by the provision of a ceramic, selfcleaning trap oxidizer (TO). In such filters, self-regeneration is effected continuously while driving without any external control. Either partial or complete regeneration is effected, depending on the temperature, oxygen content and rate of flow of the exhaust gas, the amount of soot in the filter and the period for which a given operating condition is maintained. Such a trap oxidizer was developed for a 3.0 liter turbocharged diesel engine to the extent necessary for series production and has been fitted to type 300 SD and 300 D turbocharged diesel of model year 1985 in California.

  19. Predominant induction of kinetochore-containing micronuclei by extracts of diesel exhaust particulates in cultured human lymphocytes

    SciTech Connect (OSTI)

    Odagiri, Youichi; Uchida, Hiroyuki; Kawamura, Ken; Adachi, Shuichi; Takemoto, Kazuo ); Jian-Xin Zhang )

    1994-01-01

    The aneuploidy-inducing activity of extracts of diesel exhaust particulates from light duty (LD) and heavy duty (HD) engines was investigated in cultured peripheral blood lymphocytes of 8 healthy donors using the cytokinesis-block micronucleus test with the kinetochore labelling modification. A majority of the subjects tested showed a significant kinetochore-positive micronucleus induction after treatment with the highest dose (150 [mu]g/ml) of LD extract, although some subjects also showed induction of kinetochore-negative micronuclei. Only one subject had significantly increased numbers of kinetochore-positive micronuclei at a dose of 400 [mu]g/ml of HD extract. These results suggest that diesel extract, at least LD extract, possesses the ability to induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. 21 refs., 2 figs., 3 tabs.

  20. Advances in Diesel Engine Technologies for European Passenger Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG 2002_deer_schindler.pdf (1.73 MB) More Documents & Publications Accelerating Light-Duty Diesel Sales in the U.S. Market Light-Duty Diesel Market Potential in North America Meeting the CO2 Challenge DEER 2002

  1. Exhaust Phosphorous Chemistry and Catalyst Poisoning | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry and Catalyst Poisoning Exhaust Phosphorous Chemistry and Catalyst Poisoning 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National ...

  2. Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_puetz.pdf (742.3 KB) More Documents & Publications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Model-Based Transient Calibration Optimization

  3. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  4. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    SciTech Connect (OSTI)

    Kodavanti, Urmila P.; Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly; Nyska, Abraham; Richards, Judy E.; Andrews, Debora; Gilmour, M. Ian

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 ?g/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and ?-glutamyl transferase (?-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-?, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF ?-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-?, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ? Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ? In hypertensive rats diesel exhaust effects are seen only after long term exposure. ? Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ? Normalizing blood pressure reverses atherogenic effects

  5. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Broader source: Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  6. Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  8. Exhaust gas recirculation apparatus for engine with turbocharger

    SciTech Connect (OSTI)

    Nakamura, H.; Matsuo, S.; Kawai, N.

    1987-06-02

    This patent describes an exhaust gas recirculation apparatus for an internal combustion engine having an intake air passage and an exhaust gas passage connected thereto. The apparatus comprises: an exhaust gas recirculation passage connecting the exhaust gas passage to the intake air passage for recirculating the exhaust gas into the intake air passage; and a vacuum-operated exhaust gas recirculation control valve disposed in the exhaust gas recirculation passage for controlling the flow of the exhaust gas to be recirculated. The exhaust gas recirculation control valve comprises a diaphragm for receiving admitted operating vacuum such that the valve closes when the absolute value of the admitted operating vacuum is lower than the absolute value of a first predetermined vacuum value and opens when the absolute value of the admitted operating vacuum is higher than the absolute value of the first Predetermined vacuum value.

  9. Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel

    SciTech Connect (OSTI)

    Harvey, Scott D.; Wright, Bob W.

    2011-10-30

    The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

  10. Understanding diesel engine lubrication at low temperature

    SciTech Connect (OSTI)

    Smith, M.F. Jr.

    1990-01-01

    This paper reports on oil pumpability in passenger car gasoline engines that was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at {minus}18{degrees} C (0{degrees} F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier has better performance that a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance. The apparent shear rate of the oil in the pump inlet tube was calculated from the oil pump flow rate measured at idle speed at low temperature and the pump inlet tube diameter. The shear rate and oil viscosity were used to estimate the shear stress in the pump inlet tube. The shear stress level of the engine is 56% higher than the Mini-Rotary Viscometer (MRV). Hence, the current MRV procedure is rheologically unsuitable to predict pumpability in a large diesel engine. A new device was developed for measuring the oil film thickness in the turbocharge bearing and noting the time when a full oil film is formed. Results indicate that a full oil film occurs almost immediately, well before any oil pressure is observed at the turbocharge inlet. Residual oil remaining in the bearing after shutdown may account of this observation. The oil film maintained its thickness both before, and after the first indication of oil pressure. More work is needed to study this effect.

  11. Cummins/DOE Light Truck Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Diesel Engine Progress Report Cummins/DOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002_deer_stang.pdf (2.47 MB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

  12. Adapting ethanol fuels to diesel engines

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedial measures; the injection systems; ethanol quality.

  13. Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003_deer_bolton1.pdf (935.17 KB) More Documents & Publications Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Analytical Tool Development for Aftertreatment Sub-Systems

  14. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems 2004_deer_catalytica.pdf (331 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  15. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 6 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 20-24, 2006 Detroit, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session 1: A View from the Bridge Concurrent Technical Session 3: Diesel Engine Development Technical Session 1: Advanced Combustion Technologies, Part 1

  16. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. deer09_stanton.pdf (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  17. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration - Strategy and Experimental Results | Department of Energy Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important consideration for light trucks and other personal transportation vehicles.

  18. Update on Modeling for Effective Diesel Engine Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation - Master Plan, Status and Critical Needs | Department of Energy Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs An integrated diesel engine-aftertreatment-vehicle system is extremely complex with numerous interacting variables and an unlimited number of control options. An experimental approach to

  19. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion ...

  20. Technology Development for High Efficiency Clean Diesel Engines...

    Broader source: Energy.gov (indexed) [DOE]

    (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency ...

  1. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will describe preliminary emission results of gasolinediesel RCCI in a ...

  2. Clean and Efficient Diesel Engines- Designing for the Customer

    Broader source: Energy.gov [DOE]

    A look at the key role that clean and efficient diesel engines will play in achieving climate and energy goals, and further improvements needed to perform this role.

  3. Development Methodology for Power-Dense Military Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory data and modeling results are presented on a military auxiliary power unit ... More Documents & Publications Oxygen-Enriched Combustion for Military Diesel Engine ...

  4. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Broader source: Energy.gov (indexed) [DOE]

    (196.85 KB) More Documents & Publications Development Methodology for Power-Dense Military Diesel Engine Oxygen-Enriched Combustion Emission Control Strategy for Downsized ...

  5. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Systems Implemented in a Hybrid Configuration Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric ...

  6. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Broader source: Energy.gov (indexed) [DOE]

    ... Combustion Technologies, Diesel Engine Development, ... Powered Thermoelectric Generator John C. Bass Hi-Z ... (PDF 2.1 MB) Improved Lifetime Pressure-Drop Management ...

  7. Diesel Engine Strategy & North American Market Challenges, Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the 2007 ...

  8. Exhaust gas recirculation system for a V-type engine

    SciTech Connect (OSTI)

    Choushi, M.; Ishimi, H.

    1986-10-07

    This patent describes an exhaust gas recirculation system for a V-type engine having a pair of cylinder banks arranged at an angle to each other on opposite sides of a crankshaft, each cylinder bank having cylinders therein and an intake passage being separately provided for each cylinder. The improvement described here comprises that the intake passages have respective proximate portions at which the intake passages to the cylinders in one cylinder bank and the intake passages to the cylinders in the other cylinder bank are aligned with each other as viewed in the direction of the crankshaft. The proximate portions are in the middle of the engine between the cylinder banks, and an exhaust recirculation passage for recirculating exhaust gas from an exhaust passage to the cylinders extending along the proximate portions in the direction of the crankshaft and communicating with each intake passage by way of a communicating aperture, an exhaust recirculation valve, for controlling the amount of exhaust gas, in the open end of the exhaust recirculation passage, and a branch exhaust passage, one end of which communicates with the exhaust recirculation passage by way of the exhaust recirculation valve and the other end of which communicates with an exhaust passage of the engine.

  9. Diesel Aftertreatment Systems development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with ...

  10. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  11. Exhaust Analyzer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exhaust Analyzer Technology available for licensing: Aids in development of advanced technologies for reducing particulate emissions, thereby reducing human exposure Diesel engine makers can use to evaluate diesel particulate emissions; refining companies can use it for evaluating fuel quality; and regulatory agencies can use for checking on-road vehicle compliance for emissions PDF icon Exhaust_Analyzer

  12. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  13. 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 24-28, 2003 Newport, Rhode Island The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Session 6: Environmentally Concerned Public Sector Organization Panel Session 1: Emerging Diesel Technologies Session 7: Combustion and HCCI Regimes Session 2: Fuels and

  14. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 21-25, 2005 Chicago, Illinois The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Technical Session 4: Emission Control Technologies, Part 1 Technical Session 1: Advanced Combustion Technologies Part 1 Poster Session 2: Light-Duty Diesels and Emission

  15. Optimization of Advanced Diesel Engine Combustion Strategies | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace020_reitz_2011_o.pdf (786.77 KB) More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature Combustion

  16. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 ... Multicylinder Diesel Engine for Low Temperature Combustion Operation Development of ...

  17. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  18. Epidemiological-environmental study of diesel bus garage workers: chronic effects of diesel exhaust on the respiratory system

    SciTech Connect (OSTI)

    Gamble, J.; Jones, W.; Minshall, S.

    1987-10-01

    Two hundred and eighty-three (283) male diesel bus garage workers from four garages in two cities were examined to determine if there was excess chronic respiratory morbidity related to diesel exposure. The dependent variables were respiratory symptoms, radiographic interpretation for pneumoconiosis, and pulmonary function (FVC, FEV1, and flow rates). Independent variables included race, age, smoking, drinking, height, and tenure (as surrogate measure of exposure). Exposure-effect relationships within the study population showed no detectable associations of symptoms with tenure. There was an apparent association of pulmonary function and tenure. Seven workers (2.5%) had category 1 pneumoconiosis (three rounded opacities, two irregular opacities, and one with both rounded and irregular). The study population was also compared to a nonexposed blue-collar population. After indirect adjustment for age, race, and smoking, the study population had elevated prevalences of cough, phlegm, and wheezing, but there was no association with tenure. Dyspnea showed a dose-response trend but no apparent increase in prevalence. Mean percent predicted pulmonary function of the study population was greater than 100%, i.e., elevated above the comparison population. These data show there is an apparent effect of diesel exhaust on pulmonary function but not chest radiographs. Respiratory symptoms are high compared to blue-collar workers, but there is no relationship with tenure.

  19. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Advanced Petroleum-Based Fuels-Diesel Emission Control (APBF-DEC) Project

  20. Optimization of Engine-out Emissions from a Diesel Engine to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, ...

  1. Influence of the exhaust system on performance of a 4-cylinder supercharged engine

    SciTech Connect (OSTI)

    Trenc, F.; Bizjan, F.; Hribernik, A.

    1998-10-01

    Twin entry radial turbines are mostly used to drive compressors of small and medium size 6-cylinder diesel engines where the available energy of the undisturbed exhaust pulses can be efficiently used to drive the turbine of a turbocharger. Three selected cylinders feed two separated manifold branches and two turbine inlets and prevent negative interaction of pressure waves and its influence on the scavenging process of the individual cylinders. In the case of a four-stroke, 4-cylinder engine, two selected cylinders, directed by the firing order, can be connected to one (of the two) separated manifold branches that feeds one turbine entry. Good utilization of the pressure pulse energy, together with typically longer periods of reduced exhaust flow can lead to good overall efficiency of the two-pulse system. Sometimes this system can be superior to the single manifold system with four cylinders connected to one single-entry turbine. The paper describes advantages and disadvantages of the above described exhaust systems applied to a turbocharged and aftercooled 4-cylinder Diesel engine. Comparisons supported by the analyses of the numerical and experimental results are also given in the presented paper.

  2. A study of the organic emission from a turbocharged diesel engine running on 12 percent hexyl nitrate dissolved in ethanol

    SciTech Connect (OSTI)

    Walde, N.; Westerholm, R.; Persson, K.-A.

    1984-01-01

    A highly rated turbocharged diesel engine adapted for an alternative fuel based on ethanol and hexyl nitrate has been investigated with respect to the emission of organic compounds in the exhausts. The adaption involves: ignition nozzles with larger holes, a change of injection timing and more fuel injected per stroke. Emissions were measured at four different driving modes ie, 1, 8, 10 and 12 respectively, in the California Cycle. The exhaust composition are different compared to conventional diesel emissions. The main part of the organic pollutants consists of unburned ethanol and hexyl nitrate, acetaldehyde being the most abundant aldehyde.

  3. Modeling pollution formation in diesel engines

    SciTech Connect (OSTI)

    Brown, N.

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  4. Starting low compression ratio rotary Wankel diesel engine

    SciTech Connect (OSTI)

    Kamo, R.; Yamada, T.Y.; Hamada, Y.

    1987-01-01

    The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid.

  5. Dynamic behaviour of a turbocharged diesel engine

    SciTech Connect (OSTI)

    Backhouse, R.; Winterbone, D.E.

    1986-01-01

    The transient behaviour of torque and smoke produced by a turbocharged diesel engine has been measured by frequency response methods, with a sinusoidal peturbation applied to the fuel. A dynamic torque parameter (dmep) has been introduced and the response of this to changes in speed and load can be separated. The dmep also enables the delay associated with torque production to be obtained: this is compared to the widely accepted values. The results have also been analysed to show the relationship between air-fuel ratio and smoke produced during a transient. The conclusion is that the production of smoke under dynamic condition behaves similarly to that under steady running but that it is more dependent on the initial load (air-fuel ratio) level.

  6. Exhaust gas purification system for lean burn engine

    SciTech Connect (OSTI)

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  7. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  8. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composition and Health Responses to Inhaled Emissions | Department of Energy and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_mcdonald.pdf (542.75 KB) More Documents & Publications The Effect of Changes in

  9. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  10. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration effectively deer12_suresh.pdf (986.08 KB) More Documents & Publications Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins/DOE Light Truck Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

  11. Engineering task plan for five portable exhausters

    SciTech Connect (OSTI)

    Rensink, G.E.

    1997-10-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures.

  12. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  13. Diesel Engines: What Role Can They Play in an Emissions-Constrained World?

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation; California Air Resources Board

  14. Technical Challenges and Opportunities Light-Duty Diesel Engines in North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America | Department of Energy Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_pinson.pdf (598.44 KB) More Documents & Publications Light-Duty Diesel Market Potential in North America Diesel Technology - Challenges & Opportunities for North America Comparison of Conventional Diesel and

  15. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004_deer_schindler.pdf (951.51 KB) More Documents & Publications Accelerating Light-Duty Diesel Sales in the U.S. Market Marketing Light-Duty Diesels to U.S. Consumers Clean Diesel: The Progress, The Message, The Opportunity

  16. Future Breathing System Requirements for Clean Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. Diesel Engine Strategy & North American Market Challenges, Technology and Growth

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Engine Materials for Clean Diesel Technology: An Overview

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Impact of Real Field Diesel Quality Variability on Engine Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine. p-07hermitte.pdf (1.04 MB) More Documents & ...

  20. French perspective on diesel engines & emissions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Diesel Emission Control: Euruopean Experience and Worldwide Perspectives Performance and durability of PSA Peugeot Citroen's DPF System on a Taxi Fleet in the Paris Area

  1. An application of a combined charging system on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Lee, D.I.; Her, K.; Chang, N.

    1984-01-01

    To improve the low-speed torque characteristics and the fuel economy and to reduce the exhaust gaseous emissions from a 10-liter, turbocharged diesel engines, charge air cooling with a resonant intake system has been introduced. The use of an air-to-air inter-cooler mounted in front of the radiator results in increasing the charge air density and the resonant intake system offers a high volumetric charging efficiencies at low-speed region. Actual engine data show an increase in power of 14 percent, the improvement of specific fuel consumption by 3-7 percent and a decrease in NOx emissions by 33 percent.

  2. Recent Diesel Engine Emission Mitigation Activities of the Maritime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Energy Technologies Program | Department of Energy Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program 2003 DEER Conference Presentation: Maritime Administration 2003_deer_gore.pdf (759.73 KB) More Documents & Publications The Maritime Administration's Energy and Emissions Program - Part 2 Reduction of Emissions

  3. 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 13-16, 2007 Detroit, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Tuesday Dinner Monday Lunch Concurrent Technical Session 4 : Emission Control Technologies, Part 2 Technical Session 1: Advanced

  4. 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 4-7, 2008 Dearborn, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Concurrent Technical Session 4: Emission Control Technologies, Part 2 Lunch: Sponsored by Caterpillar, Inc. Concurrent Technical

  5. Multicylinder Diesel Engine for Low Temperature Combustion Operation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion temperatures to yield low NOx at higher loads and better efficiency over the speed-load range deer08_deojeda.pdf (1.22 MB) More Documents & Publications Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Multicylinder Diesel Engine Design for HCCI Operation Impact of

  6. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this

  7. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions

  8. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuels Application of Synthetic Diesel Fuels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_schaberg.pdf (462.75 KB) More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  9. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.

  10. Exhaust Energy Recovery | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Cummins Waste Heat Recovery Exhaust Energy ...

  11. Exhaust gas recirculation control system for an internal combustion engine

    SciTech Connect (OSTI)

    Nishida, M.; Inoue, N.

    1988-03-01

    An exhaust gas recirculation control system for an internal combustion engine is described which comprises; an exhaust gas recirculation control valve for controlling a recirculation rate for exhaust gas to be mixed with intake air which is supplied to the internal combustion engine, an oxygen sensor disposed in an intake air passage downstream of the control valve to detect the concentration of oxygen in the intake air, a control means which compares the oxygen concentration detected by the oxygen sensor with a desired oxygen concentration previously determined depending on operational conditions of the engine and controls the degree of opening of the exhaust gas recirculation control valve so as to cancel the deviation between the detected oxygen concentration and the desired oxygen concentration, a detecting means for detecting the exhaust gas recirculation rate being zero to supply a signal to the control means on the basis of the detection, and a correcting means for correcting the corresponding relation between the output of the oxygen sensor and the detected oxygen concentration on the basis of the output of the oxygen sensor when the exhaust gas recirculation rate is zero.

  12. Double-reed exhaust valve engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  13. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect (OSTI)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  14. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  15. Cummins/DOE Light Truck Clean Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Clean Diesel Engine Progress Report Cummins/DOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. 2003_deer_stang.pdf (168.78 KB) More Documents & Publications Cummins Light Truck Clean Diesel Cummins/DOE Light Truck Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US

  16. An Experimental Investigation of Low Octane Gasoline in Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_ciatti.pdf (1.34 MB) More Documents & Publications Use of Low Cetane Fuel to Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  17. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_35_patton.pdf (970.31 KB) More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  18. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2006-08-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  19. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  20. Catalysts For Lean Burn Engine Exhaust Abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2004-04-06

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  1. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  2. Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 Emission Limits | Department of Energy Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines. deer08_yoon.pdf (1.2 MB) More Documents &

  3. ULEV potential of a DI/TCI diesel passenger car engine operated on dimethyl ether

    SciTech Connect (OSTI)

    Kapus, P.E.; Cartellieri, W.P.

    1995-12-31

    This paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME) with the aim of demonstrating its potential of meeting ULEV (ultra low emission vehicle) emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of he baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation. The paper presents engine test results achieved with DME under various operating conditions and compares these results to those achieved with the diesel version of the same engine.The FTP 75 cycle results were projected from steady state engine maps using a vehicle simulation program taking into account vehicle data and road resistance data of a given vehicle.The cycle results are also compared to actual chassis dynamometer results achieved with the diesel version of the same engine installed in the same vehicle.the passenger car DI/TCI engine adapted for and operated on DME shows very promising results with respect to meeting ULEV NOx emissions without any soot emissions and without the need for a DENOX catalyst. DME fuel consumption on energy basis can be kept very close to the DI diesel value. An oxidation catalyst will be necessary to meet the stringent CO and HC ULEV emission limits.

  4. Particle Sensor for Diesel Combustion Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Diesel Combustion Monitoring Particle Sensor for Diesel Combustion Monitoring 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of Minnesota and Honeywell International 2004_deer_kittleson2.pdf (396.91 KB) More Documents & Publications On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions Lowest Engine-Out

  5. Mixture Formation in a Light-Duty Diesel Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixture Formation in a Light-Duty Diesel Engine Mixture Formation in a Light-Duty Diesel Engine Presents quantitative measurements of evolution of in-cylinder equivalence ratio distributions in a light-duty engine where wall interactions and strong swirl are significant deer12_miles.pdf (4.42 MB) More Documents & Publications Low-Temperature Automotive Diesel Combustion Light-Duty Diesel Combustion Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

  6. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  7. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  8. Field test comparison of natural gas engine exhaust valves

    SciTech Connect (OSTI)

    Bicknell, W.B.; Hay, S.C.; Shade, W.N.; Statler, G.R.

    1996-12-31

    As part of a product improvement program, an extensive spark-ignited, turbocharged, natural gas engine exhaust valve test program was conducted using laboratory and field engines. Program objectives were to identify a valve and seat insert combination that increased mean time between overhauls (MTBO) while reducing the risk of premature valve cracking and failure. Following a thorough design review, a large number of valve and seat insert configurations were tested in a popular 900 RPM, 166 BHP (0.123 Mw) per cylinder industrial gas engine series. Material, head geometry, seat angle and other parameters were compared. Careful in-place measurements and post-test inspections compared various configurations and identified optimal exhaust valving for deployment in new units and upgrades of existing engines.

  9. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air | Department of Energy Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_bowser.pdf (615.73 KB) More Documents & Publications Membrane Technology Workshop Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Diesel Engine

  10. Electrical diesel particulate filter (DPF) regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  11. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  12. Engine-External HC-Dosing for Regeneration of Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO Engine-External HC-Dosing for Regeneration of Diesel ...

  13. Diesel Engines: What Role Can They Play in an Emissions-Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What Role Can They Play in an Emissions-Constrained World? Diesel Engines: What Role Can They Play in an Emissions-Constrained World? 2004 Diesel Engine Emissions Reduction (DEER) ...

  14. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) ...

  15. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer ...

  16. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light ...

  17. Proof-of-principle test for thermoelectric generator for diesel engines; Final report

    SciTech Connect (OSTI)

    1991-07-26

    In September of 1987, the principals of what is now Hi-Z TECHNOLOGY, INC. applied to the National Bureau of Standards (now National Institute of Standards and Technology, NIST) under the Energy Related Inventions Program. The invention was entitled ``Thermoelectric Generator for Diesel Engines.`` The National Institute of Standards and Technology evaluated the invention and on January 12, 1989 forwarded Recommendation Number 455 to the Department of Energy (DOE). This recommendation informed the DOE that the invention had been selected for recommendation by the NIST for possible funding by the DOE. Following the recommendation of the NIST, the DOE contacted Hi-Z to work out a development program for the generator. A contract for a grant to design, fabricate, and test a Proof-of-Principle exhaust powered thermoelectric generator for Diesel engines was signed October 19, 1989. Hi-Z provided the thermoelectric modules used in the generator as their contribution to the project. The purpose of this Grant Program was to design, build, and test a small-scale, Proof-of-Principle thermoelectric generator for a Diesel engine. 15 figs., 1 tab.

  18. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Broader source: Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  19. Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustuion | Department of Energy Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002_deer_wagner.pdf (771.32 KB) More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Achieving High-Effiency Clean Ccombustion in Diesel Engines Light-Duty Diesel EngineTechnology to Meet

  20. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_troy.pdf (464.48 KB) More Documents & Publications An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report

  1. Simulation and control of a HD diesel engine equipped with new EGR technology

    SciTech Connect (OSTI)

    Dekker, H.J.; Sturm, W.L.

    1996-09-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission requirements. The final emission results were 2.4 g/k Wh NO{sub x} and 0.107 g/kWh particulates for the European 13 mode test. Better than 3.0 g/k Wh NO{sub x} and 0.10 g/k Wh particulates are expected to be characteristic EURO4 emission requirements (approximate year of implementation is 2004). In the design of the EGR system the model provided initial assessments of the properties of this system. Associated engine and turbocharger behavior as well as optimal control strategies were predicted. A transient engine control algorithm was developed using the dynamic engine model. The VGT is closed loop controlled and EGR is shut off during a short time after a load increase. The simulation results were confirmed by actual measurements, demonstrating acceptable transient behavior.

  2. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; McFarlane, Joanna; Daw, C Stuart; Ra, Youngchul; Griffin, Jelani K

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  3. A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

    Broader source: Energy.gov [DOE]

    A single-cylinder engine was used to study how selected oxygenated fuels affect combustion and emissions in a modern diesel engine during conventional combustion and low-temperature combustion (LTC).

  4. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schedule for Representative Measurement of Heavy-Duty Engine Emissions | Department of Energy Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August,

  5. Hydrogen as a Supplemental Fuel in Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_bika.pdf (177.65 KB) More Documents & Publications Fuels of the Future for Cars and Trucks Renewable Diesel Vehicle Technologies Office:

  6. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  7. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  8. Detailed Characterization and Profiles of Crankcase and Diesel Particulate Matter Exhaust Emissions Using Speciated Organics

    SciTech Connect (OSTI)

    Zielinska, B.; Campbell, D.; Lawson, D. R.; Ireson, R. G.; Weaver, C. S.; Hesterberg, T. W.; Larson, T.; Davey, M.; Sally Liu, L.-J.

    2008-01-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (<1 {micro}g/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

  9. UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES

    SciTech Connect (OSTI)

    DeBusk, Melanie Moses; Bischoff, Brian L; Hunter, James A; Klett, James William; Nafziger, Eric J; Daw, C Stuart

    2014-01-01

    An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

  10. Comparison of Conventional Diesel and Reactivity Controlled Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition (RCCI) Combustion in a Light-Duty Engine | Department of Energy Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx levels, while accounting for Diesel Exhaust Fluid

  11. Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

  12. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  13. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  14. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  15. SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & DPF RETROFITS FOR MOBILE DIESEL ENGINES SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_leprince.pdf (290.81 KB) More Documents & Publications Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report The Development and

  16. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research Institute 2002_deer_leet.pdf (429.05 KB) More Documents & Publications Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report State-of-the-Art and Emergin Truck Engine Technologies Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  17. Nanocatalysts for Diesel Engine Emissions Remediation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    venkatasubramanian1.pdf (1.13 MB) More Documents & Publications Nano-structures Thermoelectric Materals - Part 2 Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Thermoelectric Developments for Vehicular Applications

    venkatasubramanian2.pdf (3.14 MB) More Documents & Publications Nano-structures Thermoelectric Materals - Part 1 Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI The 60% Efficient Diesel Engine: Probably, Possible,

  18. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_johansson.pdf (1.48 MB) More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Path

  19. EERE Success Story—Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

  20. SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results from integrating the SCR catalyst into the diesel filter as one multifunctional unit. ... Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF ...

  1. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  2. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a

  3. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    SciTech Connect (OSTI)

    Muth, T. R.; Mayer, R.

    2012-05-04

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

  4. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_zirker.pdf (247.36 KB) More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Development of Partial Filter Technology for HDD Retrofit Comparing Emissions Benefits from Regulating

  5. The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_fairbanks2.pdf (1.21 MB) More Documents & Publications DOE's Launch of High-Efficiency Thermiekectrics Projects Thermoelectric Developments for Vehicular Applications Solid-State Energy Conversion Overview

  6. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Research | Department of Energy Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_07_oefelein.pdf (4.03 MB) More Documents & Publications Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine

  7. Impact of Real Field Diesel Quality Variability on Engine Emissions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Solutions for Onboard Optimisation | Department of Energy Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine. p-07_hermitte.pdf (1.04 MB) More Documents &

  8. Systems engineering approach towards performance monitoring of emergency diesel generator

    SciTech Connect (OSTI)

    Ramli, Nurhayati Yong-kwan, Lee

    2014-02-12

    Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

  9. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Large Eddy Simulation (LES) Applied to LTCDiesel...

  10. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will ... Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next ...

  11. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace007oefelein2010o.pdf More Documents & Publications Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Large Eddy Simulation (LES)...

  12. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    confidential, proprietary, or otherwise restricted information. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine This presentation does not contain any confidential, ...

  13. EXPLORING LOW EMISSION DIESEL ENGINE OILS WORKSHOP - A SUMMARY REPORT

    SciTech Connect (OSTI)

    Perez, Joseph

    2000-08-20

    This paper discusses and summarizes some of the results of the title workshop. The workshop was held January 31-February 2, 2000 in Phoenix, Arizona. The purpose of the workshop was ''To craft a shared vision for Industry-Government (DOE) research and development collaboration in Diesel Engine Oils to minimize emissions while maintaining or enhancing engine performance''. The final report of the workshop (NREL/SR-570-28521) was issued in June 2000 by the National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393. There were some 95 participants at the workshop representing industry, government and academia, Figure 1. The format for the workshop is described in Figure 2. This format allowed for considerable discussion of the various issues prior to deliberations in breakout groups. This process resulted in recommendations to solve the issues related to the next generation of diesel engine oils. Keynote addresses by SAE President Rodica Baranescu (International Truck and Engine Corporation), James Eberhardt of DOE and Paul Machiele of EPA focused on diesel progress, workshop issues and regulatory fuel issues. A panel of experts further defined the issues of interest, presenting snapshots of the current status in their areas of expertise. A Q&A session was followed by a series of technical presentations discussing the various areas. Some two dozen presentations covered the technical issues, Figure 3. An open forum was held to allow any participant to present related studies or comment on any of the technical issues. The participants broke into work groups addressing the various areas found on Figure 2. A group leader was appointed and reported on their findings, recommendations, suggested participants for projects and on related items.

  14. On the concept of separate aftercooling for locomotive diesel engines

    SciTech Connect (OSTI)

    Uzkan, T.; Lenz, M.A.

    1999-04-01

    This paper describes a patented cooling system concept for a turbocharged diesel engine. In particular, it defines a cooling system having the capability of transferring some of the cooling capacity of transferring some of the cooling capacity of engine jacket and engine oil cooling to cool the cylinder inlet air when more than the cooling capacity built into the system through the size of the radiators and fans is needed. This increased aftercooling will improve the engine performance and reduce emission levels. The cooling capacity of a locomotive is essentially determined by the radiator and fan size, among other factors, and is designed to cool the engine within acceptable metal temperatures at a specified maximum ambient temperature and at the maximum engine power. On the other hand, at lower ambient temperatures or engine power levels, the cooling needs of the engine will be less than this maximum cooling capacity of the cooling system. There remains some excess capacity. This paper describes the concept called the ``Separate Aftercooling System`` that uses some of this excess cooling capacity to cool the engine inlet air at the aftercoolers. It shows the feasibility of such a system, describes the order of magnitude of benefits that can be expected from such a system, and outlines the implementation of this concept to EMD built locomotives.

  15. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine | Department of Energy Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_baumgard.pdf (277.94 KB) More Documents & Publications Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  16. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty Low-Temperature and Diesel ...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  18. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    DOE Patents [OSTI]

    Harris, Ralph E.; Broerman, III, Eugene L.; Bourn, Gary D.

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  19. System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine The objective of the current research is to assess differences in NOx emissions between biodiesel and petroleum diesel fuels, resulting from fundamental issues and system-response issues. deer09_jacobs.pdf (775.62 KB) More Documents & Publications Biodiesel's Enabling Characteristics in Attaining Low Temperature

  20. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by

  1. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summarizes progress in design, analysis, and testing of individual component building blocks of waste heat recovery system for a 10% improvement in heavy-duty diesel engine. deer08_kruiswyk.pdf (1.52

  2. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect (OSTI)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems

  3. Influence of diesel engine combustion on the rupture strength of partially stabilized zirconia

    SciTech Connect (OSTI)

    Brinkman, C.R.; VonCook, K.; Foster, B.E.; Graves, R.L.; Kahl, W.K.; Liu, K.C.; Simpson, W.A. )

    1989-08-01

    This article is on a study conducted to determine whether long-term exposure of two types of partially stabilized zirconia (PSZ) to the combustion environment of diesel engines would generate a change in mechanical properties. The author explains why PSZ was chosen for the study and goes on to discuss some reservations about the use of PSZ in diesel engines.

  4. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain Engineering 2003_deer_maier.pdf (669.31 KB) More Documents & Publications Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Sources of CO and UHC Emissions in Low-Temperature

  5. Exhaust pipe arrangement for a turbocharged multi-cylinder internal combustion engine having catalytic converters

    SciTech Connect (OSTI)

    Gauffres, U.J.

    1984-04-24

    An exhaust pipe arrangement for internal combustion engines is disclosed which includes an exhaust gas turbocharger, a bypass conduit for circumventing the turbocharger, a blow off valve, a starter catalyst disposed in an exhaust pipe, an oxygen sensor, and a main catalyst connected downstream of the turbocharger, starter catalyst, and oxygen sensor. To reduce the exhaust gas counterpressure and relieve the load on the starter catalyst at the same time, the starter catalyst is arranged upstream of a junction of the bypass conduit entering into the exhaust pipe.

  6. Nitrogen oxide removal using diesel fuel and a catalyst

    DOE Patents [OSTI]

    Vogtlin, George E.; Goerz, David A.; Hsiao, Mark; Merritt, Bernard T.; Penetrante, Bernie M.; Reynolds, John G.; Brusasco, Ray

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  7. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  8. Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines

    Broader source: Energy.gov [DOE]

    Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx.

  9. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  10. Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming. p-10_hou.pdf (155.5 KB) More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

  11. Taguchi methods applied to oxygen-enriched diesel engine experiments

    SciTech Connect (OSTI)

    Marr, W.W.; Sekar, R.R.; Cole, R.L.; Marciniak, T.J.; Longman, D.E.

    1992-12-01

    This paper describes a test series conducted on a six-cylinder diesel engine to study the impacts of controlled factors (i.e., oxygen content of the combustion air, water content of the fuel, fuel rate, and fuel-injection timing) on engine emissions using Taguchi methods. Three levels of each factor were used in the tests. Only the main effects of the factors were examined; no attempt was made to analyze the interactions among the factors. It was found that, as in the case of the single-cylinder engine tests, oxygen in the combustion air was very effective in reducing particulate and smoke emissions. Increases in NO{sub x} due to the oxygen enrichment observed in the single-cylinder tests also occurred in the present six-cylinder tests. Water in the emulsified fuel was found to be much less effective in decreasing NO{sub x} emissions for the six-cylinder engine than it was for the single-cylinder engine.

  12. Taguchi methods applied to oxygen-enriched diesel engine experiments

    SciTech Connect (OSTI)

    Marr, W.W.; Sekar, R.R.; Cole, R.L.; Marciniak, T.J. ); Longman, D.E. )

    1992-01-01

    This paper describes a test series conducted on a six-cylinder diesel engine to study the impacts of controlled factors (i.e., oxygen content of the combustion air, water content of the fuel, fuel rate, and fuel-injection timing) on engine emissions using Taguchi methods. Three levels of each factor were used in the tests. Only the main effects of the factors were examined; no attempt was made to analyze the interactions among the factors. It was found that, as in the case of the single-cylinder engine tests, oxygen in the combustion air was very effective in reducing particulate and smoke emissions. Increases in NO[sub x] due to the oxygen enrichment observed in the single-cylinder tests also occurred in the present six-cylinder tests. Water in the emulsified fuel was found to be much less effective in decreasing NO[sub x] emissions for the six-cylinder engine than it was for the single-cylinder engine.

  13. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    duty H2-Diesel Dual Fuel Engines Heavy-duty H2-Diesel Dual Fuel Engines Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads deer09_li.pdf (37.32 KB) More Documents & Publications Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Status of APBF-DEC NOx Adsorber/DPF Projects Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations

  14. Optimization of an Advanced Passive/Active Diesel Emission Control System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an Advanced Passive/Active Diesel Emission Control System Optimization of an Advanced Passive/Active Diesel Emission Control System Evaluation of PM exhaust aftertreatment technologies of a non-road engine over a steady-state cycle deer08_shade.pdf (1.28 MB) More Documents & Publications Diesel Particulate Filters and NO2 Emission Limits Active Diesel Emission Control Technology for Transport Refrigeration Units Active Diesel Emission Control

  15. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOE Patents [OSTI]

    Williamson, Weldon S.; Gonze, Eugene V.

    2008-12-30

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  16. Diesel engine performance and emissions using different fuel/additive combinations

    SciTech Connect (OSTI)

    Sutton, D.L.; Rush, M.W.; Richards, P.

    1988-01-01

    It is probable that diesel fuel quality in Europe will fall as the need to blend conversion components into the diesel pool increases. In particular diesel ignition quality and stability could decrease and carbon residue and aromatic content increase. This paper discusses the effects of worsening fuel quality on combustion, injection characteristics and emissions and the efficacy of appropriate additives in overcoming these effects. Both direct injection and indirect injection engines were used in the investigations.

  17. Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    Combustion Research | Department of Energy ace_07_oefelein.pdf (4.03 MB) More Documents & Publications Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research Vehicle Technologies Office Merit Review 2014: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Combustion Research | Department of Energy

    1 DOE Hydrogen and Fuel Cells Program,

  18. U.S. Navy Marine Diesel Engines and the Environment - Part 3 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 U.S. Navy Marine Diesel Engines and the Environment - Part 3 2002 DEER Conference Presentation: NAVSEA 2002_deer_osborne3.pdf (1.1 MB) More Documents & Publications Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies High Fuel Economy Heavy-Duty Truck Engine The Maritime Administration's Energy and Emissions Program - Part 2

  19. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements of the U.S. Market | Department of Energy EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ricardo, Inc. 2004_deer_greaney.pdf (497.44 KB) More Documents & Publications Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market US

  20. Effects of fuel stability upon injection-nozzle deposit formation in road-tested diesel engines

    SciTech Connect (OSTI)

    Fortnagel, M.; Herrbrich, B.

    1985-01-01

    The properties of diesel fuels have changed distinctly, especially in the United States. Fuel-related problems-one of which is the injector-nozzle coking in passenger-car diesel engines-have arisen due to deteriorated fuel qualities. Extended investigations of road-tested diesel engines suggest a link between fuel stability and the coke-deposit mechanism. Stabilizing poor-quality fuels by a chemical-additive package resulted in troublefree operation over extended mileage. Thus fuel stability, which evidently has to be secured at the refinery, shows up as an important property for satisfactory engine operation.

  1. Engine combustion optimization by exhaust analysis. Final report, December 1986-July 1988

    SciTech Connect (OSTI)

    Jahn, R.K.; Lee, D.J.; Cremean, S.P.; Bayless, R.A.

    1989-01-01

    This report documents the application of an air/fuel ratio analyzer and trim control system to a two-cycle turbocharged compressor engine. The trim control strategy is based upon both oxygen and combustibles in the exhaust gases.

  2. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    SciTech Connect (OSTI)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  3. Diesel DeNOx Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Diesel DeNOx Catalyst New Argonne-Developed Catalyst Can Reduce NOx Emissions From Diesel Engines by 80-85% Argonne National Laboratory Contact ANL About This Technology Inventor Chris Marshall shows the new catalyst that could help remove nitrogen oxides from diesel engine exhaust while saving energy. Inventor Chris Marshall shows the

  4. Soot filter for an exhaust arrangement of an internal combustion engine

    SciTech Connect (OSTI)

    Bergmann, H.; Daudel, H.; Erdmannsdorfer, H.

    1982-04-13

    A soot filter arrangement for an exhaust gas flow of an internal combustion engine, especially an air-compressing internal combustion engine. The filter arrangement includes a housing with feed and discharge connections for the exhaust gas stream in a mineral filter material arranged in the housing. The material is provided on a support pipe equipped with passage openings which enable the exhaust gas stream to enter the support pipe in a radial direction and leave the same in an axial direction. Several support pipes are provided at a mutual spacing in a parallel relationship and the filter material includes a thread of spun silicon dioxide fibers wound onto the support pipes.

  5. Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation

    Broader source: Energy.gov [DOE]

    Air handling system model for multi-cylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators

  6. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Effect of Machining Procedures on the Strength of Ceramics for Advanced Diesel Engine Applications

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Diesel Engine CO2 and SOx Emission Compliance Strategy for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1 Cleaning Up Diesel Engines Vessel Cold-Ironing Using a Barge Mounted PEM Fuel ...

  10. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines?

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  13. The use of CETANER{trademark} for the reduction of particulate matter emissions in a turbocharged direct injection (TDI) diesel engine

    SciTech Connect (OSTI)

    Hess, H.S.; Chiodo, J.A.; Boehman, A.L.; Tijim, P.J.A.; Waller, F.J.

    1999-07-01

    In this experimental study, the effects of the addition of CETANER{trademark} to a premium diesel fuel at various blend levels (5%, 10% and 15% by weight) were evaluated using a 1.9 liter turbocharged direct injection diesel engine. CETANER{trademark}, a product developed by Air Products and Chemicals, Inc., can be manufactured from coal-derived syngas through a two-stage process: (i) Liquid Phase DiMethyl Ether synthesis (LPDME); and (ii) oxidative coupling of DiMethyl Ether (DME) to form long chain linear ethers. When compared to other oxygenated components currently being researched, CETANER has several key advantages: (1) it is derived from a non-petroleum feedstock; (2) it has a cetane number greater than 100; and (3) it will have a cost comparable to diesel fuel. Particulate matter emissions and exhaust gas composition (NOx and CO), were determined at six steady-state engine operating conditions. In addition, fuel properties (viscosity, cloud point, pour point, density, flash point and calorific value) of the various blends were also determined. Engine test results indicate that CETANER is effective in reducing particulate matter emissions at all blend levels tested, without any modifications to engine operating parameters. At the highest blend level (15% CETANER by weight), particulate matter emissions were reduced by greater than 20% when compared to premium diesel fuel.

  14. The effect of fumigation of different ethalnol proofs on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Hayes, T.K.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    Lower proof ethanol is shown to be a viable alternate fuel for diesel engines. This type of ethanol can be manufactured economically in small distillation plants from renewable grain supplies. The effect of fumigation of ethanol proofs with a multipoint injection system on a turbocharged direct injection diesel engine at 2,400 rpm and three loads was studied. The addition of the water in the lower proofs reduced the maximum rate of pressure rise and peak pressure from pure ethanol levels. Both of these values were significantly higher than those for diesel operation. HC and CO emissions increased several times over diesel levels at all loads and also with increased ethanol fumigation. NO emissions were reduced below diesel levels for lower proof ethanol at all loads. The tests at this rpm and load with a a multipoint ethanol injection system indicate that lower (100 or 125) proof provides optimum performance.

  15. Development of the High Efficiency X1 Rotary Diesel Engine |...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications DEER 2007 ACES Status Report Poster: P-23 Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity ...

  16. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels | Department of Energy Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation: National Research Council Canada, Ottawa, Ontario, Canada 2003_deer_neill.pdf (860.57 KB) More Documents & Publications Development of Advanced Combustion Technologies for Increased Thermal Efficiency Biodiesel Research Update Effect of the Composition of Hydrocarbon Streams on HCCI

  17. 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRESENTATIONS | Department of Energy 2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS Presented at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_aravelli.pdf (1.66 MB) More Documents & Publications Light Duty Diesels in the United States - Some

  18. Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_musculus.pdf (9.8 MB) More Documents & Publications In-Cylinder Processes of EGR-Diluted Low-Load, Low-Temperature Diesel Combustion A

  19. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission ...

  20. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  1. Effect of pilot injection on combustion in a turbocharged D.I. diesel engine

    SciTech Connect (OSTI)

    Ishida, Masahiro; Chen, Z.L.; Luo, G.F.; Ueki, Hironobu

    1994-09-01

    For reducing the exhaust emissions and improving the ignition characteristics, the effect of pilot injection was investigated experimentally in a turbocharged direct injection diesel engine. The pilot injection quantity was varied by changing the seat diameter of the Doge plunger installed in the newly developed pilot injector while the separation period between the beginning of pilot injection and that of main injection was fixed at a short interval in the present experiment. The pilot injection effect on combustion was compared with the case of normal injection in two fuel oils with the cetane indexes of 53 and 40-respectively. The pilot injection showed some significant effects on improving the ignition characteristics and fuel consumption as follows: (1) The pilot ignition delay and the main ignition delay were about half of the ignition delay of the normal injection respectively. (2) The lower fuel consumption and NOx could be attained by the pilot injection at the retarded injection timing, especially under the lower load condition. (3) The trade-off relationship between the specific fuel consumption and NOx was significantly improved by the pilot injection. (4) In the present short pilot-main interval, a small amount of pilot quantity was recommended to reduce NOx and fuel consumption without deteriorating smoke density. 12 refs., 16 figs., 1 tab.

  2. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  3. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  4. Soot filter in the exhaust gas flow of air-compressing internal combustion engines

    SciTech Connect (OSTI)

    Abthoff, J.; Gabler, R.; Schuster, H.

    1980-06-03

    A soot filter adapted to be arranged in an exhaust gas stream of air-compressing internal combustion engines is disclosed. The soot filter includes a cylindrical filter housing arranged in proximity of the exhaust gas stream of the internal combustion engine with inlet pipe connecting studs from outlet side of the internal combustion engine being connected to the cylindrical filter housing. A ceramic material of a hollow cylindrical shape is arranged in the filter housing at a distance from a circumferential wall of the filter housing. The ceramic material consists of an outer layer of loose ceramic fiber wadding and of inner woven ceramic fiber matting. A hollow space inside of the ceramic fiber material is connected, in an axial direction, with exhaust gas line of the internal combustion engine.

  5. Apparatus for transmitting power obtained by converting the exhaust energy of an engine

    SciTech Connect (OSTI)

    Miyajima, H.

    1988-08-30

    This patent describes an apparatus for transmitting power obtained by converting the exhaust energy of a primary engine, the primary engine having a crank shaft and an exhaust passage for passing exhaust gas from the engine. The apparatus consists of: an output turbine having an output shaft and an intake port coupled to the exhaust passage; a compressor mounted on the output shaft of the turbine and including an outlet port; a rotary type engine having a double jointed trochoidal shaped rotor housing, the housing having an expansion chamber with an intake port and an outlet port and a compression chamber, the engine further comprising an eccentrically rotatable generally triangular shaped rotor mounted within the housing and a rotor shaft coupled to the rotor. The outlet port of the compressor is coupled to the intake port of the expansion chamber, the outlet port of the expansion chamber being coupled to the intake port of the output turbine; and power transmitting means connected between the crank shaft of the primary engine and the rotor shaft of the rotary engine whereby auxiliary power is provided to the primary engine.

  6. The use of neural nets for matching compressors with diesel engines

    SciTech Connect (OSTI)

    Nelson, S.A. II; Filipi, Z.S.; Assanis, D.N.

    1996-12-31

    A technique which uses trained neural nets to model the compressor in the context of a turbocharged diesel engine simulation is introduced. This technique replaces the usual interpolation of compressor maps with the evaluation of a smooth mathematical function, thus providing engine simulations with greater robustness and flexibility. Following presentation of the methodology, the proposed neural net technique is validated against data from a truck type, 6-cylinder, 14 liter diesel engine. Furthermore, with the introduction of an additional parameter, the proposed neural net can be trained to simulate an entire family of compressors. As a demonstration, five compressors of different sizes are represented with the neural net model, and used for matching calculations with intercooled and non-intercooled engine configurations at different speeds. This novel approach readily allows for evaluation of various options prior to prototype production, and is thus a powerful design tool for selection of the best compressor for a given diesel engine system.

  7. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly

  8. European Diesel Engine Technology: An Overview | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution for Euro VI Emissions Heavy Duty Vehicle In-Use Emission Performance Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer

  9. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T.

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  10. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T. )

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  11. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  12. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  13. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and mediumhigh (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  14. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  15. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that

  16. Open loop pneumatic control of a Lysholm engine or turbine exhaust pressure

    SciTech Connect (OSTI)

    Plonski, B.A.

    1981-07-17

    A Lysholm engine, or helical screw expander, is currently being evaluated at the University of California, Berkeley for staging with a conventional turbine in geothermal energy conversion. A pneumatic closed loop, proportional-integral control system was implemented to control the Lysholm engine's exhaust pressure for performance testing of the engine at constant inlet/outlet pressure ratios. The control system will also be used to control the exhaust pressure of the conventional turbine during future testing of the staged Lysholm-turbine system. Analytical modeling of the control system was performed and successful tuning was achieved by applying Ziegler-Nichol's tuning method. Stable control and quick response, of approximately 1 minute, was demonstrated for load and set point changes in desired exhaust pressures.

  17. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  18. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses a novel TEG which utilizes a proprietary stack designed thermoelectric engine to achieve high power density and reduced system weight and volume

  19. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  20. Development of microwave-heated diesel particulate filters

    SciTech Connect (OSTI)

    Janney, M.A.; Stinton, D.P.; Yonushonis, T.M.; McDonald, A.C.; Wiczynski, P.D.; Haberkamp, W.C.

    1996-06-01

    Diesel engines are a prime mover of freight in the United States. Because of legislated reductions in diesel engine emissions, considerable research has been focused on the reduction of these emissions while maintaining the durability, reliability, and fuel economy of diesel engines. The Environmental Protection Agency (EPA) has found that particulate exhaust from diesel powered vehicles represents a potential health hazard. As a result, regulations have been promulgated limiting the allowable amounts of particulate from those vehicles. The 0.1 g/bhp/hr (gram per brake horsepower per hour) particulate standard that applies to heavy-duty diesels became effective in 1994. Engine manufacturers have met those requirements with engine modifications and/or oxidation catalysts. EPA has established more stringent standards for diesel-powered urban buses because of health concerns in densely populated urban areas.

  1. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  2. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  3. Global kinetics for a commercial diesel oxidation catalyst with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons ...

  4. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    SciTech Connect (OSTI)

    Assanis, D.N.; Baker, D. ); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. )

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  5. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  6. Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_clark.pdf (100.8 KB) More Documents & Publications Evaluating Exhaust

  7. Leading Edge Technology in Diesel Emissions Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading Edge Technology in Diesel Emissions Control Leading Edge Technology in Diesel Emissions Control Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-02_roberts.pdf (193.56 KB) More Documents & Publications NO2 Management in Diesel Exhaust System Experimental Evaluation of DOC Performance Using Secondary Fuel Injection Low Temperature Catalyst for Fuel Injection System

  8. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel | Department of Energy Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  9. Light Duty Diesels in the United States - Some Perspectives ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications Update on Diesel Exhaust Emission Control Technology and Regulations Review of Diesel Emission Control Technology Diesel Emission Control Review

  10. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  11. Isuzu's new 12. 0L micro-computer controlled turbocharged diesel engine

    SciTech Connect (OSTI)

    Wakabayashi, M.; Sakata, S.; Hamanaka, K.

    1984-01-01

    Isuzu Motors Limited introduced in the Japanese market a new micro-computer controlled turbocharged 6RA1TC diesel engine which powers new Isuzu heavy-duty trucks in 1983. This engine has successfully achieved both fuel economy and vehicle performance. This was realized by the combination of the newly developed micro-computer controlled fuel injection system and turbocharged air-to-air intercooled four valve low friction diesel engine. The purpose of the computer control system is flexible and precise control of fuel flow rate and fuel injection timing. This provides maximum engine performance and driveability, best fuel economy combined with the gearing of the vehicle, and easy operation for drivers. Additionally, this engine offers the following features: Good cold startability; Constant speed Cruise Control; Automatic schedule idling speed during warm-up; Stable low speed idling; Light and quick throttle response; Monitoring display for best fuel economy operation; Monitor display for engine diagnosis.

  12. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  13. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOE Patents [OSTI]

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  14. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  15. The Path to a 50% Thermal Efficient Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Path to a 50% Thermal Efficient Engine The Path to a 50% Thermal Efficient Engine 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_easley.pdf (575.85 KB) More Documents & Publications Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview Engine System Approach to Exhaust Energy Recovery An Engine System Approach to Exhaust Waste Heat Recovery

  16. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  17. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  18. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  19. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Broader source: Energy.gov (indexed) [DOE]

    HCCI and DI Engine Combustion | Department of Energy An adaptive multi-grid technique was used to group thermodynamically similar cells in order to reduce the calling frequency to the chemistry solver. deer08_shi.pdf (189.13 KB) More Documents & Publications Homogeneous Charge Compression Ignition (HCCI) R&D Diesel HCCI Results at Caterpillar Numerical Modeling of PCCI Combustion

    DOE Bioenergy Technologies Office 2015 Peer Review Biomass Cookstove Technology Review March 26, 2015

  20. An in-cylinder study of the particulate/NO{sub x} trade-off in a DI Diesel Engine. Draft of final report

    SciTech Connect (OSTI)

    Litzinger, T.A.; Santavicca, D.A.; Santoro, R.J.

    1994-07-01

    The goal of the work performed during the contract period was to establish the ability to study soot and NO within the combustion chamber of a DI Diesel engine and to couple these measurements with actual exhaust emissions. This work was motivated by the need to obtain a more complete understanding of the particulate/NO{sub X} trade-off, observed in Diesel engines, to aid engine designers in meeting emissions limits. In order to achieve the desired goal, an optically accessible DI Diesel engine was designed and constructed. Also, planar imaging methods for imaging soot and NO were developed in laboratory flames and were then applied to the engine. For the study of soot, planar Mie scattering was used and a polarization ratio method was investigated to distinguish soot from fuel droplets. The Mie scattering technique proved to be well suited for the engine, and extensive results were obtained. In order to observe NO, planar laser induced fluorescence was used and it was successfully applied in the engine. In addition to these techniques, high speed combustion photography and shadowgraph photography were applied to obtain general characteristics of the combustion process. As a final diagnostic, actual engine emissions were measured. This report begins with a brief discussion of the problem under investigation and a summary of other studies of the NO{sub x}/particulate trade-off. Following these sections is a summary of the accomplishments and results from the present study. Finally, detailed results are presented through the six technical papers which were written during the contract period; these papers are appended to the report.

  1. Control studies of an automotive turbocharged diesel engine with variable geometry turbine

    SciTech Connect (OSTI)

    Winterbone, D.E.; Jai In, S.

    1988-01-01

    Major advances are being made in engine hardware, control theories and microcomputer technology. The application of advanced control and monitoring techniques to engines should enable them to meet all the restrictions imposed upon them while they operate to their full potential. Variable geometry turbocharging of automotive diesel engines is a good example of a case where the control implications need to be considered carefully. This paper reports a technique for developing the dynamic characteristics of turbocharged diesel engines with variable geometry turbine and compares the results with measurements obtained on an engine. It is the first step in the design process for a true, dynamic, multivariable controller. Most current systems are simply scheduling devices with little understanding or consideration of possible interactions between various control loops. A non-linear simulation model for a turbocharged diesel engine was used to investigate the performance of the engine. Major features of the program, aspects of constructing a model for control purposes and identification procedures of the engine dynamic are discussed.

  2. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

  3. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect (OSTI)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  4. Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications

    Broader source: Energy.gov [DOE]

    Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

  5. Natural Oils - The Next Generation of Diesel Engine Lubricants...

    Office of Environmental Management (EM)

    Systems * Catalyst Compatible Engine Oil Aftertreatment Poisoning * Efficiency and ... Oxalic Acid Wash From "Future Engine Oil Trends", Filter Technology Workshop, Stefan ...

  6. Cold starting capabilities of petroleum and syntehetic lubricants in heavy-duty diesel engines

    SciTech Connect (OSTI)

    Margeson, M.A.; Belmesch, B.J. )

    1989-01-01

    The objective of the work described in this paper was to compare the cold weather starting ability of diesel engines lubricated with SAE 15W-40 petroleum and SAE 5W-30 synthetic motor oil. Laboratory bench tests were used to compare rhelogical features such as borderline pumping temperature and cold cranking simulator profiles. A cold box provided a well controlled environment in which cranking and starting studies were carried out on the two oils in a turbocharged diesel engine. The SAE 5W-30 synthetic exhibited higher cranking speeds, lower starter amperage draw and immediate oil pressure readings when compared to the SAE l5W-40 petroleum. The SAE 5W-30 synthetic oil was safely started at {minus} l0 {sup 0}F oil temperature without auxiliary heaters. The comparative cylinder turbocharged diesel engines representing conditions commonly found in the commercial and off-highway sectors, These studies indicate that combining high capacity cold cranking amperage batteries, high pressure ether aid injection, and SAE 5W-30 synthetic oil resulted in a system that safely starts diesel engines down to actual oil temperatures of at least {minus} 10 {sup 0}F.

  7. A flexible system for the simulation of turbocharged diesel engines and turbocharging systems

    SciTech Connect (OSTI)

    Bulaty, T.; Codan, E.; Skopil, M.

    1996-12-31

    A fully flexible simulation system enables substitution of the conventional tests performed on turbocharged diesel engines. The supercharging systems can be calculated either by filling and emptying or by the differential method for 1-D unsteady flow during steady-state or transient operation. During sophisticated simulations, some conservation problems were observed. Their theoretical explanation and a practical solution are presented.

  8. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect (OSTI)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  9. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    SciTech Connect (OSTI)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  10. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low

  11. Performance of a High Speed Indirect Injection Diesel Engine with Poultry Fat Bio-Diesel

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  12. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems ...

  13. Development of the DDA 8. 2L diesel engine for 1988 emission standards

    SciTech Connect (OSTI)

    Winsor, R.E.; Wheeler, C.L.

    1988-01-01

    The emission development performed to meet 1988 Federal and California emission standards with a four-stroke direct-injection V-8 diesel engine of 8.2L displacement is described. On the naturally aspirated engine the major concern was meeting particulate and lug smoke standards at low NO/sub x/ levels. Acceleration smoke and particulate emission reduction was necessary on the turbocharged engine. The performance and emission goals were met by modifying the unit injectors and pistons of both naturally aspirated and turbocharged engines.

  14. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology 2004_deer_bromberg.pdf (404.01 KB) More Documents & Publications Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Onboard

  15. Achieving High-Effiency Clean Ccombustion in Diesel Engines ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Biodiesel Research Update

  16. Advanced engine management of individual cylinders for control of exhaust species

    DOE Patents [OSTI]

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  17. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect (OSTI)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  18. Mixed-Source EGR for Enabling High Efficiency Clean Combustion Modes in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2008-01-01

    The source of exhaust gas recirculation (EGR), and consequently composition and temperature, has a significant effect on advanced combustion modes including stability, efficiency, and emissions. The effects of high-pressure loop EGR (HPL EGR) and low-pressure loop EGR (LPL EGR) on achieving high efficiency clean combustion (HECC) modes in a light-duty diesel engine were characterized in this study. High dilution operation is complicated in real-world situations due to inadequate control of mixture temperature and the slow response of LPL EGR systems. Mixed-source EGR (combination of HPL EGR and LPL EGR) was investigated as a reasonable approach for controlling mixture temperature. The potential of mixed-source EGR has been explored using LPL EGR as a 'base' for dilution rather than as a sole source. HPL EGR provides the 'trim' for controlling mixture temperature and has the potential for enabling precise control of dilution targets. This approach also has a benefit where LPL EGR does not provide sufficient dilution for achieving conditions appropriate for HECC operation. The balance of the required dilution could be achieved with HPL EGR mitigating the need for throttling or a LPL EGR pump. The results of this investigation revealed significant differences in engine-out emissions and performance for various EGR sources.

  19. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  20. Exhaust Energy Recovery

    Broader source: Energy.gov [DOE]

    Application of organic Rankine cycle to achieve 10% fuel economy improvement in heavy-duty diesel engine

  1. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions ...

  2. Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399

    SciTech Connect (OSTI)

    Williams, A.

    2013-06-01

    To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

  3. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect (OSTI)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  4. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  5. Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Improving Diesel Engine Sweet-spot Efficiency and Adapting it...

    Broader source: Energy.gov (indexed) [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-18yan.pdf (213.42 KB) More Documents ...

  8. Control device for controlling a recycling of exhaust gas of an internal combustion engine

    SciTech Connect (OSTI)

    Bergmann, H.; Reddemann, J.

    1982-10-12

    A control device for controlling a recycling of exhaust gases into an intake system of a self-igniting internal combustion engine which includes a signal generator, constructed as a pneumatic control slide valve mounted to a fuel injection pump. The signal generator is controlled by the respective instantaneous load conditions as a function of the rotational speed of the engine and the load on the engine by a non-reactive scanning of a position of a control rod associated with the fuel injection pump. The signal generator is coupled with the control rod and a pneumatic signal is transmitted by the signal generator in dependence upon a position of a control piston of the signal generator. The pneumatic control signal is transmitted to an adjusting member such as, for example, a pneumatic controller, compressed-air cylinder, or a valve, for each load condition of the engine associated with an exactly defined position of the control rod, with the control signal regulating an amount of recycled exhaust gases in accordance with an applied pressure.

  9. Coal-water-slurry autoignition in a high-speed Detroit diesel engine

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W. III.; Kakwani, R.M.; Winsor, R.E.

    1994-10-01

    Autoignition of coal-water-slurry (CWS) fuel in a two-stroke engine operating at 1900 RPM has been achieved. A Pump-Line-Nozzle (PLN) injection system, delivering 400mm{sup 3} injection of CWS, was installed in one modified cylinder of a Detroit Diesel Corporation (DDC) 8V-149TI engine, while the other seven cylinders remained configured for diesel fuel. Coal Combustion was sustained by maintaining high gas and surface temperatures with a combination of hot residual gases, warm inlet air admission, ceramic insulated components and increased compression ratio. The coal-fueled cylinder generated 85kW indicated power (80 percent of rated power), and lower NO{sub x} levels with a combustion efficiency of 99.2 percent. 6 refs., 15 figs., 4 tabs.

  10. Attenuating Diesel Engine Emissions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Attenuating Diesel Engine Emissions Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Frequently Asked Questions Impact Legislative History Program Contacts Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:

  11. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-01-01

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  12. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-12-31

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  13. Exhaust emission control and diagnostics

    SciTech Connect (OSTI)

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  14. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  15. Efficiency evaluation of the DISC (direct-injection stratified charge), DHC (dilute homogeneous charge), and DI Diesel engines (direct-injection diesel)

    SciTech Connect (OSTI)

    Hane, G.J.

    1983-09-01

    The thermodynamic laws governing the Otto and diesel cycle engines and the possible approaches that might be taken to increase the delivered efficiency of the reciprocating piston engine are discussed. The generic aspects of current research are discussed and typical links between research and the technical barriers to the engines' development are shown. The advanced engines are discussed individually. After a brief description of each engine and its advantages, the major technical barriers to their development are discussed. Also included for each engine is a discussion of examples of the linkages between these barriers and current combustion and thermodynamic research. For each engine a list of questions is presented that have yet to be resolved and could not be resolved within the scope of this study. These questions partially indicate the limit to the state of knowledge regarding efficiency characteristics of the advanced engine concepts. The major technical barriers to each of the engines and their ranges of efficiency improvement are summarized.

  16. Hot isostatically pressed reaction bonded silicon nitride prechambers for the diesel engine

    SciTech Connect (OSTI)

    Gasthuber, H.H. ); Heinrich, J.G.; Huber, J.A.; Steiner, M. ); Bunk, W. )

    1989-12-01

    The aim of this work was to design a silicon nitride prechamber for a diesel engine in the 2- to 3-L range, to calculate temperature and stress distributions, and to test these ceramic prechambers in a fired engine under all working conditions. Another goal was the development of a processing technique for mass production of dense silicon nitride prechambers. For the production of components in narrow tolerances without postmachining, injection molding of silicon powder, dewaxing, nitriding, encapsulation, and postdensification by hot isostatic pressing was decided to be the most suitable procedure.

  17. Hot isostatically passed reaction-bonded silicon nitride prechambers for the diesel engine

    SciTech Connect (OSTI)

    Gasthurber, H.H. ); Heinrich, J.G.; Huber, J.A.; Steiner, M. ); Bunk, W. , Koeln )

    1989-12-01

    The aim of the work presented in this paper, was to design a silicon nitride prechamber for a diesel engine in the 2- to 3-L range, to calculate temperature and stress distributions, and to test these ceramic prechambers in a fired engine under all working conditions. Another goal was the development of a processing technique for mass production of dense silicon nitride prechambers. For the production of components in narrow tolerances without postmachining, injection molding of silicon powder, dewaxing, nitriding, encapsulation, and postdensification by hot isostatic pressing was decided to be the most suitable procedure.

  18. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  19. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  1. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect (OSTI)

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O.

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  2. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II

    SciTech Connect (OSTI)

    Reitz, R.D.; Rutland, C.J.

    1993-09-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

  3. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  4. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  5. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  6. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  7. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  8. Silicon nitride swirl lower-chamber for high power turbocharged diesel engines

    SciTech Connect (OSTI)

    Kamiya, S.; Murachi, M.; Kawamoto, H.; Kato, S.; Kawakami, S.; Suzuki, Y.

    1985-01-01

    This paper describes application of sintered silicon nitride to the swirl lower-chamber in order to improve performance of turbocharged diesel engines. Various stress analyses by finite element method and stress measurements have been applied to determine the design specifications for the component, which compromise brittleness of ceramic materials. Material development was conducted to evaluate strength, fracture toughness, and thermal properties for the sintered bodies. Ceramic injection molding has been employed to fabricate components with large quantities. In the present work. Quality assurance for the components can be made by reliability evaluation methods as well as non-destructive and stress loading inspections. It is found that the engine performance with ceramic component has been increased in the power out put of 9ps as compared to that of conventional engines.

  9. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect (OSTI)

    Ives, L.K. )

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  10. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines

    SciTech Connect (OSTI)

    Wiczynski, T.A.; Marolewski, T.A.

    1993-03-01

    Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

  11. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment ...

  12. Comparison of Clean Diesel Buses to CNG Buses | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses Summary of Swedish Experiences on CNG and "Clean" Diesel Buses CNG and ...

  13. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  14. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect (OSTI)

    Wagner, G.L.; Peterson, C.L.

    1982-01-01

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  15. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  16. Development of wear-resistant ceramic coatings for diesel engine components

    SciTech Connect (OSTI)

    Naylor, M.G.S. )

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  17. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect (OSTI)

    Daw, C Stuart; FINNEY, Charles E A

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  18. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea; Storey, John Morse; Lewis Sr, Samuel Arthur; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.

    2010-01-01

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  19. Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Lab Foundations Bioscience Computing & Info Sciences Geoscience Engineering ... diesel engines will likely require unconventional engine combustion and operating ...

  20. Exhaust Phosphorous Chemistry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Exhaust Phosphorous Chemistry and Catalyst Poisoning The Development of Rapid Aging and Poisoning Protocols for Diesel Aftertreatment Devices Vehicle ...

  1. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  2. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect (OSTI)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  3. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004_deer_stang2.pdf (257.78 KB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins/DOE Light Truck Diesel Engine Progress Report

  4. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  5. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  6. Addressing the Manufacturing Issues Associated with the use of Ceramic Materials for Diesel Engine Components.

    SciTech Connect (OSTI)

    McSpadden, SB

    2001-09-12

    This CRADA supports the objective of selecting appropriate ceramic materials for manufacturing several diesel engine components and addressing critical manufacturing issues associated with these components. Materials that were evaluated included several varieties of silicon nitride and stabilized zirconia. The critical manufacturing issues that were addressed included evaluation of the effect of grain size and the effect of the grinding process on mechanical properties, mechanical performance, reliability, and expected service life. The CRADA comprised four tasks: (1) Machining of Zirconia and Silicon Nitride Materials; (2) Mechanical Properties Characterization and Performance Testing; (3) Tribological Studies; and (4) Residual Stress Studies. Using instrumented equipment at the High Temperature Materials Laboratory (HTML) Machining and Inspection Research User Center (MIRUC), zirconia and silicon nitride materials were ground into simulated component geometries. These components were subsequently evaluated for mechanical properties, wear, and residual stress characteristics in tasks two, three, and four.

  7. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  8. DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS

    SciTech Connect (OSTI)

    Mauss, M; Wnuck, W

    2003-08-24

    Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

  9. Dumping Dirty Diesels: The View From the Bridge | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dumping Dirty Diesels: The View From the Bridge Dumping Dirty Diesels: The View From the Bridge 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  10. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  11. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine ...

  12. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine ...

  13. The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines

    SciTech Connect (OSTI)

    Lyon, Richard

    2001-08-05

    This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

  14. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  15. Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-19

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP).

  17. Insights on postinjection-associated soot emissions in direct injection diesel engines

    SciTech Connect (OSTI)

    Arregle, Jean; Pastor, Jose V.; Lopez, J. Javier; Garcia, Antonio

    2008-08-15

    A comprehensive study was carried out in order to better understand combustion behavior in a direct injection diesel engine when using postinjections. More specifically, the aim of the study is twofold: (1) to better understand the mechanism of a postinjection to reduce soot and (2) to improve the understanding of the contribution of the postinjection combustion on the total soot emissions by looking at the effect of the postinjection timing variation and the postinjection mass variation on the soot emissions associated with the postinjection. The study is focused only on far postinjections, and the explored operating conditions include the use of EGR. The first objective was fulfilled analyzing some results from a previous work adding only a few complementary results. Concerning the second objective, the basic idea behind the analysis performed is the search of appropriate parameters physically linked to the processes under analysis. These parameters are found based on the state-of-the-art of diesel combustion. For the effect of the postinjection timing, the physical parameter found was the temperature of the unburned gases at the end of injection, T{sub ug{sub E}}{sub oI}. It was checked that a threshold level of T{sub ug{sub E}}{sub oI} ({proportional_to}700 K for the cases explored here) exists below which soot is unable to be formed, independently of the postinjection size, and the amount of soot increases as the temperature increases beyond this threshold. For the effect of the postinjection size, the physical parameter that was found was DoI/ACT (the ratio between the actual duration of injection and the time necessary for mixing - the apparent combustion time). This parameter can quantify when the postinjection is able to produce soot (the threshold value is {proportional_to}0.37 for the cases explored here), and the amount of soot produced increases as this parameter increases beyond this threshold value. A function containing these two parameters has been

  18. Review of Diesel Emission Control Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Control Technology Review of Diesel Emission Control Technology 2002 DEER Conference Presentation: Corning Inc. 2002_deer_johnson.pdf (1.64 MB) More Documents & Publications Diesel Emission Control Technology Review Update on Diesel Exhaust Emission Control Light Duty Diesels in the United States - Some Perspectives

  19. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOE Patents [OSTI]

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  20. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  1. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  2. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  3. Diesel Particulate Filters: Market Introducution in Europe |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles French perspective on diesel engines & emissions Diesel Particulate Filter: A Success ...

  4. Diesel Desulfurization Filter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfurization Filter Diesel Desulfurization Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerrohrbach.pdf More ...

  5. EPA Diesel Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA Diesel Update 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deercharmley.pdf More Documents & Publications EPA Mobile Source ...

  6. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine Fuel-Induced System ...

  7. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    SciTech Connect (OSTI)

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings

  8. Cyprus Amax develops a practical dry diesel scrubber

    SciTech Connect (OSTI)

    Fiscor, S.

    1995-06-01

    Underground diesel engines have gained popularity in the United States, especially in coal operations with longwalls. These engines provide the power needed during longwall moves and when hauling supplies to the various mechanized mining units. However, they also have inherent problems, particularly with the exhaust scrubbing devices. Two concerns must be addressed when considering underground diesel scrubbers: the environment and safety. Environmental concerns focus on the diesel engines exhaust emissions, which pose potential health risks to the miners sharing the common environment. Safety concerns involve aspects that pose a fire or ignition hazard from CH{sub 4}, coal dust, or spilled fuels. During late 1992, the first prototype, retrofitted to an Eimco 975 mantrip, was placed at the Shoshone mine. The Wyoming mine, with steep gradients, is one of Cyprus Amas`s more difficult operations. This was the first water-jacketed, manifold-and-catalyst scrubber installed on a Caterpiller (Cat) 3304 diesel engine underground. The dry heat exchanger is a simple, yet effective, two-pass, tube-and-shell heat exchanger. It is designed to be compact with minimal back pressure. While developing the dry heat exchanger, the designers focused on finding a stabilization rate of the unpreventible sooting process inside the tubes. Since manual cleaning was out of the question, an on-board internal cleaning system was created.

  9. Vaporized alcohol fuel boosts engine efficiency

    SciTech Connect (OSTI)

    Hardenburg, H.O.; Bergmann, H.K.; Metsch, H.I.; Schaefer, A.J.

    1983-02-01

    An effort is being made at Daimler-Benz AG to utilize the special characteristics of vaporized methanol and ethanol in an alcohol-gas spark-ignited engine. Describes laboratory testing which demonstrates that waste heat recovery and very lean air/fuel mixtures improve the efficiency and economy of a spark-ignition engine running on alcohol vapors. Presents graph comparing performance and torque of the alcohol-gas and diesel engines. Finds that the fuel consumption of the methanol-fueled version approaches that of a diesel engine, with other advantages including low engine noise, good acceleration, and favorable exhaust emissions.

  10. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  11. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  12. Size-Resolved Density Measurements of Particulate Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology

    SciTech Connect (OSTI)

    Barone, Teresa L; Storey, John Morse; Prikhodko, Vitaly Y; Parks, II, James E

    2011-01-01

    We report the first in situ size-resolved density measurements of particles produced by premixed charge compression ignition (PCCI) and compare these with conventional diesel particles. The densities of size-classified particles were determined by measurements with a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). Particle masses of the different size classes were evaluated with a proposed DMA-APM response function for aggregates. Our results indicate that the effective densities of PCCI and conventional diesel particles were approximately the same for 50 and 100 nm electrical mobility diameters (0.9 and 0.6 g/cc, respectively), but the PCCI particle effective density (0.4 g/cc) was less than the conventional (0.5 g/cc) for 150 nm. The lowest effective particle densities were observed for exhaust gas recirculation (EGR) levels somewhat less than that required for PCCI operation. The inherent densities of conventional particles in the 50 and 100 nm size classes were 1.22 and 1.77 g/cc, which is in good agreement with Park et al. (2004). PCCI inherent particle densities for these same size classes were higher (1.27 and 2.10 g/cc), suggesting that there may have been additional adsorbed liquid hydrocarbons. For 150 nm particles, the inherent densities were nearly the same for PCCI and conventional particles at 2.20 g/cc. We expect that the lower effective density of PCCI particles may improve particulate emissions control with diesel particulate filters (DPFs). The presence of liquid hydrocarbons may also promote oxidation in DPFs.

  13. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Exhaust Speciation - ORNL Reference Fuel Blends Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends *Accurately measure exhaust profile from an HCCI engine with a ...

  14. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion ...

  15. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  16. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control ...

  17. Determination of organic acids (C/sub 1/-C/sub 10/) in the atmosphere, motor exhaust, and engine oils

    SciTech Connect (OSTI)

    Kawamura, K.; Ng, L.L.; Kaplan, I.R.

    1985-11-01

    A method is described for the determination of volatile organic acids in the atmosphere, motor exhausts, and engine oils. Atmospheric organic acids were collected on a KOH impregnated quartz filter and derivatized to p-bromophenacyl esters. The derivatives were analyzed by high-resolution capillary gas chromatography and gas chromatography-mass spectrometry. C/sub 1/-C/sub 10/ aliphatic organic acids and benzoic acid were detected in Los Angeles air. Acetic and formic acids are dominant followed by propionic acids. Total concentrations measured were 0.37-7.45 ppb. Organic acids (C/sub 1/-C/sub 10/) were also detected in the motor exhaust from a single automobile at idle conditions and showed that the distribution of individual acids was similar to that in the air, but the concentration was 17 times higher than for the average atmospheric content. Formic, acetic, and benzoic acids were detected as major species of used engine oil, but their content is negligible in new oil.

  18. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.; Sarathy, S. Mani; Pitz, William J.

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay

  19. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    SciTech Connect (OSTI)

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.; Sarathy, S. Mani; Pitz, William J.

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted without any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time

  20. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.