National Library of Energy BETA

Sample records for diesel engine emissions

  1. French perspective on diesel engines & emissions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    French perspective on diesel engines & emissions French perspective on diesel engines & emissions 2002 DEER Conference Presentation: Aaqius & Aaqius 2002deernino.pdf More...

  2. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  3. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel...

  4. Nanocatalysts for Diesel Engine Emissions Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocatalysts for Diesel Engine Emissions Remediation Zeolite-Based Nanocatalysts Offer Enhanced Catalyst Performance and Durability Each year, the United States consumes a large...

  5. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and...

  6. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

  7. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  8. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management

  9. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

  10. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

  11. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  12. Diesel Engine Emission Reduction (DEER) Experiment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Emissions and Durability of Underground Mining Diesel...

  13. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect (OSTI)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  14. Progress in diesel engine emissions control

    SciTech Connect (OSTI)

    Khair, M.K. (Southwest Research Inst., San Antonio, TX (United States))

    1992-07-01

    A considerable amount of work was carried out in the mid-1980s to develop heavy-duty diesel engines that could meet limits on particulate emissions. These limits, although high by today's standards, were considered very restrictive. Some manufacturers struggled to achieve the 0.6 g/bhp-h particulate matter limit with enough margin for production variabilities and to account for the deterioration factor. Significant progress was achieved in diesel emissions control through engine and fuel system design changes. This eventually made it possible to meet a particulate level of 0.25 g/bhp-h for 1991. The next target level for particulate emissions is 0.1 g/bhp-h for the 1994 heavy-duty engine. To meet the challenge, engine developers are not only considering engine and injection system design changes but also fuel improvements and exhaust aftertreatment. This paper includes a review of past and current strategies used to control emissions in the modern diesel engine.

  15. Optimization of Engine-out Emissions from a Diesel Engine to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits...

  16. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  17. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robert M. Wagner Oak Ridge National Laboratory (PDF 520 KB) Visualization of Unburned Hydrocarbon Emissions for Low-Temperature Diesel Engine Combustion Mark P.B. Musculus...

  18. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

  19. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Broader source: Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  20. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research...

  1. Diesel Engines: What Role Can They Play in an Emissions-Constrained World?

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation; California Air Resources Board

  2. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  3. 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Secondary Fuel Injection Argun Yetkin Tenneco Automotive (PDF 141 KB) Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary...

  4. Diesel Engines: What Role Can They Play in an Emissions-Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What Role Can They Play in an Emissions-Constrained World? Diesel Engines: What Role Can They Play in an Emissions-Constrained World? 2004 Diesel Engine Emissions Reduction (DEER)...

  5. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  6. Engine performance and exhaust emissions from a diesel 

    E-Print Network [OSTI]

    Powell, Jacob Joseph

    2009-05-15

    engine rated for 14.2 kW. When using cottonseed oil biodiesel blends, CO, hydrocarbon, NOx, and SO2 emissions decreased as compared to petroleum diesel. Carbon dioxide emissions had no definitive trend in relation to cottonseed oil biodiesel blends...

  7. Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz Introduction In this paper we consider an automotive control problem for a variable geometry turbocharged (VGT torque output as compared to (non-turbocharged) naturally aspirated engines 13]. The power generated

  8. Independent components in acoustic emission energy signals from large diesel engines

    E-Print Network [OSTI]

    Independent components in acoustic emission energy signals from large diesel engines Niels Henrik-Sørensen et al. [5], to acoustic emission (AE) energy signals obtained from a large diesel engine

  9. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

  10. New concept on lower exhaust emission of diesel engine

    SciTech Connect (OSTI)

    Fujimoto, Hajime; Senda, Jiro; Shibata, Ichiro; Matsui, Koji

    1995-12-31

    One of the countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure,and its demerit is an increase in NO{sub x}, although soot decreases. The authors propose a new concept, the simultaneous reduction of NO{sub x} and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO{sub 2} gas dissolved. Flash boiling facilities the distinguished atomization of fuel oil and CO{sub 2} gas contributes to the internal EGR (Exhaust Gas Recirculation) during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO{sub 2} gas dissolved is described in this paper, as a first step.

  11. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems...

  12. Measurements of the soot emissions and engine operat-ing parameters from a diesel engine during transient op-

    E-Print Network [OSTI]

    Daraio, Chiara

    ABSTRACT Measurements of the soot emissions and engine operat- ing parameters from a diesel engine and are the subject of future research. INTRODUCTION Soot emissions from diesel engines are well known to have gov- erning the emission of particles from diesel engines are becoming ever more stringent. The soot

  13. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  14. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  15. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation:...

  16. Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between.denis-vidal@math.univ-lille1.fr, ghislaine.joly-blanchard@utc.fr) Abstract: In order to optimize the performance of a diesel problems, modelling errors, Automotive emissions, Diesel engines 1. INTRODUCTION The automotive industry

  17. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerwitherspoon.pdf More Documents & Publications...

  18. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    E-Print Network [OSTI]

    Garfunkel, Eric

    Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However- cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations

  19. DIesel Emission Control Technology Developments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments 2005deerandreoni.pdf More Documents & Publications Cleaning Up Diesel Engines...

  20. Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits

    Broader source: Energy.gov [DOE]

    Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines.

  1. A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

    Broader source: Energy.gov [DOE]

    A single-cylinder engine was used to study how selected oxygenated fuels affect combustion and emissions in a modern diesel engine during conventional combustion and low-temperature combustion (LTC).

  2. Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

  3. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine for Low Temperature Combustion Operation Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low...

  4. IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY

    E-Print Network [OSTI]

    Minnesota, University of

    1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111, however, is providing the report on its Website because it is important for parties interested in diesel

  5. EXPLORING LOW EMISSION DIESEL ENGINE OILS WORKSHOP - A SUMMARY REPORT

    SciTech Connect (OSTI)

    Perez, Joseph

    2000-08-20

    This paper discusses and summarizes some of the results of the title workshop. The workshop was held January 31-February 2, 2000 in Phoenix, Arizona. The purpose of the workshop was ''To craft a shared vision for Industry-Government (DOE) research and development collaboration in Diesel Engine Oils to minimize emissions while maintaining or enhancing engine performance''. The final report of the workshop (NREL/SR-570-28521) was issued in June 2000 by the National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393. There were some 95 participants at the workshop representing industry, government and academia, Figure 1. The format for the workshop is described in Figure 2. This format allowed for considerable discussion of the various issues prior to deliberations in breakout groups. This process resulted in recommendations to solve the issues related to the next generation of diesel engine oils. Keynote addresses by SAE President Rodica Baranescu (International Truck and Engine Corporation), James Eberhardt of DOE and Paul Machiele of EPA focused on diesel progress, workshop issues and regulatory fuel issues. A panel of experts further defined the issues of interest, presenting snapshots of the current status in their areas of expertise. A Q&A session was followed by a series of technical presentations discussing the various areas. Some two dozen presentations covered the technical issues, Figure 3. An open forum was held to allow any participant to present related studies or comment on any of the technical issues. The participants broke into work groups addressing the various areas found on Figure 2. A group leader was appointed and reported on their findings, recommendations, suggested participants for projects and on related items.

  6. Supplemental Information : Secondary Organic Aerosol Production from Modern Diesel Engine Emissions, Shar Samy and1 Barbara Zielinska2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Supplemental Information : Secondary Organic Aerosol Production from Modern Diesel Engine Emissions emissions. For more detail on compositional and toxicity changes produced from further29 diesel engine use of Final Mass 05/16/05 D-3, Diesel in Dark with ozone 9:15 11.5 15:30 11 -0.5 0.0 05/17/05 D-3, Diesel

  7. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  8. Diesel Engine CO2 and SOx Emission Compliance Strategy for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy...

  9. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Combustion Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  10. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration- Strategy and Experimental Results

    Broader source: Energy.gov [DOE]

    The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important consideration for light trucks and other personal transportation vehicles. Integrated engine and aftertreatment systems have been developed at Detroit Diesel Corporation for multiple engine and vehicle platforms. Tier 2 emissions technologies have been demonstrated with significant fuel economy advantage compared to the respective production gasoline engines while maintaining excellent drivability.

  11. Control of the emissions of transportation and stationary diesel engines

    SciTech Connect (OSTI)

    Levendis, Y.A. [Northeastern Univ., Boston, MA (United States). Dept. of Mechanical, Industrial and Manufacturing Engineering

    1996-12-31

    This manuscript describes a novel exhaust aftertreatment system for effective reduction of all diesel engine emissions. This system employs high-efficiency ceramic filter elements and filtered exhaust gas recirculation (EGR) to control particulate and NO{sub x} emissions. The filters are periodically regenerated aerodynamically, that is, by pulses of compressed air flowing in the opposite to the exhaust direction. The fact that the filtration system is kept at moderate temperatures, at all times, promotes the condensation of volatile hydrocarbons on the soot. Results obtained from extensive road-testing of various configurations of such systems show that (a) soot filtration efficiencies of over 99% can be achieved, (b) volatile hydrocarbon reductions of over 50% are feasible by condensation and (c) 50% reduction of NO{sub x} can be obtained with 20% EGR. Additional benefits include capture of ash and sulfates. To accommodate engines of different sizes a multi-module system is proposed. The optimum number of filters and the frequency of regeneration varies according to the size of the engine. Upon regeneration, soot is collected in a separate chamber where it is incinerated or it is periodically removed by a vacuum system.

  12. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  13. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  14. A theoretical analysis of acoustic scrubber in diesel engine emission control 

    E-Print Network [OSTI]

    Huang, Tiing-Lieh

    1985-01-01

    A THEORETICAL ANALYSIS OF ACOUSTIC SCRUBBER IN DIESEL ENGINE EMISSION CONTROL A Thesis by Tiing-Lich Huang Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1985 Major Subject: Mechanical Engineering A THEORETICAL ANALYSIS OF ACOUSTIC SCRUBBER IN DIESEL ENGINE EMISSION CONTROL A Thesis by Tiing-Lich Huang Approved as to style and content by: Josep K. ou (Chairman of Committee) Marro Co...

  15. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  16. Advanced Ceramic Filter For Diesel Emission Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Filter For Diesel Emission Control Advanced Ceramic Filter For Diesel Emission Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Dow Automotive...

  17. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  18. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  19. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004deerblock.pdf More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel...

  20. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines?

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  1. An Experimental Study of PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  5. The 60% Efficient Diesel Engine: Probably, Possible, Or Just...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

  6. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale Banks...

  7. Hydrogen as a Supplemental Fuel in Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

  8. Design Challenges of Locomotive Diesel Engines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges of Locomotive Diesel Engines Design Challenges of Locomotive Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  9. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  10. Next Generation Diesel Engine Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Control Next Generation Diesel Engine Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

  11. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  12. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  13. Effect of engine operating parameters and fuel characteristics on diesel engine emissions

    E-Print Network [OSTI]

    Acar, Joseph, 1977-

    2005-01-01

    To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

  14. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  15. Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Baskaran, Suresh; Kupe, J.

    2000-12-31

    This paper presents an overview of a non-thermal plasma assisted catalyst system as applied to a small displacement diesel powered vehicle. In addition to effectively reducing NOx emissions, it has been found that a non-thermal plasma can also destroy a portion of the particulate matter (PM) that is emitted from diesel engines. Delphi Automotive Systems in conjunction with Pacific Northwest National Laboratories has been developing such an exhaust aftertreatment system to reduce emissions form diesel vehicles. The results of testing and system evaluation will be discussed in general, and the effectiveness on reducing oxides of nitrogen and particulate matter emissions from diesel vehicles. Published in Future Engines-SP1559, SAW, Warrendale, PA

  16. Development of the DDA 8. 2L diesel engine for 1988 emission standards

    SciTech Connect (OSTI)

    Winsor, R.E.; Wheeler, C.L.

    1988-01-01

    The emission development performed to meet 1988 Federal and California emission standards with a four-stroke direct-injection V-8 diesel engine of 8.2L displacement is described. On the naturally aspirated engine the major concern was meeting particulate and lug smoke standards at low NO/sub x/ levels. Acceleration smoke and particulate emission reduction was necessary on the turbocharged engine. The performance and emission goals were met by modifying the unit injectors and pistons of both naturally aspirated and turbocharged engines.

  17. Potentiality of small DI diesel engines under consideration of emissions and noise control

    SciTech Connect (OSTI)

    Sugihara, K.; Matusi, Y.; Saegusa, S.

    1985-01-01

    The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noise levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 db (a) higher than those of the IDI engine. It was suggested from these results that in those countries which have stringent emission and noise regulations several years would be required to introduce small, high speed DI diesel engines for passenger cars to meet with these regulations.

  18. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    SciTech Connect (OSTI)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  19. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  20. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

  1. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  2. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  3. Diesel hybridization and emissions.

    SciTech Connect (OSTI)

    Pasquier, M.; Monnet, G.

    2004-04-21

    The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

  4. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

  6. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01

    and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

  7. Nanoparticle Emissions from Internal Combustion Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  8. Intercooling effects of methanol on turbocharged diesel engine performance and exhaust emissions

    SciTech Connect (OSTI)

    Saito, T.; Daisho, Y.; Aoki, Y.; Kawase, N.

    1984-01-01

    From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower nox and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are involved.

  9. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation:...

  10. Diesel Emission Control in Review

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  12. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Broader source: Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  13. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

  17. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    are strongly related to NOx emissions, and in order to reach extremely low emission levels, reduction1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube of the consumed lube-oil. Significant reductions in particulate emission rate could be obtained by controlling

  18. Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines

    E-Print Network [OSTI]

    Wu, Mingshen

    from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

  19. Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock 

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2011-02-22

    in the total hydrocarbon and CO2 emissions, as blends were increased from B20 to B100, was also found to be an indication of better combustion using biodiesel fuels than petroleum diesel. However, NOx emissions were higher, predominantly at low speeds for most...

  20. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov [DOE]

    This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

  1. Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399

    SciTech Connect (OSTI)

    Williams, A.

    2013-06-01

    To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

  2. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

  3. 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Alcohol DI for Knock Avoidance Paul Blumberg Ethanol Boosting (PDF 163 KB) Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-based Systems Approach...

  4. Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Environmental Respiratory Center

  5. Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines

    E-Print Network [OSTI]

    Minnesota, University of

    & LOGISTICS SYMPOSIUM page 3 CIVIL ENGINEERING DIRECTIONS page 4 WORK-ZONE SAFETY page 5 PUBLIC AFFAIRS PHS to lead $10.4 million regional consortium on transportation safety CTS continued on page 7 In a national regional University Transportation Center (UTC) consortium focused on improving transportation safety

  6. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine

    Broader source: Energy.gov [DOE]

    This study measured the effects of hydrogen substitution on engine performance and reducing NOx emissions in a diesel engine

  7. Diesel engine combustion and emissions from fuel to exhaust aftertreatment. SP-1113

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    There are many dimensions involved in any study of Diesel Engine Emissions. These dimensions include: the fuel used, how the fuel is presented into the combustion chamber, how the air is presented into the combustion chamber, the actual process of combustion and emissions formation, the treatment of the emissions after combustion, and the test methods used to quantify the emissions. All of these dimensions are covered in this publication. The fuel topics include: plant oil based fuels and gas dissolved in fuel oil. The air delivery to the combustion chamber is effected by both port performance and geometry and ambient conditions and these topics are included. The thermodynamics of the combustion process and modeling are included in this publication. Aftertreatment is included with a paper on particulate filters. A correlation study using the ISO8178 testing method is also included. All nine papers have been processed separately for inclusion on the database.

  8. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. An optimization study on the control of NOx and particulate emissions from diesel engines

    SciTech Connect (OSTI)

    Larsen, C.; Oey, F.; Levendis, Y.A. [Northeastern Univ., Boston, MA (United States)

    1996-09-01

    This is an optimization study on the use of filtered exhaust gas recirculation (EGR) to reduce the NO emissions of diesel engines. Control of the particulate emissions and provisions for filtered EGR were achieved by an Aerodynamically Regenerated Trap (ART) with collection efficiencies in the order of 99%. The amount of EGR was regulated to provide for substantial NO reduction, without unacceptably decreasing the thermal efficiency of the engine or increasing the CO emissions. EGR regulation was accomplished by monitoring the injection pump setting which was correlated to the fuel flow rate, the speed of the engine, the amount of EGR flow, and the ambient air temperature. Through these parameters, the mixture strength expressed as the equivalence ratio {phi} was calculated and related to the power output of the engine. Thus, a map of engine performance parameters was generated and related to measured NO and CO emissions. A series of road tests showed that EGR most effectively reduces NO emissions at high {phi}`s (by a factor of two at 20% EGR) which, however, is accompanied by an increase in CO emissions by a factor of two, and a penalty in fuel economy by 8%. Benefits and losses can be optimized by automatically varying the level of EGR, using feedback from the aforementioned engine parameters. An algorithm was developed to govern the electrically controlled EGR valve and tests showed that the NO levels decreased by 30%, while the CO increased by 30%, showing no penalty in fuel economy. The resulting specific NO and CO emissions were well within the current US EPA standards.

  10. Biological activity of exhaust emissions from two after-treatment device-equipped light-duty diesel engines

    SciTech Connect (OSTI)

    Carraro, E.; Locatelli, A.L.; Ferrero, C.; Fea, E.; Gilli, G. [Univ. of Turin (Italy)

    1995-10-01

    Whole diesel exhaust has recently been classified as a portable carcinogen, and particulate exhaust known to contain mutagenic and carcinogenic chemicals, has clearly shown to be mutagenic in several genotoxicity studies. The goal of this study was to determine whether, and to what extent, the installation of some exhaust aftertreatment devices on two light-duty diesel engines (1930 cc and 2500 cc) EGR-valve equipped may reduce mutagenic activity associated to particles collected during both USA and European driving cycles. The preliminary results point out the usefulness of mutagenicity tests in the research of even new more efficient automotive emission aftertreatment devices. The aim of this investigation is to determine whether, and to what range, the use of some new aftertreatment devices on light-duty diesel engines could reduce the particle-associated genotoxic potential of diesel emissions. 24 refs., 3 figs., 1 tab.

  11. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II

    SciTech Connect (OSTI)

    Reitz, R.D.; Rutland, C.J.

    1993-09-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

  12. A study of the organic emission from a turbocharged diesel engine running on 12 percent hexyl nitrate dissolved in ethanol

    SciTech Connect (OSTI)

    Walde, N.; Westerholm, R.; Persson, K.-A.

    1984-01-01

    A highly rated turbocharged diesel engine adapted for an alternative fuel based on ethanol and hexyl nitrate has been investigated with respect to the emission of organic compounds in the exhausts. The adaption involves: ignition nozzles with larger holes, a change of injection timing and more fuel injected per stroke. Emissions were measured at four different driving modes ie, 1, 8, 10 and 12 respectively, in the California Cycle. The exhaust composition are different compared to conventional diesel emissions. The main part of the organic pollutants consists of unburned ethanol and hexyl nitrate, acetaldehyde being the most abundant aldehyde.

  13. Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine 

    E-Print Network [OSTI]

    Tompkins, Brandon T.

    2009-05-15

    Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant ...

  14. Design of oil consumption measuring system to determine the effects of evolving oil sump composition over time on diesel engine performance and emissions

    E-Print Network [OSTI]

    Ortiz-Soto, Elliott (Elliott A.)

    2006-01-01

    The automotive industry is currently struggling because of the increasingly stricter emissions standards that will take effect in the near future. Diesel engine emissions are of particular interest because they are still ...

  15. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

  16. Insights on postinjection-associated soot emissions in direct injection diesel engines

    SciTech Connect (OSTI)

    Arregle, Jean; Pastor, Jose V.; Lopez, J. Javier; Garcia, Antonio [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera, s/n 46022, Valencia (Spain)

    2008-08-15

    A comprehensive study was carried out in order to better understand combustion behavior in a direct injection diesel engine when using postinjections. More specifically, the aim of the study is twofold: (1) to better understand the mechanism of a postinjection to reduce soot and (2) to improve the understanding of the contribution of the postinjection combustion on the total soot emissions by looking at the effect of the postinjection timing variation and the postinjection mass variation on the soot emissions associated with the postinjection. The study is focused only on far postinjections, and the explored operating conditions include the use of EGR. The first objective was fulfilled analyzing some results from a previous work adding only a few complementary results. Concerning the second objective, the basic idea behind the analysis performed is the search of appropriate parameters physically linked to the processes under analysis. These parameters are found based on the state-of-the-art of diesel combustion. For the effect of the postinjection timing, the physical parameter found was the temperature of the unburned gases at the end of injection, T{sub ug{sub E}}{sub oI}. It was checked that a threshold level of T{sub ug{sub E}}{sub oI} ({proportional_to}700 K for the cases explored here) exists below which soot is unable to be formed, independently of the postinjection size, and the amount of soot increases as the temperature increases beyond this threshold. For the effect of the postinjection size, the physical parameter that was found was DoI/ACT (the ratio between the actual duration of injection and the time necessary for mixing - the apparent combustion time). This parameter can quantify when the postinjection is able to produce soot (the threshold value is {proportional_to}0.37 for the cases explored here), and the amount of soot produced increases as this parameter increases beyond this threshold value. A function containing these two parameters has been fitted to the experimental soot emissions associated with the postinjection obtained in many engine operating conditions, and the appropriate quality of the fit demonstrates that these two parameters explain the main behaviors of the soot emissions associated with a postinjection. (author)

  17. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  18. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  19. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  20. Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  1. The regenerable trap oxidizer-An emission control technique for diesel engines

    SciTech Connect (OSTI)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.; Loose, G.

    1985-01-01

    Daimler-Benz made an early start with the development of systems for the aftertreatment of the exhaust gas emitted by diesel engines. The more important limiting conditions could best be met by the provision of a ceramic, selfcleaning trap oxidizer (TO). In such filters, self-regeneration is effected continuously while driving without any external control. Either partial or complete regeneration is effected, depending on the temperature, oxygen content and rate of flow of the exhaust gas, the amount of soot in the filter and the period for which a given operating condition is maintained. Such a trap oxidizer was developed for a 3.0 liter turbocharged diesel engine to the extent necessary for series production and has been fitted to type 300 SD and 300 D turbocharged diesel of model year 1985 in California.

  2. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect (OSTI)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  3. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  4. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerbonadies.pdf More Documents & Publications Application of a Diesel Fuel Reformer for...

  5. Driving Down Diesel Emissions

    E-Print Network [OSTI]

    Harley, Robert

    2013-01-01

    is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

  6. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  7. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  8. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  9. Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation

    Broader source: Energy.gov [DOE]

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

  10. Electrochemical NOx Sensor for Monitoring Diesel Emissions |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Monitoring Diesel Emissions Electrochemical NOx Sensor for Monitoring Diesel Emissions Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review...

  11. Consider the DME alternative for diesel engines

    SciTech Connect (OSTI)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEV standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.

  12. Low Emissions Aftertreatment and Diesel Emissions Reduction

    SciTech Connect (OSTI)

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

  13. Relationship Between Composition and Toxicity of Engine Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lovelace Respiratory Research Instiitute

  14. High Engine Efficiency at 2010 Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency at 2010 Emissions High Engine Efficiency at 2010 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deernelson.pdf...

  15. Mass Correlation of Engine Emissions with Spectral Instruments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Correlation of Engine Emissions with Spectral Instruments Mass Correlation of Engine Emissions with Spectral Instruments 2004 Diesel Engine Emissions Reduction (DEER)...

  16. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  17. Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine

    E-Print Network [OSTI]

    Wu, Mingshen

    lean-combustion diesel engines, including exhaust gas recirculation, lean NOx catalysis, selective by several engine manufacturers for use in mobile emis- sion sources to meet stringent NOx regulations.2

  18. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007...

  19. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2008-01-01

    Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

  20. New Diesel Emissions Control Strategy for U.S. Tier 2 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control Strategy for U.S. Tier 2 New Diesel Emissions Control Strategy for U.S. Tier 2 2004 Diesel Engine Emissions Reduction (DEER) Conference: Southwest Research...

  1. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  2. Clean Diesel Engine Component Improvement Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Component Improvement Program Clean Diesel Engine Component Improvement Program 2005deermay.pdf More Documents & Publications Noxtechs PAC System Development and...

  3. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    SciTech Connect (OSTI)

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

  4. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  5. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  6. Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines

    Broader source: Energy.gov [DOE]

    Two-stage combustion is investigated to achieve low noise, low emissions, and high efficiency operation using engine experiments and a multi-dimensional CFD code coupled with detailed chemistry and a Multi-Objective Genetic Algorithm (KIVA-CHEMKIN-MOGA code). The first stage is premixed combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions and operation at light load (nominal 5.5 bar IMEP and 2000 rpm).

  7. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  8. The use of CETANER{trademark} for the reduction of particulate matter emissions in a turbocharged direct injection (TDI) diesel engine

    SciTech Connect (OSTI)

    Hess, H.S.; Chiodo, J.A.; Boehman, A.L.; Tijim, P.J.A.; Waller, F.J.

    1999-07-01

    In this experimental study, the effects of the addition of CETANER{trademark} to a premium diesel fuel at various blend levels (5%, 10% and 15% by weight) were evaluated using a 1.9 liter turbocharged direct injection diesel engine. CETANER{trademark}, a product developed by Air Products and Chemicals, Inc., can be manufactured from coal-derived syngas through a two-stage process: (i) Liquid Phase DiMethyl Ether synthesis (LPDME); and (ii) oxidative coupling of DiMethyl Ether (DME) to form long chain linear ethers. When compared to other oxygenated components currently being researched, CETANER has several key advantages: (1) it is derived from a non-petroleum feedstock; (2) it has a cetane number greater than 100; and (3) it will have a cost comparable to diesel fuel. Particulate matter emissions and exhaust gas composition (NOx and CO), were determined at six steady-state engine operating conditions. In addition, fuel properties (viscosity, cloud point, pour point, density, flash point and calorific value) of the various blends were also determined. Engine test results indicate that CETANER is effective in reducing particulate matter emissions at all blend levels tested, without any modifications to engine operating parameters. At the highest blend level (15% CETANER by weight), particulate matter emissions were reduced by greater than 20% when compared to premium diesel fuel.

  9. Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept

    E-Print Network [OSTI]

    Im, Hong G.

    1 Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept and soot emissions modeling, computational diesel engine simulations, eddy dissipation concept #12 ignition, combustion, NOx and soot emissions over a wide range of operating conditions in a diesel engine

  10. Analysis of parasitic losses in heavy duty diesel engines

    E-Print Network [OSTI]

    James, Christopher Joseph

    2012-01-01

    Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

  11. Emissions from Wild Land Fires, Diesel Engines and Other Combustion Sources

    E-Print Network [OSTI]

    Dixit, Poornima

    2014-01-01

    TWC 2007 DIESEL DPF OC CNG Spark Ignited lean burn ULSD DPF+EGR ULSD DPF+EGR ULSD DPF+SCR ULSD DPF+SCR CYCLE CBDX2 CBDX2 CBDX2 CBDX2

  12. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

  13. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  14. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  15. Future Breathing System Requirements for Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breathing System Requirements for Clean Diesel Engines Future Breathing System Requirements for Clean Diesel Engines Poster presentation at the 2007 Diesel Engine-Efficiency &...

  16. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  17. Alloy Foam Diesel Emissions Control School Bus Implementation

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Pressure modulated injection and its effect on combustion and emissions of a HD diesel engine

    SciTech Connect (OSTI)

    Erlach, H.; Chmela, F.; Cartellieri, W.; Herzog, P.

    1995-12-31

    The paper describes the concept selection, design and performance of a fuel injection equipment (FIE) which provides high flexibility in shaping the injection rate. With this injection system standard and boot shaped injection rates as well as pilot injections and post injections can be achieved throughout the hole speed and load range. Special emphasis was drawn to realize boot rate shaping by pressure modulation rather than by throttling the fuel flow (i.e.: the system is operated with fully opened needle during the whole injection period and no throttling device limits the fuel flow in front of the nozzle to reduce the injection rate). Initial engine tests on a single cylinder research engine with 2 liter displacement were carried out at one operating point (1,000 rpm, 200 mm{sup 3}/str = 75% of full load fueling). Boot and pilot (split) injection rate shaping strategies are compared to a standard injection without rate shaping. At constant smoke and BSFC the boot injection shows a considerable improvement potential in NOx emissions of up to {minus}14%, or NOx and BSFC can be reduced simultaneously by {minus}9% and {minus}7%, respectively. The results with pilot injection are less promising than the results with boot injection. Furthermore, they are sensitive to pilot timing and to injection pressure as well as fueling during pilot injection.

  19. Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

  20. Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  1. Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

  2. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  3. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  4. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  5. Diesel Engine Strategy & North American Market Challenges, Technology and Growth

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER)...

  7. A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme

    Broader source: Energy.gov [DOE]

    A comparison of regulated emissions measured by the California Air Resources Board (CARB) and particle number emissions with the Joint Research Committee participating international laboratories was a success, and the CARB measurements and standard deviations compared well with the other laboratories

  8. Pollutant Emissions from Biodiesels in Diesel Engine Tests and On-road Tests

    E-Print Network [OSTI]

    Zhong, Yue

    2012-08-31

    and HC emissions. The H: C ratio, ratio of saturated fatty acids and degree of unsaturation of biodiesels all had a substantial effect on NO emissions. Density measurement was an easy way to predict total NOx from biodiesels. Methods of running on...

  9. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  10. Diesel engine fuel systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  11. Influence of Mild Hybridization on Performance and emission in a 4-Cylinder, In-Line Common Rail Diesel Engine

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  12. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones

    Broader source: Energy.gov [DOE]

    The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

  13. The process of soot formation in a DI Diesel engine is very challenging to understand and

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    Background The process of soot formation in a DI Diesel engine is very challenging to understand and describe. But with respect to the demand for much lower particulate emissions (Tab.1) of Diesel engines emissi- ons of a medium duty DI Diesel engine which is certified for the TIER 3 norm should be evaluated

  14. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of oxide electrodes * Decision point: Down select to metal or electronically- conducting oxide electrodes Electrochemical NO x Sensor for Monitoring Diesel Emissions 17 Plans for...

  15. The Impact of Lubricant on Emissions from a Medium-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report...

  16. SAE Paper 04P-273 Modeling of Diesel Combustion and NO Emissions Based on a

    E-Print Network [OSTI]

    Im, Hong G.

    SAE Paper 04P-273 Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy of Automotive Engineers, Inc. ABSTRACT This paper reports the development of a model of diesel combustion about global warming and hazardous emissions bring about a need for an improved understanding of diesel

  17. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  18. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  19. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  20. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-11, 2010 -- Washington D.C. ace020reitz2010o.pdf More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel...

  1. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  2. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

  3. CNG and Diesel Transite Bus Emissions in Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG and Diesel Transite Bus Emissions in Review CNG and Diesel Transite Bus Emissions in Review 2003 DEER Conference Presentation: California Environmental Protection Agency, Air...

  4. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

  5. Review of Diesel Emission Control Technology | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Control Technology Review of Diesel Emission Control Technology 2002 DEER Conference Presentation: Corning Inc. 2002deerjohnson.pdf More Documents & Publications...

  6. Update on Diesel Exhaust Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Update on Diesel Exhaust Emission Control 2003 DEER Conference Presentation: Corning, Inc. deer2003johnson.pdf More Documents & Publications Review of Diesel Emission...

  7. Simplification of Diesel Emission Control System Packaging Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

  8. Review of Emerging Diesel Emissions and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Diesel Emissions and Control Review of Emerging Diesel Emissions and Control Criteria pollutant regulatory efforts are focused on Euro VI HD PN limits, and California LEV3...

  9. Dilute Clean Diesel Combustion Achieves Low Emissions and High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

  10. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration...

  11. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  12. Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine 

    E-Print Network [OSTI]

    Breen, Jonathan Robert

    2011-10-21

    Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were ...

  13. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003deerbolton1.pdf More Documents & Publications Attaining Tier...

  14. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines: Environmental Impact and Control 2002 DEER Conference Presentation: California Air Resources Board 2002deerlloyd.pdf More Documents & Publications Cleaning...

  15. Diesel Engine Alternatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternatives Diesel Engine Alternatives 2003 DEER Conference Presentation: Southwest Research Institute 2003deerryan.pdf More Documents & Publications Combustion Targets for Low...

  16. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  17. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  18. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  19. Active Diesel Emission Control Technology for Transport Refrigeration Units

    Broader source: Energy.gov [DOE]

    This project discusses a CARB Level 2+ verified active regeneration technology for smal diesel engines

  20. Cummins/DOE Light Truck Diesel Engine Progress Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002deerstang.pdf More Documents & Publications...

  1. Cummins/DOE Light Truck Clean Diesel Engine Progress Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel Engine Progress Report CumminsDOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. 2003deerstang.pdf More Documents &...

  2. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency...

  3. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

  4. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  5. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery...

  6. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2004deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery...

  7. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine...

  8. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the European Light Duty Diesel Vehicle During DPF Regeneration Events Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events Repeated partial...

  9. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Ceramic Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters...

  10. Particle Sensor for Diesel Combustion Monitoring | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Diesel Combustion Monitoring Particle Sensor for Diesel Combustion Monitoring 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of...

  11. Pleated Ceramic Fiber Diesel Particulate Filter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  12. Radial-Basis-Function-Network-Based Prediction of Performance and Emission Characteristics in a Bio Diesel Engine Run on WCO Ester

    E-Print Network [OSTI]

    Kumar, Shiva

    2012-01-01

    Radial basis function neural networks (RBFNNs), which is a relatively new class of neural networks, have been investigated for their applicability for prediction of performance and emission characteristics of a diesel ...

  13. Comparative emissions from natural gas and diesel buses

    SciTech Connect (OSTI)

    Clark, N.N.; Gadapati, C.J.; Lyons, D.W.; Wang, W.; Gautam, M.; Bata, R.M. [West Virginia Univ., Morgantown, WV (United States); Kelly, K.; White, C.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-12-31

    Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods. During the three years of testing, a significant fraction of emissions data was acquired from buses with Cummins L-10 engines designed to operate on either CNG or diesel. The CNG lean burn engines were spark ignited and throttled. Early CNG engines, which were pre-certification demonstration models, have provided the bulk of the data, but data from 9 buses with more advanced technology were also available. It has been found that carbon monoxide (CO) levels from early Cummins L-10 CNG powered buses varied greatly from bus to bus, with the higher values ascribed to either faulty catalytic converters or a rich idle situation, while the later model CNG L-10 engines offered CO levels considerably lower than those typical of diesel engines. The NO{sub x} emissions were on par with those from diesel L-10 buses. Those natural gas buses with engines adjusted correctly for air-fuel ratio, returned very low emissions data. CNG bus hydrocarbon emissions are not readily compared with diesel engine levels since only the non-methane organic gases (NMOG) are of interest. Data show that NMOG levels are low for the CNG buses. Significant reduction was observed in the particulate matter emitted by the CNG powered buses compared to the diesel buses, in most cases the quantity captured was vanishingly small. Major conclusions are that engine maintenance is crucial if emissions are to remain at design levels and that the later generation CNG engines show marked improvement over the earlier models. One may project for the long term that closed loop stoichiometry control is desirable even in lean burn applications.

  14. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  15. Robust Strategy for Intake Leakage Detection in Diesel Engines

    E-Print Network [OSTI]

    Boyer, Edmond

    Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

  16. Estimating diesel engine performance by indirect methods 

    E-Print Network [OSTI]

    McKiernan, Michael

    1987-01-01

    ESTIMATING DIESEL ENGINE PERFORMANCE BY INDIRECT METHODS A Thesis by MICHAEL MCKIERNAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE May 1987 Major... Subject: Agricultural Engineering ESTIMATING DIESEL ENGINE PERFORMANCE BY INDIRECT NETHODS A Thesis by NICHAEL MCKIERNAN Approved as to style and content by: i A. Stout (Chairman of Comittee) ephen W. Searcy (Member) Thomas R. La (Nember...

  17. Single-cylinder diesel engine study of four vegetable oils

    SciTech Connect (OSTI)

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.; Risby, T.M.; Taylor, W.D.

    1983-10-01

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermal efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.

  18. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  19. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  20. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

  1. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  2. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect (OSTI)

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  3. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

  4. Perspective on the Future Development of Diesel Emission Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective on the Future Development of Diesel Emission Standards in Europe - Euro 5 for LDV, amendment of EURO 5 for HDV Perspective on the Future Development of Diesel Emission...

  5. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    led to the diesel and turbine engines and the subsequentairplanes. Gas turbines and diesel engines eventually becameand Impact of Diesel Engines and Gas Turbines By Vaclav Smil

  6. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    jet airplanes. Gas turbines and diesel engines eventuallyof Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MIT

  7. Emission control options for mine diesels

    SciTech Connect (OSTI)

    Waytulonis, R.W. (Bureau of Mines, Twin Cities, MN (USA). Twin Cities Research Center)

    1991-03-01

    New exhaust control techniques and devices may be necessary to meet future diesel particulate matter emission standards in underground coal mines. This paper reviews conventional work practices and devices used to control diesel exhaust emissions, and new techniques being tested by the US Bureau of Mines. Discussions center on important work practices and on the function and efficiency of exhaust aftertreatment devices. An industry-government cooperative research project to develop and test an exhaust aftertreatment system for part 36 equipment is also discussed.

  8. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance

    Broader source: Energy.gov [DOE]

    Cost effective reduction of legislated emissions (including CO2) is a major issue. NOx control must not be a limiting factor to the long term success of Diesel engines.

  9. Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  11. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  12. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004deerstang2.pdf More Documents & Publications...

  13. MobiCleanTM Soot Filter for Diesel Locomotiive Applications ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MobiCleanTM Soot Filter for Diesel Locomotiive Applications MobiCleanTM Soot Filter for Diesel Locomotiive Applications 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  14. Heavy-Truck Clean Diesel (HTCD) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Truck Clean Diesel (HTCD) Program Heavy-Truck Clean Diesel (HTCD) Program 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar...

  15. Real-Time Measurement of Diesel Trap Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Diesel Trap Efficiency Real-Time Measurement of Diesel Trap Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  16. Measurements of Diesel Truck Traffic Associated with Goods Movement

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2007-01-01

    Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

  17. An Improvement of Diesel PM and NOx Reduction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions...

  18. 2007 Diesel Particulate Measurement Research (E-66 Project) ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate Measurement Research (E-66 Project) 2007 Diesel Particulate Measurement Research (E-66 Project) 2004 Diesel Engine Emissions Reduction (DEER) Conference:...

  19. Update on 2007 Diesel Particulate Measurement Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 Diesel Particulate Measurement Research Update on 2007 Diesel Particulate Measurement Research 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

  20. Unique Catalyst System for NOx Reduction in Diesel Exhaust |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions...

  1. An Improvement of Diesel PM and NOx Reduction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel PM and NOx Reduction System Development on simultaneous reduction system of NOx and PM from a diesel engine Simplification of Diesel Emission Control System Packaging...

  2. Dumping Dirty Diesels: The View From the Bridge | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dumping Dirty Diesels: The View From the Bridge Dumping Dirty Diesels: The View From the Bridge 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  3. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergodwin.pdf More Documents & Publications...

  4. Exhaust Heat Recovery for Rural Alaskan Diesel Generators | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery for Rural Alaskan Diesel Generators Exhaust Heat Recovery for Rural Alaskan Diesel Generators Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research...

  5. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  6. Internship Students Engine / Powertrain Development FEV is offering challenging internships in the field of light-duty diesel powertrain. This internship is designed

    E-Print Network [OSTI]

    Hutcheon, James M.

    in the field of light-duty diesel powertrain. This internship is designed for Masters of Science candidates but are not limited to engine dynamometer testing of diesel engines, vehicle testing for emissions and performance: Harsha Nanjundaswamy Manager Diesel Engine Development Nanjundaswamy@FEV.COM FEV is a global engineering

  7. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  8. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    SciTech Connect (OSTI)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  9. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  10. Improving Diesel Engine Sweet-spot Efficiency and Adapting it...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing Propulsion and Reducing Cost Improving Diesel Engine Sweet-spot Efficiency and...

  11. Friction and Wear Reduction in Diesel Engine Valve Trains | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction in Diesel Engine Valve Trains Friction and Wear Reduction in Diesel Engine Valve Trains Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review...

  12. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Energy Savers [EERE]

    Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Results of completed...

  13. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  14. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine 

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10

    The recent pollution norms have brought a strong emphasis on the reduction of diesel engine emissions. Low temperature combustion technology such as premixed compression ignition (PCI) has the capability to significantly ...

  16. Effect of Machining Procedures on the Strength of Ceramics for Advanced Diesel Engine Applications

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  18. UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES

    E-Print Network [OSTI]

    UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical diesel engines and stationary power plants. The possibility of early detecting small defects prior

  19. Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G Engineering, UC, Santa Barbara Abstract The paper investigates improvements in the tur- bocharged diesel problem. Comparison with a conventional turbocharged diesel engine reveals the mechanism by which

  20. MODELING AND CONTROL OF A DIESEL HCCI ENGINE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODELING AND CONTROL OF A DIESEL HCCI ENGINE J. Chauvin A. Albrecht G. Corde N. Petit Institut Abstract: This article focuses on the control of a Diesel engine airpath. We propose a detailed description of the airpath of a Diesel HCCI engine supported by experimental results. Moreover, we propose a simple, yet

  1. Fault Tolerant Oxygen Control of a Diesel Engine Air System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

  2. Leading Edge Technology in Diesel Emissions Control

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  3. New 11 liter Komatsu diesel engine

    SciTech Connect (OSTI)

    Mizusawa, M.; Tanosaki, T.; Kawase, M.; Oguchi, T.

    1984-01-01

    New 6 cylinder direct injection 11 liter diesel engines which have naturally aspirated, turbocharged, and turbocharged-aftercooled versions have been developed and moved in production at the end of 1983. The highest output of the turbocharged-aftercooled version is 276 kW (375 ps) at 2200 RPM. Based on Komatsu new technologies 125 mm bore diesel has been designed to meet the users' demands, such as compact in size, light in weight, extremely high performance, high reliability and durability. The turbocharged and turbocharged-aftercooled engines are characterized by the adoption of the ductile cast iron piston which is the first application into the high speed, four cycle diesels in production in the world, and which was enabled by Komatsu design and precision casting technologies. This paper also covers the other design aspects and performance characteristics.

  4. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  5. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    using an Optical Direct Injection Diesel Engine. 2006, 7,using an Optical Direct Injection Diesel Engine. 2006, 7,Emissions Using an Optical Direct Injection Diesel Engine.

  6. Emissions and in-cylinder combustion characteristics of Fischer-Tropsch and conventional diesel fuels in a modern CI engine

    E-Print Network [OSTI]

    Sappok, Alexander G. (Alexander Georg)

    2006-01-01

    Increasingly stringent emissions regulations, rising oil prices, and an increased focus on environmental awareness are driving the search for clean, alternative fuels. Derived from natural gas, coal, and even biomass ...

  7. Effect of EGR contamination of diesel engine oil on wear.

    SciTech Connect (OSTI)

    Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

    2007-09-01

    Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

  8. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  9. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

  10. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  11. Progress Update: Creating Mobile Emission Reduction Credits

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Emission Reduction Specialists

  12. ON CONDITION MONITORING OF EXHAUST VALVES IN MARINE DIESEL ENGINES

    E-Print Network [OSTI]

    Mosegaard, Klaus

    ON CONDITION MONITORING OF EXHAUST VALVES IN MARINE DIESEL ENGINES T. L. Fog x L. K. Hansen z , J : Research & Development, MAN B&W Diesel A/S Teglholmsgade 41, DK­2450, Copenhagen SV, Denmark. E­mail: tof­invasive characterisation of ex­ haust valve conditions in large marine diesel engines, were exper­ imentally investigated

  13. Impact of Clean Diesel Technology on Climate Change

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Brookhaven National Laboratory

  14. Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel

    Broader source: Energy.gov [DOE]

    Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

  15. Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2010-01-01

    use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

  16. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  17. Key Benefits in Using Ethanol-Diesel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits in Using Ethanol-Diesel Blends Key Benefits in Using Ethanol-Diesel Blends Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER...

  18. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  19. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  20. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  1. The effect of fumigation of different ethalnol proofs on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Hayes, T.K.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    Lower proof ethanol is shown to be a viable alternate fuel for diesel engines. This type of ethanol can be manufactured economically in small distillation plants from renewable grain supplies. The effect of fumigation of ethanol proofs with a multipoint injection system on a turbocharged direct injection diesel engine at 2,400 rpm and three loads was studied. The addition of the water in the lower proofs reduced the maximum rate of pressure rise and peak pressure from pure ethanol levels. Both of these values were significantly higher than those for diesel operation. HC and CO emissions increased several times over diesel levels at all loads and also with increased ethanol fumigation. NO emissions were reduced below diesel levels for lower proof ethanol at all loads. The tests at this rpm and load with a a multipoint ethanol injection system indicate that lower (100 or 125) proof provides optimum performance.

  2. Lowest Engine-Out Emissions as the Key to the Future of the Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults Lowest Engine-Out Emissions as the Key to the Future of the...

  3. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain Engineering...

  4. Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered Urban Buses 2003 DEER Conference...

  5. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  6. Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green, Jr., John M. Storey, and C. Stuart Daw

    E-Print Network [OSTI]

    Tennessee, University of

    1 Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green) for reduced nitro- gen oxide emissions from diesel engines. The research objective is to develop fundamental in- formation about the relationship between EGR parameters and diesel combustion instability

  7. Diesel Particulate Filters: Market Introducution in Europe |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters: Market Introducution in Europe Diesel Particulate Filters: Market Introducution in Europe 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Aaqius and...

  8. Diesel Emission Control Technology in Review | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Review Review of light- and heavy-duty diesel emission regulations and state-of-the-art emission control technologies and strategies to meet them. deer08johnson.pdf More...

  9. Diesel Particulate Filters and NO2 Emission Limits | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters and NO2 Emission Limits Diesel Particulate Filters and NO2 Emission Limits EPAs New air quality standards for NO2 will impact future DPF designs deer09ibrahim.pdf More...

  10. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  11. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  13. Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Clean and Efficient Diesel Engines- Designing for the Customer

    Broader source: Energy.gov [DOE]

    A look at the key role that clean and efficient diesel engines will play in achieving climate and energy goals, and further improvements needed to perform this role.

  15. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  16. Diesel Engine Oil Technology Insights and Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Insights and Opportunities Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant technologiy are examined with respect to protection and fuel...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  18. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valve Actuation Air handling system model for multi-cylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation developed to...

  19. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Efficiency Improvement in an Over the...

  20. Understanding diesel engine lubrication at low temperature

    SciTech Connect (OSTI)

    Smith, M.F. Jr.

    1990-01-01

    This paper reports on oil pumpability in passenger car gasoline engines that was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at {minus}18{degrees} C (0{degrees} F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier has better performance that a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance. The apparent shear rate of the oil in the pump inlet tube was calculated from the oil pump flow rate measured at idle speed at low temperature and the pump inlet tube diameter. The shear rate and oil viscosity were used to estimate the shear stress in the pump inlet tube. The shear stress level of the engine is 56% higher than the Mini-Rotary Viscometer (MRV). Hence, the current MRV procedure is rheologically unsuitable to predict pumpability in a large diesel engine. A new device was developed for measuring the oil film thickness in the turbocharge bearing and noting the time when a full oil film is formed. Results indicate that a full oil film occurs almost immediately, well before any oil pressure is observed at the turbocharge inlet. Residual oil remaining in the bearing after shutdown may account of this observation. The oil film maintained its thickness both before, and after the first indication of oil pressure. More work is needed to study this effect.

  1. Evaluation of the thermodynamic process of indirect injection diesel engines by the First and Second Law

    SciTech Connect (OSTI)

    Li, J.; Zhou, L.; Pan, K.; Jiang, D. [Xi`an Jiaotong Univ. (China); Chae, J.

    1995-12-31

    Heat transfer losses in the swirl chamber, throttling losses at the connecting passage and combustion delay in the main chamber are considered as the three factors influencing the thermal efficiency of IDI diesel engines. This paper suggests a thermodynamic model, in which three idealized diesel engines including no passage throttling engine, adiabatic diesel engine for swirl chamber and DI diesel engine are assumed to isolate heat transfer losses, throttling losses and combustion delay in IDI diesel engines. The Second Law analysis is carried out by the thermodynamic state parameters calculated by the cycle simulation of engines based on the First Law. The effects of heat transfer losses in the swirl chamber, throttling losses at the connecting passage and combustion delay in the main chamber on the irreversibilities and availability losses during the engine cycle are analyzed in detail. The relative influences among the three losses are also investigated. The results of First Law analysis indicate that heat transfer losses in the swirl chamber at low load conditions and combustion delay in the main chamber at full load conditions are the main factors impairing the fuel economy of IDI diesel engines. However, the results of further analysis of the Second Law indicate that passage throttling is a key factor affecting the fuel economy of IDI diesel engines at full load conditions. On the basis of thermodynamic analysis, a modified design of connecting passage is made on a single cylinder IDI diesel engine.The modified connecting passage has different inclination angles at both sides of the passage, and reduces throttling losses at the connecting passage, shortens combustion delay and combustion period in the main chamber, and hence reduces the engine fuel consumption and smoke emission.

  2. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

  3. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  4. Model Identification for Optimal Diesel Emissions Control

    SciTech Connect (OSTI)

    Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

    2013-06-20

    In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

  5. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  6. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  7. Components Responsible for the Health Effects of Inhaled Engine Emissions

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect (OSTI)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  9. Multivariate analysis of exhaust emissions from heavy-duty diesel fuels

    SciTech Connect (OSTI)

    Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)

    1996-01-01

    Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.

  10. The California Demonstration Program for Control of PM from Diesel Backup Generators =

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of California, Riverside

  11. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Sandia National Laboratories, Combustion Research Facility

  12. Sick of Soot: The Public Health and Economic Impacts of Diesel Pollution in California

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Union of Concerned Scientists

  13. On the concept of separate aftercooling for locomotive diesel engines

    SciTech Connect (OSTI)

    Uzkan, T.; Lenz, M.A.

    1999-04-01

    This paper describes a patented cooling system concept for a turbocharged diesel engine. In particular, it defines a cooling system having the capability of transferring some of the cooling capacity of transferring some of the cooling capacity of engine jacket and engine oil cooling to cool the cylinder inlet air when more than the cooling capacity built into the system through the size of the radiators and fans is needed. This increased aftercooling will improve the engine performance and reduce emission levels. The cooling capacity of a locomotive is essentially determined by the radiator and fan size, among other factors, and is designed to cool the engine within acceptable metal temperatures at a specified maximum ambient temperature and at the maximum engine power. On the other hand, at lower ambient temperatures or engine power levels, the cooling needs of the engine will be less than this maximum cooling capacity of the cooling system. There remains some excess capacity. This paper describes the concept called the ``Separate Aftercooling System`` that uses some of this excess cooling capacity to cool the engine inlet air at the aftercoolers. It shows the feasibility of such a system, describes the order of magnitude of benefits that can be expected from such a system, and outlines the implementation of this concept to EMD built locomotives.

  14. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status of APBF-DEC NOx AdsorberDPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car...

  15. Emission Control Strategy for Downsized Light-Duty Diesels

    Broader source: Energy.gov [DOE]

    This poster discusses the combustion aspects and control challenges of a high EGR combustion calibration that was conducted on a moderately downsized diesel engine with a compression ratio of 15:1.

  16. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in...

  17. Investigation into the Emissions and Efficiency of Low Temperature Diesel Combustion 

    E-Print Network [OSTI]

    Knight, Bryan Michael

    2011-10-21

    to reduce green house gas emissions and increase the fuel efficiency of our vehicles. A particular solution to this problem is the diesel engine, with its inherently fuel-lean combustion, which gives rise to low CO2 production and higher efficiencies than...

  18. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  19. Starting low compression ratio rotary Wankel diesel engine

    SciTech Connect (OSTI)

    Kamo, R.; Yamada, T.Y.; Hamada, Y.

    1987-01-01

    The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid.

  20. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays X-Ray Characterization of Diesel Sprays 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerpowell.pdf More Documents & Publications...

  1. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's...

  2. Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Dispersion in a Phospholipid Lung Surfactant Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  3. Diesel HCCI with External Mixture Preparation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with External Mixture Preparation Diesel HCCI with External Mixture Preparation 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: The Ohio State University...

  4. Diesel Trucks - Then and Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks - Then and Now Diesel Trucks - Then and Now 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deersantini.pdf More Documents &...

  5. Predicting Thermal Stress in Diesel Particulate Filters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Diesel Emission Control Review Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Neutron Imaging of Advanced Engine Technologies...

  6. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction...

  7. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control

    Broader source: Energy.gov [DOE]

    Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion

  8. Control Engineering Practice 16 (2008) 10811091 Motion planning for experimental airpath control of a diesel

    E-Print Network [OSTI]

    2008-01-01

    A strategy based on motion planning is proposed for airpath control of turbocharged diesel engines equipped

  9. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  10. Diesel emission reduction using internal exhaust gas recirculation

    DOE Patents [OSTI]

    He, Xin (Denver, CO); Durrett, Russell P. (Bloomfield Hills, MI)

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  11. Dynamic behaviour of a turbocharged diesel engine

    SciTech Connect (OSTI)

    Backhouse, R.; Winterbone, D.E.

    1986-01-01

    The transient behaviour of torque and smoke produced by a turbocharged diesel engine has been measured by frequency response methods, with a sinusoidal peturbation applied to the fuel. A dynamic torque parameter (dmep) has been introduced and the response of this to changes in speed and load can be separated. The dmep also enables the delay associated with torque production to be obtained: this is compared to the widely accepted values. The results have also been analysed to show the relationship between air-fuel ratio and smoke produced during a transient. The conclusion is that the production of smoke under dynamic condition behaves similarly to that under steady running but that it is more dependent on the initial load (air-fuel ratio) level.

  12. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

  13. Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Rhodia Electronics and Catalysis

  14. Durability Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at Light-Duty Operation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey

  15. Durability testing of a diesel fuel, methyl tallowate, and ethanol blend in a Cummins N14-410 diesel engine

    SciTech Connect (OSTI)

    Ali, Y.; Hanna, M.A. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-05-01

    A Cummins N14-410 diesel engine was operated on an 80:13:7% (v/v) blend of diesel fuel: methyl tallowate: ethanol. The standard 200-h Engine Manufacturers Association (EMA) test procedure was followed to test engine durability. Engine performance was evaluated in terms of power produced at rated speed, peak torque produced at a speed of 1200 rpm, and brake specific fuel consumption at both speeds. Engine exhaust emissions analyses were performed, and the engine oil was analyzed for accumulation of heavy metals at 45 h intervals. It was observed that engine performance was satisfactory for 148 h at which time the injector in cylinder 2 failed. The injector was changed, and after an additional 11 h (159 h total) of operation the injector in cylinder 5 failed. That injector was also replaced, and the 200-h procedure was continued. The test was discontinued after 197 h when the supply of the fuel blend was exhausted. The injectors were removed and the injector in cylinder 1 was observed to be coked. This injector was sent to the Cummins Engine Co. for analysis. It was found that failure of this injector was not because of the fuel used, but because of a crack had developed across the tip due to an excessively tight overhead adjustment. Engine oil analyses performed for accumulation of wear metals did not reveal any excessive wear on the engine parts. 12 refs., 4 figs., 3 tabs.

  16. Nitrogen oxidizing in modeling of diesel engine operation

    SciTech Connect (OSTI)

    Kulakov, V.; Merker, G.

    1995-12-31

    A computer model of diesel engine operation based on the interconnected calculation of diesel fuel spray and the processes in the combustion chamber is extended for the calculation of Nitrogen oxidizing. A number of chemical reactions with O{sub 2}, O, N{sub 2}, N, NO, OH, H, H{sub 2} are included in the model.

  17. Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created in order to guide the engine disassembly and testing. The overall goal was to improve fuel economy

  18. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    J. , Internal Combustion Engine Fundamentals. March 31stfrom a large ship diesel engine. Atmos. Environ. 2009, 43 (low-speed marine diesel engine. Aerosol Sci. Technol. 2007,

  19. Friction Characteristics of Steel Pistons for Diesel Engines

    E-Print Network [OSTI]

    Kim, Dallwoo

    The use of iron pistons is increasing due to the higher power requirements of diesel truck engines. Expansion of the iron piston is a common concern. The purpose of this study is to clarify the lubrication conditions of ...

  20. Durability of Diesel Engine Particulate Filters CRADA No. ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Presentation from the U.S. DOE Office of...

  1. Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel. deer08zajac.pdf More Documents & Publications Impact...

  2. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  3. Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Fiber Wall-Flow DPF For Diesel Emission Control Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control A new metal fiber wall-flow DPF with up to 99% efficiency and...

  4. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art 2003 DEER...

  5. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation:...

  6. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control The more...

  7. Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO and UHC Emissions in Low-Temperature Diesel Combustion Systems Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion Systems The sources of unburned hydrocarbons...

  8. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across...

  9. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles...

  10. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation: University of...

  11. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  12. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  13. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  14. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  15. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  16. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  17. ULEV potential of a DI/TCI diesel passenger car engine operated on dimethyl ether

    SciTech Connect (OSTI)

    Kapus, P.E.; Cartellieri, W.P.

    1995-12-31

    This paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME) with the aim of demonstrating its potential of meeting ULEV (ultra low emission vehicle) emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of he baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation. The paper presents engine test results achieved with DME under various operating conditions and compares these results to those achieved with the diesel version of the same engine.The FTP 75 cycle results were projected from steady state engine maps using a vehicle simulation program taking into account vehicle data and road resistance data of a given vehicle.The cycle results are also compared to actual chassis dynamometer results achieved with the diesel version of the same engine installed in the same vehicle.the passenger car DI/TCI engine adapted for and operated on DME shows very promising results with respect to meeting ULEV NOx emissions without any soot emissions and without the need for a DENOX catalyst. DME fuel consumption on energy basis can be kept very close to the DI diesel value. An oxidation catalyst will be necessary to meet the stringent CO and HC ULEV emission limits.

  18. Exhaust emission and fuel consumption of CNG/diesel fueled city buses calculated using a sample driving cycle

    SciTech Connect (OSTI)

    Ergeneman, M.; Sorusbay, C.; Goektan, A.G. [Technical Univ. of Istanbul (Turkey). Dept. of Mechanical Engineering

    1999-04-01

    In this study the reduction of pollutant emissions from city buses converted to dual fuel operation was investigated. Exhaust emission and fuel consumption maps were obtained under laboratory conditions for an engine converted to CNG/diesel fuel operation. These values are then used in the simulation model to predict the total exhaust emission and fuel consumption on a driving cycle evaluated from actual recordings. Calculations showed a significant decrease in particulate matter (PM) emissions as expected, while the total CO emissions minor changes have been observed. For dual fuel operation NO{sub x} emissions were kept at the same level as in pure diesel operation with retarded pilot injection. Fuel cost calculations showed a decrease up to 30% with current prices of diesel fuel and CNG.

  19. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2008-11-14

    Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  20. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01

    modern clean diesel engines and hybrid-electric powertrainsare advanced, clean diesel engines and hybrid-electricmarkets for diesel powered and hybrid-electric vehicles in

  1. ORNL/TM-2002/16 PCR+ in Diesel Fuels and Emissions

    E-Print Network [OSTI]

    ORNL/TM-2002/16 PCR+ in Diesel Fuels and Emissions Research MARCH 2002 Prepared by H. T. Mc. #12;ORNL/TM-2002/16 PCR+ IN DIESEL FUELS AND EMISSIONS RESEARCH H. T. McAdams AccaMath Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 DIESEL FUEL AND EMISSIONS DATABASES

  2. EPA Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  3. EPA Tribal Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.

  4. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    SciTech Connect (OSTI)

    Dane, J.; Voorhees, K. J.

    2010-06-01

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  5. Sources and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling

    Broader source: Energy.gov [DOE]

    Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    geometry turbocharger (v). The variable geometry turbocharger allows the improvement of the steady of turbocharged diesel en- gines render them common practice for the vast ma- jority of ocean freighters and o shore vehicles. In ma- rine propulsion, the turbocharger, the engine, and the propeller operation

  7. DIESEL ENGINES FOR FIREDAMP MINES Institut National de 1'Environnement Industricl

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    93-41 DIESEL ENGINES FOR FIREDAMP MINES A.CZYZ Institut National de 1'Environnement Industricl et REGULATIONS The introducüon of foreign diesel engines (mainly German engines with 12.5 mm flameproof joints any Problems in the case of dassical diesel engines i.e. with natural aspiration. On the otherhand

  8. The development of a prechamber diesel engine family

    SciTech Connect (OSTI)

    Filtri, G.; Morello, L.; Stroppiana, B.

    1989-01-01

    The development of a new family of prechamber diesel engines, based on a technological commonalty with the gasoline engines is reported. The range of diesel engines, all of them four-cylinder-in line, consist of 3 displacements: 1365cc - 1697cc - 1930cc either naturally aspirated or turbocharged. Mention is also made of their most significant technical innovations about their architecture and combustion chambers, and the main components such as block cylinder, head, crankshaft, connecting rods, pistons, timing gear and injection pump control, intake and exhaust manifolds.

  9. Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson

    E-Print Network [OSTI]

    Minnesota, University of

    Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) · A good diesel fuel has a low ignition delay period and hence a high CN · Ethanol has

  10. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  11. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  12. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory, Fuel, Engines, and Emissions Research Center

  13. An Experimental Study of PM Emission Characteristics of Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Experimental Study of PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System An Experimental Study of PM Emission Characteristics of Commercial Diesel...

  14. PM PEM’s On-Road Investigation – With and Without DPF Equipped Engines

    E-Print Network [OSTI]

    Durbin, T; Jung, H; Cocker III, D R; Johnson, K

    2009-01-01

    Under the Heavy-Duty Diesel Engine In-Use Testing Program,Emissions from Diesel Engines. 1. Regulated GaseousEmissions from Diesel Engines. 2. Sampling and Toxics and

  15. X-Ray Characterization of Diesel Sprays and the Effects of Nozzle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays and the Effects of Nozzle Geometry X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  16. Analysis of Nitro-Polycyclic Aromatic Hydrocarbons in Conventional Diesel and Fischer--Tropsch Diesel Fuel Emissions Using Electron Monochromator-Mass Spectrometry

    SciTech Connect (OSTI)

    Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.

    2006-01-01

    The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

  17. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

  18. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer...

  19. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new...

  20. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Development of a new light truck, in-line...

  1. Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines

    E-Print Network [OSTI]

    Zell, Andreas

    Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines Philippe Komma T¨ubingen, Germany {philippe.komma, andreas.zell}@uni-tuebingen.de system for a diesel engine

  2. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

  3. Control of Charge Dilution in Turbocharged Diesel Engines via Exhaust Valve Timing

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    on the full order model. 1. Introduction Diesel or Compression Ignition Direct Injection (CIDI) engine, non-linear, dynamic model of a direct-injection, turbocharged diesel engine [6], we examine

  4. Remote Sensing of NO and NO2 Emissions from Heavy-Duty Diesel

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    Research Remote Sensing of NO and NO2 Emissions from Heavy-Duty Diesel Trucks Using Tunable Diode to measure the NOx emissions of heavy-duty diesel trucks (HDDTs). The remote sensor could operate tightly controlled, the relative importance of heavy-duty diesel trucks (HDDTs) as a NOx source has

  5. A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher-duty diesel vehicles (HDDV) for a ten-state Midwest region (Mississippi Valley Freight Coalition) using

  6. Prediction of transient exhaust soot for a turbocharged diesel engine

    SciTech Connect (OSTI)

    Xiaoping, B.; Shu, H.

    1995-12-31

    A generalized computer model for prediction of transient exhaust soot and response of turbocharged diesel engines is developed. It includes detailed thermodynamic and dynamic processes. This model utilizes a multi-zone combustion submodel that emphasizes simple and economical calculations for combustion behavior and zonal soot, so overall transient exhaust soot can be predicted. This model is applied to a turbocharged diesel engine. The steady state exhaust soot and performance are calculated and validated, and on the basis, the exhaust soot and response under three classes of transient operating conditions are predicted. The parametric study is carried out by using this model. The effects of valve overlap period, exhaust manifold volume, turbocharger inertia and ambient pressure are predicted. Applications of this model have proved that it is a convenient analytical tool in the study for turbocharged diesel engines. 18 refs., 14 figs., 2 tabs.

  7. Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks

    SciTech Connect (OSTI)

    Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

    1999-11-02

    Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

  8. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology

  9. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  10. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    SciTech Connect (OSTI)

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  11. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  12. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the US Market Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Light-Duty Diesel Market Potential in North America...

  13. An application of a combined charging system on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Lee, D.I.; Her, K.; Chang, N.

    1984-01-01

    To improve the low-speed torque characteristics and the fuel economy and to reduce the exhaust gaseous emissions from a 10-liter, turbocharged diesel engines, charge air cooling with a resonant intake system has been introduced. The use of an air-to-air inter-cooler mounted in front of the radiator results in increasing the charge air density and the resonant intake system offers a high volumetric charging efficiencies at low-speed region. Actual engine data show an increase in power of 14 percent, the improvement of specific fuel consumption by 3-7 percent and a decrease in NOx emissions by 33 percent.

  14. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  15. Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine Tomás Polóni. Based on an augmented observable Mean Value En- gine Model (MVEM) of a turbocharged Diesel engine in the intake duct. Keywords: Diesel engine, Mass flow estimation, Bias estimation, Kalman filtering, Mean value

  16. Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam-and Crankshaft

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam- and Crankshaft Tor A. Johansen, Olav Egeland, Erling Aa. Johannessen and Rolf Kvamsdal Abstract| The free-piston diesel engine replaces the crankshaft of the traditional diesel engine with a power tur- bine to convert energy from

  17. Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland , Erling Aa. Kv rner ASA, Postboks 169, N-1325 Lysaker, Norway. Abstract Free-piston diesel engines. This paper present a dynamic mathematical model of a free-piston diesel engine, a control oriented dynamic

  18. Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas Fuel economy benefits obtained by turbocharged (TC) diesel engines render them common practice

  19. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

    2008-01-01

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  20. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  1. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect (OSTI)

    Dec, J.E. [Sandia National Labs., Livermore, CA (United States)

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  2. Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and Catalyzed DPFs

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Shell Global Solutions (US) Inc.

  3. The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: South Coast Air Quality Management District

  4. Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: VTT Technical Research Centre of Finland

  5. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  6. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  7. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards SCR Technologies for NOx Reduction Powertrain Trends and Future...

  8. Fuels, Engines & Emissions | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels, Engines, Emissions SHARE Fuels, Engines and Emissions Research Fuels, Engines, and Emissions research at Oak Ridge National Laboratory is helping identify ways to increase...

  9. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  10. Vibration signatures, wavelets and principal components analysis in diesel engine

    E-Print Network [OSTI]

    Sharkey, Amanda

    Vibration signatures, wavelets and principal components analysis in diesel engine diagnostics G Portobello Street, Sheffield S1 4DP, UK EMail: gopi@dcs.shef.ac.uk Abstract The vibration signatures of combining neural nets in majority voting systems. 1 Introduction Vibrations in a reciprocating internal

  11. MODELING AND CONTROL OF A DIESEL HCCI ENGINE

    E-Print Network [OSTI]

    . As studied in (Kolmanovsky et al., 1997; Kao and Moskwa, 1995b), the airpath system of a turbocharged Diesel engine features coupled dy- namics. The EGR acts as a discharge valve for the turbocharger. Most studies EGR valve and Variable Geometry Turbocharger (VGT) using Gain schedulling PI controllers

  12. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-10-01

    A thermodynamic simulation is used to study effects of O2-enriched intake air on performance and NO emissions of a locomotive diesel engine. Parasitic power of the air separation membrane required to supply the O2-enriched air is also estimated. For a given constraint on peak cylinder pressure, gross and net power output of an engine operating under different levels of O2 enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in 13% increase in net engine power when intake air with 28 vol% O2 is used and fuel injection timing retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can result in only 4% improvement in power. If part of the higher exhaust enthalpies from the O2 enrichment is recovered, the power requirements of the air separator membrane can be met. O2 enrichment with its higher combustion temperatures reduces emissions of particulates and visible smoke but increases NO emissions (by up to 3 times at 26% O2 content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of O2 enrichment for improving the performance of locomotive diesel engines is to be realized.

  13. Simulation and control of a HD diesel engine equipped with new EGR technology

    SciTech Connect (OSTI)

    Dekker, H.J.; Sturm, W.L.

    1996-09-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission requirements. The final emission results were 2.4 g/k Wh NO{sub x} and 0.107 g/kWh particulates for the European 13 mode test. Better than 3.0 g/k Wh NO{sub x} and 0.10 g/k Wh particulates are expected to be characteristic EURO4 emission requirements (approximate year of implementation is 2004). In the design of the EGR system the model provided initial assessments of the properties of this system. Associated engine and turbocharger behavior as well as optimal control strategies were predicted. A transient engine control algorithm was developed using the dynamic engine model. The VGT is closed loop controlled and EGR is shut off during a short time after a load increase. The simulation results were confirmed by actual measurements, demonstrating acceptable transient behavior.

  14. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.

  15. Kalman Filtering for Real-Time Individual Cylinder Air Fuel Ratio Observer on a Diesel Engine Test Bench

    E-Print Network [OSTI]

    propose an estimator of the individual cylinder air fuel ratios in a turbocharged Diesel Engine using

  16. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  17. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  18. The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines

    SciTech Connect (OSTI)

    Lyon, Richard

    2001-08-05

    This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

  19. Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling

    E-Print Network [OSTI]

    Mattson, Jonathan Michael Stearns

    2013-08-31

    The increasing dependency of the global economy on mineral fuels necessitates the investigation and future implementation of renewable fuels. Within the spectrum of compression ignition engines, this requires an understanding of the differences...

  20. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-Print Network [OSTI]

    Plumley, Michael J

    2005-01-01

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  1. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Performance of a High Speed Indirect Injection Diesel Engine with Poultry Fat Bio-Diesel

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  4. Emission Control Technology, Performance/Durability -POSTER Effect of Accelerated Ash Loading on Performance of Diesel

    E-Print Network [OSTI]

    Pennycook, Steve

    on Performance of Diesel Particulate Filters and Morphology of Ash Layers Bruce G. Bunting and Todd J. Toops using a single-cylinder diesel engine has been developed for accelerated ash loading in catalyzed and non- catalyzed diesel particular filters (DPF) made of cordierite, SiC and mullite substrate

  5. Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol

    Broader source: Energy.gov [DOE]

    Evaluation and comparison of the measurements of diesel solid nanoparticle emissions using the European Particle Measurement Programme (PMP) system and catalytic stripper

  6. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  7. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  8. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  9. Experimental and computational study of soot formation under diesel engine conditions

    E-Print Network [OSTI]

    Kitsopanidis, Ioannis, 1975-

    2004-01-01

    Past research has shown that during diesel combustion, soot is formed in local premixed fuel-rich regions. This project focuses on the fundamentals soot formation under fuel-rich conditions similar to those in diesel engine ...

  10. BMW Diesel- Engine Concepts for Efficient Dynamics

    Broader source: Energy.gov [DOE]

    Overview of technical concepts to resolve conflicting targets of maximum power, less weight, and reduced fuel consumption and emissions.

  11. CNG and Diesel Transit Bus Emissions in Review

    SciTech Connect (OSTI)

    Ayala, A. (a); Kado, N. (a,b); Okamoto, R. (a); Gebel, M. (a) Rieger, P. (a); Kobayashi, R. (b); Kuzmicky, P. (b)

    2003-08-24

    Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.

  12. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Advanced Petroleum-Based Fuels-Diesel Emission Control (APBF-DEC) Project

  13. System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies

    E-Print Network [OSTI]

    de Weck, Olivier L.

    System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

  14. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  15. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the ...

  16. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  17. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  18. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

  19. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

  20. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control...

  1. Achieving High-Effiency Clean Ccombustion in Diesel Engines ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Operation in a Compression Ignition Engine Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low...

  2. An Experimental Investigation of Low Octane Gasoline in Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  3. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  4. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    L. , Measurements of NOx Emissions and In-Service Duty CycleBiodiesel Blends on NOx Emissions. Society of Automotivemaladjustments to reduce NOx emissions by marine diesel

  5. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  6. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    E-Print Network [OSTI]

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  7. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors

    E-Print Network [OSTI]

    Toste, Dean

    Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol

  8. System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    The objective of the current research is to assess differences in NOx emissions between biodiesel and petroleum diesel fuels, resulting from fundamental issues and system-response issues.

  9. Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine

    E-Print Network [OSTI]

    Cambridge, University of

    Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine Merten Jung-- In this paper, a third order nonlinear model of the airpath of a turbocharged diesel engine is derived, which engines are typically equipped with variable geometry turbochargers (VGT) and exhaust gas recirculation

  10. JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm Department of Applied Mathematics 11973-5000, USA Constantine Tzanos Reactor Analysis and Engineering, Argonne National Laboratory of a fuel eÆcient, nonpollut- ing diesel engine. We report preliminary progress on the numerical simulation

  11. U.S. Navy Marine Diesel Engines and the Environment - Part 3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 U.S. Navy Marine Diesel Engines and the Environment - Part 3 2002 DEER Conference Presentation: NAVSEA 2002deerosborne3.pdf More Documents & Publications Investigation of...

  12. Light Duty Diesels in the United States - Some Perspectives ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update on Diesel Exhaust Emission Control Technology and Regulations Review of Diesel Emission Control Technology Diesel Emission Control Review...

  13. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. The effect of fuel and engine design on diesel exhaust particle size distributions

    SciTech Connect (OSTI)

    Baumgard, K.J.; Johnson, J.H. [Michigan Technological Univ., Houghton, MI (United States)

    1996-09-01

    The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H{sub 2}O and H{sub 2}SO{sub 4} vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine`s particle size distributions. The results indicated that nuclei mode particles (0.0075--0.046 {micro}m) are formed in the dilution tunnel and consist of more than 80% H{sub 2}O-H{sub 2}SO{sub 4} particles when using the 1988 engine and 0.29 wt% sulfur fuel. Nucleation theory indicated that H{sub 2}O-H{sub 2}SO{sub 4} particles may form during dilution at 0.03 wt% fuel sulfur levels and above. The 1991 engine was designed for lower particulate emissions than the 1988 engine and the 1991 engine`s accumulation mode particles (0.046-1.0 {micro}m) were reduced more than 80% by volume compared to the 1988 engine using the same low sulfur fuel. The particle size composition model indicated that using low sulfur fuel and the 1991 engine, the nuclei mode contained more than 45% of the total solid particles and over 85% of the soluble organic fraction.

  15. Systems engineering approach towards performance monitoring of emergency diesel generator

    SciTech Connect (OSTI)

    Ramli, Nurhayati Yong-kwan, Lee

    2014-02-12

    Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

  16. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  17. Innovative coal-fueled diesel engine injector

    SciTech Connect (OSTI)

    Badgley, P.; Doup, D.

    1991-05-01

    The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

  18. Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel Versus Petroleum Diesel

    E-Print Network [OSTI]

    Frey, H. Christopher

    Versus Petroleum Diesel By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction 2006 Annual Meeting CD-ROM Paper revised from original submittal. #12;Frey and Kim 1 ABSTRACT Diesel-world in-use on-road emissions of selected diesel vehicles, fueled with B20 biodiesel and petroleum diesel

  19. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

  20. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  1. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  2. REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS

    E-Print Network [OSTI]

    Frey, H. Christopher

    REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 0121 NOx(g/gal) Truck Number Highway Arterial Comparison of Trucks: Fuel-Based NO Emission Rates NOx emissions are substantially lower than Truck 5715. 1999 2005 2007 2009 2010 Fuel-Based Emission

  3. US Tier 2 Bin 2 Diesel Research Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

  4. Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines

    E-Print Network [OSTI]

    Zell, Andreas

    Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines Philippe Komma T¨ubingen, Germany {philippe.komma, andreas.zell}@uni-tuebingen.de system for a diesel engine adapted from cylinder pressure was introduced by Yang [9]. In his work, he adopted a hybrid genetic

  5. Influence of diesel engine combustion on the rupture strength of partially stabilized zirconia

    SciTech Connect (OSTI)

    Brinkman, C.R.; VonCook, K.; Foster, B.E.; Graves, R.L.; Kahl, W.K.; Liu, K.C.; Simpson, W.A. )

    1989-08-01

    This article is on a study conducted to determine whether long-term exposure of two types of partially stabilized zirconia (PSZ) to the combustion environment of diesel engines would generate a change in mechanical properties. The author explains why PSZ was chosen for the study and goes on to discuss some reservations about the use of PSZ in diesel engines.

  6. Nanoparticle Emissions from Internal Combustion Engines

    E-Print Network [OSTI]

    Minnesota, University of

    to 30 fold! HOWEVER, 1979 roadway measurments made on behind a truck powered by an engine of the same Mainly Light-Duty Spark Ignition Mainly Heavy-Duty Diesel Nanoparticles in the atmosphere appear

  7. Multicylinder Diesel Engine Design for HCCI Operation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR...

  8. 2009-01-0366 In-cylinder Burned Gas Rate Estimation and Control on VVA Diesel Engines

    E-Print Network [OSTI]

    the combustion cham- bers of turbocharged Diesel engines equipped with low pressure EGR loop and VVA actuator. We

  9. Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx.

  10. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  11. Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies

    E-Print Network [OSTI]

    Graff, Christopher Dominic

    2006-01-01

    Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

  13. KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI combustion mode (Homogeneous Charge Compression Ignition) have the potential to provide both diesel

  14. Diesel Truck Traffic in Low-Income and Minority Communities Adjacent to Ports: Environmental Justice Implications of Near-Roadway Land Use Conflicts

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2008-01-01

    Particulate Emissions from Diesel Engines: A Review. JournalExposure of PM2.5 and EC from Diesel and Gasoline Vehiclesa Major Highway with Heavy-Duty Diesel Traffic. Atmospheric

  15. ENSC 461: Four-Stroke Diesel Engine School of Engineering Science

    E-Print Network [OSTI]

    Bahrami, Majid

    consumption measurements. The fuel pump is immersed into the tank #12;ENSC 461: Four-Stroke Diesel Engine 2 by means of a standard fuel pump. Fuel consumption can be measured manually and electronically. After which is proportional to the differential pressure, converted into volumetric flow and then indicated

  16. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  17. Evaluation of SCR and DOC/CPF Tech in Diesel Exhaust Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Meet U.S. Tier 2 Bin 5 Evaluation of SCR and DOCCPF Tech in Diesel Exhaust Emission Control to Meet U.S. Tier 2 Bin 5 The continuous regeneration trap may cause...

  18. Alloy Foam Diesel Emissions Control School Bus Implementation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OFCVT). deer07han.pdf More Documents & Publications Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Thermal Regenerator Testing Fuel-Borne Catalyst Assisted DPF...

  19. Sandia Energy - Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce engine-out emissions. These approaches could allow advanced diesel combustion or low-temperature combustion strategies with potential for enabling both increased fuel...

  20. 2010 Emissions from an Electronics Perspective | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from an Electronics Perspective 2010 Emissions from an Electronics Perspective 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  1. Thermal Efficiency Improvement While Meeting Emissions of 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond Thermal Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond 2005 Diesel Engine Emissions...

  2. Rigorous HDD Emissions Capabilities of Shell GTL Fuel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rigorous HDD Emissions Capabilities of Shell GTL Fuel Rigorous HDD Emissions Capabilities of Shell GTL Fuel 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

  3. Combustion Targets for Low Emissions and High Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets for Low Emissions and High Efficiency Combustion Targets for Low Emissions and High Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

  4. TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based

    E-Print Network [OSTI]

    Frey, H. Christopher

    for approximately 46% of NOx and 54% of PM10 of the nationwide on-road vehicle emission inventory (2). ThereforeTRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and particulate matter to on-road vehicle emission inventory. The objectives of this study are to estimate roadway

  5. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Broader source: Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  6. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  7. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

  8. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect (OSTI)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the powe

  9. Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine 

    E-Print Network [OSTI]

    Yarbrough, Charles Michael

    1984-01-01

    OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

  10. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore »understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  11. Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Grard Bloch**, Xavier Dovifaaz**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose dynamics and outperform during transients the control schemes based on static mappings. Keywords: Diesel

  12. Characterization of lubricant-derived ash deposition within pores of Diesel Particulate Filters through non-destructive advanced imaging techniques

    E-Print Network [OSTI]

    Wozniak, Carolyn A

    2015-01-01

    Diesel Particulate Filters (DPF) have been studied for the past thirty years to trap and oxidize diesel engine exhaust gas particulate matter in order to meet increasingly stringent emission regulations. Due to engine ...

  13. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  14. Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis Overview Volvo Group Powertrain Engineering is interested performed to educate the team on engine friction testing. A 3D CAD model was initially produced to design

  15. Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Engineering Specifications Concept Generation of Test Cell Test Cell Design Cad Drawings Labview Program. Future groups will be able to use this test rig to run a multitude of engine tests Volvo will be able

  16. Experiments and Modeling of Two-Stage Combustion in Low-Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Low-Emissions Diesel Engines Two-stage combustion is investigated to achieve low noise, low emissions, and high efficiency operation using engine experiments and a...

  17. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  18. The Maritime Administration's Energy and Emissions Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Emissions Program - Part 1 2002 DEER Conference Presentation: Maritime Administration 2002deergore1.pdf More Documents & Publications Recent Diesel Engine Emission...

  19. The Maritime Administration's Energy and Emissions Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Emissions Program - Part 2 2002 DEER Conference Presentation: Maritime Administration 2002deergore2.pdf More Documents & Publications Recent Diesel Engine Emission...

  20. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion 

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15

    -ignition radicals, start of combustion, and eventual heat release. These mechanisms are described based on the current understanding and knowledge of the diesel engine combustion acquired through advanced laser-based diagnostics. Six zones are developed to take...