National Library of Energy BETA

Sample records for diesel engine exhaust

  1. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Pacific Northwest Laboratory 2004_deer_muntean.pdf (922.09 KB) More Documents & Publications The State of the Science in Diesel Particulate Control APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update Measurement and Characterization of Lean NOx Adsorber

  2. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  3. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate and Semi-Volatile Organic Compound Materials | Department of Energy Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 DEER Conference Presentation: U.S. Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health 2002_deer_wallace.pdf (114.23 KB) More Documents

  4. Prediction of transient exhaust soot for a turbocharged diesel engine

    SciTech Connect (OSTI)

    Xiaoping, B.; Shu, H.

    1995-12-31

    A generalized computer model for prediction of transient exhaust soot and response of turbocharged diesel engines is developed. It includes detailed thermodynamic and dynamic processes. This model utilizes a multi-zone combustion submodel that emphasizes simple and economical calculations for combustion behavior and zonal soot, so overall transient exhaust soot can be predicted. This model is applied to a turbocharged diesel engine. The steady state exhaust soot and performance are calculated and validated, and on the basis, the exhaust soot and response under three classes of transient operating conditions are predicted. The parametric study is carried out by using this model. The effects of valve overlap period, exhaust manifold volume, turbocharger inertia and ambient pressure are predicted. Applications of this model have proved that it is a convenient analytical tool in the study for turbocharged diesel engines. 18 refs., 14 figs., 2 tabs.

  5. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  6. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear

    Broader source: Energy.gov [DOE]

    Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

  7. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Office of Environmental Management (EM)

    on diesel engine oil during standard test with an API Cummins M-11 engine. ... Fuel Economy and Engine Wear AVTA: Oil Bypass Filter Specifications and Test Procedures

  8. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Driven Rankine Cycle for a Heavy Duty Diesel Engine Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust deer11_singh.pdf (2.07 MB) More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

  9. The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_millo.pdf (766.54 KB) More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck Applications Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve

  10. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine ...

  11. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  12. Control method for turbocharged diesel engines having exhaust gas recirculation

    SciTech Connect (OSTI)

    Kolmanovsky, I.V.; Jankovic, M.J.; Jankovic, M.

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  13. Fate of SO{sub 2} During Plasma Treatment of Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

    1999-10-25

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO{sub 2} to achieve efficient reduction of NO{sub x} and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO{sub 2} is also active in converting SO{sub 2} to SO{sub 3}. A non-thermal plasma can be used for the selective partial oxidation of NO to NO{sub 2} in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO{sub 2} without oxidizing SO{sub 2} to SO{sub 3}. It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO{sub 2}.

  14. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect (OSTI)

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

  15. Characterization and control of exhaust gas from diesel engine firing coal-water mixture

    SciTech Connect (OSTI)

    Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

    1990-03-01

    Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

  16. Intercooling effects of methanol on turbocharged diesel engine performance and exhaust emissions

    SciTech Connect (OSTI)

    Saito, T.; Daisho, Y.; Aoki, Y.; Kawase, N.

    1984-01-01

    From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower nox and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are involved.

  17. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  18. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    SciTech Connect (OSTI)

    Dane, J.; Voorhees, K. J.

    2010-06-01

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  19. Update on Diesel Exhaust Emission Control Technology and Regulations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning 2004_deer_johnson2.pdf (1.48 MB) More Documents & Publications Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission Control Technology Update on Diesel Exhaust Emission Control

  20. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genotoxicity Studies to Support Engineering Development of Emission Controls | Department of Energy Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER

  1. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines 2009 DOE ...

  2. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel ...

  3. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  4. Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions: | Department of Energy Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_plumley.pdf (398.5 KB) More Documents & Publications Detailed Characterization of Lubricant-Derived Ash-Related Species in Diesel Exhaust and Aftertreatment Systems Unraveling DPF Degradation using Chemical

  5. An Accelerated Aging Method for Diesel Exhaust Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in ...

  6. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Broader source: Energy.gov (indexed) [DOE]

    Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics ...

  7. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

    SciTech Connect (OSTI)

    Al-Qurashi, Khalid; Boehman, Andre L.

    2008-12-15

    This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

  8. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect (OSTI)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  9. Catalytic Filter for Diesel Exhaust Purification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Filter for Diesel Exhaust Purification Catalytic Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate filter. deer09_fokema.pdf (869.13 KB) More Documents & Publications Active Soot Filter Regeneration Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation Process

  10. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications

    SciTech Connect (OSTI)

    Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

    2002-08-25

    Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

  11. An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-01_bartley.pdf (272.2 KB) More Documents & Publications Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report The Development of Rapid Aging and Poisoning

  12. Hydrogen generation from plasmatron reformers and use for diesel exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aftertreatment | Department of Energy generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003 DEER Conference Presentation: Massachusetts Institute of Technology 2003_deer_bromberg.pdf (739.71 KB) More Documents & Publications H2-Assisted NOx Traps: Test Cell Results Vehicle Installations Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

  13. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the ...

  14. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed ...

  15. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology ... Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission ...

  16. Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new type of emission control technology was presented for the small engines used in APU's and TRU's.

  17. An Information Dependant Computer Program for Engine Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants. ...

  18. Diesel emission reduction using internal exhaust gas recirculation

    DOE Patents [OSTI]

    He, Xin; Durrett, Russell P.

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  19. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributions and Detailed Exhaust Chemical Composition | Department of Energy Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition 2003 DEER Conference Presentation: University of Wisconsin-Madison 2003_deer_foster.pdf (1.18 MB) More Documents & Publications Mass Correlation of Engine Emissions with

  20. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission ...

  1. Diesel Particulate Filter: A Success for Faurecia Exhaust Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter: A Success for Faurecia Exhaust Systems Diesel Particulate Filter: A Success for ... More Documents & Publications Combination of Diesel fuel system architectures and ...

  2. SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High SCR Loadings | Department of Energy SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings Presents laboratory and engine bench test results from integrating the SCR catalyst into the diesel filter as one multifunctional unit. deer12_folic.pdf (1.36 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003_deer_algrain.pdf (5.77 MB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  4. Update on Diesel Exhaust Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Update on Diesel Exhaust Emission Control 2003 DEER Conference Presentation: Corning, Inc. deer_2003_johnson.pdf (1.53 MB) More Documents & Publications Review of Diesel Emission Control Technology Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives

  5. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  6. Natural Oils - The Next Generation of Diesel Engine Lubricants? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Oils - The Next Generation of Diesel Engine Lubricants? Natural Oils - The Next Generation of Diesel Engine Lubricants? 2002 DEER Conference Presentation: The Pennsylvania State University 2002_deer_perez.pdf (315.66 KB) More Documents & Publications Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Future Engine Fluids Technologies: Durable,

  7. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Broader source: Energy.gov (indexed) [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  8. Partitioning of Volatile Organics in Diesel Particulate and Exhaust |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partitioning of Volatile Organics in Diesel Particulate and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in diesel exhaust deer08_strzelec.pdf (209.9 KB) More Documents & Publications Trends in Particulate Nanostructure Method Development: Identification of the Soluble Organic Fraction of Particulate Matter on DPF Soot Diesel Particulate Oxidation

  9. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    SciTech Connect (OSTI)

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  10. An Information Dependant Computer Program for Engine Exhaust Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Heating | Department of Energy An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants. deer09_avadhanula.pdf (95.11 KB) More Documents & Publications Modular Low Cost High Energy Exhaust Heat

  11. Clean Diesel Engine Component Improvement Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Component Improvement Program Clean Diesel Engine Component Improvement Program 2005_deer_may.pdf (547.13 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma Assisted Catalysis System for NOx Reduction Unique Catalyst System for NOx Reduction in Diesel Exhaust

  12. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC

    Broader source: Energy.gov [DOE]

    Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator.

  13. Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications IN VITRO MUTAGENIC AND DNA AND CHROMOSOMAL DAMAGE ACTIVITY BY SURFACTANT DISPERSION OR SOLVENT EXTRACT OF A REFERENCE DIESEL EXHAUST PARTICULATE ...

  14. The Effect of Changes in Diesel Exhaust Composition and After...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology on Lung Inflammation and Resistance to Viral Infection The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and ...

  15. The Potential of GTL Diesel to Meet Future Exhaust Emission Limits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GTL Diesel to Meet Future Exhaust Emission Limits The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_schaberg.pdf (902.49 KB) More Documents & Publications Application of Synthetic Diesel Fuels Effect of GTL Diesel Fuels on Emissions and Engine Performance Cold-Start

  16. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DEER Conference Presentation: Caterpillar Inc. 2002_deer_hopmann.pdf (828.29 KB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  18. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact and Control Diesel Engines: Environmental Impact and Control 2002 ... More Documents & Publications Cleaning Up Diesel Engines DIesel Emission Control ...

  19. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Measurements. | Department of Energy A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-08_nevius.pdf (63.6 KB) More Documents & Publications Complex System Method to Assess Commercial Vehicle Fuel

  20. NO2 Management in Diesel Exhaust System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Management in Diesel Exhaust System NO2 Management in Diesel Exhaust System The project discusses the use of an NO2 mitigator for catalytic NO2 reduction deer09_roberts.pdf (199.46 KB) More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Low Temperature Catalyst for Fuel Injection System Leading Edge Technology in Diesel Emissions Control

  1. Unique Catalyst System for NOx Reduction in Diesel Exhaust | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_slone.pdf (64.66 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma

  2. CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components | Department of Energy CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_maziasz.pdf (639.25 KB) More

  3. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems p-31williams.pdf (402.04 KB) More Documents & Publications Impact of Biodiesel ...

  4. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  5. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_witherspoon.pdf (333.11 KB) More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines DIesel Emission Control Technology Developments The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

  6. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  7. Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

    SciTech Connect (OSTI)

    Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.; Breder, K.

    2000-02-01

    The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

  8. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  10. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions ...

  11. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  12. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  13. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  14. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine ...

  15. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale ...

  16. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  17. Integrated diesel engine NOx reduction technology development

    SciTech Connect (OSTI)

    Hoelzer, J.; Zhu, J.; Savonen, C.L.; Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J.

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  18. Exhaust Heat Recovery for Rural Alaskan Diesel Generators

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Engine exhaust control system and method

    SciTech Connect (OSTI)

    Billington, W.G.

    1990-04-03

    This patent describes an exhaust gas control apparatus for an internal combustion engine. It comprises: a rotary fan blade assembly having a hollow hub and plurality of hollow blades, each having a plurality of apertures in a trailing edge; drive means for driving the rotary fan blade assembly; feed means feeding exhaust gases from the engine into the hollow hub and hollow blades; air intake means for feeding intake air to the rotary fan blade assembly from a direction opposite to the direction of flow of the exhaust gases into the hollow hub of the rotary fan blade assembly; exhaust means for exhausting a mixture of air and the exhaust gases; whereby the flow of exhaust gases through the rotary fan blade assembly and out through the exhaust means reduces back-pressure, exhaust noise, exhaust temperature and exhaust pollutants.

  20. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  1. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  2. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  3. BPM Diesel Engineering | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: WR12 7NL Product: Converts diesel engines to operate on Dual Fuel using a digital generic system. References: BPM Diesel Engineering1 This article is a stub. You can...

  4. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  5. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  6. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  7. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  8. Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Engines Using Diesel and Biodiesel Fuels Investigation on continuous soot ... Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

  9. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  10. Turbocharged engine exhaust gas recirculation system

    SciTech Connect (OSTI)

    Stachowicz, R.W.

    1984-01-24

    Improved exhaust gas recirculation systems for turbocharged gas engines that include an exhaust pipe, a turbocharger connected thereto, and a carburetor connected with a source of gas for the engine. The recirculation system includes an air conduit extending from the turbocharger compressor discharge to a venturi, an exhaust gas conduit that extends from a connection with the exhaust pipe between the engine and the turbocharger to the venturi, a second air conduit that extends from the exhaust pipe to a connection with the first air conduit, and control valves located in the exhaust gas conduit and in the second air conduit. The valves are closed when the engine is being started or idling at no load and open when a load is imposed or when engine rpm's are increased. No pumps, blowers, etc. are needed because the system operates on a differential in pressure created within the system to cause the exhaust gas recirculation.

  11. The development of a prechamber diesel engine family

    SciTech Connect (OSTI)

    Filtri, G.; Morello, L.; Stroppiana, B.

    1989-01-01

    The development of a new family of prechamber diesel engines, based on a technological commonalty with the gasoline engines is reported. The range of diesel engines, all of them four-cylinder-in line, consist of 3 displacements: 1365cc - 1697cc - 1930cc either naturally aspirated or turbocharged. Mention is also made of their most significant technical innovations about their architecture and combustion chambers, and the main components such as block cylinder, head, crankshaft, connecting rods, pistons, timing gear and injection pump control, intake and exhaust manifolds.

  12. The Impact of Lubricant on Emissions from a Medium-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy on Emissions from a Medium-Duty Diesel Engine The Impact of Lubricant on Emissions from a Medium-Duty Diesel Engine 2002 DEER Conference Presentation: National Renewable Energy Lab 2002_deer_whitacre.pdf (355.38 KB) More Documents & Publications Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies

  13. Diesel Engine Light Truck Application

    SciTech Connect (OSTI)

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  14. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect (OSTI)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  15. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  16. Diesel engine emissions reduction by multiple injections having increasing pressure

    SciTech Connect (OSTI)

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  17. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA ... More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines ...

  18. Engine control with exhaust gas recirculation

    SciTech Connect (OSTI)

    Kodama, K.; Yamazoe, H.

    1987-02-03

    This patent describes an apparatus for controlling the amount of exhaust gases to be recirculated from an exhaust passage of an internal combustion engine to an intake passage of the same, comprising: (a) means for detecting various engine parameters; (b) gas sensor means for detecting the concentration of an exhaust gas in the exhaust passage; (c) means for forcibly interrupting exhaust gas recirculation when the engine is under air/fuel ratio feedback control and exhaust gas recirculation is being performed; and (d) computing means for computing a value representing a desired amount of exhaust to be recirculated using engine parameters and for: (1) producing a correction factor using an output signal from the gas sensor means; (2) obtaining a first mean value of a first plurality of feedback correction factor values during feedback control of air/fuel ratio and during exhaust gas recirculation control; (3) interrupting exhaust gas recirculation during air/fuel ratio feedback control; and (4) obtaining a second mean value of second feedback correction factor values when exhaust gas recirculation is being interrupted.

  19. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  20. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOE Patents [OSTI]

    Aardahl, Christopher L.; Balmer-Miller, Mari Lou; Chanda, Ashok; Habeger, Craig F.; Koshkarian, Kent A.; Park, Paul W.

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  1. Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO

    Broader source: Energy.gov [DOE]

    This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine.

  2. Comparison of direct exposure of human lung cells to modern engine exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    partricles | Department of Energy direct exposure of human lung cells to modern engine exhaust partricles Comparison of direct exposure of human lung cells to modern engine exhaust partricles 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_storey.pdf (983.94 KB) More Documents & Publications Pro-Inflammatory Cytokine Responses to Exposure to Diesel Soot Relationship Between Composition and Toxicity of Engine Emissions Comparative Toxicity of Combined Particle

  3. An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Measurements | Department of Energy An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements 2003 DEER Conference Presentation: TSI Incorporated 2003_deer_johnson.pdf (502.83 KB) More Documents & Publications Making Mobile Measurement Using an EEPS Spectrometer Mass Correlation of Engine Emissions with Spectral Instruments Measurement of diesel solid

  4. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_kruiswyk.pdf (1.21 MB) More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery Engine System Approach to Exhaust Energy

  5. Diesel Engine Alternatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternatives Diesel Engine Alternatives 2003 DEER Conference Presentation: Southwest Research Institute PDF icon 2003deerryan.pdf More Documents & Publications Combustion Targets ...

  6. Respiratory effects of diesel exhaust in salt miners

    SciTech Connect (OSTI)

    Gamble, J.F.; Jones, W.G.

    1983-09-01

    The respiratory health of 259 white males working at 5 salt (NaCl) mines was assessed by questionnaire, chest radiographs, and air and He-O/sup 2/ spirometry. Response variables were symptoms, pneumoconiosis, and spirometry. Predictor variables included age, height, smoking, mine, and tenure in diesel-exposed jobs. The purpose was to assess the association of response measures of respiratory health with exposure to diesel exhaust. There were only 2 cases of Grade 1 pneumoconiosis, so no further analysis was done. Comparisons within the study population showed a statistically significant dose-related association of phlegm and diesel exposure. There was a nonsignificant trend for cough and dyspnea, and no association with spirometry. Age- and smoking-adjusted rates of cough, phlegm, and dyspnea were 145, 159, and 93% of an external comparison population. Percent predicted flow rates showed statistically significant reductions, but the reductions were small and there were no dose-response relations. Percent predicted FEV1 and FVC were about 96% of predicted.

  7. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    SciTech Connect (OSTI)

    Storey, John Morse; Sluder, Scott; Lance, Michael J; Styles, Dan; Simko, Steve

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.

  8. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  9. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  10. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  11. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack ...

  12. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  13. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  14. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  15. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Improve Low Temperature Diesel Engine Combustion Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24, ...

  16. Diesel Engine Oil Technology Insights and Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Technology Insights and Opportunities Diesel Engine Oil Technology Insights and Opportunities Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant ...

  17. Design Challenges of Locomotive Diesel Engines | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerprimus.pdf (145.61 KB) More Documents & Publications Future Diesel Engine Thermal ...

  18. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  19. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime ...

  20. Update on Modeling for Effective Diesel Engine Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment ...

  1. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  2. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  3. Effect of EGR contamination of diesel engine oil on wear.

    SciTech Connect (OSTI)

    Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

    2007-09-01

    Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

  4. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management 2004_deer_block.pdf (36.26 KB) More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Milestones | Department of Energy DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems deer09_wagner.pdf (224.99 KB) More Documents & Publications Achieving

  6. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  7. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system deer09_briggs.pdf (291.32 KB) More Documents & Publications Performance of an

  8. Exhaust gas system for internal combustion engines

    SciTech Connect (OSTI)

    Jans, K.; Ohlendorf, R.; Schuster, H.

    1981-09-08

    An exhaust gas system is disclosed for a multi-cylinder internal combustion engine, in which some cylinders are adapted to be effectively disconnected; the exhaust gas system includes in a common exhaust line, an O/sub 2/-probe and two series-connected catalysts while a separate exhaust gas line is coordinated to the cylinders adapted to be effectively disconnected; a control member operable as a function of load opens three separate branch connections from the separate exhaust line to the common exhaust line in such a manner that when all cylinders are firing, the branch connection terminating upstream of the O/sub 2/-probe is opened; the branch terminating in the common exhaust line between the O/sub 2/-probe and the first of the series-connected catalysts is opened when at least one of the cylinders is effectively disconnected and when the internal combustion engine is still relatively cold or warms up to a middle temperature; at temperatures exceeding the middle operating temperature, the branch connection terminating between the two catalysts is opened.

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

  10. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  11. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  12. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and ...

  13. Multicylinder Diesel Engine Design for HCCI Operation

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_baranescu.pdf (87.57 KB) More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  15. The Effect of Changes in Diesel Exhaust Composition and After-Treatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology on Lung Inflammation and Resistance to Viral Infection | Department of Energy The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and Resistance to Viral Infection The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and Resistance to Viral Infection 2003 DEER Conference Presentation: Lovelace Respiratory Research Institute 2003_deer_mcdonald.pdf (140.75 KB) More Documents &

  16. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation Air handling system model for multi-cylinder variable geometry turbocharged diesel ...

  17. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_depetrillo.pdf (184.51 KB) More Documents & Publications Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature

  18. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  19. Computational Fluid Dynamics Modeling of Diesel Engine Combustion and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_reitz.pdf (682.47 KB) More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines Comparison of Conventional Diesel and Reactivity Controlled Compression

  20. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closed-loop Control | Department of Energy Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion p-20_ramond.pdf (459.53 KB) More Documents & Publications Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Diesel Combustion Control with

  1. Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses 2003 DEER Conference Presentations: French Agency of Environment and Energy Management deer_2003_seguelong.pdf (468.36 KB) More Documents & Publications Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty

  2. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  3. Consider the DME alternative for diesel engines

    SciTech Connect (OSTI)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEV standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.

  4. Two stroke engine exhaust emissions separator

    DOE Patents [OSTI]

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  5. Two stroke engine exhaust emissions separator

    DOE Patents [OSTI]

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  6. 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 29-September 2, 2004 Coronado, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: Diesel Efficiency and Emissions Policy Session 7: Combustion and Homogeneous Charge Compression Ignition Regimes Session 1: Emerging Diesel Technologies Session 8A: Diesel Engine

  7. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  8. Performance of a High Speed Indirect Injection Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies The Linear Engine Pathway of Transformation High Fuel Economy Heavy-Duty Truck Engine

  9. Zone heated inlet ignited diesel particulate filter regeneration...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Zone heated inlet ignited diesel particulate filter ... An exhaust system that processes exhaust generated by an engine is provided. The system ...

  10. Chemical and Physical Characteristics of Diesel Aerosol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Correlation of Engine Emissions with Spectral Instruments The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical ...

  11. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen substitution on engine performance and reducing NOx emissions in a diesel engine deer09_boehman.pdf (150.76 KB) More Documents & Publications Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Advanced Diesel Combustion with Low Hydrocarbon and Carbon

  12. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. deer09_stanton.pdf (1.7 MB) More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

  13. Comparative Study on Exhaust Emissions from Diesel-and CNG-powered...

    Office of Scientific and Technical Information (OSTI)

    ... Thanks to its characteristics, this gas is compatible with current alternative engines (octane number above 110, mass thermal power 10% above Diesel fuels). The main implementation ...

  14. Internal combustion engine with an exhaust gas turbocharger

    SciTech Connect (OSTI)

    Hiereth, H.; Withalm, G.

    1981-06-09

    An internal combustion engine with an exhaust-gas turbocharger, particularly a mixture-compressing internal combustion engine, is disclosed in which a bleeder valve is provided which during the operation of the internal combustion engine in the partial load range conducts the exhaust gases in bypassing relationship to the turbine of the exhaust gas turbocharger.

  15. U.S. Navy Marine Diesel Engines and the Environment - Part 2 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 U.S. Navy Marine Diesel Engines and the Environment - Part 2 2002 DEER Conference Presentation: NAVSEA 2002_deer_osborne2.pdf (1.14 MB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1

  16. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    SciTech Connect (OSTI)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  17. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  18. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  19. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  20. 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 25-29, 2002 San Diego, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Session 1: Diesel Engine Emissions Reduction Strategies Session 7: Emissions-Related Technologies and Regulations Session 2: Applied Thermoelectric Generator R&D Session 8: Emerging Diesel Engine Technology

  1. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  2. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Interim report, October 1997--April 1998

    SciTech Connect (OSTI)

    Sirman, M.B.; Owens, E.C.; Whitney, K.A.

    1998-09-01

    Exhaust emissions mappings were conducted for six alternative diesel fuels in a Daimler-Benz (DB) OM6l1 diesel engine. The OM6l 1 engine is a 2.2L, direct-injection diesel with a Bosch, high-pressure, common-rail, fuel-injection system. The engine design closely matches the specifications of the Partnership for a New Generation Vehicle (PNGV) target compression-ignition engine. Triplicate 13-mode, steady-state test sequences were performed for each fuel, with a 2-D control fuel serving as the baseline. No adjustments were made to the engine to compensate for any performance differences resulting from fuel property variations.

  3. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect (OSTI)

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  4. New 11 liter Komatsu diesel engine

    SciTech Connect (OSTI)

    Mizusawa, M.; Tanosaki, T.; Kawase, M.; Oguchi, T.

    1984-01-01

    New 6 cylinder direct injection 11 liter diesel engines which have naturally aspirated, turbocharged, and turbocharged-aftercooled versions have been developed and moved in production at the end of 1983. The highest output of the turbocharged-aftercooled version is 276 kW (375 ps) at 2200 RPM. Based on Komatsu new technologies 125 mm bore diesel has been designed to meet the users' demands, such as compact in size, light in weight, extremely high performance, high reliability and durability. The turbocharged and turbocharged-aftercooled engines are characterized by the adoption of the ductile cast iron piston which is the first application into the high speed, four cycle diesels in production in the world, and which was enabled by Komatsu design and precision casting technologies. This paper also covers the other design aspects and performance characteristics.

  5. An Engine Exhaust Particle SizerTM Spectrometer for Transient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Correlation of Engine Emissions with Spectral Instruments Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol

  6. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  7. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  8. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect (OSTI)

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  9. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect (OSTI)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  10. Oxygen-Enriched Combustion for Military Diesel Engine Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion deer09_yelvington.pdf (196.85 KB) More Documents & Publications Development Methodology for Power-Dense Military Diesel Engine Oxygen-Enriched Combustion Emission Control Strategy for Downsized Light-Duty Diese

  11. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Broader source: Energy.gov (indexed) [DOE]

    The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle ...

  12. The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions ...

  13. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  14. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  15. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  16. Potentiality of small DI diesel engines under consideration of emissions and noise control

    SciTech Connect (OSTI)

    Sugihara, K.; Matusi, Y.; Saegusa, S.

    1985-01-01

    The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noise levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 db (a) higher than those of the IDI engine. It was suggested from these results that in those countries which have stringent emission and noise regulations several years would be required to introduce small, high speed DI diesel engines for passenger cars to meet with these regulations.

  17. The regenerable trap oxidizer-An emission control technique for diesel engines

    SciTech Connect (OSTI)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.; Loose, G.

    1985-01-01

    Daimler-Benz made an early start with the development of systems for the aftertreatment of the exhaust gas emitted by diesel engines. The more important limiting conditions could best be met by the provision of a ceramic, selfcleaning trap oxidizer (TO). In such filters, self-regeneration is effected continuously while driving without any external control. Either partial or complete regeneration is effected, depending on the temperature, oxygen content and rate of flow of the exhaust gas, the amount of soot in the filter and the period for which a given operating condition is maintained. Such a trap oxidizer was developed for a 3.0 liter turbocharged diesel engine to the extent necessary for series production and has been fitted to type 300 SD and 300 D turbocharged diesel of model year 1985 in California.

  18. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lean-NOx Catalyst Development for Diesel Engine Applications Lean-NOx Catalyst Development for Diesel Engine Applications 2002 DEER Conference Presentation: Caterpillar Inc. 2002_deer_park.pdf (302.37 KB) More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  19. Predominant induction of kinetochore-containing micronuclei by extracts of diesel exhaust particulates in cultured human lymphocytes

    SciTech Connect (OSTI)

    Odagiri, Youichi; Uchida, Hiroyuki; Kawamura, Ken; Adachi, Shuichi; Takemoto, Kazuo ); Jian-Xin Zhang )

    1994-01-01

    The aneuploidy-inducing activity of extracts of diesel exhaust particulates from light duty (LD) and heavy duty (HD) engines was investigated in cultured peripheral blood lymphocytes of 8 healthy donors using the cytokinesis-block micronucleus test with the kinetochore labelling modification. A majority of the subjects tested showed a significant kinetochore-positive micronucleus induction after treatment with the highest dose (150 [mu]g/ml) of LD extract, although some subjects also showed induction of kinetochore-negative micronuclei. Only one subject had significantly increased numbers of kinetochore-positive micronuclei at a dose of 400 [mu]g/ml of HD extract. These results suggest that diesel extract, at least LD extract, possesses the ability to induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. 21 refs., 2 figs., 3 tabs.

  20. Exhaust Phosphorous Chemistry and Catalyst Poisoning | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry and Catalyst Poisoning Exhaust Phosphorous Chemistry and Catalyst Poisoning 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National ...

  1. Advances in Diesel Engine Technologies for European Passenger Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG 2002_deer_schindler.pdf (1.73 MB) More Documents & Publications Accelerating Light-Duty Diesel Sales in the U.S. Market Light-Duty Diesel Market Potential in North America Meeting the CO2 Challenge DEER 2002

  2. Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_puetz.pdf (742.3 KB) More Documents & Publications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Model-Based Transient Calibration Optimization

  3. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    SciTech Connect (OSTI)

    Kodavanti, Urmila P.; Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly; Nyska, Abraham; Richards, Judy E.; Andrews, Debora; Gilmour, M. Ian

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 ?g/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and ?-glutamyl transferase (?-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-?, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF ?-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-?, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ? Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ? In hypertensive rats diesel exhaust effects are seen only after long term exposure. ? Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ? Normalizing blood pressure reverses atherogenic effects

  4. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  5. Exhaust gas recirculation apparatus for engine with turbocharger

    SciTech Connect (OSTI)

    Nakamura, H.; Matsuo, S.; Kawai, N.

    1987-06-02

    This patent describes an exhaust gas recirculation apparatus for an internal combustion engine having an intake air passage and an exhaust gas passage connected thereto. The apparatus comprises: an exhaust gas recirculation passage connecting the exhaust gas passage to the intake air passage for recirculating the exhaust gas into the intake air passage; and a vacuum-operated exhaust gas recirculation control valve disposed in the exhaust gas recirculation passage for controlling the flow of the exhaust gas to be recirculated. The exhaust gas recirculation control valve comprises a diaphragm for receiving admitted operating vacuum such that the valve closes when the absolute value of the admitted operating vacuum is lower than the absolute value of a first predetermined vacuum value and opens when the absolute value of the admitted operating vacuum is higher than the absolute value of the first Predetermined vacuum value.

  6. Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Broader source: Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  8. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  9. Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel

    SciTech Connect (OSTI)

    Harvey, Scott D.; Wright, Bob W.

    2011-10-30

    The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

  10. Understanding diesel engine lubrication at low temperature

    SciTech Connect (OSTI)

    Smith, M.F. Jr.

    1990-01-01

    This paper reports on oil pumpability in passenger car gasoline engines that was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at {minus}18{degrees} C (0{degrees} F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier has better performance that a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance. The apparent shear rate of the oil in the pump inlet tube was calculated from the oil pump flow rate measured at idle speed at low temperature and the pump inlet tube diameter. The shear rate and oil viscosity were used to estimate the shear stress in the pump inlet tube. The shear stress level of the engine is 56% higher than the Mini-Rotary Viscometer (MRV). Hence, the current MRV procedure is rheologically unsuitable to predict pumpability in a large diesel engine. A new device was developed for measuring the oil film thickness in the turbocharge bearing and noting the time when a full oil film is formed. Results indicate that a full oil film occurs almost immediately, well before any oil pressure is observed at the turbocharge inlet. Residual oil remaining in the bearing after shutdown may account of this observation. The oil film maintained its thickness both before, and after the first indication of oil pressure. More work is needed to study this effect.

  11. Cummins/DOE Light Truck Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Diesel Engine Progress Report Cummins/DOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002_deer_stang.pdf (2.47 MB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

  12. Adapting ethanol fuels to diesel engines

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedial measures; the injection systems; ethanol quality.

  13. Update on Modeling for Effective Diesel Engine Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation - Master Plan, Status and Critical Needs | Department of Energy Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs An integrated diesel engine-aftertreatment-vehicle system is extremely complex with numerous interacting variables and an unlimited number of control options. An experimental approach to

  14. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems 2004_deer_catalytica.pdf (331 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  15. Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003_deer_bolton1.pdf (935.17 KB) More Documents & Publications Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Analytical Tool Development for Aftertreatment Sub-Systems

  16. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration - Strategy and Experimental Results | Department of Energy Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important consideration for light trucks and other personal transportation vehicles.

  17. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 6 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 20-24, 2006 Detroit, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session 1: A View from the Bridge Concurrent Technical Session 3: Diesel Engine Development Technical Session 1: Advanced Combustion Technologies, Part 1

  18. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. deer09_stanton.pdf (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  19. Exhaust gas recirculation system for a V-type engine

    SciTech Connect (OSTI)

    Choushi, M.; Ishimi, H.

    1986-10-07

    This patent describes an exhaust gas recirculation system for a V-type engine having a pair of cylinder banks arranged at an angle to each other on opposite sides of a crankshaft, each cylinder bank having cylinders therein and an intake passage being separately provided for each cylinder. The improvement described here comprises that the intake passages have respective proximate portions at which the intake passages to the cylinders in one cylinder bank and the intake passages to the cylinders in the other cylinder bank are aligned with each other as viewed in the direction of the crankshaft. The proximate portions are in the middle of the engine between the cylinder banks, and an exhaust recirculation passage for recirculating exhaust gas from an exhaust passage to the cylinders extending along the proximate portions in the direction of the crankshaft and communicating with each intake passage by way of a communicating aperture, an exhaust recirculation valve, for controlling the amount of exhaust gas, in the open end of the exhaust recirculation passage, and a branch exhaust passage, one end of which communicates with the exhaust recirculation passage by way of the exhaust recirculation valve and the other end of which communicates with an exhaust passage of the engine.

  20. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Systems Implemented in a Hybrid Configuration Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric ...

  1. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Broader source: Energy.gov (indexed) [DOE]

    ... Combustion Technologies, Diesel Engine Development, ... Powered Thermoelectric Generator John C. Bass Hi-Z ... (PDF 2.1 MB) Improved Lifetime Pressure-Drop Management ...

  2. Development Methodology for Power-Dense Military Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory data and modeling results are presented on a military auxiliary power unit ... More Documents & Publications Oxygen-Enriched Combustion for Military Diesel Engine ...

  3. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Broader source: Energy.gov (indexed) [DOE]

    (196.85 KB) More Documents & Publications Development Methodology for Power-Dense Military Diesel Engine Oxygen-Enriched Combustion Emission Control Strategy for Downsized ...

  4. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion ...

  5. Technology Development for High Efficiency Clean Diesel Engines...

    Broader source: Energy.gov (indexed) [DOE]

    (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency ...

  6. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will describe preliminary emission results of gasolinediesel RCCI in a ...

  7. Clean and Efficient Diesel Engines- Designing for the Customer

    Broader source: Energy.gov [DOE]

    A look at the key role that clean and efficient diesel engines will play in achieving climate and energy goals, and further improvements needed to perform this role.

  8. Diesel Engine Strategy & North American Market Challenges, Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the 2007 ...

  9. Exhaust Analyzer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exhaust Analyzer Technology available for licensing: Aids in development of advanced technologies for reducing particulate emissions, thereby reducing human exposure Diesel engine makers can use to evaluate diesel particulate emissions; refining companies can use it for evaluating fuel quality; and regulatory agencies can use for checking on-road vehicle compliance for emissions PDF icon Exhaust_Analyzer

  10. Diesel Aftertreatment Systems development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with ...

  11. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  12. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  13. 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 24-28, 2003 Newport, Rhode Island The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Session 6: Environmentally Concerned Public Sector Organization Panel Session 1: Emerging Diesel Technologies Session 7: Combustion and HCCI Regimes Session 2: Fuels and

  14. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 21-25, 2005 Chicago, Illinois The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Technical Session 4: Emission Control Technologies, Part 1 Technical Session 1: Advanced Combustion Technologies Part 1 Poster Session 2: Light-Duty Diesels and Emission

  15. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Advanced Petroleum-Based Fuels-Diesel Emission Control (APBF-DEC) Project

  16. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  17. Optimization of Advanced Diesel Engine Combustion Strategies | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace020_reitz_2011_o.pdf (786.77 KB) More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature Combustion

  18. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 ... Multicylinder Diesel Engine for Low Temperature Combustion Operation Development of ...

  19. Epidemiological-environmental study of diesel bus garage workers: chronic effects of diesel exhaust on the respiratory system

    SciTech Connect (OSTI)

    Gamble, J.; Jones, W.; Minshall, S.

    1987-10-01

    Two hundred and eighty-three (283) male diesel bus garage workers from four garages in two cities were examined to determine if there was excess chronic respiratory morbidity related to diesel exposure. The dependent variables were respiratory symptoms, radiographic interpretation for pneumoconiosis, and pulmonary function (FVC, FEV1, and flow rates). Independent variables included race, age, smoking, drinking, height, and tenure (as surrogate measure of exposure). Exposure-effect relationships within the study population showed no detectable associations of symptoms with tenure. There was an apparent association of pulmonary function and tenure. Seven workers (2.5%) had category 1 pneumoconiosis (three rounded opacities, two irregular opacities, and one with both rounded and irregular). The study population was also compared to a nonexposed blue-collar population. After indirect adjustment for age, race, and smoking, the study population had elevated prevalences of cough, phlegm, and wheezing, but there was no association with tenure. Dyspnea showed a dose-response trend but no apparent increase in prevalence. Mean percent predicted pulmonary function of the study population was greater than 100%, i.e., elevated above the comparison population. These data show there is an apparent effect of diesel exhaust on pulmonary function but not chest radiographs. Respiratory symptoms are high compared to blue-collar workers, but there is no relationship with tenure.

  20. Influence of the exhaust system on performance of a 4-cylinder supercharged engine

    SciTech Connect (OSTI)

    Trenc, F.; Bizjan, F.; Hribernik, A.

    1998-10-01

    Twin entry radial turbines are mostly used to drive compressors of small and medium size 6-cylinder diesel engines where the available energy of the undisturbed exhaust pulses can be efficiently used to drive the turbine of a turbocharger. Three selected cylinders feed two separated manifold branches and two turbine inlets and prevent negative interaction of pressure waves and its influence on the scavenging process of the individual cylinders. In the case of a four-stroke, 4-cylinder engine, two selected cylinders, directed by the firing order, can be connected to one (of the two) separated manifold branches that feeds one turbine entry. Good utilization of the pressure pulse energy, together with typically longer periods of reduced exhaust flow can lead to good overall efficiency of the two-pulse system. Sometimes this system can be superior to the single manifold system with four cylinders connected to one single-entry turbine. The paper describes advantages and disadvantages of the above described exhaust systems applied to a turbocharged and aftercooled 4-cylinder Diesel engine. Comparisons supported by the analyses of the numerical and experimental results are also given in the presented paper.

  1. Optimization of Engine-out Emissions from a Diesel Engine to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, ...

  2. A study of the organic emission from a turbocharged diesel engine running on 12 percent hexyl nitrate dissolved in ethanol

    SciTech Connect (OSTI)

    Walde, N.; Westerholm, R.; Persson, K.-A.

    1984-01-01

    A highly rated turbocharged diesel engine adapted for an alternative fuel based on ethanol and hexyl nitrate has been investigated with respect to the emission of organic compounds in the exhausts. The adaption involves: ignition nozzles with larger holes, a change of injection timing and more fuel injected per stroke. Emissions were measured at four different driving modes ie, 1, 8, 10 and 12 respectively, in the California Cycle. The exhaust composition are different compared to conventional diesel emissions. The main part of the organic pollutants consists of unburned ethanol and hexyl nitrate, acetaldehyde being the most abundant aldehyde.

  3. Modeling pollution formation in diesel engines

    SciTech Connect (OSTI)

    Brown, N.

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  4. Starting low compression ratio rotary Wankel diesel engine

    SciTech Connect (OSTI)

    Kamo, R.; Yamada, T.Y.; Hamada, Y.

    1987-01-01

    The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid.

  5. Exhaust gas purification system for lean burn engine

    SciTech Connect (OSTI)

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  6. Dynamic behaviour of a turbocharged diesel engine

    SciTech Connect (OSTI)

    Backhouse, R.; Winterbone, D.E.

    1986-01-01

    The transient behaviour of torque and smoke produced by a turbocharged diesel engine has been measured by frequency response methods, with a sinusoidal peturbation applied to the fuel. A dynamic torque parameter (dmep) has been introduced and the response of this to changes in speed and load can be separated. The dmep also enables the delay associated with torque production to be obtained: this is compared to the widely accepted values. The results have also been analysed to show the relationship between air-fuel ratio and smoke produced during a transient. The conclusion is that the production of smoke under dynamic condition behaves similarly to that under steady running but that it is more dependent on the initial load (air-fuel ratio) level.

  7. Engineering task plan for five portable exhausters

    SciTech Connect (OSTI)

    Rensink, G.E.

    1997-10-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures.

  8. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  9. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  10. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composition and Health Responses to Inhaled Emissions | Department of Energy and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_mcdonald.pdf (542.75 KB) More Documents & Publications The Effect of Changes in

  11. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  12. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration effectively deer12_suresh.pdf (986.08 KB) More Documents & Publications Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins/DOE Light Truck Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

  13. Diesel Engines: What Role Can They Play in an Emissions-Constrained World?

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation; California Air Resources Board

  14. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this

  15. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004_deer_schindler.pdf (951.51 KB) More Documents & Publications Accelerating Light-Duty Diesel Sales in the U.S. Market Marketing Light-Duty Diesels to U.S. Consumers Clean Diesel: The Progress, The Message, The Opportunity

  16. Technical Challenges and Opportunities Light-Duty Diesel Engines in North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America | Department of Energy Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_pinson.pdf (598.44 KB) More Documents & Publications Light-Duty Diesel Market Potential in North America Diesel Technology - Challenges & Opportunities for North America Comparison of Conventional Diesel and

  17. Future Breathing System Requirements for Clean Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Diesel Engine Strategy & North American Market Challenges, Technology and Growth

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Impact of Real Field Diesel Quality Variability on Engine Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine. p-07hermitte.pdf (1.04 MB) More Documents & ...

  20. Engine Materials for Clean Diesel Technology: An Overview

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  1. An application of a combined charging system on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Lee, D.I.; Her, K.; Chang, N.

    1984-01-01

    To improve the low-speed torque characteristics and the fuel economy and to reduce the exhaust gaseous emissions from a 10-liter, turbocharged diesel engines, charge air cooling with a resonant intake system has been introduced. The use of an air-to-air inter-cooler mounted in front of the radiator results in increasing the charge air density and the resonant intake system offers a high volumetric charging efficiencies at low-speed region. Actual engine data show an increase in power of 14 percent, the improvement of specific fuel consumption by 3-7 percent and a decrease in NOx emissions by 33 percent.

  2. French perspective on diesel engines & emissions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Diesel Emission Control: Euruopean Experience and Worldwide Perspectives Performance and durability of PSA Peugeot Citroen's DPF System on a Taxi Fleet in the Paris Area

  3. Recent Diesel Engine Emission Mitigation Activities of the Maritime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Energy Technologies Program | Department of Energy Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program 2003 DEER Conference Presentation: Maritime Administration 2003_deer_gore.pdf (759.73 KB) More Documents & Publications The Maritime Administration's Energy and Emissions Program - Part 2 Reduction of Emissions

  4. Multicylinder Diesel Engine for Low Temperature Combustion Operation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion temperatures to yield low NOx at higher loads and better efficiency over the speed-load range deer08_deojeda.pdf (1.22 MB) More Documents & Publications Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Multicylinder Diesel Engine Design for HCCI Operation Impact of

  5. 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 13-16, 2007 Detroit, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Tuesday Dinner Monday Lunch Concurrent Technical Session 4 : Emission Control Technologies, Part 2 Technical Session 1: Advanced

  6. 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 4-7, 2008 Dearborn, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Concurrent Technical Session 4: Emission Control Technologies, Part 2 Lunch: Sponsored by Caterpillar, Inc. Concurrent Technical

  7. Exhaust gas recirculation control system for an internal combustion engine

    SciTech Connect (OSTI)

    Nishida, M.; Inoue, N.

    1988-03-01

    An exhaust gas recirculation control system for an internal combustion engine is described which comprises; an exhaust gas recirculation control valve for controlling a recirculation rate for exhaust gas to be mixed with intake air which is supplied to the internal combustion engine, an oxygen sensor disposed in an intake air passage downstream of the control valve to detect the concentration of oxygen in the intake air, a control means which compares the oxygen concentration detected by the oxygen sensor with a desired oxygen concentration previously determined depending on operational conditions of the engine and controls the degree of opening of the exhaust gas recirculation control valve so as to cancel the deviation between the detected oxygen concentration and the desired oxygen concentration, a detecting means for detecting the exhaust gas recirculation rate being zero to supply a signal to the control means on the basis of the detection, and a correcting means for correcting the corresponding relation between the output of the oxygen sensor and the detected oxygen concentration on the basis of the output of the oxygen sensor when the exhaust gas recirculation rate is zero.

  8. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions

  9. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuels Application of Synthetic Diesel Fuels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_schaberg.pdf (462.75 KB) More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  10. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.