Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

2

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

3

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements  

Science Journals Connector (OSTI)

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements ... diesel engines have received increasing attention due to their potential health effects. ...

Tero Lähde; Topi Rönkkö; Annele Virtanen; Tanja J. Schuck; Liisa Pirjola; Kaarle Hämeri; Markku Kulmala; Frank Arnold; Dieter Rothe; Jorma Keskinen

2008-12-09T23:59:59.000Z

4

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Results of completed study on...

5

Reaction of Exhaust Gas in the Exhaust Gas Tube of Marine Diesel Engines  

E-Print Network (OSTI)

Reaction of Exhaust Gas in the Exhaust Gas Tube of Marine Diesel Engines }S"G"WjAS"O·u·� "¡"c ·_Zk

Ishii, Hitoshi

6

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

7

Pilot study: PAH fingerprints of aircraft exhaust in comparison with diesel engine exhaust  

Science Journals Connector (OSTI)

...In the course of a preliminary investigation the PAH fingerprints from diesel engines were compared with those from aircraft ... do not vary significantly. However, in turbine exhaust gas p-quaterphenyl was fo...

J. Krahl; H. Seidel; H.-E. Jeberien…

1998-03-01T23:59:59.000Z

8

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine.  

E-Print Network (OSTI)

??This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study… (more)

Duong, Tai Anh

2011-01-01T23:59:59.000Z

9

Diesel exhaust emissions from engines for use in underground mines  

SciTech Connect

Experimental data were obtained from two medium-duty diesel engines derated to qualify for use in underground mines. Gaseous and particulate emissions from these engines were measured and results provide information on the effect of exhaust treatment devices on the emissions. The devices in the study were a catalyst, a particulate trap, and an exhaust gas cooler of the water scrubber type. Emission levels of carbon monoxide and hydrocarbons were observed to be very low in comparison with emission levels of comparable engines in full-rated operation. Oxides of nitrogen and benzo(a)pyrene content of the exhaust also were found to be somewhat low in comparison with previous findings. For particulate reduction, the combination of a particulate trap and a scrubber was observed to be the most effective combination tried; in some cases, over 60% particulate reduction was effected by the trap-scrubber combination.

Eccleston, B.H.; Seizinger, D.E.; Clingenpeel, J.M.

1981-04-01T23:59:59.000Z

10

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear  

Energy.gov (U.S. Department of Energy (DOE))

Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

11

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation  

E-Print Network (OSTI)

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

Stefanopoulou, Anna

12

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels  

Science Journals Connector (OSTI)

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels ... The reforming efficiency was dependent on the fuel type and followed the general trend of bioethanol > rapeseed methyl ester > low-sulfur diesel fuel. ... The use of exhaust gas recirculation (EGR) in diesel engines reduces nitrogen oxide (NOx) emissions but results in an increased release of smoke and particulate matter (PM), as well as higher fuel consumption. ...

A. Tsolakis; A. Megaritis; S. E. Golunski

2005-03-10T23:59:59.000Z

13

Toxic components in diesel exhaust fumes  

Science Journals Connector (OSTI)

To control diesel-engine toxicity, a computation method is proposed for the concentration of toxic components in diesel exhaust fumes, on the basis of external engine...

A. F. Dorokhov; E. V. Klimova

2009-12-01T23:59:59.000Z

14

Lubricant Formulation and Consumption Effects on Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine...

15

Exhaust gas recirculation trials with high-speed marine and rail diesel engines  

Science Journals Connector (OSTI)

On diesel engines in particular, series production in both passenger and commercial vehicle sectors has long incorporated systems which introduce cooled exhaust gas into the charge air in order to lower peak c...

Dirk Bergmann; Christian Philipp; Helmut Rall; Rolf Traub

2006-01-01T23:59:59.000Z

16

A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES  

SciTech Connect

The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

Blau, Peter Julian [ORNL

2009-11-01T23:59:59.000Z

17

Correlations of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties  

Science Journals Connector (OSTI)

Department of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece ... The amount of pollutants emitted from diesel engines is affected by both the engine and the fuel quality. ...

D. Karonis; E. Lois; S. Stournas; F. Zannikos

1998-02-14T23:59:59.000Z

18

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings  

Science Journals Connector (OSTI)

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings ... Because of their fuel economy and high reliability, compression-ignition (CI) engines known as diesel engines have been penetrating a number of markets around the world. ...

Mustafa Canakci; Cenk Sayin; Metin Gumus

2008-09-27T23:59:59.000Z

19

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine  

Science Journals Connector (OSTI)

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine ... Mechanical Engineering, Batman University, Batman 72100, Turkey ... Diesel engines are widely used for transportation, energy production, and agricultural and industrial applications because of their high fuel conversion efficiencies and durability. ...

S?ehmus Altun; Cengiz O?ner; Fevzi Yas?ar; Hamit Adin

2011-06-22T23:59:59.000Z

20

Diesel exhaust treatment produces cyanide  

Science Journals Connector (OSTI)

Diesel exhaust treatment produces cyanide ... Studies at the Swiss Federal Technical Institute (ETH), Zurich, have produced results that, if confirmed by further research, could pose problems for the developers of catalytic converters that reduce emissions from diesel and leanburn gasoline engines. ... Use of low molecular weight olefins as reductants for selective removal of nitrogen oxides from exhaust gases, either by bleeding the olefins into the exhaust stream or blending them into the fuel itself, has attracted the interest of engine makers and regulatory agencies. ...

JOSEPH HAGGIN

1994-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effect of stratified water injection on exhaust gases and fuel consumption of a direct injection diesel engine  

Science Journals Connector (OSTI)

The direct injection Diesel engine with its specific fuel consumption of about 200 g/kWh is one of the most efficient thermal engines. However in case of relatively low CH...x...concentration in the exhaust gas t...

Rainer Pauls; Christof Simon

2004-01-01T23:59:59.000Z

22

Effects of Bioethanol-Blended Diesel Fuel on Combustion and Emission Reduction Characteristics in a Direct-Injection Diesel Engine with Exhaust Gas Recirculation (EGR)  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... As a fuel for compression engines, bioethanol-blended diesel fuels have some different trends on the exhaust emission characteristics according to the engine load. ... The paper begins with an introduction of general information on the nature of emissions of exhaust gases, including the toxicity and causes of emissions for both spark-ignition and diesel engines. ...

Su Han Park; Junepyo Cha; Chang Sik Lee

2010-06-03T23:59:59.000Z

23

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions  

SciTech Connect

To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies. This research program has two facets: (1) development and use of short-term in vitro and in vivo toxicity assays for comparing the toxicities of gasoline and diesel exhaust emissions; and (2) determination of the disposition of inhaled ultrafine particles deposited in the lung. Responses of cultured cells, cultured lung slices, and rodent lungs to various types of particles were compared to develop an improved short-term toxicity screening capability. To date, chemical toxicity indicators of cultured human A549 cells and early inflammatory and cytotoxic indicators of rat lungs have given the best distinguishing capability. A study is now underway to determine the relative toxicities of exhaust samples from in-use diesel and gasoline engines. The samples are being collected under the direction of the National Renewable Energy Laboratory with support from DOE's Office of Heavy Vehicle Technologies. The ability to generate solid ultrafine particles and to trace their movement in the body as particles and soluble material was developed. Data from rodents suggest that ultrafine particles can move from the lung to the liver in particulate form. The quantitative disposition of inhaled ultrafine particles will be determined in rodents and nonhuman primates.

Kristen J. Nikula; Gregory L. Finch; Richard A. Westhouse; JeanClare Seagrave; Joe L. Mauderly; Doughlas R. Lawson; Michael Gurevich

1999-04-26T23:59:59.000Z

24

Exhaust emissions estimation during transient turbocharged diesel engine operation using a two-zone combustion model  

Science Journals Connector (OSTI)

A comprehensive, two-zone, transient, diesel combustion model is used to study the performance and exhaust emissions of a turbocharged diesel engine during load transients. Analytical modelling of fuel spray and in-cylinder processes is included, while detailed equations concerning all engine sub-systems describe the phenomena, which diversify transient operation from the steady-state. Demonstrative diagrams are provided for the time histories of nitric oxide (NO) and soot emissions during transient operation, and the main factors affecting their formation are highlighted. Moreover, in-cylinder development of NO concentration and soot density during individual transient cycles is provided and compared with their respective steady-state counterparts. This comparison points out the differences between steady-state and transient operation, as regards exhaust emissions development. The study is expanded with the investigation of load change magnitude and cylinder wall insulation effects on transient emissions.

C.D. Rakopoulos; A.M. Dimaratos; E.G. Giakoumis; D.C. Rakopoulos

2009-01-01T23:59:59.000Z

25

Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008  

SciTech Connect

The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

Dane, J.; Voorhees, K. J.

2010-06-01T23:59:59.000Z

26

Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels  

Science Journals Connector (OSTI)

Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels ... The characteristic variations of exhaust particles were investigated on a light-duty diesel engine. ... This study was conducted on a 2005 model-year light-duty diesel engine that meets Chinese national stage III emission standards (equivalent to Euro III emission standards) without any exhaust control device. ...

Zhen Xu; Xinling Li; Chun Guan; Zhen Huang

2013-12-02T23:59:59.000Z

27

Optimization of the Combustion in Large Marine Diesel Engine by Controlling the Exhaust Gas  

Science Journals Connector (OSTI)

The diesel engine performance and emissions are strongly linked to ... to regulate the air-fuel mixture in a diesel engine, by controlling the turbocharger speed through a ... work we have taken as a model a marine

Sabri Bechir

2013-01-01T23:59:59.000Z

28

Characterizing and Biological Monitoring of Polycyclic Aromatic Hydrocarbons in Exposures to Diesel Exhaust  

Science Journals Connector (OSTI)

Characterizing and Biological Monitoring of Polycyclic Aromatic Hydrocarbons in Exposures to Diesel Exhaust ... Diesel and Gasoline Engine Exhausts and Some Nitroarenes; IARC:? Lyon, France 1989. ...

Wei Huang; Thomas J. Smith; Long Ngo; Tong Wang; Hongqiao Chen; Fanggu Wu; Robert F. Herrick; David C. Christiani; Hui Ding

2007-03-16T23:59:59.000Z

29

Combustion and performance of a diesel engine with preheated Jatropha curcas oil using waste heat from exhaust gas  

Science Journals Connector (OSTI)

Abstract The viscosity and density of CJO (crude Jatropha oil) were reduced by heating it using the heat from exhaust gas of a diesel engine with an appropriately designed helical coil heat exchanger. Experiments were conducted to evaluate the combustion characteristics of a DI (direct injection) diesel engine using PJO (preheated Jatropha oil). It exhibited a marginally higher cylinder gas pressure, rate of pressure rise and heat release rate as compared to HSD (high speed diesel) during the initial stages of combustion for all engine loadings. Ignition delay was shorter for PJO as compared to HSD. The results also indicated that BSFC (brake specific fuel consumption) and EGT (exhaust gas temperature) increased while BTE (brake thermal efficiency) decreased with PJO as compared to HSD for all engine loadings. The reductions in CO2 (carbon dioxide), HC (hydrocarbon) and \\{NOx\\} (nitrous oxide) emissions were observed for PJO along with increased CO (carbon monoxide) emission as compared to those of HSD.

Priyabrata Pradhan; Hifjur Raheman; Debasish Padhee

2014-01-01T23:59:59.000Z

30

Investigation of Ultrafine Particle Formation during Diesel Exhaust Dilution  

Science Journals Connector (OSTI)

Investigation of Ultrafine Particle Formation during Diesel Exhaust Dilution ... In on-road exhaust studies with a heavy duty diesel vehicle and in laboratory studies with two gasoline-fueled passenger cars, we found that ... ... Analyses of Turbulent Flow Fields and Aerosol Dynamics of Diesel Engine Exhaust Inside Two Dilution Sampling Tunnels Using the CTAG Model ...

Ji Ping Shi; Roy M. Harrison

1999-09-16T23:59:59.000Z

31

A Neural Network Approach for the Correlation of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties  

Science Journals Connector (OSTI)

National Technical University of Athens, Department of Chemical Engineering, Iroon Polytechniou 9, Athens 157 80, Greece ... The emissions from diesel engines have been drastically reduced during the last 30 years as a result of significant improvement in engine technology and modification of diesel fuel. ... First principles models are using fundamental equations, which have been developed by analyzing the physical insight of the systems. ...

D. Karonis; E. Lois; F. Zannikos; A. Alexandridis; H. Sarimveis

2003-08-15T23:59:59.000Z

32

Characterization and analysis of diesel exhaust odor  

Science Journals Connector (OSTI)

Characterization and analysis of diesel exhaust odor ... Carbonyl and Nitrogen Dioxide Emissions From Gasoline- and Diesel-Powered Motor Vehicles ...

Patricia A. Partridge; Francis J. Shala; Nicholas P. Cernansky; Irwin H. Suffet

1987-04-01T23:59:59.000Z

33

Sources of Naphthalene in Diesel Exhaust Emissions  

Science Journals Connector (OSTI)

The sale of diesels now account for 20% of new car sales in the UK compared with just 6% in 1990.1 The increased popularity of diesel cars is in part owing to improved engine performance in terms of power output, greater fuel economy, and an improved public image in terms of noise and pollution levels. ... Diesel engines have greater emissions of particulate material than corresponding spark ignition (SI) engines. ... An understanding of the origin of PAH in diesel exhaust emissions is fundamental if adequate control of the emission of these compounds is to be achieved. ...

M. M. Rhead; R. D. Pemberton

1996-05-21T23:59:59.000Z

34

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

35

Performance and emission evaluation of biodiesel fueled diesel engine abetted with exhaust gas recirculation and Ni coated catalytic converter  

Science Journals Connector (OSTI)

This article summarizes the results of a laboratory exertion to evaluate the performance and emission parameters of a single cylinder water cooled direct injection diesel engine with and without the aid of exhaust gas recirculation (EGR) as well as with and without the assistance of nickel coated catalytic converter. Neat diesel ethyl esters of waste frying oil (B100) and its diesel blends (B20 and B40) were used as test fuels to assess the various engine operating parameters. Conjointly in this work the effects of emission characteristics by incorporating nickel coated catalytic converter along with 0% 15% and 20% of HOT EGR technique are elaborately discussed. Experimental results proved that the diesel engine operated up to B40 blends assisted by catalytic converter and 15% EGR level showed an adequate reduction in oxides of nitrogen in the exhaust pipe. Also EGR level up to 15% proved reasonable brake thermal efficiency and specific fuel consumption when the test engine operated up to B40 biodiesel-diesel blends.

D. Subramaniam; A. Murugesan; A. Avinash

2013-01-01T23:59:59.000Z

36

Prediction of the Effects of Ethanol-Diesel Fuel Blends on Diesel Engine Performance Characteristics, Combustion, Exhaust Emissions, and Cost  

Science Journals Connector (OSTI)

Bilgin et al.’s and ?ahin’s experimental studies which have been used in comparisons with numerical results of the present model have been performed in a single cylinder diesel engine at Karadeniz Technical University, Engineering Faculty Mechanical Engineering Department Internal Combustion Engines Laboratory. ... Durgun, O. A practical method for calculation engine cycles Union of Chambers of Turkish Engineers and Architects, Chamber of Mech. ... Dieselhols (blends of diesels, biodiesels, and alcohols) have received considerable attention because of their low emission of CO2. ...

Z. ?ahin; O. Durgun

2009-02-10T23:59:59.000Z

37

Influence of Biodiesel Addition to Fischer?Tropsch Fuel on Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Zhu, R.; Wang, X.; Miao, H.; Huang, Z.; Gao, J.; Jiang, D.Performance and Emission Characteristics of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends Energy Fuels 2009, 23, 286– 293 ... Results showed that, without changing the fuel supply system and the combustion system of a diesel engine, when using blended fuel with increased DMM percentage, break-specific fuel consumption (BSFC) is higher for a smaller lower heating value of DMM, while thermal efficiency increases a little. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Johan Einar Hustad

2010-04-14T23:59:59.000Z

38

Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust deer11singh.pdf More...

39

Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel  

Science Journals Connector (OSTI)

In addition, measurements were taken of the basic engine operational parameters such as engine speed, engine load, fuel consumption, pressure and temperature in the intake and exhaust systems, and the concentration of gaseous components and particulates in the exhaust gases. ... As can be seen, the torque and, consequently, the power of the engine are almost identical for both fuels WCO75 and D2, which is surprising, because the calorific value of the WCO is approximately 13% lower than that of D2 fuel. ... A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification. ...

Ales Hribernik; Breda Kegl

2009-02-11T23:59:59.000Z

40

Exhaust emissions characteristics of a multi-cylinder 18.1-L diesel engine converted to fueled with natural gas and diesel pilot  

Science Journals Connector (OSTI)

Abstract A six-cylinder, turbocharged and aftercooled diesel engine was converted to operate with natural gas and diesel pilot for generator application. The flow of natural gas was electronically controlled using a throttle valve, and it was pre-mixed with air before being introduced into the combustion chambers. The aim of this work was to study the exhaust emissions characteristics under diesel and dual fuel operations at different operating conditions. Exhaust emissions of total hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), soot, particulate matter and carbon dioxide were measured at different loads. This work also presents the effects of diesel oxidation catalyst on HC and CO conversions under dual fuel operation. Results showed that \\{NOx\\} emission was reduced at all operating loads under dual fuel operation compared to diesel operation. HC and CO emissions were increased under dual fuel operation, but their concentrations were considerably reduced with oxidation catalyst. Contrary to conventional wisdom, it was found that soot and particulate matter were increased under dual fuel operation compared to diesel operation.

Mayank Mittal; Ron Donahue; Peter Winnie; Allen Gillette

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

New Method for Time-Resolved Diesel Engine Exhaust Particle Mass Measurement  

Science Journals Connector (OSTI)

The calculated time response data cannot be taken as general characteristic values of the instruments, as they are influenced by the behavior of the engine. ... Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. ...

U. Lehmann; V. Niemelä; M. Mohr

2004-09-29T23:59:59.000Z

42

Catalytic Filter for Diesel Exhaust Purification | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate filter. deer09fokema.pdf More Documents & Publications...

43

Characteristics of Soot and Particle Size Distribution in the Exhaust of a Common Rail Light-Duty Diesel Engine Fuelled with Biodiesel  

Science Journals Connector (OSTI)

Limited studies have been accumulated as to the effects of biodiesel on PSD in light-duty modern diesel engines employed with common rail (CR) injection system and exhaust gas recirculation (EGR) that are currently widely used in transportation vehicles in European and U.S. markets. ... 0 diesel, which is commonly used in the Chinese market. ...

Xusheng Zhang; Zhijun Wu; Liguang Li

2012-08-09T23:59:59.000Z

44

Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine  

Science Journals Connector (OSTI)

The ability of an artificial neural network model, using a back propagation learning algorithm, to predict specific fuel consumption and exhaust temperature of a Diesel engine for various injection timings is studied. The proposed new model is compared with experimental results. The comparison showed that the consistence between experimental and the network results are achieved by a mean absolute relative error less than 2%. It is considered that a well-trained neural network model provides fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.

Adnan Parlak; Yasar Islamoglu; Halit Yasar; Aysun Egrisogut

2006-01-01T23:59:59.000Z

45

Interpretation of Carcinogenicity and Effective Dose in Chronic Exposures of Rats to High Diesel Exhaust Concentrations  

Science Journals Connector (OSTI)

Experimental carcinogenicity of combustion engine exhaust was first described by Kotin et al. ... ago. However, recent concern focussed particularly on diesel engine exhaust, because the diesel soot particles in ...

Werner Stöber

1990-01-01T23:59:59.000Z

46

Determination of naval medium speed diesel engine air exhaust emissions and validation of a proposed estimation model. Master`s thesis  

SciTech Connect

Steady state marine diesel engine exhaust emissions are being reviewed by the Environmental Protection Agency for possible regulation. In anticipation of future regulation, the United States Navy is developing appropriate emissions models for naval vessels. A procedure for collecting this data from an U. S. Navy ship with medium speed main propulsion diesels is presented. It is based on similar testing conducted by the U.S. Coast Guard for measuring patrol boat diesel engine emissions and International Standards Organization methodology. The primary challenge of the experiment design was to minimize interference with the engineering plant as the assigned ship was concurrently tasked for other operations. Data gathered allowed calculation of engine rpm, engine load, exhaust gas flow rate, and determination of pollutant amounts. The tests were conducted at a series of predetermined speeds to reflect an 11-Mode duty cycle developed previously for the LSD 41 Class propulsion diesel engines.

Mayeaux, A.M.

1995-05-01T23:59:59.000Z

47

Mortality among personnel exposed to diesel exhaust  

Science Journals Connector (OSTI)

Some epidemiological studies have suggested a carcinogenic effect from diesel exhausts and also an increased risk of cardiovascular ... undertaken to elucidate further the health effects of diesel exhaust exposur...

Christer Edling; Carl-Göran Anjou…

1987-09-01T23:59:59.000Z

48

Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot  

SciTech Connect

This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

Al-Qurashi, Khalid; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, 405 Academic Activities Bldg., University Park, PA 16802 (United States)

2008-12-15T23:59:59.000Z

49

Measurement of Engine Exhaust Particle Size  

E-Print Network (OSTI)

Measurement of Engine Exhaust Particle Size David B. Kittelson Center for Diesel Research than 90% of particle number are formed during exhaust dilution ­ Particle dynamics during sampling deposition of particle with density of 1 g/um Typical Diesel Particle Size Distribution #12;Typical Diesel

Minnesota, University of

50

Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock  

E-Print Network (OSTI)

, vegetable oils, or recycled restaurant grease with alcohol and catalyst, is gaining popularity in recent years as a substitute for petroleum diesel. Ninety percent (90%) of U.S. biodiesel industry makes use of soybean oil as its feedstock. However, soybean...

Santos, Bjorn Sanchez

2011-02-22T23:59:59.000Z

51

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

52

Materials - Catalysts for Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

53

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

54

Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle Formation and Characteristics  

Science Journals Connector (OSTI)

Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle Formation and Characteristics ... Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. ... The submicrometer diesel exhaust particles are typically divided into two separate groups, which are frequently seen in exhaust particle number size distribution as separate modes, usually called as an accumulation or a soot mode and a nucleation mode. ...

Topi Rönkkö; Tero Lähde; Juha Heikkilä; Liisa Pirjola; Ulrike Bauschke; Frank Arnold; Hans Schlager; Dieter Rothe; Jaakko Yli-Ojanperä; Jorma Keskinen

2013-09-17T23:59:59.000Z

55

Comparison of Carbonaceous Aerosols in Tokyo before and after Implementation of Diesel Exhaust Restrictions  

Science Journals Connector (OSTI)

Comparison of Carbonaceous Aerosols in Tokyo before and after Implementation of Diesel Exhaust Restrictions ... (5)?Albert, R. E. Comparative carcinogenic potencies of particulates from diesel engine exhausts, coke oven emissions, roofing tar aerosols and cigarette smoke. ...

Naomichi Yamamoto; Atsushi Muramoto; Jun Yoshinaga; Ken Shibata; Michio Endo; Osamu Endo; Motohiro Hirabayashi; Kiyoshi Tanabe; Sumio Goto; Minoru Yoneda; Yasuyuki Shibata

2007-08-15T23:59:59.000Z

56

Response surface methodology based prediction of engine performance and exhaust emissions of a diesel engine fuelled with canola oil methyl ester  

Science Journals Connector (OSTI)

The objective of this study was to investigate the effect of fuel injection timing and engine speed on engine performance and exhaust emission parameters using a diesel engine running on canola oil methyl ester (COME). COME was produced by means of the transesterification method and tested at full load with various engine speeds by changing fuel injection timing (12 15 and 18?°CA) in a turbocharged direct injection (TDI) diesel engine. The experiments were designed using response surface methodology (RSM) which is one of the well-known design of experiment technique for predicting the responses engine performance and exhaust emission parameters from a second order polynomial equation obtained by modeling the relation between fuel injection timing (t) and engine speed (n) parameters. By using the second order full quadratic RSM models obtained from experimental results responses brake power brake torque brake mean effective pressure brake specific fuel consumption brake thermal efficiency exhaust gas temperature oxygen (O2) oxides of nitrogen (NOx) carbon dioxide (CO2) carbon monoxide (CO) and light absorption coefficient (K) affected from factors t and n were able to be predicted by 95% confidence interval.

2013-01-01T23:59:59.000Z

57

Filtering diesel exhaust gases with ceramic filters  

Science Journals Connector (OSTI)

Results are given from three test series on a ceramic filter for diesel exhausts. In the first and second series, use was made of diesel fuel (in the summer), while in...

A. Yu. Val’dberg; A. N. Tsedilin; T. O. Kosogorova…

2008-03-01T23:59:59.000Z

58

Photoacoustic insights on diesel exhaust particles  

Science Journals Connector (OSTI)

Photoacoustic measurements at General Motors Research Laboratories on diesel exhaust particulate emissions are reviewed. Conventional optical techniques provide real-time qualitative...

Roessler, David M

1984-01-01T23:59:59.000Z

59

Experimental and Theoretical Investigation of the Effects of Gasoline Blends on Single-Cylinder Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Experiments presented in this study for gasoline blends and experiments of Bilgin et al. for ethanol blends have been performed in a single-cylinder diesel engine at Karadeniz Technical University, Engineering Faculty, Mechanical Engineering Department, Internal Combustion Engines Laboratory. ... However, to determine the most favorable blend ratio for any vehicle diesel engine, to achieve general results, and to give general recommendations, more systematic experimental and theoretical studies for actual vehicle diesel engines must be performed. ... Union of Chambers of Turkish Engineers and Architects, Chamber of Mechanical Engineer, 1991; Vol. 383, pp 18? 29 (in Turkish). ...

Z. ?ahin

2008-08-16T23:59:59.000Z

60

Pilot-Scale Aftertreatment Using Nonthermal Plasma Reduction of Adsorbed NOx in Marine Diesel-Engine Exhaust Gas  

Science Journals Connector (OSTI)

Regulations governing marine diesel engine NOx emissions have recently become more stringent. As it is difficult to fulfill these requirements by combustion improvements alone, effective aftertreatment technologi...

Takuya Kuwahara; Keiichiro Yoshida…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Effects of Biodiesel from Used Frying Palm Oil on the Exhaust Emissions of an Indirect Injection (IDI) Diesel Engine  

Science Journals Connector (OSTI)

McDonald (27) studied a 50% blend of yellow grease methyl ester with No. 2 diesel fuel (B50) used in a General Motors L65 GMT 600 turbo-charged, IDI diesel engine. ... This is typical for diesel engines because the air?fuel equivalence ratio slightly decreases with an increasing engine speed. ... A 1994 Dodge 2500 turbocharged and intercooled diesel pickup fueled with 100% Et ester of rapeseed oil was driven by personnel representing the University of Idaho, Agricultural Engineering Department from Moscow, Idaho to Los Angeles, California and back to Moscow and then from Moscow to Ocean City, Maryland and back to Moscow, Idaho. ...

Ahmet Necati Ozsezen; Mustafa Canakci; Cenk Sayin

2008-06-28T23:59:59.000Z

62

Relationship between Particle Mass and Mobility for Diesel Exhaust Particles  

Science Journals Connector (OSTI)

We used the aerosol particle mass analyzer (APM) to measure the mass of mobility-classified diesel exhaust particles. This information enabled us to determine the effective density and fractal dimension of diesel particles as a function of engine load. We ...

Kihong Park; Feng Cao; David B. Kittelson; Peter H. McMurry

2002-12-19T23:59:59.000Z

63

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines Vehicle...

64

The Effect of Changes in Diesel Exhaust Composition and After...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and Resistance to Viral Infection The Effect of Changes in Diesel Exhaust...

65

Modeling of Diesel Exhaust Systems: A methodology to better simulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

66

Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

67

The effect of air charge temperature on performance, ignition delay and exhaust emissions of diesel engines using w/o emulsions as fuel  

SciTech Connect

Most of the work performed on the use of water/oil emulsions in diesel engines showed that increasing the water content in the emulsified fuel was effective in reducing NO/sub x/ and soot emissions. Unfortunately, the increase in water content in the emulsified fuel also increases the ignition delay and may cause diesel knock. One way to reduce the ignition delay is to increase the air charge temperature. In this study, the effect of increasing the air charge temperature on ignition delay, performance and exhaust emissions was investigated. The experiments were conducted on a CLR diesel engine using base-line diesel fuel number2 and stabilized macro-emulsions containing 15 percent, 30 percent and 45 percent water by volume.

Afify, E.M.; Korah, N.S.; Dickey, D.W.

1987-01-01T23:59:59.000Z

68

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Example of exhaust availability for a Light-duty diesel Example 2 nd Law Distribution 10% Heat Loss (engine block, head, intercooler, etc) 14% Availability Exhaust Flow 36%...

69

Large Diesel Engine Lubrication  

Science Journals Connector (OSTI)

Centralized lubrication for slow-speed internal combustion engines ; Marine diesel engine lubrication ...

Hans Gaca; Jan Ruiter; Götz Mehr; Theo Mang

2014-01-01T23:59:59.000Z

70

Numerical and Experimental Analysis of Combustion and Exhaust Emissions in a Dual-Fuel Diesel/Natural Gas Engine  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, UTV, University of Rome Tor Vergata, Rome, Italy, and IM-CNR, Istituto Motori of Italian National Research Council, Naples, Italy ... Accordingly, the use of NG as primary fuel allows the same compression ratio of the conventional diesel engine; thus, existing diesel engines can be easily converted to dual-fuel operation. ... Thus, a more general combustion model (G-equation or EDC) could be considered to represent flame propagation. ...

Stefano Cordiner; Michele Gambino; Sabato Iannaccone; Vittorio Rocco; Riccardo Scarcelli

2008-02-21T23:59:59.000Z

71

Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human  

E-Print Network (OSTI)

the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEPVariability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust) nanoparticles have been used in Europe as diesel fuel additives (EnviroxTM ). We attempted to examine

Garfunkel, Eric

72

Variable geometry exhaust manifold turbocharging system for an 8-cylinder marine diesel engine  

Science Journals Connector (OSTI)

The variable geometry exhaust manifold (VGEM) turbocharging system can realize the switch between two charging modes by the switching valve, and it can give a good performance both at the high load operation and ...

Lei Shi; Shaoming Wang; Kangyao Deng; Yi Cui

2012-06-01T23:59:59.000Z

73

Partitioning of Volatile Organics in Diesel Particulate and Exhaust  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of how sampling details affect the measurement of volatile organic compounds in diesel exhaust

74

Potential for Reduction of Exhaust Emissions in a Common-Rail Direct-Injection Diesel Engine by Fueling with Fischer–Tropsch Diesel Fuel Synthesized from Coal  

Science Journals Connector (OSTI)

In the constant speed/varying load test modes, the use of CFT also resulted in a general reduction of regulated emissions. ... (5, 6) Moreover, FT diesel fuels can be used in contemporary diesel engines without any modification and with a negligible or weak improvement of engine efficiency. ... Liu, Z.; Shi, S.; Li, Y.Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering Chem. ...

Chonglin Song; Guohong Gong; Jinou Song; Gang Lv; Xiaofeng Cao; Lidong Liu; Yiqiang Pei

2011-11-28T23:59:59.000Z

75

Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions  

E-Print Network (OSTI)

in a Diesel engine equipped with a variable geometry tur- bocharger (VGT) and an external exhaust gas INJECTION EXHAUST MANIFOLD EGR VALVE EGR COOLER AIR EXHAUST Figure 1: Schematic representation of the DieselControl of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz

Stefanopoulou, Anna

76

Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures  

Science Journals Connector (OSTI)

In recent years, ester-based oxygenated fuels have been used in compression ignition engines in pure form or as an addition to diesel fuel. ... In hydrocarbon steam reforming (SR), high-temperature steam separates hydrogen from carbon atoms. ...

A. Tsolakis; A. Megaritis; M. L. Wyszynski

2003-09-19T23:59:59.000Z

77

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls  

Energy.gov (U.S. Department of Energy (DOE))

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

78

Diesel exhaust exposure and bladder cancer risk  

Science Journals Connector (OSTI)

A total of 136 cases of men with urinary bladder cancer and 272 matched hospital controls were examined for potential exposure to diesel exhaust. A lifetime occupational history was obtained for ... in the study ...

V. Iyer; R. E. Harris; E. L. Wynder

1990-03-01T23:59:59.000Z

79

Mutagenicity of diesel exhaust particle extracts: Influence of non-petroleum fuel extenders  

Science Journals Connector (OSTI)

The mutagenicity of dichloromethane extracts of diesel participate exhaust, collected while the engine was running at steady state on diesel fuel alone was higher than when 10% ... in higher estimates of mutageni...

Charles R. Clark Ph.D.; Roger O. McClellan…

1982-11-01T23:59:59.000Z

80

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles  

Energy.gov (U.S. Department of Energy (DOE))

A new type of emission control technology was presented for the small engines used in APU's and TRU's.

82

Artificial neural networks based prediction of performance and exhaust emissions in direct injection engine using castor oil biodiesel-diesel blends  

Science Journals Connector (OSTI)

In this study the performance and emission characteristics of a direct injection diesel engine using castor oil biodiesel (COB)-diesel blended fuels were investigated experimentally and then predicted by artificial neural networks. For this aim castor oil was converted to its biodiesel via transesterification approach. Then the effects of the biodiesel percentage in blend engine load and speed on brake power brake specific fuel consumption (BSFC) nitrogen oxides (NOx) carbon dioxide (CO2) carbon monoxide (CO) and particle matter (PM) have been considered. Fuel blends with various percentages of biodiesel (0% 5% 10% 15% 20% 25% and 30%) at various engine speeds and loads were tested. The results indicated that blends of COB with diesel fuel provide admissible engine performance; on the other side emissions decreased so much. Two types of neural networks a group method of data handling (GMDH) and feed forward were used for modeling of the diesel engine to predict brake power BSFC and exhaust emissions such as CO CO2 NOx and PM values. The comparison results demonstrate the superiority of the feed forward neural networkmodels over GMDH type models in terms of the statistical measures in the training and testing data but in the number of hidden neurons and model simplicity GMDH models are preferred.

M. H. Shojaeefard; M. M. Etghani; M. Akbari; A. Khalkhali; B. Ghobadian

2012-01-01T23:59:59.000Z

83

An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester  

Science Journals Connector (OSTI)

Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

Agung Sudrajad; Ismail Ali; Khalid Samo; Danny Faturachman

2012-01-01T23:59:59.000Z

84

Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine  

Science Journals Connector (OSTI)

Abstract A single-screw expander with 155 mm diameter screw has been developed. A spiral-tube type evaporator and an aluminum multi-channel parallel type condenser have also been developed with weight of 147 kg and 78 kg, respectively. Based on the development of above components, an ORC (organic Rankine cycle) system prototype was assembled and tested for waste heat recovery from diesel engine exhaust. An experimental system was built for this ORC system, and experiments were conducted for different expander torque and diesel engine loads. Influences of expander torque and diesel engine loads on the performances of ORC system were studied. The results indicated that the maximum of the power output is 10.38 kW and the biggest ORC efficiency and overall system efficiency are respectively 6.48% and 43.8%, which are achieved at 250 kW of diesel engine output. Meanwhile the biggest improvement of overall system efficiency is 1.53%. The maximums of volume efficiency, adiabatic efficiency and total efficiency of single-screw expander are 90.73%, 73.25% and 57.88%, respectively.

Ye-Qiang Zhang; Yu-Ting Wu; Guo-Dong Xia; Chong-Fang Ma; Wei-Ning Ji; Shan-Wei Liu; Kai Yang; Fu-Bin Yang

2014-01-01T23:59:59.000Z

85

Friction and Wear Reduction in Diesel Engine Valve Trains | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Mechanisms of Oxidation-Enhanced Wear in Diesel Exhaust Valves Materials for Advanced Engine Valve Train Materials for Advanced Engine Valve Train...

86

Natural Oils - The Next Generation of Diesel Engine Lubricants...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Development of High Performance Heavy Duty Engine Oils...

87

Robust Strategy for Intake Leakage Detection in Diesel Engines  

E-Print Network (OSTI)

Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

Boyer, Edmond

88

Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration  

E-Print Network (OSTI)

1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

Boyer, Edmond

89

Mutagenicity of Diesel Exhaust Soot Dispersed in Phospholipid Surfactants  

Science Journals Connector (OSTI)

Organics extractable from respirable diesel exhaust soot particles by organic solvents have been ... a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypopha...

W. Wallace; M. Keane; S. Xing; J. Harrison; M. Gautam; T. Ong

1990-01-01T23:59:59.000Z

90

Partitioning of Volatile Organics in Diesel Particulate and Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in...

91

Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study  

Science Journals Connector (OSTI)

School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K., Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH, U.K., Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH, U.K., and Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading RG4 9NH, U.K. ... Clearly, the general trend is toward higher efficiency engines and improved fuel economy, something that puts current technology spark ignition (SI) engines in a relatively weak position compared to compression ignition (CI) engines. ... As the diesel engine used in this study was equipped with a pump-line-nozzle-type fuel injection system, all the observed effects may not apply to common rail or unit injection equipped engines. ...

A. Abu-Jrai; A. Tsolakis; K. Theinnoi; R. Cracknell; A. Megaritis; M. L. Wyszynski; S. E. Golunski

2006-10-18T23:59:59.000Z

92

NO2 Management in Diesel Exhaust System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NO2 Management in Diesel Exhaust System NO2 Management in Diesel Exhaust System The project discusses the use of an NO2 mitigator for catalytic NO2 reduction deer09roberts.pdf...

93

The Potential of Elelcltric Exhaust Gas Turbocharging for HD...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines 2005 Diesel Engine Emissions Reduction (DEER)...

94

Hydrocarbon Condensation in Heavy-Duty Diesel Exhaust  

Science Journals Connector (OSTI)

Hydrocarbon Condensation in Heavy-Duty Diesel Exhaust ... The semivolatile mass fraction of diesel exhaust particles was studied using size-resolved on-line techniques (DMA-ELPI; TDMA-ELPI). ... The measured size resolved values of mass transfer imply that condensation, or diffusion-limited mass transfer, plays a major role in driving the volatile matter to the diesel exhaust particles. ...

Jyrki Ristimäki; Kati Vaaraslahti; Maija Lappi; Jorma Keskinen

2007-08-10T23:59:59.000Z

95

A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, after a short review of waste heat recovery technologies from diesel engines, the heat exchangers (HEXs) used in exhaust of engines is introduced as the most common way. So, a short review of the technologies that increase the heat transfer in \\{HEXs\\} is introduced and the availability of using them in the exhaust of engines is evaluated and finally a complete review of different \\{HEXs\\} which previously were designed for increasing the exhaust waste heat recovery is presented. Also, future view points for next \\{HEXs\\} designs are proposed to increase heat recovery from the exhaust of diesel engines.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2014-01-01T23:59:59.000Z

96

Marine Diesel Engines  

Science Journals Connector (OSTI)

Marine diesel engines need reserve power to compensate for ... and decreased efficiency of the engine caused by wear and contamination. Minimum efficiency reserves must be...

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

97

Diesel engine reference book  

SciTech Connect

This book is a reference on the design, operation, and maintenance of all types of diesel engines, ranging from the smallest automotive and ancillary engines to the largest marine diesels. Nearly 900 line drawings, graphs and photos illustrate the book. Major Sections: Theory; Engine Design Practice; Lubrication; Environmental Pollution; Crankcase Explosions; Engine Types; Engine Testing; Maintenance; Index.

Lilly, I.R.C.

1984-01-01T23:59:59.000Z

98

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

99

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

100

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends  

SciTech Connect

Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Exhaust gas recirculation for advanced diesel combustion cycles  

Science Journals Connector (OSTI)

Abstract Modern diesel engines tend to utilize significantly large quantities of exhaust gas recirculation (EGR) and high intake pressures across the engine load range to meet \\{NOx\\} targets. At such high EGR rates, the combustion process and exhaust emissions tend to exhibit a marked sensitivity to small changes in the EGR quantity, resulting in unintended deviations from the desired engine performance characteristics (energy efficiency, emissions, stability). An accurate estimation of EGR and its effect on the intake dilution are, therefore, necessary to enable its application during transient engine operation or unstable combustion regimes. In this research, a detailed analysis that includes estimation of the transient (cycle-by-cycle) build-up of EGR and the time (engine cycles) required to reach the steady-state EGR operation has been carried out. One-step global equations to calculate the transient and steady-state gas concentrations in the intake and exhaust are proposed. The effects of engine load and intake pressure on EGR have been examined and explained in terms of intake charge dilution and in-cylinder excess-air ratio. The EGR analysis is validated against a wide range of empirical data that include low temperature combustion cycles, intake pressure and load sweeps. This research intends to not only formulate a clear understanding of EGR application for advanced diesel combustion but also to set forth guidelines for transient analysis of EGR.

Usman Asad; Ming Zheng

2014-01-01T23:59:59.000Z

102

Organic Aerosol Formation from Photochemical Oxidation of Diesel Exhaust in a Smog Chamber  

Science Journals Connector (OSTI)

Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary ...

Emily A. Weitkamp; Amy M. Sage; Jeffrey R. Pierce; Neil M. Donahue; Allen L. Robinson

2007-09-11T23:59:59.000Z

103

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network (OSTI)

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

104

A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions  

Science Journals Connector (OSTI)

Abstract This study was aimed at synthesizing a novel soluble hybrid nanocatalyst to decrease emissions i.e., nitrogen oxide compounds (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and soot, of a DI engine fueled with diesel–biodiesel blends. Moreover, enhancement of performance parameters i.e. power, torque and fuel consumption was also simultaneously targeted. The hybrid nanocatalyst containing cerium oxide on amide-functionalized multiwall carbon nanotubes (MWCNT) was investigated using two types of diesel–biodiesel blends (B5 and B20) at three concentrations (30, 60 and 90 ppm). The results obtained revealed that high surface area of the soluble nano-sized catalyst particles and their proper distribution along with catalytic oxidation reaction resulted in significant overall improvements in the combustion reaction specially in B20 containing 90 ppm of the catalyst B20(90 ppm). More specifically, all pollutants i.e., NOx, CO, HC and soot were reduced by up to 18.9%, 38.8%, 71.4% and 26.3%, respectively, in B20(90 ppm) compared to neat B20. The innovated fuel blend also increased engine performance parameters i.e., power and torque by up to 7.81%, 4.91%, respectively, and decreased fuel consumption by 4.50%.

Mehrdad Mirzajanzadeh; Meisam Tabatabaei; Mehdi Ardjmand; Alimorad Rashidi; Barat Ghobadian; Mohammad Barkhi; Mohammad Pazouki

2015-01-01T23:59:59.000Z

105

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC  

Energy.gov (U.S. Department of Energy (DOE))

Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator.

106

Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Metal Impurities on Diesel Exhaust Catalysts Aaron Williams, Jonathan Burton, Robert McCormick National Renewable Energy Laboratory Todd Toops, Michael Lance, Andrew...

107

Update on Diesel Exhaust Emission Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exhaust Emission Control 2003 DEER Conference Presentation: Corning, Inc. deer2003johnson.pdf More Documents & Publications Review of Diesel Emission Control Technology Update...

108

Combustion Characteristics, Emissions and Heat Release Rate Analysis of a Homogeneous Charge Compression Ignition Engine with Exhaust Gas Recirculation Fuelled with Diesel  

Science Journals Connector (OSTI)

The EGR, a very well-known method for NOx reduction in diesel engines, is also a method in HCCI combustion mode, when fuelled with commercial fuel, to improve engine power, mainly because of the increase of the ignition delay. ... Heywood, J. B. “Internal Combustion Engine Fundamentals”, Ed. McGraw-Hill Book Company, Singapur (Singapur), 1988. ... (Mechanical Engineering Laboratory MITI) “Chemical Kinetic Study of a Cetane Number Enhancing Additive for an LGP DI Diesel Engine,” ...

Miguel Torres García; Francisco J. Jiménez-Espadafor Aguilar; Tomás Sánchez Lencero

2009-04-02T23:59:59.000Z

109

Evaluation of an exposure setup for studying effects of diesel exhaust in humans  

Science Journals Connector (OSTI)

Diesel exhaust is a common air pollutant and work ... and lung function in humans exposed to diluted diesel exhaust. Diluted diesel exhaust was fed from an idling lorry through ... found the size and the shape of...

B. Rudell; T. Sandström; U. Hammarström…

1994-08-01T23:59:59.000Z

110

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network (OSTI)

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies, analyzing, and optimizing of complex diesel exhaust after-treatment systems. The methodology presented

de Weck, Olivier L.

111

Abstract 3594: Mutations and DNA adducts induced by diesel exhaust particles.  

Science Journals Connector (OSTI)

...Mutations and DNA adducts induced by diesel exhaust particles. Jeffrey A. Ross 1...levels of a composite sample of diesel-exhaust particles (C-DEP) generated...adduct-forming potential of diesel exhaust have been reported, most of those...

Jeffrey A. Ross; Esra Mutlu; Charly King; Sarah H. Warren; David M. DeMarini; M. Ian Gilmour; William P. Linak; and Garret B. Nelson

2013-04-15T23:59:59.000Z

112

Multivariate analysis of exhaust emissions from heavy-duty diesel fuels  

SciTech Connect

Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.

Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)

1996-01-01T23:59:59.000Z

113

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration of an Electronic Particulate Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring Particle Sensor for Diesel Combustion Monitoring NOx sensor development...

114

An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating  

Energy.gov (U.S. Department of Energy (DOE))

A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants.

115

Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust  

Science Journals Connector (OSTI)

An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX®...) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust

Daniela Wenger; Andreas C. Gerecke…

2008-04-01T23:59:59.000Z

116

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations  

Science Journals Connector (OSTI)

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations ... Particulate filtration in the exhaust system of diesel engines is increasingly gaining in importance for both light- and heavy-duty applications. ... The reaction rates are, in general, in the same order of magnitude with the engine-out soot emission rates. ...

Ioannis P. Kandylas; Onoufrios A. Haralampous; Grigorios C. Koltsakis

2002-09-20T23:59:59.000Z

117

diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med  

E-Print Network (OSTI)

morbidity. Diesel exhaust (DE), in addition to generating other pollutants, is a major contributor to PM

Sundeep Salvi; Anders Blomberg; Bertil Rudell; Frank Kelly; Thomas Sandström; Stephen T. Holgate; Anthony Frew

118

Getting the Word Out: Diesel Exhaust Fluid (DEF) Locator, Mapping Tools, and Outreach Activities (Presentation)  

SciTech Connect

Presentation covers diesel exhaust fluid resources on the Alternative Fuels and Advanced Vehicles Data Center.

Brodt-Giles, Debbie

2008-12-01T23:59:59.000Z

119

Diesel Engine Alternatives  

SciTech Connect

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

120

Capturing the Effect of Sulphur in Diesel Exhaust  

Science Journals Connector (OSTI)

A set of actual dynamometer measurements of a heavy-duty diesel vehicle with different lubricant oils and fuels is reproduced using Tampere University of Technology Exhaust Aerosol Model (TUTEAM), and the AEROFOR...

M. Lemmetty; L. Pirjola; E. Vouitsis; J. Keskinen

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Investigations on emission characteristics of the pongamia biodiesel–diesel blend fuelled twin cylinder compression ignition direct injection engine using exhaust gas recirculation methodology and dimethyl carbonate as additive  

Science Journals Connector (OSTI)

Experiments were carried out on a twin cylinder direct injection compression ignition engine using pongamia biodiesel–diesel blend as fuel with exhaust gas recirculation (EGR) and dimethyl carbonate (DMC) as additive. The experimental results showed that pongamia biodiesel–diesel blend fuelled engine with EGR and DMC can simultaneously reduce smoke and nitric oxide ( NO x ) emission. The NO x emission was reduced by about 17.68% for 10% of EGR introduction and about 13.55% increase in smoke emission. When dimethyl carbonate was added with EGR the engine emits lower smoke with lesser NO x emission and it showed that the smoke reduction rate had a linear relationship with DMC percentage. The carbon monoxide (CO) and hydrocarbon (HC) emissions also decreased when DMC was added. However the addition of DMC with EGR caused an increase in both BSEC and BTE.

M. Pandian; S. P. Sivapirakasam; M. Udayakumar

2010-01-01T23:59:59.000Z

122

Implications of Exhaust Gas, CO2, and N2 Recirculation on Heavy-Duty Diesel Engine Performance, Soot, and NO Emissions: A Comparative Study  

Science Journals Connector (OSTI)

Marine Internal Combustion Engines Laboratory, Section of Naval Architecture & Marine Engineering, Hellenic Naval Academy, End of Hatzikiriakou Ave., 18539 Piraeus, Greece ... (1-3) Hence, under certain conditions, the successful implementation of various internal measures in HD diesel engines may lead to their compliance with current and near-future emission standards, thus diminishing the need for complex and costly technologies of after-engine pollution control. ... (16, 17) Ladommatos et al.(11-14) in their fundamental work successfully managed to isolate the three aforementioned major effects of EGR on diesel engine combustion characteristics and NOx emissions, revealing that, under constant inlet pressure, dilution of the charge mixture is the most influential mechanism on the reduction of engine-out NOx. ...

Dimitrios T. Hountalas; Spiridon I. Raptotasios; Theodoros C. Zannis

2013-07-15T23:59:59.000Z

123

Just the Basics: Diesel Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

124

Argonne TTRDC - Feature - Five Myths About Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Five Myths About Diesel Engines Five Myths About Diesel Engines by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility Diesel engines, long confined to trucks and ships, are garnering more interest for their fuel efficiency and reduced carbon dioxide emissions relative to gasoline engines. Argonne mechanical engineer Steve Ciatti takes a crack at some of the more persistent myths surrounding the technology. Myth #1: Diesel is dirty. "We all have this image of trucks belching out dirty black smoke," Ciatti said. This smoke is particulate matter from diesel exhaust: soot and small amounts of other chemicals produced by the engine. But EPA emissions requirements have significantly tightened, and diesel engines now have to meet the same criteria as gasoline engines. They do

125

Diesel Engine Idling Test  

SciTech Connect

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

126

Unique Catalyst System for NOx Reduction in Diesel Exhaust |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma Assisted Catalysis System for NOx Reduction Clean Diesel Engine Component Improvement...

127

SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings...

128

Thermal barrier coatings application in diesel engines  

SciTech Connect

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

Fairbanks, J.W.

1995-03-01T23:59:59.000Z

129

Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles  

Science Journals Connector (OSTI)

Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles ... The effect of lubricants on nanoparticle formation in heavy-duty diesel exhaust with and without a continuously regenerating diesel particulate filter (CRDPF) is studied. ... The fine particles in diesel exhaust contain solid material produced during combustion process and volatile organic and sulfur compounds converted to particle phase during the exhaust gas cooling and dilution. ...

Kati Vaaraslahti; Jorma Keskinen; Barouch Giechaskiel; Anu Solla; Timo Murtonen; Hannu Vesala

2005-09-22T23:59:59.000Z

130

Motor Exhaust-related Occupations and Bladder Cancer  

Science Journals Connector (OSTI)

...effects of diesel and gasoline engine exhaust...from the general population...Registrar General's decennial...14), diesel and traffic...gasoline engines (20, 21...that in the general population...Exposure to Diesel Exhaust...Motor Vehicle Engines; Gaseous...

Debra T. Silverman; Robert N. Hoover; Thomas J. Mason; and G. Marie Swanson

1986-04-01T23:59:59.000Z

131

Mechanisms of Oxidation-Enhanced Wear in Diesel Exhaust Valves...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 18-22, 2009 -- Washington D.C. pmp01blau.pdf More Documents & Publications Friction and Wear Reduction in Diesel Engine Valve Trains Materials for Advanced Engine Valve Train...

132

Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles  

Science Journals Connector (OSTI)

Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles ... Diesel exhaust particles (DEP) contain quinones that are capable of catalyzing the generation of reactive oxygen species in biological systems, resulting in induction of oxidative stress. ... 9,10-Phenanthrenequinone (9,10-PQ) is a PAHQ found in diesel exhaust particulates ... ...

Yoshito Kumagai; Sachie Koide; Keiko Taguchi; Akiko Endo; Yumi Nakai; Toshikazu Yoshikawa; Nobuhiro Shimojo

2002-02-28T23:59:59.000Z

133

Cleaning Up Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

134

Optimization of Advanced Diesel Engine Combustion Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

135

Part I. A Comparison of Three Different High Pressure Liquid Chromatography Systems for the Determination of Aldehydes and Ketones in Diesel Exhaust  

Science Journals Connector (OSTI)

......aldehydes and ketones in diesel exhaust to be a solvent...measured for a 75 wt% diesel/25 wt% Tergitol 15-S-7...reported in reference 8. In general, it was found that the...the base fuel (No. 2 diesel), aldehyde emissions...different days, with the engine and sampling conditions......

G. Creech; R.T. Johnson; J.O. Stoffer

1982-02-01T23:59:59.000Z

136

Exhaust Heat Recovery for Rural Alaskan Diesel Generators  

Energy.gov (U.S. Department of Energy (DOE))

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

137

Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology.  

E-Print Network (OSTI)

??Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning… (more)

Abuhabaya, Abdullah

2012-01-01T23:59:59.000Z

138

Utilization of alternative fuels in diesel engines  

SciTech Connect

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

139

Effect of sulfur on heavy duty diesel engine lubricants  

SciTech Connect

Diesel engine exhaust legislation has become quite onerous for heavy duty engines. Yet, these high thermal efficiency engines continue to meet lower exhaust particulate and NOx emissions limits, due to new engine designs and the complementary engine oil performance requirements of the API service categories. In addition, the EPA has mandated changes in on-highway diesel fuel to help meet particulate emissions regulations. On October 1, 1993, when the EPA outlawed high sulfur fuels for on-highway use, the development of the API CG-4 engine oil performance specification was already in progress. All the new diesel engine tests in the category were therefore designed to run with low (< 0.05% wt.) sulfur fuel. In some engine tests, this new fuel improved some lubricant performance characteristics and degraded others. An engine oil specification for low sulfur fuel brings new challenges to developing future specifications for diesel engine oils. Both higher and lower lubricant additive treat rate products, high performance single grade oils, and formulations to meet world-wide specifications become viable. This paper discusses the results of a diesel engine oil technology that performs well with the new, low sulfur fuel in both engine tests and in the field.

Hayden, T.E. [Texaco Fuels and Lubricants Research Dept., Beacon, NY (United States)

1996-12-01T23:59:59.000Z

140

HEALTH EFFECTS OF DIESEL EXHAUST: AN HEI PERSPECTIVE  

SciTech Connect

Diesel engines have many advantages, including good fuel economy, power, durability, lower emissions of some pollutants (such as carbon monoxide) and of carbon dioxide (a greenhouse gas). However, there are a number of concerns that need to be addressed: (1) emissions of nitrogen oxides (which contribute to ozone formation) and of particulate matter (PM); (2) questions about cancer and other health effects from exposure to diesel PM; and (3) as efforts to decrease emissions progress, a need to understand whether the nature and toxicity of the PM emitted has changed. This paper focuses on (1) carcinogenicity data, (2) noncancer effects, and (3) diesel as part of the complex ambient mixture of PM.

Warren, Jane

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

North American Market Challenges for Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale...

142

Future Breathing System Requirements for Clean Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Breathing System Requirements for Clean Diesel Engines Future Breathing System Requirements for Clean Diesel Engines Poster presentation at the 2007 Diesel Engine-Efficiency &...

143

Achieving High-Effiency Clean Ccombustion in Diesel Engines ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving High-Effiency Clean Ccombustion in Diesel Engines Achieving High-Effiency Clean Ccombustion in Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

144

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

145

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

146

Perspectives Regarding Diesel Engine Emissions Reduction in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

147

Hydrogen as a Supplemental Fuel in Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

148

Next Generation Diesel Engine Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Control Next Generation Diesel Engine Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

149

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels  

Science Journals Connector (OSTI)

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels ... Abatement of diesel particulates has led to an overall decrease in the fuel efficiency of diesel engines, and overcoming these losses has been one of the more challenging problems in exhaust aftertreatment. ... (16-18) Establishing a general physical basis for modeling diesel particulate oxidation is especially challenging because of the large variations in microscopic structure that it can have. ...

Andrea Strzelec; Todd J. Toops; C. Stuart Daw

2013-06-10T23:59:59.000Z

150

Oxygenated fuels for clean heavy-duty diesel engines  

Science Journals Connector (OSTI)

For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been extrapolated towards lower emission levels. Exhaust gas recirculation (EGR) was applied to a modern EURO-3-type HD diesel engine. Tests were done at different engine working points, with EGR-levels and start of fuel delivery timings set to give NOx emissions between 3.5 and 2.0 g/kWh with regular diesel fuel. Fourteen blends of a low-sulphur diesel fuel respectively of a gas-to-liquid synthetic diesel fuel with different oxygenates were tested. The corresponding fuel matrix covers a range of fuel oxygen mass fractions up to 15%. Results are presented and the impact of fuel oxygen mass fraction and Cetane Number are analysed and compared with results from previous research.

P.J.M. Frijters; R.S.G. Baert

2006-01-01T23:59:59.000Z

151

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

SciTech Connect

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

152

Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter  

SciTech Connect

Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

Braun,A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

2008-01-01T23:59:59.000Z

153

Reduction of nitrogen oxides in diesel exhaust: Prospects for use of synthesis gas  

Science Journals Connector (OSTI)

Already commercialized and some of the most promising technologies of nitrogen oxide reduction in automotive diesel exhaust are compared. The Boreskov Institute of Catalysis... x ...

V. A. Kirillov; E. I. Smirnov; Yu. I. Amosov; A. S. Bobrin…

2009-01-01T23:59:59.000Z

154

Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

light duty diesel exhaust has been achieved over a broad temperature window by combining atmospheric plasma with appropriate catalysts. The technique relies on the addition of...

155

E-Print Network 3.0 - administered diesel exhaust Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

types of Diesel exhaust ... Source: North Carolina State University, North Carolina Solar Center Collection: Renewable Energy ; Energy Storage, Conversion and Utilization 2 Clean...

156

Analysis of C1-C16 Hydrocarbons Using Dual-Column Capillary GC: Application to Exhaust Emissions from Passenger Car and Motorcycle Engines  

Science Journals Connector (OSTI)

......can be present in diesel exhaust. 3,5...indicative of a more general problem. The PLOT...the gas phase of diesel exhaust. With such...bags. Workers at General Motors (19) have...identified by GC in the diesel engine emis sions...mode of the European Cycle are also shown in......

C.A. Jemma; P.R. Shore; K.A. Widdicombe

1995-01-01T23:59:59.000Z

157

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application  

Science Journals Connector (OSTI)

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application ... It has been demonstrated that low current arc discharges are highly nonhomogenous. ... In the second case, which corresponds to the most favorable one, assuming (i) a 100 kW car engine thermal power (i.e., 40 kW mechanical power), (ii) that the plasma will treat only a small fraction of the exhaust gas (typically 3.5%), (iii) that the plasma will operate under a cycling operating mode, and (iv) an 80% efficiency for the onboard production of electricity from the car engine, one can estimate that the electric power needed to run the plasma will be around 2.2% of the engine power only during 12 s every 11 km (6.8 miles), that is, 12 s every 6 min assuming a 110 km·h?1 (68 mph) average car velocity. ...

Alexandre Lebouvier; Franc?ois Fresnet; Fre?de?ric Fabry; Vale?rie Boch; Vandad Rohani; Franc?ois Cauneau; Laurent Fulcheri

2011-02-03T23:59:59.000Z

158

Engine Materials for Clean Diesel Technology: An Overview | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials for Clean Diesel Technology: An Overview Engine Materials for Clean Diesel Technology: An Overview Presentation given at the 2007 Diesel Engine-Efficiency & Emissions...

159

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, it’s necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

160

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Precise instrumentation of a diesel single-cylinder research engine  

Science Journals Connector (OSTI)

The accuracy of any empirical result is a direct consequence of the quality of experimental setup and the strict control over testing conditions. For internal combustion engines, a large number of parameters that also exhibit complex interdependence may significantly affect the engine performance. Therefore, this work describes the essentials required to establish a high-quality diesel engine research laboratory. A single-cylinder diesel engine is taken as the fundamental building block and the requirements for all essential sub-systems including fuel, intake, exhaust, coolant and exhaust gas recirculation (EGR) are laid out. The measurement and analysis of cylinder pressure, and exhaust gas sampling/conditioning requirements for emission measurement are discussed in detail. The independent control of EGR and intake boost is also highlighted. The measurement and analysis techniques are supported with empirical data from a single-cylinder diesel engine setup. The emphasis is on providing the necessary guidelines for setting up a fully-instrumented diesel engine test laboratory.

Usman Asad; Raj Kumar; Xiaoye Han; Ming Zheng

2011-01-01T23:59:59.000Z

162

Utiization of alternate fuels in diesel engines  

SciTech Connect

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

163

Engine-External HC-Dosing for Regeneration of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heavy Duty and NRMM According to Annex XXVII StVZO This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine....

164

Dynamic feedback linearization applied to asymptotic tracking: generalization about the turbocharged diesel engine outputs choice  

Science Journals Connector (OSTI)

In this paper we apply dynamic feedback linearization to the tracking problem for a turbocharged diesel engine (TDE) equipped with exhaust gas recirculation (EGR) valve and variable geometry turbocharger (VGT). The model used here is the third-order ...

Marcelin Dabo; Nicolas Langlois; Houcine Chafouk

2009-06-01T23:59:59.000Z

165

Arachidonic Acid Metabolite Production by Alveolar Macrophages Cultured in Gazeous Phase. Effects of NO2 and Diesel Exhaust  

Science Journals Connector (OSTI)

Exposure to Diesel exhaust can occur either in the general population ... from the gazeous and the particulate phases of Diesel exhaust, there is concern that such exposure might ... have initiated a study assess...

S. Kouzan; T. Fournier; C. Voisin; M. C. Jaurand…

1989-01-01T23:59:59.000Z

166

Characterization of Particulate Matter Emissions from a Common-Rail Diesel Engine  

Science Journals Connector (OSTI)

Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy ... The preferred approach to control the emissions of diesel engines is the adoption of an exhaust gas recirculation (EGR) system followed by a diesel oxidation catalyst (DOC) in front of a diesel particulate filter (DPF). ... Some fundamental information on the particulate matter (PM) characteristics emitted by an automotive diesel engine was gathered in order to provide a precious tool for the knowledge-based design of a new generation of diesel particulate traps in the EURO VI regulation perspective. ...

D. Fino; N. Russo

2011-02-02T23:59:59.000Z

167

Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with Diesel?Diethyl Adipate Blends  

Science Journals Connector (OSTI)

The advantage of a diesel engine compared with a gasoline engine is the fuel economy benefits; however, the high NOx and smoke emissions still remain the main obstacles for the increasing application of diesel engines with the increasing concerns for environmental protection and implementation of more stringent exhaust gas regulations, thus further reduction in engine emissions becomes one of major tasks in engine development. ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental change in combustion systems. ... Murayama, T.; Zheng, M.; Chikahisa, T. Simultaneous reduction of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate; SAE paper 952518, Society of Automotive Engineers:? Warrendale, PA, 1995. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-04-19T23:59:59.000Z

168

On-line Analysis of Organic Compounds in Diesel Exhaust Using a Proton Transfer Reaction Mass Spectrometer (PTR-MS)  

SciTech Connect

Chemical ionization mass spectrometry using H3O+ proton transfer in an ion drift tube (PTR-MS) was used to measure volatile organic compound (VOC) concentrations on-line in diesel engine exhaust as a function on engine load. The purpose of the study was to evaluate the PTR-MS instrument as an analytical tool for diesel engine emissions abatement research. Measured sensitivities determined from gas standards were found to be between 30% and 100% greater than calculated sensitivities. A slight humidity dependent sensitivity was observed for non-polar species, implying that reactions with H+(H2O)2 were important for some organics. The mass spectra of diesel exhaust were complex but displayed a pattern of strong ion signals at 14n+1 (n=3..8) masses, with a relative ion abundance similar to that obtained from electron impact ionization of alkanes. Laboratory experiments verified that C8-C16 n-alkanes and C8-C13 1-alkenes react with H3O+ in dissociative proton transfer reaction resulting in alkyl cation ion products, primarily m/z 41, 43, 57, 71 and 85. Monitoring the sum of these ions signals may be useful for estimating alkane emissions from unburnt diesel fuel. Alkane fragmentation likely simplified the diesel exhaust mass spectrum and reduced potential mass interferences with isobaric aromatic compounds. It is shown that the relative abundances of VOCs changed as a function of engine load. Concentrations of aldehydes and ketones dominated those of aromatic species with formaldehyde and acetaldehyde estimated to be the most abundant VOCs in the PTR-MS mass spectrum at all engine loads. The relative abundances of benzene and toluene increased with engine load indicating their pyrogenic origin. The relative abundance of alkanes, aromatics, aldehydes, and alcohols was broadly consistent with literature publications of diesel exhaust analysis by gas chromatography. About 75% of the organic ion signal could be assigned. On line analysis of diesel exhaust using this technology may be valuable tool for diesel engine emission research.

Jobson, B Tom T.; Alexander, M. Lizabeth; Maupin, Gary D.; Muntean, George G.

2005-08-01T23:59:59.000Z

169

An Information Dependant Computer Program for Engine Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants. deer09avadhanula.pdf More Documents &...

170

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions  

Science Journals Connector (OSTI)

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions ... Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels ...

Matthew A. Ratcliff; A. John Dane; Aaron Williams; John Ireland; Jon Luecke; Robert L. McCormick; Kent J. Voorhees

2010-10-01T23:59:59.000Z

171

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

172

Optimization of an Irreversible Diesel Cycle: Experimental Results of a Ceramic Coated Indirect-Injection Supercharged Diesel Engine  

Science Journals Connector (OSTI)

Technical Education Faculty and Department of Mechanical Engineering, Sakarya University, Esentepe 54187, Sakarya, Turkey, and Maritime Faculty, Marine Engineering, Istanbul Technical University, Tuzla, Turkey ... Effects of a ceramic coating on performance and exhaust emissions in the LHR engine have been compared to those obtained from the standard (STD) diesel engine based on the comparison of the STD and the LHR engines for identical airflow and brake mean effective pressure. ... Gataowski, J. A. Evaluation of a selectively-cooled single-cylinder 0.5-L Diesel engine; SAE paper No. 900693, Society of Automotive Engineers: Warrendale, PA, 1990. ...

A. Parlak; H. Yasar; H. S. Soyhan; C. Deniz

2008-04-25T23:59:59.000Z

173

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

174

2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations...  

Energy Savers (EERE)

5: Diesel and CNG Bus Emissions Update on Diesel Exhaust Emission Control Timothy Johnson Corning, Inc. (PDF 1.53 MB) Summary of Swedish Experiences on CNG and "Clean" Diesel...

175

Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO  

Energy.gov (U.S. Department of Energy (DOE))

This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine.

176

Hardware-in-the-Loop Testing of Electronically-Controlled Common-Rail Systems for Marine Diesel Engine  

Science Journals Connector (OSTI)

Tougher legislation on exhaust emissions reduction, more power and mobility and less fuel consumption, has led to stronger call for the electronic engine control units for marine diesel engines. Electronically-controlled common-rail systems for marine ... Keywords: Marine Diesel Engine, Common Rail System, Engine Controller Unit, Hardware-in-the-loop Testing, Simulation Interface Toolkit

Jiadong Zhou; Guangyao Ouyang; Minghe Wang

2010-05-01T23:59:59.000Z

177

Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40 kW diesel generator using two ‘off-the-shelf’ heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15 bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15 bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in bsfc. At 40% part load, the additional power developed was 3.4% which resulted in 3.3% reduction in bsfc.

Shekh Nisar Hossain; Saiful Bari

2013-01-01T23:59:59.000Z

178

Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green, Jr., John M. Storey, and C. Stuart Daw  

E-Print Network (OSTI)

was used to acquire time-averaged emissions and particulate data as well as time-resolved combustion parameters such as heat release and work. Analysis of the time-resolved data is ongoing. INTRODUCTION Exhaust that combustion becomes incomplete and unacceptable levels of particulate matter (PM) and hydrocarbons (HC

Tennessee, University of

179

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

180

The effect of ethanol-water fumigation on the performance and emissions from a direct-injection diesel engine.  

E-Print Network (OSTI)

??The effect of ethanol fumigation and water injection on the performance and exhaust emissions from a 1.9-liter Volkswagen TDI diesel engine was investigated. The engine… (more)

Olson, André Louis

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Non-Conventional Plasma Assisted Catalysts for Diesel Exhaust Treatment: A Case Study  

Science Journals Connector (OSTI)

This paper reports the application of pulse discharges along with catalysts in treating the exhaust gas at higher temperatures. In the present work a plasma reactor, filled with catalysts, called as plasma catalytic reactor, is studied for removal of oxides of nitrogen, total hydrocarbons and carbon monoxide. The experiments are conducted on an actual diesel engine exhaust at no-load and at different temperatures starting from room temperature to 300°C. The removal efficiencies of these pollutants are studied. The experiments are carried out with both conventional and non-conventional catalysts. The idea is to explore the pollutant removal efficiency characteristics by non-conventional catalysts. The efficiency results are compared with that of conventional catalysts. The experiments are carried out at a constant pulse repetition rate of 120 pps. Both pellet and honeycomb type catalysts are used in the study.

B S Rajanikanth; P K Srinivas Kumar; V Ravi

2002-01-01T23:59:59.000Z

182

Analysis of C1-C16 Hydrocarbons Using Dual-Column Capillary GC: Application to Exhaust Emissions from Passenger Car and Motorcycle Engines  

Science Journals Connector (OSTI)

......the analysis of gasoline, diesel, and 2-stroke motorcycle...hydrocarbons identified by GC in the diesel engine emis sions. Of the...used on motorcycles in some markets, such engines are in a small...relative merits of gasoline and diesel exhaust on the basis of the......

C.A. Jemma; P.R. Shore; K.A. Widdicombe

1995-01-01T23:59:59.000Z

183

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration...

184

Size-Dependent Mixing Characteristics of Volatile and Nonvolatile Components in Diesel Exhaust Aerosols  

Science Journals Connector (OSTI)

Size-Dependent Mixing Characteristics of Volatile and Nonvolatile Components in Diesel Exhaust Aerosols ... Diesel exhaust particles that were size-selected in the first DMA were passed through the heater, and the change in particle size due to loss of volatile components was determined by the second DMA. ... Diesel exhaust particles are attracting significant attention with regards to their potential health effects (7?9) since they can be formed in high concentrations as ultrafine particles and can contain high levels of organic compounds and soot. ...

Hiromu Sakurai; Kihong Park; Peter H. McMurry; Darrick D. Zarling; David B. Kittelson; Paul J. Ziemann

2003-10-29T23:59:59.000Z

185

SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings  

Energy.gov (U.S. Department of Energy (DOE))

Presents laboratory and engine bench test results from integrating the SCR catalyst into the diesel filter as one multifunctional unit.

186

Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure  

Science Journals Connector (OSTI)

Abstract Combustion emissions from diesel engines emit particulate matter which deposits within the lungs. Alveolar macrophages (AMs) encounter the particles and attempt to engulf the particles. Emissions particles from diesel combustion engines have been found to contain diverse biologically active components including metals and polyaromatic hydrocarbons which cause adverse health effects. However little is known about AM response to particles from the incorporation of biodiesel. The objective of this study was to examine the toxicity in Wistar Kyoto rat AM of biodiesel blend (B20) and low sulfur petroleum diesel (PDEP) exhaust particles. Particles were independently suspended in media at a range of 1–500 ?g mL?1. Results indicated B20 and PDEP initiated a dose dependent increase of inflammatory signals from AM after exposure. After 24 h exposure to B20 and PDEP gene expression of cyclooxygenase-2 (COX-2) and macrophage inflammatory protein 2 (MIP-2) increased. B20 exposure resulted in elevated prostaglandin E2 (PGE2) release at lower particle concentrations compared to PDEP. B20 and PDEP demonstrated similar affinity for sequestration of PGE2 at high concentrations, suggesting detection is not impaired. Our data suggests PGE2 release from AM is dependent on the chemical composition of the particles. Particle analysis including measurements of metals and ions indicate B20 contains more of select metals than PDEP. Other particle components generally reduced by 20% with 20% incorporation of biodiesel into original diesel. This study shows AM exposure to B20 results in increased production of PGE2 in vitro relative to diesel.

Laya Bhavaraju; Jonathan Shannahan; Aaron William; Robert McCormick; John McGee; Urmila Kodavanti; Michael Madden

2014-01-01T23:59:59.000Z

187

Update on Diesel Exhaust Emission Control Technology and Regulations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control Technology and Regulations Tim Johnson August 2004 2 Diesel emission control technology is making significant progress * Diesel regulations are getting tighter in all...

188

Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter  

Science Journals Connector (OSTI)

In addition to minimized engine-out emissions, exhaust gas after-treatment systems such as diesel particle filter and chemical reduction of NOx will be necessary to meet the U.S. Federal (EPA) 2007 emission standards for heavy-duty diesel engines. ... While for the diesel fuel a reduction of the number of particles in the accumulation mode went in line with a shift of the mode diameter toward smaller values (see Figures 2 and 3), this was not a general observation for the water?diesel emulsion fuel. ... JSME International Journal, Series B: Fluids and Thermal Engineering (2001), 44 (1), 166-170 CODEN: JIJEEE; ISSN:1340-8054. ...

Urs Mathis; Martin Mohr; Ralf Kaegi; Andrea Bertola; Konstantinos Boulouchos

2005-02-04T23:59:59.000Z

189

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating  

Science Journals Connector (OSTI)

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating ... Exhaust gas emissions from diesel engines have become a serious problem to the researchers; therefore, a method of reduction of gas emission is needed. ... Their results show that the engine can achieve ultra-low emission without fundamental change to the combustion system. ...

P. Ramu; C. G. Saravanan

2009-01-07T23:59:59.000Z

190

Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition  

Science Journals Connector (OSTI)

Abstract In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2015-01-01T23:59:59.000Z

191

Is There a Causal Relationship Between Exposure to Diesel Exhaust and Multiple Myeloma?  

Science Journals Connector (OSTI)

This article presents a comprehensive critical review of the epidemiology of multiple myeloma in relation to occupational diesel exhaust exposure. The review includes cohort and proportional mortality studies of ...

Otto Wong

2003-06-01T23:59:59.000Z

192

Staged direct injection diesel engine  

DOE Patents (OSTI)

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

193

Diesel Engine Alternatives | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternatives Diesel Engine Alternatives 2003 DEER Conference Presentation: Southwest Research Institute 2003deerryan.pdf More Documents & Publications Combustion Targets for Low...

194

Diesel Engine Emission Reduction (DEER) Experiment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Reduction (DEER) Experiment Diesel Engine Emission Reduction (DEER) Experiment Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

195

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network (OSTI)

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

196

Emulsified fuel testing in a medium speed diesel engine. Final report Feb 81-Apr 82  

SciTech Connect

Medium-speed diesel engine testing of fuel-water emulsification with various grades of diesel fuel was conducted in order to determine the effect of water emulsification on engine performance. Emulsions from 0 to 12% water (by volume) were test run with various water particle sizes, injection timings, and engine loads with four separate fuels: Marine diesel, 1500 SR1, 3500 SR1, and 5000 SR1. Experimental results are presented for the basic engine performance areas for the various conditions run, focusing mainly on the effects of water emulsification on fuel consumption, exhaust emissions, and engine component wear rates. Details of the emulsification system are also discussed.

Barich, J.J.; Hinrichs, T.L.; Pearce, K.R.

1982-06-01T23:59:59.000Z

197

Effect of n-Heptane Premixing on Combustion Characteristics of Diesel Engine  

Science Journals Connector (OSTI)

Effect of n-Heptane Premixing on Combustion Characteristics of Diesel Engine ... Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... In a different analysis, Simescu et al.17 explained, using their diesel-fueled partial HCCI engines, that soot formed during the premixed combustion period before DI fuel injection is not oxidized completely and emitted as exhaust gas. ...

Dae Sik Kim; Chang Sik Lee

2005-09-23T23:59:59.000Z

198

NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect  

Science Journals Connector (OSTI)

The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45?kV, 60?ns, up to 1?kHz) was used for driving the corona reactor. A Mitsubishi 10?kW 3-cylinder diesel-generator engine with a total volume of 1300?cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53?g?kW?1h?1 for PRR = 500?Hz and the initial NO concentration was 375?ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

Y Yankelevich; M Wolf; R Baksht; A Pokryvailo; J Vinogradov; B Rivin; E Sher

2007-01-01T23:59:59.000Z

199

The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine  

Science Journals Connector (OSTI)

Abstract The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (?4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. \\{NOx\\} emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load, the effect of the additives is much less significant, due to the fact that the ratio oxygen from additive/oxygen from air is much lower.

F. Gómez-Cuenca; M. Gómez-Marín; M.B. Folgueras-Díaz

2013-01-01T23:59:59.000Z

200

Effect of EGR contamination of diesel engine oil on wear.  

SciTech Connect

Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Pollution duality in turbocharged heavy duty diesel engine  

Science Journals Connector (OSTI)

Diesel engine designers are faced with increasingly stringent social demands to reduce emissions while maintaining high performance. Several strategies are considered, such as the advanced fuel system, the cooled exhaust gas recirculation (EGR), the particulate filter, the NOx after-treatment, the oxidation catalyst, the advanced control techniques and the alternative combustion. These strategies have been tuned to achieve the lowest engine exhaust gas emissions. The major problem of diesel engine pollution is the NOx and soot formation. Their antagonistic evolution according to the air/fuel ratio is well-known, and requires a good compromise. In this article, a numerical investigation was carried out using the KIVA-3v code. The aim deals with the influence of some engine parameters on the performances and the pollutant (NOx-soot) formation of a turbocharged heavy duty direct injection diesel engine. The numerical simulations were achieved to capture independently the effects of engine operating parameters such as the fuel injection timing, the fuel injection duration, the piston bowl diameter and the EGR rate. The obtained results are discussed and some conclusions are developed.

M. Bencherif; A. Liazid; M. Tazerout

2009-01-01T23:59:59.000Z

202

Conversion of a diesel engine to a spark ignition natural gas engine  

SciTech Connect

Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

NONE

1996-09-01T23:59:59.000Z

203

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Cummins Waste Heat Recovery Exhaust Energy...

204

Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER)  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Diesel Engine Emissions Reduction (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Digg Find More places to share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on

205

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

206

Technology Development for High Efficiency Clean Diesel Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

207

Cummins/DOE Light Truck Diesel Engine Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002deerstang.pdf More Documents & Publications...

208

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

209

Impact of Real Field Diesel Quality Variability on Engine Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation Impact of Real Field Diesel Quality Variability on Engine...

210

Advanced Diesel Engine Technology Development for HECC | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diesel Engine Technology Development for HECC Advanced Diesel Engine Technology Development for HECC 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

211

A Correlation of Diesel Engine Performance with Measured NIR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics Results indicate...

212

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

213

Update on Modeling for Effective Diesel Engine Aftertreatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update on Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment...

214

Advances in Diesel Engine Technologies for European Passenger...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances in Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation:...

215

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

216

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

217

12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

218

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network (OSTI)

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

219

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

220

Diesel Engine Oil Technology Insights and Opportunities | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Technology Insights and Opportunities Diesel Engine Oil Technology Insights and Opportunities Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant...

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

222

Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter  

Science Journals Connector (OSTI)

Abstract Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-? and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that \\{DPFs\\} may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

Sandro Steiner; Jan Czerwinski; Pierre Comte; Loretta L. Müller; Norbert V. Heeb; Andreas Mayer; Alke Petri-Fink; Barbara Rothen-Rutishauser

2013-01-01T23:59:59.000Z

223

Light Duty Diesels in the United States - Some Perspectives ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerjohnson.pdf More Documents & Publications Update on Diesel Exhaust Emission...

224

Combustion Modeling for Diesel Engine Control Design  

E-Print Network (OSTI)

Combustion Modeling for Diesel Engine Control Design Von der Fakult¨at f¨ur Maschinenwesen der Combustion Modeling for Diesel Engine Control Design WICHTIG: D 82 überprüfen !!! #12;Bibliographic research stays at General Motors R&D in Warren, MI, USA, possible. Furthermore, I would like thank Tom

Peters, Norbert

225

2 - Durability and reliability in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: Consideration of durability and reliability is necessary at the earliest stage of system design. This chapter presents the theory and analysis methods of durability and reliability in diesel engine system design. It begins by describing engine durability issues, followed by an elaboration on the relationship between performance and durability through the discussions on system-level loading and durability design constraints. It then provides a systematic introduction on the fundamentals of thermo-mechanical failures and the applications on diesel engine cylinder head, exhaust manifold, valvetrain, piston, turbocharger and aftertreatment devices, followed by discussions on cylinder liner cavitation, engine wear, and EGR cooler durability. An integrated analysis approach on system durability–reliability is finally summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

226

The Proton Transfer Reaction-Mass Spectrometer for Atmospheric Chemistry Tracers of Diesel Exhaust Emissions and Measurements of Trace gas and Aerosol properties.  

E-Print Network (OSTI)

The Proton Transfer Reaction-Mass Spectrometer for Atmospheric Chemistry Tracers of Diesel Exhaust exhaust experiment It has previously been difficult to identify the emissions of diesel exhaust until reactive with organic compounds such as alkanes which are present in diesel exhaust emissions. The reaction

Collins, Gary S.

227

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

228

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

229

Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission  

Science Journals Connector (OSTI)

Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission ... (4, 9, 10) Recently, we have found nonvolatile core particles in the exhaust of heavy-duty diesel vehicles and engines also at high load conditions. ... On the basis of the thermodynamic behavior, particle core material has been inferred to be solid in room temperature,(4, 6, 10) but the character of the particles in general is still an open question. ...

Tero Lähde; Topi Rönkkö; Matti Happonen; Christer Söderström; Annele Virtanen; Anu Solla; Matti Kytö; Dieter Rothe; Jorma Keskinen

2011-02-24T23:59:59.000Z

230

(1) Elements of Diesel Engineering: (2) Diesel and other Internal-Combustion Engines: (3) Diesel Engines  

Science Journals Connector (OSTI)

... publications arising from its importance from scientific, technical and commercial points of view, the Diesel ...

1937-01-30T23:59:59.000Z

231

Thermal barrier coatings application in diesel engines  

SciTech Connect

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

Fairbanks, J.W.

1995-10-01T23:59:59.000Z

232

Neural-Network-Based Maintenance Decision Model for Diesel Engine  

Science Journals Connector (OSTI)

To decrease the fuzzy and uncertain factors in the maintenance decision models of diesel engine, a combination BP-neural-network-based maintenance decision model for diesel engine is presented in this paper. It can make the maintenance of diesel engine ... Keywords: Deterioration degree, Diesel engine, Maintenance decision, Neural network

Yingkui Gu; Juanjuan Liu; Shuyun Tang

2008-09-01T23:59:59.000Z

233

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

234

Technology Development for Light Duty High Efficient Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

235

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

236

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies  

E-Print Network (OSTI)

Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

237

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents (OSTI)

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

238

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

239

The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions...

240

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

242

Guidelines for Improving Diesel Engine Characteristics  

Science Journals Connector (OSTI)

An appropriate amount of EGR can improve cold startability of a diesel engine and promote combustion and emission performance during...x...emissions without a significant penalty for the specific fuel consumption

Breda Kegl; Marko Kegl; Stanislav Pehan

2013-01-01T23:59:59.000Z

243

Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

244

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

245

Effect of Diesel Oxidation Catalysts on the Diesel Particulate Filter Regeneration Process  

Science Journals Connector (OSTI)

Effect of Diesel Oxidation Catalysts on the Diesel Particulate Filter Regeneration Process ... A Diesel Particulate Filter (DPF) regeneration process was investigated during aftertreatment exhaust of a simulated diesel engine under the influence of a Diesel Oxidation Catalyst (DOC). ... Diesel particulate matter (PM) significantly contributes to urban air pollution and has often been associated with adverse health effects. ...

Leonardo Lizarraga; Stamatios Souentie; Antoinette Boreave; Christian George; Barbara D’Anna; Philippe Vernoux

2011-11-03T23:59:59.000Z

246

Steam bottoming cycle for an adiabatic diesel engine  

SciTech Connect

A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

1984-03-01T23:59:59.000Z

247

Combustion and emission characteristics of a turbocharged diesel engine using high premixed ratio of methanol and diesel fuel  

Science Journals Connector (OSTI)

Abstract The combustion and emission characteristics of a dual fuel diesel engine with high premixed ratio of methanol (PRm) were investigated. Experiments were performed on a 6-cylinder turbocharged, inter-cooling diesel engine. Methanol was injected through the intake port and ignited by direct injected diesel in the cylinder, the maximum \\{PRm\\} was over 70%. The experimental results showed that with high PRm, the maximum in-cylinder pressure increased from medium to high engine load but varied little or even decreased at low engine speed and load. High \\{PRm\\} prolonged the ignition delay but shortened the combustion duration and decreased the in-cylinder gas temperature at ignition timing. Hydrocarbons (HC), carbon monoxide (CO), formaldehyde emissions and the proportion of nitrogen dioxide (NO2) in nitrogen oxides (NOX) increased significantly with the increase of \\{PRm\\} while NOX and dry soot emissions were significantly reduced, which meant the trade-off relationship between NOX and soot emissions disappeared. The increased HC, CO and formaldehyde emissions could be effectively reduced by diesel oxidation catalyst (DOC) when the exhaust gas temperature reached the light off temperature of the DOC. After DOC, the NO2 proportion in NOX was greatly reduced to less than that of baseline engine at methanol premixed mode but increased slightly at pure diesel mode. The maximum \\{PRm\\} was confined by in-cylinder pressure at high engine speed and load. But at low engine speed and load, it was confined by the high emissions of HC, CO and formaldehyde even after DOC.

Lijiang Wei; Chunde Yao; Quangang Wang; Wang Pan; Guopeng Han

2015-01-01T23:59:59.000Z

248

Benefits of Water-Fuel Emulsion on Automotive Diesel Exhaust Emissions  

Science Journals Connector (OSTI)

Water fuel emulsion is widely used to control pollutant emissions in large and medium diesel engines. The application of this fuel to small automotive engines has been limited by the emulsion stability and eco...

K. Lombaert; L. Le Moyne; P. Guibert…

2004-01-01T23:59:59.000Z

249

Neural Modeling and Control of Diesel Engine with Pollution Constraints  

E-Print Network (OSTI)

The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

2009-01-01T23:59:59.000Z

250

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

251

Significance of Semivolatile Diesel Exhaust Organics for Secondary HONO Formation  

Science Journals Connector (OSTI)

The atmospheric origin of nitrous acid (HONO) is largely unknown despite its estimated importance as an OH source during daytime due to its rapid photolysis. Recently, primary HONO contained in automobile exhaust as well as secondary HONO formation on ...

Lukas Gutzwiller; Frank Arens; Urs Baltensperger; Heinz W. Gäggeler; Markus Ammann

2002-01-12T23:59:59.000Z

252

Exhaust Phosphorous Chemistry and Catalyst Poisoning | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemistry and Catalyst Poisoning Exhaust Phosphorous Chemistry and Catalyst Poisoning 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National...

253

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

254

The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice  

SciTech Connect

Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

Cassee, Flemming R., E-mail: flemming.cassee@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Campbell, Arezoo, E-mail: acampbell@westernu.edu [Western University of Health Sciences, Pomona, CA (United States)] [Western University of Health Sciences, Pomona, CA (United States); Boere, A. John F., E-mail: john.boere@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands)] [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); McLean, Steven G., E-mail: smclean1@staffmail.ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom); Duffin, Rodger, E-mail: Rodger.Duffin@ed.ac.uk [MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh (United Kingdom)] [MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh (United Kingdom); Krystek, Petra, E-mail: petra.krystek@philips.com [Philips Innovation Services, Eindhoven (Netherlands)] [Philips Innovation Services, Eindhoven (Netherlands); Gosens, Ilse, E-mail: Ilse.gosens@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands)] [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Miller, Mark R., E-mail: Mark.Miller@ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom)

2012-05-15T23:59:59.000Z

255

Formation of Methyl Nitrite and Methyl Nitrate during Plasma Treatment of Diesel Exhaust  

Science Journals Connector (OSTI)

FTIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relative to CH3ONO2 scaled ...

T. J. Wallington; J. W. Hoard; M. P. Sulbaek Andersen; M. D. Hurley; Y. Nakano; M. Kawasaki

2003-08-08T23:59:59.000Z

256

Developmental toxicity of diesel exhaust: A review of studies in experimental animals  

Science Journals Connector (OSTI)

Abstract Diesel exhaust (DE) is a complex mixture of combustion products of diesel fuel, including gases and diesel exhaust particles (DEPs), commonly known as soot, that contains many toxic air contaminants. Studies of pre- and postnatal exposure to DE or \\{DEPs\\} have revealed changes in growth, sexual development, hormone levels, spermatogenesis, weights of the reproductive and accessory organs, behavior, monoaminergic system, expression of immune-related genes, histopathology of the testes and brain, susceptibility to allergies, and inflammatory and genotoxic endpoints in rodent offspring. Changes in gene expression for gonadal development were also observed after exposure to DE. As for the causative agent for the developmental toxicity of DE, \\{DEPs\\} and the gaseous phase, conflicting findings were reported. Although this paper provides initial information on the potential developmental toxicity of DE including the gaseous phase and DEPs, further studies using relevant concentrations closely reflecting expected levels of human exposure are needed.

Makoto Ema; Masato Naya; Masao Horimoto; Haruhisa Kato

2013-01-01T23:59:59.000Z

257

Reducing Emissions of a Diesel Engine Using Fumigation Ethanol and a Diesel Oxidation Catalyst  

Science Journals Connector (OSTI)

Reducing Emissions of a Diesel Engine Using Fumigation Ethanol and a Diesel Oxidation Catalyst ... † Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China ... In contrast to the conventional approach of using ethanol in spark-ignition engines, this study demonstrates the potential of ethanol utilization in diesel engines using dual-fuel combustion, where ethanol is injected into the intake manifold and diesel ... ...

K. S. Tsang; Z. H. Zhang; C. S. Cheung; T. L. Chan

2010-10-14T23:59:59.000Z

258

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

259

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

260

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

262

Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects  

Science Journals Connector (OSTI)

The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference ...

Andreas Petzold; Peter Lauer; Uwe Fritsche; Jan Hasselbach; Michael Lichtenstern; Hans Schlager; Fritz Fleischer

2011-11-01T23:59:59.000Z

263

Dynamics and Control of a Free-Piston Diesel Engine Tor A. Johansen1  

E-Print Network (OSTI)

and Technology, N-7491 Trondheim, Norway. ££ Kværner ASA, Technology Development Postboks 169, N-1325 Lysaker and to use a power turbine instead to convert energy from the exhaust gas. In addition, the camshaft and compactness of gas turbines with the low fuel consumption of diesel engines. This was the motivation 1

Johansen, Tor Arne

264

Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention  

SciTech Connect

Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 ?g/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and ?-glutamyl transferase (?-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-?, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF ?-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-?, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ? Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ? In hypertensive rats diesel exhaust effects are seen only after long term exposure. ? Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ? Normalizing blood pressure reverses atherogenic effects of diesel exhaust. ? Diesel exhaust and hydralazine cause similar aorta effect on vascular tone markers.

Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Nyska, Abraham [Tel Aviv University, Tel Aviv (Israel); Richards, Judy E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Andrews, Debora [Research Core Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC 27711 (United States); Gilmour, M. Ian [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States)

2013-04-15T23:59:59.000Z

265

Reduction of particulate matter and gaseous emission from marine diesel engines using a catalyzed particulate filter  

Science Journals Connector (OSTI)

Diesel engines are used widely as the power sources of coastal ships and international vessels primarily due to their high thermal efficiency, high fuel economy and durable performance. However, the gaseous and solid substances exhausted from diesel engines during the combustion process cause air pollution, in particular around harbor regions. In order to effectively reduce particulate matter and gaseous pollution emissions, a catalyzed particulate filter was equipped in the tail pipe of a marine diesel engine. The engine's performance and emission characteristics under various engine speeds and torques were measured using a computerized engine data control and acquisition system accompanied with an engine dynamometer. The effectiveness of installing a catalyzed particulate filter on the reduction of pollutant emissions was examined. The experimental results show that the exhaust gas temperature, carbon monoxide and smoke opacity were reduced significantly upon installation of the particulate filter. In particular, larger conversion of carbon monoxide to carbon dioxide — and thus larger CO2 and lower CO emissions — were observed for the marine diesel engine equipped with a catalyzed particulate filter and operated at higher engine speeds. This is presumably due to enhancement of the catalytic oxidation reaction that results from an exhaust gas with stronger stirring motion passing through the filter. The absorption of partial heating energy from the exhaust gas by the physical structure of the particulate filter resulted in a reduction in the exhaust gas temperature. The particulate matter could be burnt to a greater extent due to the effect of the catalyst coated on the surface of the particulate filter. Moreover, the fuel consumption rate was increased slightly while the excess oxygen emission was somewhat decreased with the particulate filter.

Cherng-Yuan Lin

2002-01-01T23:59:59.000Z

266

Robust intelligent control design for marine diesel engine  

Science Journals Connector (OSTI)

This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control ... controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to...

Hai-de Hua ???; Ning Ma ? ?; Jie Ma ? ?…

2013-12-01T23:59:59.000Z

267

Systematic evaluation of the reliability of marine diesel engines  

Science Journals Connector (OSTI)

A systematic model is proposed for evaluating the operational reliability of marine diesel engines. In mathematical terms, the model is ... permits the estimation of the overall reliability of marine diesel engines

G. S. Gamidov; N. K. Sanaev; Z. I. Adeev

2009-05-01T23:59:59.000Z

268

The Estimation of the Marine Main Diesel Engine Energy Balance  

Science Journals Connector (OSTI)

The basis of impact of energy device (marine main diesel engine) on its environment in terms of energy ... . Types of energy and exergy characterizing the marine main diesel engine are presented. The description ...

Z. Matuszak; G. Nicewicz

2014-01-01T23:59:59.000Z

269

Engines - Fuel Injection and Spray Research - Diesel Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nationÂ’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

270

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network (OSTI)

EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T. TOMPKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T...

Tompkins, Brandon T.

2009-05-15T23:59:59.000Z

271

Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel  

SciTech Connect

The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

Harvey, Scott D.; Wright, Bob W.

2011-10-30T23:59:59.000Z

272

Quantitative feedback design of air and boost pressure control system for turbocharged diesel engines  

Science Journals Connector (OSTI)

For modern diesel engines, variable geometry turbocharger (VGT) is used to boost engine power output. In addition, exhaust gas recirculation (EGR) is utilized to reduce engine out \\{NOx\\} emission. To realize these functions, a multivariable control system needs to control both VGT and EGR valve to deliver desired intake manifold (or boost) pressure, and desired EGR flow rate. This two-input and two-output system is nonlinear with cross-couplings between the boost and EGR responses to the input actuators, the system parameters are varying with different engine operating conditions. This paper proposes a closed loop design of a multivariable VGT/EGR control system for a turbocharged diesel engine. The control system is synthesized based on quantitative feedback theory to maintain robust stability and performance via sequential MIMO loop shaping in the frequency domain. Experiment results are included from a turbocharged diesel engine to show the effectiveness of the proposed control design.

Yue-Yun Wang; Ibrahim Haskara; Oded Yaniv

2011-01-01T23:59:59.000Z

273

Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

274

Evidence from Animal Studies for the Carcinogenicity of Inhaled Diesel Exhaust  

Science Journals Connector (OSTI)

Concerns in the mid 1970s for petroleum shortages and the mandating of fuel efficiency standards for automobiles led to speculation that the use of diesel engines in the U. S. light-duty fleet would increase s...

Joe L. Mauderly; William C. Griffith; Rogene F. Henderson; Robert K. Jones…

1990-01-01T23:59:59.000Z

275

Multi-SISO Robust Crone Design for the Air Path Control of a Diesel Engine G. Colin*, P. Lanusse**, A. Louzimi*,  

E-Print Network (OSTI)

Multi-SISO Robust Crone Design for the Air Path Control of a Diesel Engine G. Colin*, P. Lanusse is the air path control of a turbocharged diesel engine with Exhaust Gas Recirculation (EGR). Simulation, considering the air path control, the manipulated variables are the wastegate and the EGR valve

Boyer, Edmond

276

UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES  

E-Print Network (OSTI)

diesel engines and stationary power plants. The possibility of early detecting small defects priorUNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical

277

Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

278

Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels  

SciTech Connect

A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

2007-01-01T23:59:59.000Z

279

Effects of a Combustion Improver on Diesel Engine Performance and Emission Characteristics When Using Three-Phase Emulsions as an Alternative Fuel  

Science Journals Connector (OSTI)

The application of an emulsification technique to prepare the fuel has been considered to be one of the possible approaches to reduce the production of diesel engine pollutants, as well as the rate of fuel consumption. ... 8 The effects on engine performance and emission characteristics of diesel engines when using diglyme as an oxygenated additive for diesel fuels, W/O emulsions, and O/W/O emulsions are studied in this paper. ... A lower oxygen component was consumed for burning the O/W/O diesel emulsion, leading to a larger excess-oxygen concentration in the exhaust gas, compared to that of neat diesel fuel, as shown in Figure 7. ...

Cherng-Yuan Lin; Kuo-Hua Wang

2004-01-28T23:59:59.000Z

280

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Light-duty diesel engine development status and engine needs  

SciTech Connect

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

282

Development and application of a fully automatic troubleshooting method for large marine diesel engines  

Science Journals Connector (OSTI)

The diesel engine is the main propulsion system for marine vessels except for a small category using gas or steam turbines. This is the result of its high efficiency, power concentration and reliability that have been improved considerably during the current decade. Despite these advantages, the engineer usually has to overcome great difficulties and mainly operational problems arising during the engine's lifetime. In the case of large marine engines it is almost impossible to apply trial and error methods to solve engine operating problems. This is amplified by the fact that almost all large marine diesel engines are turbocharged ones making the problem even more severe because of the interaction between the engine and the exhaust gas turbocharger. For this reason various diagnosis methods have been proposed for diesel engine condition monitoring that are mainly statistical based on known engine operating curves. These systems provide general information only and do not reveal the actual cause for an engine fault or low performance. In the current work an advanced automatic troubleshooting method based mainly on thermodynamics is presented to monitor the engine condition and to detect the actual cause for an engine fault. The method is based on the processing of measured engine data using a simulation model and provides the current engine condition and its tuning. An application of the method on a marine vessel powered by a slow speed two stroke marine diesel engine suffering from high cylinder exhaust gas temperatures and low power output is given in the present work. The method is applied at sea under actual engine operating conditions. From the processing of measured data the diagnosis method provides the current engine condition and the cause for the low power output from which the engine suffered. After conducting the major repair/adjustments proposed by the diagnosis method a substantial improvement in engine behavior was observed providing a validation for the proposed method.

D.T. Hountalas; A.D. Kouremenos

1999-01-01T23:59:59.000Z

283

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

284

Advanced Modeling of Direct-Injection Diesel Engines | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerzellat.pdf More Documents & Publications Effects of Ambient Density and...

285

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

286

An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

287

An Accelerated Aging Method for Diesel Exhaust Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-01bartley.pdf More Documents & Publications The Development...

288

Optimization of Engine-out Emissions from a Diesel Engine to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5...

289

Abstract 3777: Diesel motor exhaust and lung cancer risk in a pooled analysis from case-control studies in Europe and Canada  

Science Journals Connector (OSTI)

...Mutations and DNA adducts induced by diesel exhaust particles. Jeffrey A. Ross...PAH) levels of a composite sample of diesel-exhaust particles (C-DEP) generated on site from petroleum diesel with a 30-kW 4-cylinder Deutz BF4M1008...

Ann C. Olsson; Per Gustavsson; Hans Kromhout; Susan Peters; Roel C. H. Vermeulen; Irene Brüske; Beate Pesch; Tomas Brüning; Jack Siemiatycki; Javier Pintos; Heinz-Erich Wichmann; Dario Consonni; Nils Plato; Franco Merletti; Dario Mirabelli; Lorenzo Richiardi; Karl-Heinz Jöckel; Wolfgang Ahrens; Hermann Pohlabeln; Lissowska Jolanta; Neonila Szeszenia-Dabrowska; Cassidy Adrian; David Zaridze; Isabelle Stücker; Simone Benhamou; Vladimir Bencko; Lenka Foretova; Vladimir Janout; Peter Rudnai; Eleonora Fabianova; Dana Mates; Bas Bueno-de-Mesquita; Isabelle Gross; Veronique Benhaim-Luzon; Paolo Boffetta; Kurt Straif

2010-04-15T23:59:59.000Z

290

Predictive control of a real-world Diesel engine using an extended online active set strategy  

Science Journals Connector (OSTI)

In order to meet tight emission limits Diesel engines are nowadays equipped with additional hardware components like an exhaust gas recirculation valve and a variable geometry turbocharger. Conventional engine control units use two SISO control loops to regulate the exhaust gas recirculation valve and the variable geometry turbocharger, although their effects are highly coupled. Moreover, these actuators are subject to physical constraints which seems to make an advanced control approach like model predictive control (MPC) the method of choice. In order to deal with MPC sampling times in the order of milliseconds, we employed an extension of the recently developed online active set strategy for controlling a real-world Diesel engine in a closed-loop manner. The results show that predictive engine control based on online optimisation can be accomplished in real-time – even on cheap controller hardware – and leads to increased controller performance.

Hans Joachim Ferreau; Peter Ortner; Peter Langthaler; Luigi del Re; Moritz Diehl

2007-01-01T23:59:59.000Z

291

An investigation of diesel–ignited propane dual fuel combustion in a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Abstract This paper presents a detailed experimental analysis of diesel–ignited propane dual fuel combustion on a 12.9-l, six-cylinder, production heavy-duty diesel engine. Gaseous propane was fumigated upstream of the turbocharger air inlet and ignited using direct injection of diesel sprays. Results are presented for brake mean effective pressures (BMEP) from 5 to 20 bar and different percent energy substituted (PES) by propane at a constant engine speed of 1500 rpm. The effect of propane PES on apparent heat release rates, combustion phasing and duration, fuel conversion and combustion efficiencies, and engine-out emissions of oxides of nitrogen (NOx), smoke, carbon monoxide (CO), and total unburned hydrocarbons (HC) were investigated. Exhaust particle number concentrations and size distributions were also quantified for diesel–ignited propane combustion. With stock engine parameters, the maximum propane PES was limited to 86%, 60%, 33%, and 25% at 5, 10, 15, and 20 bar BMEPs, respectively, either by high maximum pressure rise rates (MPRR) or by excessive HC and CO emissions. With increasing PES, while fuel conversion efficiencies increased slightly at high \\{BMEPs\\} or decreased at low BMEPs, combustion efficiencies uniformly decreased. Also, with increasing PES, \\{NOx\\} and smoke emissions were generally decreased but these reductions were accompanied by higher HC and CO emissions. Exhaust particle number concentrations decreased with increasing PES at low loads but showed the opposite trends at higher loads. At 10 bar BMEP, by adopting a different fueling strategy, the maximum possible propane PES was extended to 80%. Finally, a limited diesel injection timing study was performed to identify the optimal operating conditions for the best efficiency-emissions-MPRR tradeoffs.

Andrew C. Polk; Chad D. Carpenter; Kalyan Kumar Srinivasan; Sundar Rajan Krishnan

2014-01-01T23:59:59.000Z

292

Isolation and Identification of Direct-Acting Mutagens in Diesel Exhaust  

Science Journals Connector (OSTI)

The mutagenicity obtained in the absence of activation by mammalian oxidative enzymes in the Ames Salmonella...assay of particulates from air or from engine exhaust indicated that these particulates contain chemi...

X. B. Xu; Z. L. Jin; E. T. Wei; J. P. Nachtman…

1984-01-01T23:59:59.000Z

293

The Effect of an Axial Catalyst Distribution on the Performance of a Diesel Oxidation Catalyst and Inverse Hysteresis Phenomena during CO and C3H6 Oxidation.  

E-Print Network (OSTI)

??The Diesel Oxidation Catalyst (DOC) is a key component in the exhaust after-treatment system of diesel engines. In this study two aspects of a DOC… (more)

Abedi, Ali

2012-01-01T23:59:59.000Z

294

Predictive Modeling of a Homogeneous Charge Compression Ignition (HCCI) Engine with EGR Fueled with Diesel  

Science Journals Connector (OSTI)

Homogeneous charge compression ignition (HCCI) combustion integrates features of both spark ignition (SI) and compression ignition (CI) engines, obtaining a promisingly high efficiency in a diesel engine with virtually almost no NOx and soot emissions. ... The objective of the model is to simulate fundamental engine results such as combustion pressure, heat-release rate, indicated mean pressure (IMEP), gas temperature, and exhaust gas emission from easily measured engine parameters. ... Gordon, P. B. The Design and Simulation of a 4 Stroke Engine; Society of Automotive Engineers: Warrendale, PA, 1999. ...

Miguel Torres García; Fco Jiménez-Espadafor Aguilar; Elisa Carvajal Trujillo; José Antonio Becerra Villanueva

2009-09-10T23:59:59.000Z

295

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System  

E-Print Network (OSTI)

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

Stefanopoulou, Anna

296

Studies on dual fuel engine performance and exhaust emission analysis by response surface methodology  

Science Journals Connector (OSTI)

In this present study a five factor three level Box-Behnken response surface design was used to study the effect of five independent variables such as diesel (40%–100%) ethanol (0%-30%) pongamia oil methyl ester (POME) (0%–30%) compressed natural gas (CNG) (0%–20%) and load of the engine (0%–100%) on the performance (brake thermal efficiency brake specific fuel consumption and exhaust gas temperature) and emission characteristics (carbon mono-oxide (CO) carbon dioxides (CO2) unburnt hydrocarbon oxides of nitrogen (NOX) and smoke) of a single cylinder four stroke water cooled diesel engine converted to dual fuel system. It was operated with either diesel fuel or blend with CNG using an electronically controlled solenoid actuated valve mechanism. The experimental results showed that all the process variables have significant effect on the engine performance. The emission characteristics (CO CO2 NOX and Smoke) were significantly lower than the diesel fuel emissions. From the experimental results second order polynomial models were developed to predict the response variables. The optimal conditions were determined and it was found to be: Diesel 70% Ethanol 15% POME 15% CNG 10% and load 50% respectively with a desirability value of 0.894.

R. Senthilraja; V. Sivakumar; J. Prakash Maran

2014-01-01T23:59:59.000Z

297

The effect of reformer gas mixture on the performance and emissions of an HSDI diesel engine  

Science Journals Connector (OSTI)

Abstract Exhaust gas assisted fuel reforming is an attractive on-board hydrogen production method, which can open new frontiers in diesel engines. Apart from hydrogen, and depending on the reactions promoted, the reformate typically contains a significant amount of carbon monoxide, which is produced as a by-product. Moreover, admission of reformed gas into the engine, through the inlet pipe, leads to an increase of intake air nitrogen to oxygen ratio. It is therefore necessary to study how a mixture of syngas and nitrogen affects the performance and emissions of a diesel engine, in order to gain a better understanding of the effects of supplying fuel reformer products into the engine. In the current research work, a bottled gas mixture with H2 and CO contents resembling those of typical diesel reformer product gas was injected into the inlet pipe of an HSDI diesel engine. Nitrogen (drawn from a separate bottle) at the same volumetric fraction to syngas was simultaneously admitted into the inlet pipe. Exhaust analysis and performance calculation was carried out and compared to a neat diesel operation. Introduction of syngas + N2 gas mixture resulted in simultaneous reduction of the formation of \\{NOx\\} and smoke emissions over a broad range of the engine operating window. Estimation of the bottled carbon monoxide utilisation showed that by increasing either the load or the speed the admitted carbon monoxide is utilised more efficiently. As a general rule, CO2 emissions increase when the bottled carbon monoxide utilisation is approximately over 88%. Isolation of the H2 and N2 effect revealed that a CO diluted flame promotes the formation of smoke. When the intake air is enriched with syngas + N2, an increase of engine speed results in reduction of maximum pressure rise rate (dp/da). The effect of load on dp/da varies depending on engine speed. Finally, the engine is more fuel efficient when running on neat diesel.

Fanos Christodoulou; Athanasios Megaritis

2014-01-01T23:59:59.000Z

298

Cleaner, More Efficient Diesel Engines  

SciTech Connect

Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

Musculus, Mark

2013-08-13T23:59:59.000Z

299

Effect of exhaust gas recirculation on diesel knock intensity and its mechanism  

SciTech Connect

This paper presents an experimental study of the effect of exhaust gas recirculation (EGR) on diesel knock intensity, which is defined and discussed. In a previous paper, it was reported that particulate emission can be decreased by applying EGR under certain operating conditions; and the possible mechanism of the effect of EGR was presented. In the present study, the effect of EGR on diesel knock is examined under a variety of operating conditions. Diesel knock intensity is decreased considerably by EGR under the same operating conditions as when the particulate emission is decreased. A quantitative relationship between the diesel knock intensity and the maximum rate of cylinder pressure rise is obtained. The effect of EGR on diesel knock intensity is determined by both the chemical reaction rate of the initial premixed combustion (spontaneous ignition) and the fuel mass fraction prepared and burned in this stage. This is verified by measuring the ignition lag and classifying it into chemical and physical lags by a statistical technique.

Shiga, S.; Ehara, H.; Karasawa, T.; Kurabayashi, T.

1988-06-01T23:59:59.000Z

300

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition  

SciTech Connect

Detailed exhaust emission data have been taken from a Cummins N-14 single cylinder research engine in which the oil consumption was varied by different engine modifications. Low sulfur fuel was used, and oil consumption was varied by modifying the intake valve stem seals, the exhaust valve stem seals, the oil control ring and combinations of these modifications. Detailed measurements of exhaust gas particle size distributions and chemical composition were made for the various oil consumption configurations for a range of engine loads and speeds. The particulate mass was measured with TEOM and traditional gravimetric filter methods. Filter data for EC/OC, sulfates and trace metals have been taken and analyzed. The trace metals in the particulate mass serve as the basis for assessing oil consumption at the different operating conditions. The data indicate that the oil consumption for the steady state testing done here was approximately an order of magnitude below oil consumption values cited in the literature. We did measure changes in the details of the chemical composition of the particulate for the different engine operating conditions, but it did not correlate with changes in the oil consumption. Furthermore, the data indicate that the particle size distribution is not strongly impacted by low level oil consumption variations observed in this work.

Stetter, J; Forster, N; Ghandhi, J; Foster, D

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.  

E-Print Network (OSTI)

??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

Rajendra Prasath B

2013-01-01T23:59:59.000Z

302

An oxygenating additive for improving the performance and emission characteristics of marine diesel engines  

Science Journals Connector (OSTI)

Diesel engines provide the major power sources for marine transportation and contribute to the prosperity of the worldwide economy. However, the emissions from diesel engines also seriously threaten the environment and are considered one of the major sources of air pollution. The pollutants emitted from marine vessels are confirmed to cause the ecological environmental problems such as the ozone layer destruction, enhancement of the greenhouse effect, and acid rain, etc. Marine diesel engine emissions such as particulate matter and black smoke carry carcinogen components that significantly impact the health of human beings. Investigations on reducing pollutants, in particular particulate matter and nitrogen oxides are critical to human health, welfare and continued prosperity. The addition of an oxygenating agent into fuel oil is one of the possible approaches for reducing this problem because of the obvious fuel oil constituent influences on engine emission characteristics. Ethylene glycol monoacetate was found to be a promising candidate primarily due to its low poison and oxygen-rich composition properties. In this experimental study ethylene glycol monoacetate was mixed with diesel fuel in various proportions to prepare oxygenated diesel fuel. A four-cylinder diesel engine was used to test the engine performance and emission characteristics. The influences of ethylene glycol monoacetate ration to diesel oil, inlet air temperature and humidity parameters on the engine’s speed and torque were considered. The experimental results show that an increase in the inlet air temperature caused an increase in brake specific fuel consumption (BSFC), carbon monoxide, carbon dioxide emission, and exhaust gas temperature, while decreasing the excess air, oxygen and nitrogen oxide emission concentrations. Increasing the inlet air humidity increased the carbon monoxide concentration while the decreased excess air, oxygen and nitrogen oxide emission concentrations. In addition, increasing ethylene glycol monoacetate ratio in the diesel fuel caused an increase in the BSFC while the excess air and oxygen emission concentrations decreased.

C.-Y. Lin; J.-C. Huang

2003-01-01T23:59:59.000Z

303

Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions  

Energy.gov (U.S. Department of Energy (DOE))

This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

304

Responses measured in the exhaled breath of human volunteers acutely exposed to ozone and diesel exhaust  

Science Journals Connector (OSTI)

Exhaled breath collection is used to identify and monitor inflammatory or oxidative components in breath. Exhaled breath sample collection is noninvasive and would greatly benefit human pollutant exposure research. We demonstrate the efficacy of exhaled breath collection and analysis in two human exposure studies to ozone (O3) and diesel exhaust, respectively. O3 study: we collected exhaled breath (gas phase) from healthy human volunteers (age 18–35 years, 12 subjects) immediately before and after exposure to filtered air or 0.4 ppm O3 for 2 h with and without intermittent exercise. Six subjects received antioxidant supplementation for 2 weeks before their O3 exposure, while the remaining six subjects received placebo treatments. We demonstrate increased amounts of non-polar carbonyls exhaled immediately post O3 exposure. The O3-induced increase in exhaled carbonyl concentrations was attenuated in the group receiving antioxidants. Our data demonstrate that exhaled exposure biomarkers can be measured in the breath gas phase in humans exposed to O3. Diesel study: we collected exhaled breath condensate (EBC; liquid phase) from healthy human volunteers (age 18–40 years; 10 subjects) immediately before, immediately after and 20 h post filtered air or diesel exhaust (106 ± 9 µg m?3) exposure. Clean air and diesel exposures were separated by 3 weeks to 6 months. We obtained reproducible intra-subject EBC volumes and total protein concentrations across our six collection time points. Diesel exposure did not affect either EBC volume or total protein concentrations. Our data demonstrated EBC volume and total protein reproducibility over several months. Volume and total protein concentration may serve as normalizing factors for other EBC constituents.

K Sawyer; J M Samet; A J Ghio; J D Pleil; M C Madden

2008-01-01T23:59:59.000Z

305

Engines - Particulate Studies - Revealing the True Nature of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

306

Correcting injection pressure maladjustments to reduce NOX emissions by marine diesel engines  

Science Journals Connector (OSTI)

Emissions from the exhausts of marine diesel engines comprises several different gases including NOX. These are currently regulated at the international level under Regulation 13 of ANNEX VI of MARPOL 73/78, but this regulation only applies to new engines and is based on bench tests, for only a single engine designated the “parent engine”. Here, the need to take measurements from across their whole range and once in operation on board a vessel is examined. This would not only improve assessment of new equipment against the current regulation, but would also detect defects in the functioning of the engine.

C. Vanesa Durán Grados; Zigor Uriondo; Manuel Clemente; Francisco J. Jiménez Espadafor; Juan Moreno Gutiérrez

2009-01-01T23:59:59.000Z

307

An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study  

Science Journals Connector (OSTI)

Abstract The need for more efficient energy usage and a less polluted environment are the prominent research areas that are currently being investigated by many researchers worldwide. Water-in-diesel emulsion fuel (W/D) is a promising alternative fuel that could fulfills such requests in that it can improve the combustion efficiency of a diesel engine and reduce harmful exhaust emission, especially nitrogen oxides (NOx) and particulate matter (PM). To date, there have been many W/D emulsion fuel studies, especially regarding performance, emissions and micro-explosion phenomena. This review paper gathers and discusses the recent advances in emulsion fuel studies in respect of the impact of W/D emulsion fuel on the performance and emission of diesel engines, micro-explosion phenomena especially the factors that affecting the onset and strength of micro-explosion process, and proposed potential research area in W/D emulsion fuel study. There is an inconsistency in the results reported from previous studies especially for the thermal efficiency, brake power, torque and specific fuel consumption. However, it is agreed by most of the studies that W/D does result in an improvement in these measurements when the total amount of diesel fuel in the emulsion is compared with that of the neat diesel fuel. \\{NOx\\} and PM exhaust gas emissions are greatly reduced by using the W/D emulsion fuel. Unburnt hydrocarbon (UHC) and carbon monoxide (CO) exhaust emissions are found to be increased by using the W/D emulsion fuel. The inconsistency of the experimental result can be related to the effects of the onset and the strength of the micro-explosion process. The factors that affect these measurements consist of the size of the dispersed water particle, droplet size of the emulsion, water-content in the emulsion, ambient temperature, ambient pressure, type and percentage of surfactant, type of diesel engine and engine operating conditions. Durability testing and developing the fuel production device that requires no/less surfactant are the potential research area that can be explored in future.

Ahmad Muhsin Ithnin; Hirofumi Noge; Hasannuddin Abdul Kadir; Wira Jazair

2014-01-01T23:59:59.000Z

308

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network (OSTI)

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

309

Effect of the Addition of Diglyme in Diesel Fuel on Combustion and Emissions in a Compression?Ignition Engine  

Science Journals Connector (OSTI)

In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental changes in combustion systems. ... 16 Mitsuo et al.17 investigated the effects of DGM on engine exhaust emissions in three different diesel engines. ... (18)?Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill Book Company, New York, 1988. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-07-17T23:59:59.000Z

310

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

311

Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel  

Science Journals Connector (OSTI)

Abstract The diesel/methanol dual fuel (DMDF) combustion mode was conducted on a turbo-charged, inter-cooling diesel engine with 6-cylinder for the heavy duty (HD) vehicle. In DMDF mode, methanol is injected into the intake port to form lean air/methanol premixed mixture, and then ignited by the direct-injected diesel fuel in cylinder. This study is aimed to investigate the effect of diesel injection pressure on the characteristics of performance and exhaust emissions from the engine with common-rail fuel system. The experimental results show that at low injection pressure, the IMEP of DMDF mode is lower than that of pure diesel combustion (D) mode. COVIEMP of DMDF mode firstly decreases and then increases with increasing injection pressure, and it remains under 2.1% for all the tests. It is found that the combustion duration in DMDF mode becomes shorter, the maximum cylinder pressure and the peak heat release rate increase, and CA50 gets close to the top dead center as the injection pressure increases. BSFC of DMDF mode decreases with the increase of injection pressure, and is lower than that of D mode for injection pressure over 115 MPa. Both of NOX and smoke emissions are reduced in DMDF mode. But smoke decreases and NOX increases as the diesel injection pressure increases in DMDF mode. DMDF generates lower NO and CO2 emissions, while produces higher HC, CO, andNO2 emissions compared to D mode. As the diesel injection pressure increases, CO and HC emissions are decreased, however, CO2 and NO2 emissions are slightly increased.

Junheng Liu; Anren Yao; Chunde Yao

2015-01-01T23:59:59.000Z

312

Diesel Engines for Road Transport  

Science Journals Connector (OSTI)

... A REMARKABLE revolution is taking place in the type of engine used in large motor vehicles, and by some it is thought that for road ... motor vehicles, and by some it is thought that for road transport the highspeed oil engine is destined to supersede the long-favoured petrol ...

1933-10-21T23:59:59.000Z

313

Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment  

SciTech Connect

A motored engine study using premixed charges of fuel and air at a wide range of diesel-relevant equivalence ratios was performed to investigate autoignition differences among surrogates for conventional diesel fuel, gas-to-liquid (GTL) diesel fuel, and biodiesel, as well as n-heptane. Experiments were performed by delivering a premixed charge of vaporized fuel and air and increasing the compression ratio in a stepwise manner to increase the extent of reaction while monitoring the exhaust composition via Fourier transform infrared (FTIR) spectrometry and collecting condensable exhaust gas for subsequent gas chromatography/mass spectrometry (GC/MS) analysis. Each fuel demonstrated a two-stage ignition process, with a low-temperature heat release (LTHR) event followed by the main combustion, or high-temperature heat release (HTHR). Among the three diesel-relevant fuels, the magnitude of LTHR was highest for GTL diesel, followed by methyl decanoate, and conventional diesel fuel last. FTIR analysis of the exhaust for n-heptane, the conventional diesel surrogate, and the GTL diesel surrogate revealed that LTHR produces high concentrations of aldehydes and CO while producing only negligible amounts of CO{sub 2}. Methyl decanoate differed from the other two-stage ignition fuels only in that there were significant amounts of CO{sub 2} produced during LTHR; this was the result of decarboxylation of the ester group, not the result of oxidation. GC/MS analysis of LTHR exhaust condensate for n-heptane revealed high concentrations of 2,5-heptanedione, a di-ketone that can be closely tied to species in existing autoignition models for n-heptane. GC/MS analysis of the LTHR condensate for conventional diesel fuel and GTL diesel fuel revealed a series of high molecular weight aldehydes and ketones, which were expected, as well as a series of organic acids, which are not commonly reported as products of combustion. The GC/MS analysis of the methyl decanoate exhaust condensate revealed that the aliphatic chain acts similarly to n-paraffins during LTHR, while the ester group remains intact. Thus, although the FTIR data revealed that decarboxylation occurs at significant levels for methyl decanoate, it was concluded that this occurs after the aliphatic chain has been largely consumed by other LTHR reactions. (author)

Szybist, James P.; Boehman, Andre L.; Haworth, Daniel C. [Pennsylvania State University, Fuel Science Program, 405 Academic Activities Building, University Park, PA 16802 (United States); Koga, Hibiki [Honda R and D Company, Ltd., Asaka-shi, Saitama 351-0024 (Japan)

2007-04-15T23:59:59.000Z

314

E-Print Network 3.0 - adiabatic diesel engine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: adiabatic diesel engine...

315

E-Print Network 3.0 - automotive diesel engine Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive diesel engine...

316

E-Print Network 3.0 - advanced diesel engine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced diesel engine...

317

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodiesel–diesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodiesel–diesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

318

EXHAUST GAS RECIRCULATION  

E-Print Network (OSTI)

EXHAUST GAS RECIRCULATION (EGR) COOLER TESTING Southwest Research Institute® #12;overnment environmental regulations for diesel engine emissions are becoming increas- ingly stringent, and are driving) and oxides of nitrogen (NOx). The use of exhaust gas recirculation (EGR) coolers is considered

Chapman, Clark R.

319

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

320

Chemical composition of exhaust from aircraft turbine engines  

SciTech Connect

This paper reports measurement of the chemical composition of exhaust from two aircraft tubing engines. The two engines are the F101, used on the B-1B aircraft, and the F110, used on the F-16C and F-16D aircraft. Samples were collected from each engine using a probe positioned just behind the exhaust nozzle. The measurements reported her were made at four power settings from idle to intermediate power. Exhaust composition measurements included carbon monoxide, carbon dioxide, nitrogen oxides, total hydrocarbons, and individual organic species. The principle focus of this paper is on the detailed organic species results.

Spicer, C.W.; Holdren, M.W.; Smith, D.L. (Battelle, Columbus, OH (US)); Hughes, D.P. (Tinker AFB, Oklahoma City, OK (US)); Smith, M.D. (Environics Div., Tyndall AFB, Panama City, FL (US))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Performance and emission characteristics of a diesel engine using esters of palm olein/soybean oil blends  

Science Journals Connector (OSTI)

In this experimental study, the engine performance and exhaust emissions of a diesel direct injection engine using mixed palm oleinâ??soybean vegetable oil ethyl ester (POSEE) and methyl ester (POSME) have been examined. The results of experimental studies have shown that the torque and brake power output of an engine, which uses biodiesels, is slightly lower and specific fuel consumption is higher than in an engine using conventional diesel fuel. It has also been observed that there is a decrease in both carbon monoxide and hydrocarbon (HC) emissions, which indicates an advantage of exhaust emissions. Although methyl ester's CO2 emissions decreased compared with those of diesel fuel, NO and NOX emissions were higher with the biodiesels.

Imdat Taymaz; Mucahit Sengil

2010-01-01T23:59:59.000Z

322

A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust  

Science Journals Connector (OSTI)

Background Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. Objective We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. Methods Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. Results Offspring of mice exposed to \\{DEPs\\} were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. Conclusion We created a mouse model that linked maternal exposure to \\{DEPs\\} with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor– and oxidative stress–regulated genes.

Sarah Manners; Rafeul Alam; David A. Schwartz; Magdalena M. Gorska

2014-01-01T23:59:59.000Z

323

Control Oriented Dynamic Modeling of a Turbocharged Diesel Engine  

Science Journals Connector (OSTI)

To build a precise model is a key issue in fulfilling on optimal control of the turbocharged diesel engine. Meanvalue model has been extensively used for engine control, but neglects the scavenging efficiency. On the basis of carefully considering air-fuel ... Keywords: Diesel engine, mean-value model, AFR

Haiyan Wang; Jundong Zhang

2006-10-01T23:59:59.000Z

324

Effect of Ethanol on Blending Stability and Diesel Engine Emissions  

Science Journals Connector (OSTI)

Effect of Ethanol on Blending Stability and Diesel Engine Emissions ... Industrial & Engineering Chemistry Research2013 52 (44), 15504-15508 ... This article describes the effects of hydroxylated biodiesel (castor oil methyl ester – COME) on the properties, combustion, and emissions of butanol–diesel blends used within compression ignition engines. ...

Magín Lapuerta; Octavio Armas; Reyes García-Contreras

2009-07-28T23:59:59.000Z

325

Performance and emission enhancements of a variable geometry turbocharger on a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Variable Geometry Turbochargers (VGTs) have emerged in the heavy-duty diesel market with the simultaneous introduction of Exhaust Gas Recirculation (EGR) in meeting emission standards. From a military perspective, VGTs offer considerable promise of improving low speed torque and overall fuel economy. Despite these gains, nitric oxides (NOx) emissions generally increase with increased boost. During times when the military can reduce its environmental impact, VGTs can drive EGR and counter the increase in NOx emissions with relatively minor penalty in particulate matter (PM) emissions. This study highlights the performance and emission enhancements enabled by a VGT on a heavy-duty diesel engine.

Timothy J. Jacobs; Chad Jagmin; Wesley J. Williamson; Zoran S. Filipi; Dennis N. Assanis; Walter Bryzik

2008-01-01T23:59:59.000Z

326

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

327

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important...

328

Design Challenges of Locomotive Diesel Engines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Technology MobiCleanTM Soot Filter for Diesel Locomotiive Applications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations...

329

Estimation and Control of Diesel Engine Processes Utilizing Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators deer12kocher.pdf More Documents &...

330

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

331

A Correlation of Diesel Engine Performance with Measured NIR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CORRELATION OF DIESEL ENGINE PERFORMANCE WITH MEASURED NIR FUEL CHARACTERISTICS Bruce Bunting, Michael Bunce, ORNL Alain Lunati, Oswin Galtier, Eric Hermitte, SP3H Monday, P-02...

332

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

333

Estimating diesel engine performance by indirect methods  

E-Print Network (OSTI)

was under taken with an instrumented John Deere 4440 tractor to investigate the feasibility of using indirect methods to measure engine power output and fuel consumption. Two indirectly related variables studied were exhaust gas temperature and injector... and assistance in the performance of research tasks. Steve Bandy and Costas Kotzabassis are also thanked for their contributions. The financial support of Deere 5 Company, the Center for Energy and Mineral Resources and the Texas Agricultural Experiment...

McKiernan, Michael

2012-06-07T23:59:59.000Z

334

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

335

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

Anderson, Byron P.

2011-01-01T23:59:59.000Z

336

Knocking detection device in diesel engines  

SciTech Connect

This patent describes a device for detection of knocking in a diesel engine which consists of: a pressure detector, having a piezoelectric element, for detecting the rate of change of combustion pressure of the engine; an angle detector for detecting the rotation of the engine; and a knocking detector for receiving the outputs of the pressure detector and the angle detector for deciding whether or not knocking occurs. The knocking detector consists of a rotation rate detector for converting the output of the angle detector to a signal corresponding to the rotation rate of the engine, and a division apparatus for dividing the output of the pressure detector by the output of the rotation rate detector, the decision of an occurrence of knocking occurring when the output of the division device exceeds a predetermined value.

Ootsuka, Y.; Hattori, T.; Ozaki, T.

1986-02-04T23:59:59.000Z

337

6 - Engine brake performance in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: This chapter provides a comprehensive theory on engine brake performance. It first discusses vehicle braking requirement and the impact on engine–vehicle matching in engine brake operation, followed by a comparison between engine brakes and drivetrain retarders. It then introduces drivetrain retarders in detail including their torque and cooling characteristics. The performance characteristics of exhaust brakes and compression brakes are elaborated including their mechanisms and the interactions with valvetrain, variable valve actuation (VVA) and turbocharger. The principles of engine brake design are introduced through comprehensive simulation analysis on engine thermodynamic cycles in braking operation. A braking gas recirculation (BGR) theory is developed.

Qianfan Xin

2013-01-01T23:59:59.000Z

338

Effect of engine operating parameters and fuel characteristics on diesel engine emissions  

E-Print Network (OSTI)

To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

Acar, Joseph, 1977-

2005-01-01T23:59:59.000Z

339

Relevance of valve overlap for meeting Euro 5 soot emissions requirements during load transient process in heavy duty diesel engines  

Science Journals Connector (OSTI)

This work describes the influence on performance and soot emissions of using different valve overlap camshafts during load transient processes in a heavy duty (HD) diesel engine equipped with a variable geometry turbine (VGT) in its turbocharger and a selective catalyst reactor (SCR) in the exhaust line. Based on the results of experiments and calculations, in this paper a description is given of how the valve timing affects the instantaneous exhaust and intake pressure, the short-circuit of the air mass flow, the prejudicial backflows, the performance of the turbine and hence the general performance and pollutant emissions of a VGT equipped HD diesel engine during a transient process. The paper concludes that very low or no overlap is imperative if a VGT is used to meet forthcoming pollutant emissions restrictions and to improve the transient response of HD turbocharged diesel engines.

J. Galindo; J.R. Serrano; F. Vera; C. Cervello; M. Lejeune

2006-01-01T23:59:59.000Z

340

Tobacco Smoking, Motor Exhaust Fumes, and General Air Pollution in Relation to Lung Cancer Incidence  

Science Journals Connector (OSTI)

...patients to represent the general populations from which...urban motor traffic or to general urban air pollution...Particulate Phase of Gaso line Engine Exhaust and the Carcinogenicity...Particulate Phase of Diesel Engine Exhausts and the Carcinogenicity...

Clarence A. Mills and Marjorie Mills Porter

1957-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network (OSTI)

.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research obtained from engine laboratory visits and present results from a diesel aerosol sampling questionnaireREVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST

Minnesota, University of

342

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

343

Performance of a direct diesel engine using aviation fuels blended with biodiesel  

Science Journals Connector (OSTI)

In this study, jet fuel (JF) and railroad fuel (D2) with SME blends (5%, 20%, 50%) were used in a four-cylinder, naturally aspirated, direct (DI) diesel engine. The engine was operated under full load and tested at various speeds to determine the engine's performance and exhaust emission characteristics. The experimental results show that as the SME ratio of the fuels increases, the break specific fuel consumption (BSFC) and exhaust temperature increase; the SME and its blends show a slight drop in engine performance. In this experiment, carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and smoke opacity values were measured for each fuel. The results of the emission tests revealed that the oxygen content of SME provided a significant reduction in CO and smoke opacity emissions. However, when the test engine was fuelled by SME and its blends, NOx emissions increased.

Burak Gökalp; Hakan Serhad Soyhan; Halil ?brahim Sarac

2012-01-01T23:59:59.000Z

344

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

345

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions  

Science Journals Connector (OSTI)

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions ... The test fuels indicate variable hydrocarbon composition and physical and chemical properties, and they were prepared under a European Union research program aiming to identify future fuel formulations for use in modern DI diesel engines. ... 1,2,4-9,13,14,16,17,24-26 In general, there is an interrelation between the molecular structure (paraffins, olefins, napthenes, and aromatic hydrocarbons), the chemical properties (cetane number, ignition point, etc.), and the physical properties (density, viscosity, surface tension, etc.) of the diesel fuel. ...

Theodoros C. Zannis; Dimitrios T. Hountalas; Roussos G. Papagiannakis

2007-07-19T23:59:59.000Z

346

Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain...

347

2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research...

348

Kinetics of Diesel Nanoparticle Oxidation  

Science Journals Connector (OSTI)

The oxidation rates in air of diesel nanoparticles sampled directly from the exhaust stream of a medium-duty diesel engine were measured over the temperature range of 800?1140 °C using online aerosol techniques. ... Particulate emission from diesel engines is currently a topic of great concern from both pollution and public health standpoints. ... In addition, the fundamental carbon-to-hydrogen ratio may be different in diesel particles as compared to the commonly used surrogates (15). ...

Kelly J. Higgins; Heejung Jung; David B. Kittelson; Jeffrey T. Roberts; Michael R. Zachariah

2003-03-25T23:59:59.000Z

349

Altered gene expression in response to diesel exhaust particulate matter (SRM 1650a) in MCF-7 cells detected with DNA microarrays.  

Science Journals Connector (OSTI)

...17-21, 2010; Washington, DC Abstract 3777: Diesel motor exhaust and lung cancer risk in a pooled analysis from case-control...School of Medicine, New York, NY. Introduction: Diesel-motor exhaust (DME) is classified by IARC as probably carcinogenic...

Brinda Mahadevan; Channa Keshava; Eric Brooks; Ainsley Weston; and William M. Baird

2006-04-15T23:59:59.000Z

350

Fuzzy control of a turbocharged diesel engine  

Science Journals Connector (OSTI)

In this paper an innovative fuzzy controller is proposed to regulate the intake manifold pressure and the fresh mass airflow of diesel engines simultaneously. Unlike many multivariable controllers published in the literature, it requires neither an internal model nor identification algorithms. It has been designed considering the instrumentation set usually embedded in a mass-produced passenger car. Its rule-based structure has led to an algorithm, which is easy to implement. In comparison to controllers embedded at present in standard Engine Control Units (ECUs), it improves the trajectory tracking of desired outputs as noted during simulation of EURO cycles. In terms of robustness, this controller is little sensitive to the parameter disparity generally encountered in mass-produced engines.

Jean-Francois Arnold; Nicolas Langlois; Houcine Chafouk; Gerard Tremouliere

2008-01-01T23:59:59.000Z

351

Emission of a compression ignition engine fuelled by diesel and imitated syngas  

Science Journals Connector (OSTI)

Biomass can be converted into a useful source of energy through gasification. The gasification product known as synthesis gas or syngas composition of syngas may fluctuate due to many factors such as operational errors of the gasifier as well as the type of feedstock used or may be due to the feeding rate fluctuation. Therefore it would be difficult to assess the effect of syngas composition and diesel replacement ratio to the emission when combusted in dual fuel syngas – diesel compression ignition engine. In order to overcome this problem controllable composition and conditions of imitated syngas was used in this study by selective three compositions of syngas close to the real conditions. The objective of this study is to determine the exhaust emissions of a compression ignition engine fuelled with diesel and imitated syngas at different compositions and diesel replacement ratios to determine the most appropriate composition of syngas and diesel replacement ratio which will give less emission. The test results on syngas emission are compared with the results of diesel. CO2 and NOX emission level was reduced on syngas dual fuel mode but there were increases in CO and THC emissions throughout all syngas compositions examined due to poor combustion efficiency of dual fuel operation.

2012-01-01T23:59:59.000Z

352

The new V8 diesel engine for Land Rover  

Science Journals Connector (OSTI)

After the launch of the 2.7-l TDV6 diesel engine for Jaguar, Land Rover and PSA ... family. The new 3.6-l TDV8 Diesel engine was developed for Land Rover’s ... and Range Rover Sport models. The premium market seg...

Roland Ernst; Thomas Grünert; Paul Turner

2007-04-01T23:59:59.000Z

353

Numerical simulation of turbulent jet primary breakup in Diesel engines  

E-Print Network (OSTI)

Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann and Aerospace Engineering Arizona State University "Micro-Macro Modelling and Simulation of Liquid-Vapour Flows" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase

Helluy, Philippe

354

Air management in a diesel engine using fuzzy control techniques  

Science Journals Connector (OSTI)

Air management for diesel engines is a major challenge from the control point of view because of the highly nonlinear behavior of this system. For this reason, linear control techniques are unable to provide the required performance, and nonlinear controllers ... Keywords: Diesel engines, Fuzzy systems, Identification, LMIs, Nonlinear control

S. García-Nieto; J. Salcedo; M. Martínez; D. Laurí

2009-09-01T23:59:59.000Z

355

Performance and emissions of a Euro5 small diesel engine fuelled with biodiesel  

Science Journals Connector (OSTI)

This article describes the effects of using neat biodiesel on a modern small displacement passenger car diesel engine, highlighting the need for a specific adjusted electronic control unit (ECU) calibration for biodiesel. Engine performance were evaluated at full load with a standard ECU calibration as well as with an ECU calibration specifically adjusted for biodiesel; Break Specific Fuel Consumption (BSFC) and exhaust emissions was then evaluated at seven part load operating conditions, representative of the New European Driving Cycle (NEDC). Tests showed that through recalibration it is possible to obtain the same performance measured under diesel operation, with benefits in terms of engine-out emissions, especially as far as smoke emissions are concerned. Moreover, particle number and size distribution at engine outlet were also evaluated at part load operating conditions, showing a significant reduction of particle number and mass with biodiesel.

Federico Millo; Davide Simone Vezza; Theodoros Vlachos

2012-01-01T23:59:59.000Z

356

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network (OSTI)

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

357

New Two-Stroke Marine Diesel Engines from Wärtsilä  

Science Journals Connector (OSTI)

Wärtsilä has developed a new generation of small marine diesel engines with the designations RT-flex35 and RT- ... of 35 cm and 40 cm. The engines are equipped exclusively with an integrated electronic ... first ...

Dipl.-Ing. Patrick Frigge; Dipl.-Ing. Samuel Affolter…

2011-11-01T23:59:59.000Z

358

Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine  

Science Journals Connector (OSTI)

The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine and to compare the outcomes to that of the D2 fuel. Engine performances exhaust emissions and some other important parameters were observed as a function of engine load and speed. In addition the effect of modifying compression ratio was also carried out in this study. From the engine experimental work neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2 operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO CO2 and HC were also lower using blended mixtures and in its neat form. However NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

Mazlan Said; Azhar Abdul Aziz

2012-01-01T23:59:59.000Z

359

Combustion, performance and emission analysis of diesel engine fuelled with methyl esters of Pongamia oil  

Science Journals Connector (OSTI)

The methyl esters of vegetable oils, known as biodiesel are increasingly becoming popular because of their low environmental impact and potential as a green alternative fuel for diesel engine, and that they would not require significant modification of existing engine hardware. Methyl ester of Pongamia oil (PME) is derived through transesterification process. Experimental investigations have been carried out to examine properties, performance and emissions of different blends (B00, B20, B40, B60, B80 and B100) of PME comparison to diesel. A computer assisted single cylinder constant speed water cooled four stroke direct diesel engine (5 HP), which is commonly used in the agricultural sector for driving the pumps and small electrical generators is selected for the experimental investigation. The performance, emissions and combustion characteristics are analysed. The combustion parameters considered for this analysis are cylinder pressure and rate of heat release. The brake thermal efficiency is slightly reduced and hydrocarbon, carbon monoxide and smoke emissions in the exhaust are reduced when fuelled with methyl esters compared to diesel. But the NOx emissions are high when fuelled with methyl esters compared to diesel. [Received: December 11, 2009; Accepted: March 21, 2010

T. Hari Prasad; K. Hema Chandra Reddy; M. Muralidhara Rao

2010-01-01T23:59:59.000Z

360

4 - Fundamentals of dynamic and static diesel engine system designs  

Science Journals Connector (OSTI)

Abstract: This chapter lays out the foundation of dynamic and static diesel engine system designs by linking the theoretical governing equations of the instantaneous engine in-cylinder cycle processes and the gas flow network of the air system. Engine manifold filling dynamics is discussed for dynamic system design. The chapter develops the theory of pumping loss and engine delta P, which are key design issues for modern high-EGR turbocharged diesel engines. The theory is used to predict engine hardware performance or determine hardware specifications to meet target performance. Four core equations for engine air system are proposed. Different theoretical options of engine air system design are summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nox reduction with CO over supported Pd catalysts under simulated post Euro-IV diesel exhaust conditions  

Science Journals Connector (OSTI)

The catalytic reduction of NOx with CO over Pd/Al2O3 and Pd/TiO2/Al2O3 under simulated post Euro-IV diesel exhaust conditions was studied. The catalytic activities obtained...2 loadings and total amounts of reduc...

Yinghua Li; Dae-Won Lee; Young-Chul Ko…

2008-12-01T23:59:59.000Z

362

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

363

Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming.

364

Combined Numerical-experimental Study of Dual Fuel Diesel Engine  

Science Journals Connector (OSTI)

Abstract In the present paper the authors discuss the effect of different fuel ratios on the performance and emission levels of a common rail diesel engine supplied with natural gas and diesel oil. Dual fuel operation is characterized by a diesel pilot injection to start combustion in an intake port premixed NG/air mixture. The combined numerical – experimental study of the dual fuel diesel engine that is carried out in this paper aims at the evaluation of the CFD potential to predict the main features of this particular engine operation. The experimental investigations represent a tool for validating such a potential and for highlighting, at the same time, the major problems that arise from the actual engine operation with different NG / diesel oil fuel ratios.

Carmelina Abagnale; Maria Cristina Cameretti; Luigi De Simio; Michele Gambino; Sabatino Iannaccone; Raffaele Tuccillo

2014-01-01T23:59:59.000Z

365

Effect of Bioethanol Blended Diesel Fuel and Engine Load on Spray, Combustion, and Emissions Characteristics in a Compression Ignition Engine  

Science Journals Connector (OSTI)

Yan et al.(8) investigated the combustion and emission characteristics of diesel engines fueled with ethanol–diesel blended fuel in a single cylinder diesel engine. ... Figure 11 shows the indicated specific fuel consumption (ISFC) characteristics of diesel–bioethanol blended fuels at various engine loads. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Su Han Park; In Mo Youn; Yunsung Lim; Chang Sik Lee

2012-07-03T23:59:59.000Z

366

Feature - Air Force Fellows helping work toward smarter diesel engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Force Fellows helping work toward smarter diesel engines Air Force Fellows helping work toward smarter diesel engines Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. (Photo by Wes Agresta) One of the three core values of the Air Force is "excellence in all we do." So it should be no surprise that there are currently two Air Force officers here at Argonne studying ways to improve the efficiency of military vehicles. Lieutenant Colonel Jeff Gillen and Major Clint Abell are the fourth set of Air Force Fellows to spend time at Argonne, but the first to be stationed

367

Combustion of the alternative marine diesel fuel LCO in large diesel engines  

Science Journals Connector (OSTI)

Large diesel engines represent the heart of the ships, which transport worldwide about 80 % of the goods over the sea route these days. Regimentations of the IMO are planning drastic reductions of nitrogen oxi...

Dipl.-Ing. Daniel Struckmeier; Prof. Dr.-Ing. Koji Takasaki…

2008-11-01T23:59:59.000Z

368

Diesel Engines: What Role Can They Play in an Emissions-Constrained World?  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation; California Air Resources Board

369

An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control  

Energy.gov (U.S. Department of Energy (DOE))

Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion

370

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

371

Performance and Emission Characteristics of Diesel Engines Fueled with Diesel?Dimethoxymethane (DMM) Blends  

Science Journals Connector (OSTI)

Although application of high-pressure injection and common rail system can reduce both NOx and PM emissions, the expense is also very high and unaffordable for many engine producers and consumers, especially for diesel engines widely applied for agricultural machinery, most of which are single-cylinder and of low price. ... Fleisch et al.,(2) Kapus and Ofner,(3) and Sorenson and Mikkelsen(4) have studied DME in a modified diesel engine, and their results showed that the engine could meet ultra-low emission levels without a fundamental change in the combustion systems. ... Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, 1988. ...

Ruijun Zhu; Xibin Wang; Haiyan Miao; Zuohua Huang; Jing Gao; Deming Jiang

2008-11-14T23:59:59.000Z

372

Diesel Engine Combustion of Biomass Pyrolysis Oils  

Science Journals Connector (OSTI)

Biomass pyrolysis oils are manufactured through a moderate-temperature process (?500 °C) in which the biomass feedstock is subjected to rapid heating in the absence of air, where it vaporizes, cracks, and is condensed after a short residence time (?500 ms) into a dark brown liquid composed of a complex mixture of oxygenated hydrocarbons whose heating value is approximately half that of No. 2 diesel fuel. ... The combustion air inlet temperature can be preheated up to 130 °C through the use of an in-line electric heater, which allows engine operation with fuels that have long ignition delay, without relying on any ignition additives. ... Their data showed that in addition to reducing the peak heat release magnitude, slower chemical kinetics resulted in reduced rate of instantaneous heat release (the slope of the instantaneous heat release curve) in the early combustion phase, resulting in delayed peak heat release timing relative to SOC. ...

Alan Shihadeh; Simone Hochgreb

2000-02-15T23:59:59.000Z

373

In situ optical sensing of diesel exhaust particulates using a polychromatic  

Science Journals Connector (OSTI)

A novel optical probe for in situ monitoring of diesel exhaust particulates has been developed and is demonstrated. The probe uses a transmissive configuration to interrogate a particulate stream using polychromatic (white) light from an electroluminescent LED, the probe being mounted transversely to the exhaust flow in the tailpipe. Consequently the effects of scattering and absorption are measured on the transmission spectrum. The optical signal is relayed via an optical fibre bundle to a remote detection and data logging unit. Photodetector signals representing red, green and blue spectral information are monitored using detectors having overlapping spectral responsivities. Data collection is by red–green–blue (RGB) tristimulus detection and spectral analysis uses the hue–lightness–saturation (HLS) algorithms. It is shown that changes in spectral width may be used to represent particulate bursts (scattering) via the saturation parameter with a compensation algorithm being used to compensate for shifts in the operating point due to contamination of the optics. As polychromatic light is used it is demonstrated that variation in the mean particle size may be represented in terms of the ratios of polydisperse extinction for adjacent spectral bands. The potential advantages of chromatic sensing for signal processing in terms of reduced susceptibility to vapour content and optical contamination is demonstrated by comparison with an intensity based sensor.

R A Aspey; K J Brazier

2003-01-01T23:59:59.000Z

374

Performance and emissions of a dual fuel operated diesel engine  

Science Journals Connector (OSTI)

Vegetable oil and its esters (biodiesel) are the renewable alternative fuels that can be used as a substitute for diesel in the diesel engines. The vegetable oil fuelled diesel engine results in lower efficiency and higher smoke emission. Hence in this work, an attempt has been made to use inedible and under utilised mahua oil (MO) as a substitute for diesel by fumigating liquefied petroleum gas (LPG) along with the air. A single cylinder diesel engine was modified to work in dual fuel mode by suitable retrofitting. The MO was injected into the cylinder using a fuel pump and LPG was fumigated along with the air. In MO + LPG dual fuel mode, 9% increase in brake thermal efficiency and 35% reduction in smoke emission of the engine were observed as compared to the sole fuel mode with MO. Also, the engine performance characteristics in MO + LPG dual fuel mode are close to sole fuel mode with diesel. From this work, it is concluded that LPG can be fumigated along with the air to increase the performance of MO fuelled agricultural diesel engine.

N. Kapilan; R.P. Reddy

2012-01-01T23:59:59.000Z

375

Exhaust emissions and mutagenic effects of diesel fuel, biodiesel and biodiesel blends  

Science Journals Connector (OSTI)

Abstract The replacement of petroleum-derived fuels by renewable biogenic fuels has become of worldwide interest with the environmental effects being scientifically investigated. Biodiesel has been proven to be a suitable alternative to petrodiesel and blending up to 20% biodiesel with petrodiesel is policy promoted in the USA and the EU. To investigate the influence of blends on the exhaust emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) using blends of rapeseed-derived biodiesel and petrodiesel. Regulated and non-regulated exhaust compounds were measured and their mutagenic effects were determined using the Bacterial Reverse Mutation Assay (Ames-Test) according to OECD Guideline 471. Exhaust emissions of blends were approximately linearly dependent on the blend composition, particularly when considering regulated emissions. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust emissions. In detail, an increase of the mutagenic potential was found for blends with the maximum observed for B20. From this point of view, B20 must be considered as a critical blend when petrodiesel and biodiesel are used as binary mixtures.

Olaf Schröder; Jürgen Bünger; Axel Munack; Gerhard Knothe; Jürgen Krahl

2013-01-01T23:59:59.000Z

376

Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created in order to guide the engine disassembly and testing. The overall goal was to improve fuel economy

Demirel, Melik C.

377

1 - The analytical design process and diesel engine system design  

Science Journals Connector (OSTI)

Abstract: Diesel engine system design (DESD) is an important and leading function in the design and development of modern low-emissions EGR diesel engines. It creates a paradigm shift in how engine design is carried out. It leads and integrates the designs from the system level to the component level by producing high-quality system design specifications with advanced analytical simulation tools. This chapter introduces the fundamental concepts in diesel engine system design and provides an overview on the theory and approaches in this emerging technical field. The central theme is how to design a good engine system performance specification at an early stage of the product development cycle. The chapter employs a systems engineering approach and applies the concepts of reliability and robust engineering to diesel engine system design to address the optimization topics encountered in design for target, design for variability, and design for reliability. An attribute-driven system design process is developed for advanced analytical engine design from the system level to the subsystem/component level in order to coordinate different design attributes and subsystems. Four system design attributes – performance, durability, packaging, and cost – are elaborated. The chapter also addresses competitive benchmarking analysis. By focusing on engine performance and system integration (EPSI), the technical areas, theoretical foundation, and tools in diesel engine system design are introduced.

Qianfan Xin

2013-01-01T23:59:59.000Z

378

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

379

Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends  

Science Journals Connector (OSTI)

The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study reports that the brake-specific fuel consumption of ...

Ni Zhang; Zuohua Huang; Xiangang Wang; Bin Zheng

2011-03-01T23:59:59.000Z

380

Model-based Adaptive Observers for Intake Leakage Detection in Diesel Riccardo Ceccarelli, Carlos Canudas-de-Wit, Philippe Moulin and Antonio Sciarretta  

E-Print Network (OSTI)

Model-based Adaptive Observers for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli Diesel engine testbed. I. INTRODUCTION Modern diesel engine has the potential of a significant reduction of the functioning of a air-path in a diesel engine with exhaust gas recirculation circuit is presented. More

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Model-based Adaptive Observers for Intake Leakage Detection in Diesel Riccardo Ceccarelli , Carlos Canudas-de-Wit, Philippe Moulin and Antonio Sciarretta  

E-Print Network (OSTI)

Model-based Adaptive Observers for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli diesel engine professional simulator AMEsim. I. INTRODUCTION Modern diesel engine has the potential of the functioning of a air-path in a diesel engine with exhaust gas recirculation circuit is presented. More

Paris-Sud XI, Université de

382

Diesel pollution. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered. (Contains a minimum of 194 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

383

Diesel pollution. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered. (Contains a minimum of 176 citations and includes a subject term index and title list.)

Not Available

1993-03-01T23:59:59.000Z

384

Diesel pollution. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

385

Diesel pollution. (Latest citations from Pollution abstracts). NewSearch  

SciTech Connect

The bibliography contains citations concerning pollution from diesel systems. Articles are included for automotive systems, large scale diesel generators, marine diesel engines, and other applications of diesel fuels. Citations examine the toxic and environmental effects of diesel fuels and diesel exhaust emissions from combustion sources. Pollution control measures from a fuel and post-combustion aspect are also considered. (Contains a minimum of 217 citations and includes a subject term index and title list.)

Not Available

1994-10-01T23:59:59.000Z

386

Diesel Engine Strategy & North American Market Challenges, Technology and Growth  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

387

Friction Characteristics of Steel Pistons for Diesel Engines  

E-Print Network (OSTI)

The use of iron pistons is increasing due to the higher power requirements of diesel truck engines. Expansion of the iron piston is a common concern. The purpose of this study is to clarify the lubrication conditions of ...

Kim, Dallwoo

388

Improving supply chain responsiveness for diesel engine remanufacturing  

E-Print Network (OSTI)

Achieving a significant reduction in order-to-shipment lead-time of remanufactured diesel engines can dramatically decrease the amount of finished goods inventory that Caterpillar needs to carry in order to meet its delivery ...

Méndez de la Luz, Diego A., 1979-

2011-01-01T23:59:59.000Z

389

Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer  

Science Journals Connector (OSTI)

Abstract Diesel-exhaust particles (DEP) are one of the main anthropogenic sources of black carbon (BC) and organic matter (OM). Understanding the optical properties of DEP, including the enhancement of light absorption by BC due to coating and light absorption by OM, is important for evaluating the climate impact of DEP. In this study, a three-wavelength photoacoustic soot spectrometer (405, 532, and 781 nm) was used to investigate the wavelength-dependent optical properties of DEP emitted from a diesel engine vehicle running on a chassis dynamometer in transient driving mode (JE-05) and at a constant speed (either idling or driving at 70 km/h). Optical properties were measured after passing the diluted exhaust through a heater, set at 20, 47, or 300 °C (transient driving mode) or between 20 and 400 °C (constant driving mode). The OM accounted for, on average, ?40 and ?35% of the total mass concentration of DEP during the transient and constant driving modes, respectively. In transient driving mode, enhancements of scattering coefficients at 20 and 47 °C, and of the mass concentration of organics, were observed during the high-speed driving period (?80 km/h) corresponding to driving on a highway. No difference was observed in the absorption coefficients between heated and unheated particles at 781 nm for either the transient (including the high-speed driving period) or constant driving modes. These results indicate a lack of enhancement due to the lensing effect, possibly because the BC was mainly mixed externally with the OM or because it was located at the edges of particles under these experimental conditions. Contributions to total light absorption at 405 nm by the OM were estimated by comparing the wavelength dependence of the absorption coefficients with and without heating. A significant contribution by light-absorbing OM (20 ± 7%) to total light absorption at 405 nm was observed during the high-speed driving period of the JE-05 mode, while the contributions were small during other periods in the JE-05 mode (0 ± 8%) and the constant driving mode (idling: 4 ± 12%; driving at 70 km/h: 0 ± 16%).

Xuesong Guo; Tomoki Nakayama; Hiroyuki Yamada; Satoshi Inomata; Kenichi Tonokura; Yutaka Matsumi

2014-01-01T23:59:59.000Z

390

Reducing Emissions of Persistent Organic Pollutants from a Diesel Engine by Fueling with Water-Containing Butanol Diesel Blends  

Science Journals Connector (OSTI)

An increasing energy demand and environmental pollution has motivated a search for bio-fuels, such as bio-diesels(1, 2) and bio-alcohols,(3, 4) that can be used as alternative fuels for diesel engines. ... In general, both bio-diesel and bio-alcohols, such as ethanol and butanol, have the advantages of higher brake thermal efficiency (BTE) and lower emissions of particulate matter (PM), carbon monoxide (CO) and hydrocarbons (HC). ... Diesel Engine and Test Cycle ...

Yu-Cheng Chang; Wen-Jhy Lee; Hsi-Hsien Yang; Lin-Chi Wang; Jau-Huai Lu; Ying I. Tsai; Man-Ting Cheng; Li-Hao Young; Chia-Jui Chiang

2014-04-16T23:59:59.000Z

391

Complex Diesel Engine Simulation with Focus on Transient Operation  

Science Journals Connector (OSTI)

The engine bearings model takes into consideration the significant load variation during each engine cycle and, in general, the lubrication is hydrodynamic. ... Modern diesel engines are using common rail injection systems with electronically controlled injectors capable of very high injection pressure and multiple injection events per cycle. ...

Dinu Taraza; Naeim A. Henein; Radu Ceausu; Walter Bryzik

2008-02-12T23:59:59.000Z

392

The Research of the Intelligent Fault Diagnosis Optimized by ACA for Marine Diesel Engine  

Science Journals Connector (OSTI)

The marine diesel engine has the important function to guarantee the marine security and reliability. It is a strong ... with conventional FNN fault diagnosis method for this marine diesel engine’s combustion sys...

Peng Li; Lei Liu; Haixia Gong

2010-01-01T23:59:59.000Z

393

Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention  

Science Journals Connector (OSTI)

Abstract Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or l-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 ?g/m3), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and ?-glutamyl transferase (?-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-?, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while l-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF ?-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by l-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-?, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers.

Urmila P. Kodavanti; Ronald F. Thomas; Allen D. Ledbetter; Mette C. Schladweiler; Virginia Bass; Q. Todd Krantz; Charly King; Abraham Nyska; Judy E. Richards; Debora Andrews; M. Ian Gilmour

2013-01-01T23:59:59.000Z

394

Performance and Emissions of Direct Injection Diesel Engine Fueled with Diesel Fuel Containing Dissolved Methane  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China ... soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solns., one of which is the use of a gaseous fuel as a partial supplement for liq. ... (16)?Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill:? New York, 1988. ...

Junqiang Zhang; Deming Jiang; Zuohua Huang; Xibin Wang; Qi Wei

2006-01-19T23:59:59.000Z

395

10 - Friction and lubrication in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: This chapter addresses engine friction and lubrication dynamics modeling in diesel engine system design. It starts by introducing important fundamental principles of engine tribology and builds up a three-level system modeling approach of engine friction. The chapter summarizes the friction characteristics and friction-reduction design measures for both the overall engine system and individual subsystems such as the piston assembly, the piston rings, the bearings, and the valvetrain.

Qianfan Xin

2013-01-01T23:59:59.000Z

396

Optimizing the design of a hydrogen engine with pilot diesel fuel ignition  

Science Journals Connector (OSTI)

A diesel engine was converted to dual-fuel hydrogen operation, ignition being started by a 'pilot' quantity of diesel fuel but with 65 to 90% of the energy being supplied as hydrogen. With later injection timing, use of delayed port admission of the gas, and a modified combustion chamber, thermal efficiencies were achieved nearly 15% greater than those for diesel as the sole fuel. A 'solid' water injection technique was used to curb knock under full load conditions when the power output equalled or exceeded that of a similar diesel engine. The indicator diagrams under these conditions closely approach those of the Otto cycle. The development was assisted by computer simulation using a novel self-ignition and flame propagation model. The very fast burning rates obtained with stoichiometric hydrogen-air mixtures show combustion to occur within 5 degrees of crank rotation yet Otto cycle thermal efficiency was not achieved. However, greenhouse gases are shown to be reduced by more than 80%, nitrogen oxides by up to 70%, and exhaust smoke by nearly 80%.

S.M. Lambe; H.C. Watson

1993-01-01T23:59:59.000Z

397

Reduction of idle knock by EGR in a passenger car diesel engine  

SciTech Connect

In order to reduce the diesel idle knock, the effects of EGR on the idling characteristics were investigated on a passenger car equipped with an EGR Idle Knock Reduction System developed for practical use. It was found that EGR was effective not only for reducing idle knock but also for decreasing fuel consumption, smoke density, exhaust emissions and engine vibration. Moreover, the practical range and possibility of the EGR Idle Knock Reduction System were found by clarifying the relationship between EGR, injection timing, cooling water temperature, noise level and fuel consumption.

Fukutani, I.; Watanabe, E.

1984-01-01T23:59:59.000Z

398

Interplay of air pollution and asthma immunopathogenesis: A focused review of diesel exhaust and ozone  

Science Journals Connector (OSTI)

Abstract Controlled human exposure experiments with diesel exhaust particles (DEPs) and ozone serve to illustrate the important role pollutants play in modulating both allergic mechanisms and immune responses to affect the immunopathogenesis of airway diseases such as asthma. For DEP, evidence is stronger for the exacerbation of existing asthma rather than for the development of new disease. To the extent that this enhancement occurs, the augmentation of Th2-type immunity seems to be a common element. For ozone, neutrophilic inflammation, altered immune cell phenotype and function and oxidative stress are all marked responses that likely contribute to underlying immune-inflammatory features of asthma. Evidence is also emerging that unique gene signatures and epigenetic control of immune and inflammatory-based genes are playing important roles in the magnitude of the impact ozone is having on respiratory health. Indeed, the interplay between air pollutants such as DEP and ozone and asthma immunopathogenesis is an ongoing concern in terms of understanding how exposure to these agents can lead to worsening of disease. To this end, asthmatics may be pre-disposed to the deleterious effects of pollutants like ozone, having constitutively modified host defense functions and gene signatures. Although this review has utilized DEP and ozone as example pollutants, more research is needed to better understand the interplay between air pollution in general and asthma immumopathogenesis.

Neil E. Alexis; Chris Carlsten

2014-01-01T23:59:59.000Z

399

Performance and emissions of a diesel tractor engine fueled with marine diesel and soybean methyl ester  

Science Journals Connector (OSTI)

Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. This paper presents the results of investigations carried out in studying the fuel properties of soybean methyl ester (SME) and its blend with marine diesel fuel from 5%, 20% and 50% blends by volume and in running a diesel engine with these fuels. The results indicate that the use of biodiesel produces lower smoke opacity (up to 74%), but higher brake specific fuel consumption (BSFC) (up to 12%) compared to marine fuel (MF). The measured carbon monoxide (CO) emissions of B5 and B100 fuels were found to be 3% and 52% lower than that of the MF, respectively.

B. Gokalp; E. Buyukkaya; H.S. Soyhan

2011-01-01T23:59:59.000Z

400

An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions  

Science Journals Connector (OSTI)

Abstract Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO2 emission increase and \\{NOx\\} emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO2 emission and the decrease of \\{NOx\\} emission.

Jerzy Kowalski

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

402

The effect of lubricant derived ash on the catalytic activity of diesel particulate filters  

E-Print Network (OSTI)

A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the acceptable amount of PM output by ...

Murray, Timothy Quinn

2014-01-01T23:59:59.000Z

403

Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines  

Science Journals Connector (OSTI)

Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O32SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 ?m thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

S B Patond; S A Chaple; P N Shrirao; P I Shaikh

2013-01-01T23:59:59.000Z

404

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

405

Experimental investigation on the characteristics of diesel oxygenated fuel blends in a di diesel engine using two spring split injection;.  

E-Print Network (OSTI)

??Diesel engines are efficient prime movers for heavy duty vehicles, so they have attracted many automobile and research institutions for their use as main prime… (more)

Kumaresan M

2013-01-01T23:59:59.000Z

406

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson  

E-Print Network (OSTI)

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) · A good diesel fuel has a low ignition delay period and hence a high CN · Ethanol has

Minnesota, University of

407

BMW Diesel Engines - Dynamic, Efficient and Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about cars General Attitude towards Driving & Cars Market Study Diesel Image Germany and UK 2005 74 85 75 82 60 72 65 66 64 66 56 60 60 51 54 66 83 83 89 62 57 29 32 64...

408

French perspective on diesel engines & emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

409

Novel injector techniques for coal-fueled diesel engines  

SciTech Connect

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

410

Measurements of the soot emissions and engine operat-ing parameters from a diesel engine during transient op-  

E-Print Network (OSTI)

ABSTRACT Measurements of the soot emissions and engine operat- ing parameters from a diesel engine and are the subject of future research. INTRODUCTION Soot emissions from diesel engines are well known to have gov- erning the emission of particles from diesel engines are becoming ever more stringent. The soot

Daraio, Chiara

411

UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES  

SciTech Connect

An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

DeBusk, Melanie Moses [ORNL] [ORNL; Bischoff, Brian L [ORNL] [ORNL; Hunter, James A [ORNL] [ORNL; Klett, James William [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2014-01-01T23:59:59.000Z

412

Proof-of-principle test for thermoelectric generator for diesel engines; Final report  

SciTech Connect

In September of 1987, the principals of what is now Hi-Z TECHNOLOGY, INC. applied to the National Bureau of Standards (now National Institute of Standards and Technology, NIST) under the Energy Related Inventions Program. The invention was entitled ``Thermoelectric Generator for Diesel Engines.`` The National Institute of Standards and Technology evaluated the invention and on January 12, 1989 forwarded Recommendation Number 455 to the Department of Energy (DOE). This recommendation informed the DOE that the invention had been selected for recommendation by the NIST for possible funding by the DOE. Following the recommendation of the NIST, the DOE contacted Hi-Z to work out a development program for the generator. A contract for a grant to design, fabricate, and test a Proof-of-Principle exhaust powered thermoelectric generator for Diesel engines was signed October 19, 1989. Hi-Z provided the thermoelectric modules used in the generator as their contribution to the project. The purpose of this Grant Program was to design, build, and test a small-scale, Proof-of-Principle thermoelectric generator for a Diesel engine. 15 figs., 1 tab.

NONE

1991-07-26T23:59:59.000Z

413

Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode  

Science Journals Connector (OSTI)

Abstract With the gradual depletion of petroleum and environmental degradation, intensive research activity has been addressed to the utilization of alternative fuels in internal combustion engines. In the present work, an experimental investigation is carried out to study the effect of eucalyptus biodiesel and natural gas under dual fuel combustion mode on the performance and the exhaust emissions of a single cylinder DI diesel engine. The natural gas (NG) is inducted with the intake air through the inlet manifold. The liquid pilot fuel (eucalyptus biodiesel or diesel fuel) is injected into the combustion chamber to cover approximately 10% of the maximum power output. Then, keeping constant the pilot fuel flow rate, the power output is further increased using only natural gas. The combustion characteristics (cylinder pressure, ignition delay and heat release rate), performance and exhaust emissions of the dual fuel mode (NG–diesel fuel and NG–biodiesel) are compared with those of conventional diesel engine mode at various load conditions. The combustion analysis has shown that biodiesel as pilot fuel exhibits similar pressure–time history, with highest peak, as diesel fuel in conventional and dual fuel modes. The performance and pollutant emission results show that, compared to diesel fuel in dual fuel mode, the use of eucalyptus biodiesel as pilot fuel reduces the high emission levels of unburned hydrocarbon (HC), carbon monoxide (CO) and carbon dioxide (CO2) particularly at high engine loads. However this is accompanied by an increase in the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions, which can be explained by the lower calorific value and the oxygen presence in the molecule of the eucalyptus biodiesel, respectively.

L. Tarabet; K. Loubar; M.S. Lounici; K. Khiari; T. Belmrabet; M. Tazerout

2014-01-01T23:59:59.000Z

414

CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

exhaust components turbo-housing exhaust manifold C-15, 14.6L HD On- Highway Diesel Engine Materials Need: High Performance Low-Cost Alloy was Needed to Replace SiMo Cast Iron...

415

Engine state monitoring and fault diagnosis of large marine diesel engines  

Science Journals Connector (OSTI)

The reliable detection of engine malfunctions in order to predict and to ... of industry. For instance, occurring faults of marine diesel engines which are on the high seas for ... systems (CMS) should be able to...

D. Watzenig; M. S. Sommer; G. Steiner

2009-05-01T23:59:59.000Z

416

Engine performance and exhaust emissions from a diesel  

E-Print Network (OSTI)

. Carbon monoxide emissions increased by an average 15% using B5 and by an average of 19% using B100. Hydrocarbon emissions decreased by 14% using B5 and by 26% using B100. Nitrogen oxide emissions decreased by four percent with B5, five percent with B20...

Powell, Jacob Joseph

2009-05-15T23:59:59.000Z

417

ON CONDITION MONITORING OF EXHAUST VALVES IN MARINE DIESEL ENGINES  

E-Print Network (OSTI)

is to seal during the compression stroke, thereby providing maximum #12; combustion pressure for maximum seat and thereby provide scavenge (from scavenge air system) of the polluted air in the cylinder and fresh air intake for the following compression and combustion. Valve burn­through, or leakage, can

Mosegaard, Klaus

418

Prediction of marine diesel engine performance under fault conditions  

Science Journals Connector (OSTI)

The diesel engine, due to its superior efficiency when compared to other thermal engines, is widely used for propulsion of marine vessels. Since in such applications the power concentration is critical, most marine diesel engines are of the turbocharged type. Turbocharging has a serious effect on engine performance due to the interaction between the turbocharger and the engine. This interaction makes the detection of engine faults extremely difficult since a specific fault affects the turbocharger and through it the engine. For this reason various methods have been proposed for the detection of engine faults. The present author has in the past presented a method for marine diesel diagnosis by processing measured engine data using a simulation model. In the present work a completely different approach is followed; an attempt is made to use a simulation model to predict marine diesel engine performance under various fault conditions. The method is applied to a newly built vessel powered by a slow speed two stroke marine diesel engine. Using the engine shop trial data obtained under propeller law the simulation model constants are determined, using an automatic method that has been developed. The comparison of results obtained with the data from the official shop trials confirms the accuracy of the model and its ability to predict almost all operating parameters of the engine. The model is then used to produce results by simulating various engine faults or faults of its subsystems. From this analysis their impact on various measurable engine parameters is determined. It is interesting to see that in the case of turbocharged engines some faults have a different effect when compared to naturally aspirated ones. Also, it is revealed that without the use of modeling in many cases it is relatively difficult to determine the actual cause for an engine malfunction, since the observed effects on engine performance are similar. The proposed method is promising and assists the engineer to understand the actual effect of various faults on engine performance. Also it can be used as a training tool since it is easy to simulate various engine faults, a procedure which is extremely difficult, if not impossible, to perform on the field.

Dimitrios T Hountalas

2000-01-01T23:59:59.000Z

419

Exhaust gas treatment in testing nuclear rocket engines  

Science Journals Connector (OSTI)

With the exception of the last test series of the Rover program Nuclear Furnace 1 test?reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery a series of heat exchangers to gradually cool the exhaust gas stream to 100 K and an activated charcoal bed for adsorption of inert gases. A hydrogen?gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

Herbert R. Zweig; Stanley Fischler; William R. Wagner

1993-01-01T23:59:59.000Z

420

Exhaust gas treatment in testing nuclear rocket engines  

SciTech Connect

With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

Zweig, H.R.; Fischler, S.; Wagner, W.R. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer...

422

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

423

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

424

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

425

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

426

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation:...

427

Practical implications of marine diesel engine emission regulations  

SciTech Connect

The main pollutants from marine diesel engines are oxides of nitrogen (NOx), sulfur oxides (SOx) and particulates (soot). However, the proposed marine diesel engine emission regulations will primarily focus on the levels of NOx and SOx. In the future, once the proposed regulations are met, the limits and levels of other emissions will come under increasing scrutiny, such as particulates, hydrocarbons and carbon monoxide. Regardless of the type of pollutant, there are generally two classes of emission control: (1) techniques that reduce the amount of pollutant formed in the combustion process, or (2) prevent the pollutants from reaching the atmosphere. Unfortunately, some of these control techniques will not be able to meet the incoming regulations. Therefore, this paper identifies the diesel engine emissions of concern, the impending regulations, and the merits of current and future emission control technologies required to meet these regulations.

Bowen, C.E.; Potter, I.J.; Reader, G.T. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

1996-09-01T23:59:59.000Z

428

Diesel exhaust particles induce endothelial dysfunction in apoE{sup -/-} mice  

SciTech Connect

Background: Particulate air pollution can aggravate cardiovascular disease by mechanisms suggested to involve translocation of particles to the bloodstream and impairment of endothelial function, possibly dependent on present atherosclerosis. Aim: We investigated the effects of exposure to diesel exhaust particles (DEP) in vivo and ex vivo on vasomotor functions in aorta from apoE{sup -/-} mice with slight atherosclerosis and from normal apoE{sup +/+} mice. Methods: DEP 0, 0.5 or 5 mg/kg bodyweight in saline was administered i.p. The mice were sacrificed 1 h later and aorta ring segments were mounted on wire myographs. Segments from unexposed mice were also incubated ex vivo with 0, 10 and 100 {mu}g DEP/ml before measurement of vasomotor functions. Results: Exposure to 0.5 mg/kg DEP in vivo caused a decrease in the endothelium-dependent acetylcholine elicited vasorelaxation in apoE{sup -/-} mice, whereas the response was enhanced in apoE{sup +/+} mice. No significant change was observed after administration of 5 mg/kg DEP. In vivo DEP exposure did not affect constriction induced by K{sup +} or phenylephrine. In vitro exposure to 100 {mu}g DEP/ml enhanced acetylcholine-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilation induced by sodium nitroprusside was not affected by any DEP exposure. Conclusion: Exposure to DEP has acute effect on vascular functions. Endothelial dysfunction possibly due to decreased NO production as suggested by decreased acetylcholine-induced vasorelaxation and unchanged sodium nitroprusside response can be induced by DEP in vivo only in vessels of mice with some atherosclerosis.

Hansen, Christian S. [Department of Environmental and Occupational Health, Institute of Public Health, University of Copenhagen, Oster Farimagsgade 5, Building 5B, 2nd Floor, 1014 Copenhagen K (Denmark); Sheykhzade, Majid [Department of Pharmacology and Pharmacotherapy, Danish University of Pharmaceutical Sciences (Denmark); Moller, Peter [Department of Environmental and Occupational Health, Institute of Public Health, University of Copenhagen, Oster Farimagsgade 5, Building 5B, 2nd Floor, 1014 Copenhagen K (Denmark); Folkmann, Janne Kjaergaard [Department of Environmental and Occupational Health, Institute of Public Health, University of Copenhagen, Oster Farimagsgade 5, Building 5B, 2nd Floor, 1014 Copenhagen K (Denmark); Amtorp, Ole [Department of Pharmacology, University of Copenhagen (Denmark); Jonassen, Thomas [Department of Pharmacology, University of Copenhagen (Denmark); Loft, Steffen [Department of Environmental and Occupational Health, Institute of Public Health, University of Copenhagen, Oster Farimagsgade 5, Building 5B, 2nd Floor, 1014 Copenhagen K (Denmark)]. E-mail: s.loft@pubhealth.ku.dk

2007-02-15T23:59:59.000Z

429

Performance analysis and exhaust emissions of neem methyl ester operated compression ignition engine  

Science Journals Connector (OSTI)

Neem oil methyl ester (NOME) was prepared from neem oil using alkaline catalyzed transesterification. The important fuel properties of NOME 20% blend of NOME with diesel were compared with those of diesel. Optimum injection pressures were determined for neat diesel and NOME-20 blend. Comparison of brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) exhaust gas temperature (EGT) and smoke density was done for diesel and NOME-20 blend at their respective optimum injection pressure. Higher BSFC a slight decrease in BTE and a sharp decrease in EGT and smoke density were recorded with NOME-20 blend. Emissions with NOME-20 blend were also compared with diesel emissions at their respective optimum injection pressures. Significant reductions in carbon monoxide hydrocarbon and oxides of nitrogen and increase in carbon-di-oxide were observed with NOME-20 blend. Hence neem biodiesel has an environmental importance over diesel and shows a promising future.

Vinod Singh Yadav; Kamal Kishore Khatri; Deepak Tanwar; Ajayta; Dilip Sharma; S. L. Soni

2013-01-01T23:59:59.000Z

430

Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine  

Science Journals Connector (OSTI)

Abstract This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (?th) are found to have maximum values under these conditions. The emission CO2 was found to increase with engine speed and to decrease with water content. \\{NOx\\} produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases.

Ali Alahmer

2013-01-01T23:59:59.000Z

431

Comparison of Neat Biodiesels and ULSD in an Optimized Single-Cylinder Diesel Engine with Electronically-Controlled Fuel Injection  

Science Journals Connector (OSTI)

An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel SAE Int. ... The fuels were then burned in a single-cylinder direct-injection diesel engine and evaluated for both fuel consumption and exhaust emissions of nitrogen oxides, carbon monoxide (CO), unburned hydrocarbons, and particulate matter. ... Monyem, A.; Van Gerpen, J.; Canakcl, M.The effect of timing and oxidation on emissions from biodiesel–fueled engines Carbon 2001, 44 ( 1) 35– 42 ...

Michael Mangus; Farshid Kiani; Jonathan Mattson; Christopher Depcik; Edward Peltier; Susan Stagg-Williams

2014-05-12T23:59:59.000Z

432

The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts  

Science Journals Connector (OSTI)

Abstract The exhaust gases contain large amounts of unburned hydrocarbons during cranking without combustion. The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts were investigated using both experiments and simulations. Experiments were conducted on a single-cylinder DI (direct injection) diesel engine equipped with a common rail injection system. The amount of unburned hydrocarbon recirculation was jointly controlled by an EGR (exhaust gas recirculation) valve and a back pressure valve. The investigation showed that optimal opening of recirculation control valves allowed the first firing cycle to be advanced from 19 to 6 and reduced the duration of heavy smoke emission (opacity > 50%) by 77%. However, the enhancement to the in-cylinder LTR (low temperature reaction) decreased gradually as the amount of unburned hydrocarbon recirculation increased. An analysis of the chemical kinetics showed that the reaction intermediates present in unburned hydrocarbons, such as ketohydroperoxides, were the most significant factor in enhancing the LTR during non-firing cycles. At the same time, the substantial heat capacity of unburned hydrocarbons suppressed the LTR for higher recirculation rates.

Yi Cui; Haiyong Peng; Kangyao Deng; Lei Shi

2014-01-01T23:59:59.000Z

433

Comparative Toxicity of Gasoline and Diesel Engine Emissions  

SciTech Connect

Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.

JeanClare Seagrave; Joe L. Mauderly; Barbara Zielinska; John Sagebiel; Kevin Whitney; Doughlas R. Lawson; Michael Gurevich

2000-06-19T23:59:59.000Z

434

Cavitation problem in heavy duty diesel engines: a literature review  

Science Journals Connector (OSTI)

This paper reviews the existing knowledge on cavitation in general and its effect on diesel engine cylinder liners. A brief definition of cavitation and various cavitation numbers are presented. Various effects involved in the formation, growth and collapse of bubbles are also characterized. The effects of pressure, temperature, and dissolved gas on bubble behaviour are mentioned. An attempt is made to study the various types of damage caused by cavitation on fluid flow machinery. The discussion highlights the amount of damage caused to diesel engine cylinder liners, and lists remedies suggested by numerous experts in the field.

Sunil Katragadda; Reda Bata

1994-01-01T23:59:59.000Z

435

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

436

Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine  

E-Print Network (OSTI)

Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine Tomás Polóni. Based on an augmented observable Mean Value En- gine Model (MVEM) of a turbocharged Diesel engine in the intake duct. Keywords: Diesel engine, Mass flow estimation, Bias estimation, Kalman filtering, Mean value

Johansen, Tor Arne

437

JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm  

E-Print Network (OSTI)

JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm Department of Applied Mathematics of a fuel eÃ?cient, nonpollut- ing diesel engine. We report preliminary progress on the numerical simulation Introduction The design of a fuel eÃ?cient, nonpolluting diesel engine is the subject of intensive international

New York at Stoney Brook, State University of

438

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland  

E-Print Network (OSTI)

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland , Erling Aa. Kv rner ASA, Postboks 169, N-1325 Lysaker, Norway. Abstract Free-piston diesel engines. This paper present a dynamic mathematical model of a free-piston diesel engine, a control oriented dynamic

Johansen, Tor Arne

439

The process of soot formation in a DI Diesel engine is very challenging to understand and  

E-Print Network (OSTI)

Background The process of soot formation in a DI Diesel engine is very challenging to understand and describe. But with respect to the demand for much lower particulate emissions (Tab.1) of Diesel engines emissi- ons of a medium duty DI Diesel engine which is certified for the TIER 3 norm should be evaluated

Sandoghdar, Vahid

440

Tallow Biodiesel: Properties Evaluation and Consumption Tests in a Diesel Engine  

Science Journals Connector (OSTI)

Tallow Biodiesel: Properties Evaluation and Consumption Tests in a Diesel Engine ... Then, the mixture of alkyl esters of fatty acids from vegetable oils or animal fats is named biodiesel and used in diesel engines, pure or blended with mineral diesel. ... Industrial & Engineering Chemistry Research (1998), 37 (9), 3768-3771 CODEN: IECRED; ISSN:0888-5885. ...

Maria Silvana Aranda Moraes; Laiza Canielas Krause; Michele Espinosa da Cunha; Candice Shimitt Faccini; Eliana Weber de Menezes; Renato Cataluña Veses; Maria Regina Alves Rodrigues; Elina Bastos Caramão

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine  

E-Print Network (OSTI)

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine Merten Jung-- In this paper, a third order nonlinear model of the airpath of a turbocharged diesel engine is derived, which nonlinear airpath model of the diesel engine will be described in Section III. The model will be derived

Cambridge, University of

442

Direct Capillary Gas Chromatography of Filter-Borne Particulate Emissions from Diesel Engines  

Science Journals Connector (OSTI)

......Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson P.R. Shore...Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson and P.R...oil-derived material. Introduction Diesel engines emit particulate matter consisting......

R.D. Cuthbertson; P.R. Shore

1988-03-01T23:59:59.000Z

443

The Performance Analysis on Fuel Injection System Failure for a Four-Stroke Marine Diesel Engine  

Science Journals Connector (OSTI)

The middle speed four stroke diesel engine has the advantages of small capacity, light in weight, capable to combustion poor fuel oil. In recent years, they have been used more comprehensive than before. Daihatsu 6PSHdM-26H diesel engine, which is a ... Keywords: 4-stroke medium-speed turbocharged marine diesel engine, Fuel injection system failure, delayed combustion, performance analysis

Jialiang Huang; Guohao Yang; Dan Wang

2010-12-01T23:59:59.000Z

444

Experimental analysis of a diesel engine operating in Diesel–Ethanol Dual-Fuel mode  

Science Journals Connector (OSTI)

Abstract The use of engines is necessary to keep the world moving. Such engines are fed mainly by fossil fuels, among these, the diesel. The operation and the behavior of engines in different thermodynamic cycles, with common fossil fuels, it is still challenging but, in general, it has well known and documented data. On the other hand, for alternative fuels, there is still demand of experimental data, particularly considering that it is desirable, most of the times, the use of a system with dual mode (reversible). Such systems are called Dual-Fuel, it brings a greater degree of freedom, but imply in technological challenges. In this paper we used an engine operating with single cylinder direct injection diesel and port ethanol injection system in Dual-Fuel mode with a 100% electronically controlled calibration. The methodology applied was, once the engine calibration was given to achieve the best specific fuel consumption or the MBT (Maximum Brake Torque) in each load condition, to gradually substitute the diesel oil by ethanol in compliance with the requirements established. Comparisons were made among working conditions considering the rate of diesel substitution and the energy indicated efficiency. Initially, the flow structure in the combustion chamber was tested in both ‘quiescent’ and high “swirl” modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. It was tested two injectors, the first one of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar.

Roberto Freitas Britto Jr.; Cristiane Aparecida Martins

2014-01-01T23:59:59.000Z

445

Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine  

Energy.gov (U.S. Department of Energy (DOE))

CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx levels, while accounting for Diesel Exhaust Fluid needed to meet NOx constraints with aftertreatment.

446

Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network (OSTI)

PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers use this rig in the future to quantify frictional losses and improve on the efficiency of their diesel

Demirel, Melik C.

447

Modeling of Diesel Oxidation Catalyst  

Science Journals Connector (OSTI)

Modeling of Diesel Oxidation Catalyst ... Optimization of hydrocarbon (HC) oxidation over a diesel oxidation catalyst (DOC) requires consideration of (i) HC gas diffusion into the catalyst layer, (ii) HC gas adsorption and desorption from catalyst sites, and (iii) kinetics of the oxidation reaction. ... Mutagenicity of Diesel Engine Exhaust Is Eliminated in the Gas Phase by an Oxidation Catalyst but Only Slightly Reduced in the Particle Phase ...

Yasushi Tanaka; Takashi Hihara; Makoto Nagata; Naoto Azuma; Akifumi Ueno

2005-09-30T23:59:59.000Z

448

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel  

Science Journals Connector (OSTI)

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel ... Recently, the use of diesel engines has increased by virtue of their low fuel consumption and high efficiencies. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Mustafa Canakci; Cenk Sayin; Ahmet Necati Ozsezen; Ali Turkcan

2009-05-04T23:59:59.000Z

449

Mixed-Phase Oxide Catalyst Based on Mn-Mullite (Sm, Gd)Mn2O5 for NO Oxidation in Diesel Exhaust  

Science Journals Connector (OSTI)

...efficiency than gasoline engines (1). However...devices to reduce the engine-generated nitrogen...NOx to N 2 under fuel-rich regeneration...NOx-based pollutants, diesel engines also generate black...indicating the consumption of surface...

Weichao Wang; Geoffrey McCool; Neeti Kapur; Guang Yuan; Bin Shan; Matt Nguyen; Uschi M. Graham; Burtron H. Davis; Gary Jacobs; Kyeongjae Cho; Xianghong (Kelly) Hao

2012-08-17T23:59:59.000Z

450

Impact of the Driving Cycle on the NOx and Particulate Matter Exhaust Emissions of Diesel Passenger Cars  

Science Journals Connector (OSTI)

Impact of the Driving Cycle on the NOx and Particulate Matter Exhaust Emissions of Diesel Passenger Cars ... The driving cycles used are the New European Driving Cycle (NEDC), the 11 and 15 modes Japanese cycles, and three U.S. driving cycles: Federal Test Procedure (FTP-75), US06, and Highway. ... In general, we can state that a reduction in compression ratio in combination with an advanced boosting system and a fast response of the EGR system with advanced EGR cooling leads to a reduction of the emission level. ...

Efthimios Zervas; George Bikas

2008-02-19T23:59:59.000Z

451

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

452

US Coast Guard/US Maritime Administration Cooperative Research on marine engine exhaust emissions. Marine exhaust emissions measurement of the M/V Kings Pointer. Final report  

SciTech Connect

This report presents the results of emissions testing conducted on board the M/V KINGS POINTER in May 1995. The objective of this testing was to conduct baseline instrumentation, monitoring, and evaluation of the engine exhaust emissions as part of joint U.S. Coast Guard/Maritime Administration cooperative research on controlling air pollution from ships. The U.S. Coast Guard`s interest in emissions testing arises from both its desire to meet all federal and state air quality regulations and the fact that in the future it may be called upon to enforce regulations in the marine environment. The U.S. Maritime Administration`s interest in this and related research is based on its efforts to assure that its vessels and those of the privately-owned U.S. Flag Merchant Marine can comply with future air pollution control requirements. Underway tests were conducted of the 224-foot M/V KINGS POINTER in which two of its four diesel-electric generators were sampled for NO, NO2, CO, and SO2 in the exhaust. Additional data on fuel flow and power output were collected at five speeds over the full range of vessel operating ranges. NOx values were calculated and compared with standards proposed by the Environmental Protection Agency (EPA) and the International Maritime Organization (IMO). Results showed that average NOx values were 9.4 g/kWh which is slightly below the 10.9 g/kWh upper limit or cap that is being proposed by the IMO for a diesel engine with a rated speed of 1200 RPM. Additional conclusions and recommendations on the technique of portable emissions monitoring instrumentation are made.

Allen, S.J.; Bentz, A.P.

1996-07-01T23:59:59.000Z

453

Fumigation of a heavy duty common rail marine diesel engine with ethanol–water mixtures  

Science Journals Connector (OSTI)

A heavy duty common rail marine diesel engine operating with two stage injection is tested under load on a test bench with vapourised ethanol–water mixtures mixed into the inlet air at various rates. Ethanol/water mixture strengths of 93%, 72% and 45% by mass are tested. Results are presented for two engine loads at 1800 rpm, with brake mean effective pressure (BMEP) 17 bar and 20 bar. At each test point, constant engine speed and brake torque are maintained for various rates of aqueous ethanol addition. Small increases in brake thermal efficiency are measured with moderate rates of ethanol addition at a BMEP of 20 bar. Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbons, oxygen and carbon dioxide, and exhaust opacity are measured. CO emissions and exhaust opacity tend to increase with increased ethanol addition. \\{NOx\\} emissions tend to decrease with increased ethanol addition and with increased water content. Hydrocarbon emissions remain low, near the detection limit of the analyser. Cylinder pressure and the electronically controlled two stage liquid fuel injection timing are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. The apparent heat release rate and fuel injection timing together allow analysis of the mechanism of the combustion process with ethanol fumigation. Two stage injection involves a small pre-injection of diesel fuel to reduce early pressure rise rates in normal diesel engine combustion. Even though injection timing is retarded by the Engine Control Unit as more ethanol is added, combustion timing effectively advances due to the effect of two stage injection. Where the ethanol/air mixture strength is above the lower flammability limit at compression temperatures, the mixture is ignited by the pre-injection and begins to burn rapidly by flame propagation and/or autoignitive propagation before the main liquid fuel injection begins. This occurs for ethanol energy substitution rates greater than 30%. Two distinct peaks in heat release rate appear at the higher ethanol rates. Severe knock becomes apparent for 34% ethanol. Two stage injection may be disadvantageous in these circumstances.

L. Goldsworthy

2013-01-01T23:59:59.000Z

454

Statistics on cylinder wear in marine diesel engines  

Science Journals Connector (OSTI)

A description of the United Steamship Company's efforts to elucidate statistically the problems in connection with cylinder wear in marine diesel engines, by the use of punched cards and electronic digital computers. Further, some hypotheses concerning the causes of cylinder wear and the way to overcome it are given.

H.D. Lees

1959-01-01T23:59:59.000Z

455

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines  

E-Print Network (OSTI)

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

Minnesota, University of

456

Effect of Compression Ratio and Spray Injection Angle on HCCI Combustion in a Small DI Diesel Engine  

Science Journals Connector (OSTI)

Graduate School and Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, and Research & Development Division for Hyundai Motor Company & Kia Motors Corporation, Jangduk-dong, Whasung-si, Gyunggi-do, 445-706, Korea ... To realize this fundamental concept and find the optimal operating conditions, injection timing was varied from top dead center (TDC) to 80° before TDC and up to 45% of exhaust gas recirculation (EGR) was tested. ... From the deep anal., it was found that adding EGR to the air flow rate to the Diesel engine, rather than displacing some of the inlet air, appears to be a more beneficial way of utilizing EGR in Diesel engines. ...

Myung Yoon Kim; Jee Won Kim; Chang Sik Lee; Je Hyung Lee

2005-12-14T23:59:59.000Z

457

ESTIMATION OF EXHAUST MANIFOLD PRESSURE IN TURBOCHARGED GASOLINE ENGINES WITH VARIABLE VALVE TIMING  

E-Print Network (OSTI)

ESTIMATION OF EXHAUST MANIFOLD PRESSURE IN TURBOCHARGED GASOLINE ENGINES WITH VARIABLE VALVE TIMING in turbocharged gasoline engines with variable valve timing requires knowledge of exhaust mani- fold pressure, Pe control systems for gasoline engines rely heavily on feedforward air-fuel ratio (A/F) control to meet

Grizzle, Jessy W.

458

Combustion Characterization and Ignition Delay Modeling of Low- and High-Cetane Alternative Diesel Fuels in a Marine Diesel Engine  

Science Journals Connector (OSTI)

Mechanical and Aerospace Engineering Department, U.S. Naval Postgraduate School, Watkins Hall 700 Dyer Road Monterey, California 93943-5100, United States ... However, this study was done using an indirect injection diesel engine that may be uncharacteristic for typical diesel engines, which utilize direct injection. ... The IGD can, in turn, be used to provide qualitative or even quantitative prediction of other operational parameters such as peak pressure, maximum rate of pressure rise, or the general viability of the fuel in a diesel engine. ...

John Petersen; Doug Seivwright; Patrick Caton; Knox Millsaps

2014-07-10T23:59:59.000Z

459

Combustion characteristics of coal fuels in adiabatic diesel engines  

SciTech Connect

An experimental investigation was conducted to determine the combustion characteristics of coal fuels in adiabatic diesel engines. For this purpose engine testing was carried out by the fumigation of fine coal powder to the intake of an insulated and uncooled single cylinder diesel engine. The engine tests conducted include three types of fuels - Diesel fuel No. 2 (DF-2), Dual fuel (DF-2 + Coal), and Coal fuel. Excellent combustion characteristics of coal fuels were obtained in the present work in an adiabatic engine operating at high temperatures. The ''thermal ignition'' concept uncovered in this investigation led to a hot ''ignition chamber'' which provided ignition of the coal fuel. The high temperature engine with the ''ignition chamber'' permitted engine operation on 100% coal fuel without any external ignition aids or compression ignition. With the addition of a glow plug, the coal fueled engine was successfully cold started. For the coal fueled engine tests, analysis of cylinder pressure data showed rapid heat release rates, shorter combustion duration and very fast burning of coal powder fuel. Preliminary results of the apparent indicated cycle efficiency calculated from the heat release data, indicate that 100% coal powder fueled engine has higher cycle efficiency than DF-2 fueled engine in an adiabatic configuration. The problems encountered during the engine tests include: variation in the engine speed and load due to non-uniform coal flow rate by the coal feed system, contamination of the lubricating oil with fine coal powder, and wear of conventional piston rings. However, these problems can be solved with an improved coal feed system and wear resistant ceramic materials for the piston rings. 33 refs.

Kamo, R.; Kakwani, R.M.; Woods, M.E.; Valdmanis, E.

1986-06-01T23:59:59.000Z

460

Air charge system emulation for diesel engine.  

E-Print Network (OSTI)

??The work presented in this thesis details a novel engine evaluation approach utilising real-time simulation and advanced engine testing systems for general applicability to new… (more)

Zhang, Kai

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Full Useful Life (120,000 miles) Exhaust Emission Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

462

Assessment of fuel efficiency of neem biodiesel (Azadirachta indica) in a single cylinder diesel engine  

Science Journals Connector (OSTI)

Increase of petroleum diesel usage and its environmental pollution necessitate the study of alternate fuel production. Vegetable oils are the viable alternate form of non-polluted, renewable fuel to diesel engines. In this work, the non-edible oil, neem (Azadirachta indica) was used to produce biodiesel by a two step transesterification process. The fuel properties of the biodiesel thus produced were determined by standard methods. It is further tested in a single cylinder diesel engine by mixing with petroleum diesel in various percentages. The brake thermal efficiency (BTE) and specific fuel consumption (SFC) of the engine running with biodiesel blends (10-50%) were compared with the petroleum diesel. The results have shown that the performance of the diesel engine was similar as that of normal diesel and thus the use of biodiesel in diesel engine is viable.

M. Mathiyazhagan; T. Elango; T. Senthilkumar; A. Ganapathi

2013-01-01T23:59:59.000Z

463

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Journals Connector (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

464

Effect of biodiesel fuels on diesel engine emissions  

Science Journals Connector (OSTI)

The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.

Magín Lapuerta; Octavio Armas; José Rodríguez-Fernández

2008-01-01T23:59:59.000Z

465

Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine  

Science Journals Connector (OSTI)

Abstract The purpose of this research work is to optimize the combustion bowl geometry of a single cylinder stationary diesel engine for the effective operation of KME (kapok methyl ester) – diesel blends. Considering that the reported design modification would render the benefit of adaptation of higher blends of KME, in this study, two different combustion chamber geometries such as TRCC (trapezoidal combustion chamber) and TCC (toroidal combustion chamber) were chosen in addition to the convention design of HCC (hemispherical combustion chamber). In the experimental investigation, suitable blends such as B25 (25% KME + 75% diesel), B50 (50% KME + 50% diesel), B75 (75% KME + 25% diesel) and B100 (100% KME) were tested in a diesel engine with various combustion chamber geometries as mentioned above. Based on the results obtained from this study, TCC was shown to exhibit better performance and emission than TRCC and HCC for all test blends. Further, when compared to diesel, B25 and B50 were found to be the optimum blends with HCC and TCC, respectively, while TRCC seldom evinced better engine characteristics for any of the blends. Categorically, B50 showed a 5.2% increase in BTE (brake thermal efficiency) than diesel with TCC, whereas emissions such as CO (carbon monoxide) and smoke were reduced by 15.7% and 7.8%, respectively, with a comparable NOX (nitrogen oxides) emission with diesel. Similarly, combustion for B50 with TCC was found to be better than diesel, manifesting an increase in maximum heat release rate that that of diesel. Conclusively, from the experimental study, TCC was recognized as an ideal choice of combustion chamber design for the operation of blends up to B50 in a diesel engine.

S. Vedharaj; R. Vallinayagam; W.M. Yang; C.G. Saravanan; P.S. Lee

2015-01-01T23:59:59.000Z

466

Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a  

E-Print Network (OSTI)

Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between problems, modelling errors, Automotive emissions, Diesel engines 1. INTRODUCTION The automotive industry.denis-vidal@math.univ-lille1.fr, ghislaine.joly-blanchard@utc.fr) Abstract: In order to optimize the performance of a diesel

Paris-Sud XI, Université de

467

Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam-and Crankshaft  

E-Print Network (OSTI)

replaces the crankshaft of the traditional diesel engine with a power tur- bine to convert energy from, combining a diesel process with a freely moving piston in the cylinder and a power turbine. Engines MW (net power) test cylinder built by Kv rner ASA. In contrast to the original free-piston diesel

Johansen, Tor Arne

468

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

469

Comparison of blends of conventional diesel fuel and CRBO containing high levels of FFA in a DI diesel engine  

Science Journals Connector (OSTI)

This work attempts to analyse the ability of high free fatty acid (FFA) crude rice bran oil (CRBO) in replacing diesel partially in a compression ignition (CI) engine. It was observed that the delay period and the maximum rate of pressure rise for CRBO blends are lower than diesel and is almost inversely proportional to FFA content. Maximum heat release rate for CRBO blends are lower and occur earlier than that of diesel. CRBO blends require longer duration to release 90% of heat than diesel and it decreases with increase in FFA content of CRBO. When operating with CRBO blends, all emission parameters were decreased significantly with a marginal increase in CO emission than that of diesel without affecting the brake thermal efficiency of the engine. It is concluded that higher FFA of CRBO blends does not inhibit its ability to be utilised as a fuel in CI engines.

S. Saravanan; G. Lakshmi Narayana Rao; S. Sampath; G. Nagarajan

2012-01-01T23:59:59.000Z

470

Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol  

Science Journals Connector (OSTI)

Some of the diesel fuel properties were obtained from fuel certification tests conducted by the Alberta Research Council and established by the American Society for Testing and Materials, and the remainder are reported general properties. ... Clucas, D. M.Development of a Stirling engine battery charger based on a low cost wobble mechanism, Ph.D. Thesis, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 1993. ... investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' lab., which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. ...

Nicolas Farra; Tommy Tzanetakis; Murray J. Thomson

2012-01-27T23:59:59.000Z

471

Application of Artificial Intelligence Methods for the Diagnosis of Marine Diesel Engines  

Science Journals Connector (OSTI)

The paper presents a diagnostic system for marine diesel engine based on an expert system model. The ... identified. The basic knowledge related to the diesel diagnostic was undertaken from experts and diagnostic...

Adam Charchalis; Rafa? Pawletko

2011-01-01T23:59:59.000Z

472

A diesel engine study of conventional and alternative diesel and jet fuels: Ignition and emissions characteristics  

Science Journals Connector (OSTI)

Abstract Measurements of ignition delay, CO and NO emissions, and fuel consumption were carried out in a light-duty single-cylinder direct-injection diesel engine for operation with petroleum and alternative hydroprocessed and Fischer–Tropsch diesel and jet fuels. Ignition measurements carried out for a fixed engine speed and injection timing quantify the decrease in in-cylinder ignition delay with increasing derived cetane number (DCN) over a range of DCN relevant to diesel engine operation (DCN = 40–80) and show no discernible dependence of ignition delay on other fuel properties. Brake specific fuel consumption (BSFC) was found to decrease with increasing DCN with strong correlation due to a reduction in ignition time for fixed-injection-timed operation. Brake specific CO emissions were also found to decrease with increasing DCN due to increased time provided for CO burn out due to earlier ignition. Brake specific NO emissions were found to decrease with increasing hydrogen-to-carbon (H/C) ratio, due to the lower peak combustion temperatures and thermal \\{NOx\\} occurring for fuels with higher H/C.

Sandeep Gowdagiri; Xander M. Cesari; Mingdi Huang; Matthew A. Oehlschlaeger

2014-01-01T23:59:59.000Z

473

Influence of supporting materials on the deactivation of diesel exhaust catalysts  

Science Journals Connector (OSTI)

Two kinds of vehicle-aged diesel oxidation catalysts were analyzed. The phase transition of alumina as a support and Pt sintering after a long-time operation caused serious deactivation of the catalysts.

Song-Taek Oh; Sang-Min Kim; Man-Suk Yoon…

2007-04-01T23:59:59.000Z

474

Mixing Correlations for Smoke and Fuel Consumption of Direct Injection Engines  

Science Journals Connector (OSTI)

The mixing of fuel with air in a diesel engine strongly dictates the specific fuel consumption and exhaust smoke. Many experimental studies reported the optimum swirl for a given diesel engine at a given operatin...

P. A. Lakshminarayanan; Yogesh V. Aghav

2010-01-01T23:59:59.000Z

475

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

476

Experimental study and modeling of dodecane ignition in a diesel engine  

SciTech Connect

Two experiments have been performed under conditions as close as possible to those existing in a diesel engine. The first is oxidation of n-dodecane in a motored diesel engine running under conditions close to ignition but avoiding it. The progress of chemical reactions is followed by measurements of the global temperature increase {Delta}T of the exhaust gases, and by continuous sampling of the combustion chamber gases, to measure the concentrations of hydroperoxides and molecular hydrogen; about 4.2% of the energy introduced as hydrocarbon is consumed, thus showing significant transformations during the ignition delay of n-dodecane. The location of the maximum concentration of hydroperoxides coincides with the fuel jet`s edge. Tarlike compounds are present in the unburnt dodecane at the engine exhaust. The second experiment is the study of ignition delay of an n-dodecane spray in an oxidation chamber filled with air, between 715 and 760 K and 15 and 25 bar. A reduced mechanism of 32 reactions, with three types of branching due to the species (RO{sub 2}, RO{sub 2}H), (HO{sub 2}, H{sub 2}O{sub 2}), and H, enable one to predict the ignition delay. Computer simulations are made with the KIVA II code. They show good agreement between the experimental and the calculated ignition delays. They also indicate that, during the ignition delay, reactions occur first at the boundary of the fuel spray. A temperature increase of about 100 K takes place at the hottest points, which correspond to concentration maxima of the three branching species. Time-dependent evolutions of average concentrations show that RO{sub 2}H reaches a maximum first, then H{sub 2}O{sub 2}, and lastly the H atom.

Sahetchian, K. [CNRS, Saint-Cyr-l`Ecole (France). Lab. de Mecanique Physique] [CNRS, Saint-Cyr-l`Ecole (France). Lab. de Mecanique Physique; Champoussin, J.C.; Brun, M. [Ecole Centrale de Lyon, Ecully (France). Lab. de Machines Thermiques] [Ecole Centrale de Lyon, Ecully (France). Lab. de Machines Thermiques

1995-11-01T23:59:59.000Z

477

Instantaneous crankshaft torsional deformation during turbocharged diesel engine operation  

Science Journals Connector (OSTI)

An experimentally validated diesel engine code is used to study the crankshaft torsional deformations originating in the difference between instantaneous engine and load torques. The analysis aims in studying the phenomena under critical conditions, namely operation when one cylinder malfunctions ('open valves' or motoring situation) as well as during transient conditions. A detailed crankshaft torsional model is formulated; this takes into account cylinder gas, inertia, friction, load and stiffness and damping torques. Details are provided concerning the underlying mechanism of the crankshaft torsional deformations, which can assume significant values depending on the specific configuration, being important for safe engine operation.

E.G. Giakoumis; I.A. Dodoulas; C.D. Rakopoulos

2010-01-01T23:59:59.000Z

478

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

479

A comparative evaluation of Al 2 O 3 coated low heat rejection diesel engine performance and emission characteristics using fuel as rice bran and pongamia methyl ester  

Science Journals Connector (OSTI)

In this study for the first time a nanoceramic Al 2 O 3 was used as a coatingmaterial in the low heat rejection engine concept. Experiments were conducted on single cylinder four stroke water cooled and direct injection diesel engine. First the engine was tested at different load conditions without coating. Then combustion chamber surfaces (cylinder head cylinder liner valves and piston crown face) were coated with nanoceramic material of Al 2 O 3 using plasma spray method. Comparative evaluation on performance and emission characteristics using fuel as rice bran methyl ester pongamia methyl ester and biodiesel/diesel fuel mixtures was studied in the ceramiccoated and uncoated engines under the same running conditions. An increase in engine power and a decrease in specific fuel consumption as well as significant improvements in exhaust gas emissions (except NOx) and smoke density were observed in the ceramiccoated engines compared with those of the uncoated engine.

M. Mohamed Musthafa; S. P. Sivapirakasam; M. Udayakumar

2010-01-01T23:59:59.000Z

480

Dual Fuel Diesel Engine Operation Using H2. Effect on Particulate Emissions  

Science Journals Connector (OSTI)

Dual Fuel Diesel Engine Operation Using H2. ... School of Engineering, Mechanical and Manufacturing Engineering, The University of Birmingham, Birmingham B15 2TT, United Kingdom, Universidad de Castilla?La Mancha, Edificio Politecnico, Escuela Tecnica Superior de Ingenieros Industriales, Avda. ... In diesel engines, the reduction of particulate emissions must be achieved in conjunction with the reduction of NOx emissions. ...

A. Tsolakis; J. J. Hernandez; A. Megaritis; M. Crampton

2005-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "diesel engine exhaust" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY  

E-Print Network (OSTI)

1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111 Church St, S.E., Minneapolis, MN 55455 3 Department of Mechanical Engineering and Engineering Mechanics

Minnesota, University of

482

Performance Evaluation of Fuel Blends Containing Croton Oil, Butanol, and Diesel in a Compression Ignition Engine  

Science Journals Connector (OSTI)

† Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa ... (2) The use of vegetable oils in diesel engines is as old as the diesel engine itself. ... The results indicate a general increase in NOx emissions as the load increases at a steady engine speed. ...

Frank Lujaji; Akos Bereczky; Makame Mbarawa

2010-07-15T23:59:59.000Z

483

Magnetic quantum diesel engine in Ni2  

Science Journals Connector (OSTI)

Quantum Diesel cycles are numerically realized using the electronic states of a Ni2 dimer. The quantum nature and the complexity of the electronic structure of the Ni2 dimer result in new features in the evolution of the pressure as well as in the heat-work transformation. The multitude of internal degrees of freedom in the isobaric process in molecules can result in crossing of the two adiabatic processes in the P-V diagram. The interplay of heat and work, originating from thermal nonequilibrium effects, can lead to a thermal efficiency of up to 100%. The spin moment of the Ni2 can be decreased by the isobaric process. To link the molecular heat capacity to easily accessible experimental quantities, we also calculate the Kerr effect and the magnetic susceptibility at different temperatures and magnetic fields.

C. D. Dong; G. Lefkidis; W. Hübner

2013-12-20T23:59:59.000Z

484

Study of the control strategies on soot reduction under early-injection conditions on a diesel engine  

Science Journals Connector (OSTI)

Abstract To explore the more effective method to fulfill soot reduction challenges of early-injection conditions, different engine operating parameters such as intake pressure, exhaust gas recirculation (EGR), equivalence ratio, intake temperature, coolant temperature, injection pressure and fuel properties such as using the blends of diesel/gasoline, diesel/n-butanol and dual-fuel were investigated on a diesel engine. A wide range of injection timing from 5° CA to ?70° CA ATDC were tested, which covered both conventional diesel injection and early-injection conditions. Results showed that the soot emission increased as the injection timing was advanced from ?35° CA to ?55° CA ATDC, which was attributed to that more spray liquid was out of the piston bowl and impinged on the piston top and cylinder liner. The soot emission decreased as the injection timing further advanced from ?55° to ?70° CA ATDC, which was attributed to the suppressed soot formation. Although more advanced injection (?55° to ?70° CA ATDC) decreased soot emissions, the combustion efficiency was deteriorated. EGR combined with higher intake pressure resulted in lower soot emissions than that of sole EGR control under the same equivalence ratio. Increasing intake temperature and coolant temperature reduced soot emissions at the injection timing later than ?55° CA ATDC but barely affected the soot peak-value. Increasing injection pressure had little impact on soot emissions at early-injection conditions. Regarding to fuel properties, employing the diesel/gasoline and diesel/n-butanol blends dramatically reduced soot emissions and the smokeless combustion was achieved by using pure gasoline or n-heptane. Soot peak-value of diesel/gasoline combustion was higher than that of diesel/n-butanol at low diesel replacement ratio (30%), while for high replacement ratio (70%) the opposite trend was presented. The dual-fuel injection composed by port-injection of gasoline and direct-injection of diesel was more effective in reducing soot emissions than that of single direct-injection under the same gasoline/diesel ratio.

Haifeng Liu; Shuaiying Ma; Zhong Zhang; Zunqing Zheng; Mingfa Yao

2015-01-01T23:59:59.000Z

485

EXPERIMENTAL STUDY OF USING EMULSIFIED DIESEL FUEL ON THE PERFORMANCE AND POLLUTANTS EMITTED FROM FOUR STROKE WATER COOLED DIESEL ENGINE  

Science Journals Connector (OSTI)

A water?cooled four stroke four cylinder direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0% 5% 10% 15% 20% 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that in general using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm the torque the BMEP and efficiency are found to have maximum values under these conditions. CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

A. Sakhrieh; R. H. Fouad; J. A. Yamin

2009-01-01T23:59:59.000Z

486

Fumigation of a diesel engine with low Btu gas  

SciTech Connect

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

487