Powered by Deep Web Technologies
Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 30, ORNL-6986 (Oak Ridge, TN: June 2011), Chapter 4, "Light Vehicles and Characteristics," website...

2

U.S. Energy Information Administration (EIA) - Pub  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 32, ORNL-6989 (Oak Ridge, TN: July 2013), Chapter 2, Table 2.1, "U.S. Consumption of Total Energy by...

3

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 31, ORNL-6987 (Oak Ridge, TN: July 2012), Chapter 2, Table 2.1, U.S. Consumption of Total Energy...

4

Necessity and Status of Preparation Presented by Eberhard Diegele, F4E  

E-Print Network [OSTI]

IFMIFIFMIF Necessity and Status of Preparation Presented by Eberhard Diegele, F4E International Reactors"). Test materials with fission neutrons from nuclear reactors:Test materials with fission neutrons from nuclear reactors: Adequate fluxAdequate flux·· Adequate flux.Adequate flux. ·· BUTBUT ·· Energy

5

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

US Department of Energys Transportation Energy Data Book (Davis and Diegel, 2006). Baseline gasoline and ethanol usage

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

6

Energy Storage and Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

7

Storing and transporting energy  

DOE Patents [OSTI]

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

2010-09-07T23:59:59.000Z

8

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network [OSTI]

has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

9

Proposed Energy Transport Corridors: West-wide energy corridor...  

Broader source: Energy.gov (indexed) [DOE]

Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor...

10

Transportation Energy and Alternatives  

E-Print Network [OSTI]

Station in Indonesia Hydrogen refueling in Munich, Germany "You will never see widespread use of the fuel fuels" Potentially used for Transportation · Biogas (primarily for onsite electrical generation) LFG

Handy, Susan L.

11

Sustainable Transportation Energy Pathways Research  

E-Print Network [OSTI]

/Security of Energy Supply, esp. in transportation sector · Air Pollutant Emissions · Greenhouse Gas Emissions (GHG of air pollutant emissions. · World transportation sector 97% dependent on oil. · # vehicles projected strategy should have a "portfolio" approach with multiple solutions Fuel Alternatives · Hydrogen · Biofuels

Handy, Susan L.

12

Sustainable Transportation Success Stories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Transportation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into sustainable transportation...

13

The Transportation Energy Data Book (TEDB)  

E-Print Network [OSTI]

The Transportation Energy Data Book (TEDB) The Transportation Energy Data Book (TEDB) is a compendium of data on transportation with an emphasis on energy. Designed for use as a desk- top reference Energy. Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more

14

Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KKCapitalTransportToolkitreturn

15

Transportation Energy Consumption Surveys  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1Energy Consumption (RTECS)

16

Clean Cities & Transportation Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Transportation Tools Clean Cities & Transportation Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on...

17

Transportation Energy Pathways LDRD.  

SciTech Connect (OSTI)

This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A. [Sandia National Laboratories, Albuquerque, NM; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

2012-09-01T23:59:59.000Z

18

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterials ProgramProtected:Transportation Energy Solar

19

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

20

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect (OSTI)

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy use by biological protein transport pathways  

E-Print Network [OSTI]

residing within energy-conserving membranes use transmembrane ion gradients to drive substrate transport receptors impart specificity to a targeting route, and transport across or into the membrane is typicallyEnergy use by biological protein transport pathways Nathan N. Alder1 and Steven M. Theg2 1

Economou, Tassos

22

Tips: Transportation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina Butler Tina-Butler.jpgLighting Tips:Transportation

23

Transportation Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa HowellTechnologies » Transportation

24

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportation Analysis SHARE

25

ENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS  

E-Print Network [OSTI]

of the energy when initially deposited close to the origin. If #12; = 0, the energy spreading is ballisticENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS GIADA BASILE, STEFANO OLLA according to a linear transport equation describing inelastic collisions. For an energy and momentum

Recanati, Catherine

26

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

27

Measuring Transport Protocol Potential for Energy Efficiency  

E-Print Network [OSTI]

Measuring Transport Protocol Potential for Energy Efficiency S. Kontogiannis, L. Mamatas, I. Psaras, Greece {skontog, emamatas, ipsaras, vtsaousi}@ee.duth.gr Abstract. We investigate the energy-saving potential of transport pro- tocols. We focus on the system-related aspect of energy. Do we have to damage

Tsaoussidis, Vassilis

28

Transportation in Community Strategic Energy Plans  

Broader source: Energy.gov [DOE]

This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

29

Estimated United States Transportation Energy Use 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

30

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network [OSTI]

requirements. The transportation energy demand forecasts make assumptions about fuel price forecastsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY ENERGY COMMISSION Gordon Schremp, Jim Page, and Malachi Weng-Gutierrez Principal Authors Jim Page Project

31

Transportation Energy Data Book, Edition 18  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

32

Transportation Energy Data Book, Edition 19  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

Davis, S.C.

1999-09-01T23:59:59.000Z

33

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

34

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network [OSTI]

...............................................................................10 METHODOLOGY OF LONG-TERM FUEL DEMAND FORECAST ......................... 12 Introduction.................................................................................................................................................12 Purpose of California Petroleum Demand Forecast.......................................................................................................................4 PROPOSED CALIFORNIA TRANSPORTATION FUEL PRICE FORECASTS......... 6 Summary

35

Transportation energy data book: edition 16  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

36

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY  

E-Print Network [OSTI]

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation in January 2011, building on the many advances of our Sustainable Transportation Energy Pathways (STEPS Studies University of California, Davis Automakers, energy companies, utilities and governments are making

California at Davis, University of

37

Transportation energy data book: Edition 13  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

38

Transportation energy data book: Edition 13  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

39

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

40

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transportation energy data book: Edition 15  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

42

FIRST PRINCIPLES CALCULATIONS OF TOKAMAK ENERGY TRANSPORT  

E-Print Network [OSTI]

energy losses have prevented the experimental demonstration of net fusion energy production fromFIRST PRINCIPLES CALCULATIONS OF TOKAMAK ENERGY TRANSPORT M. KOTSCHENREUTHER, W. DORLAND, Q.P. LIU Institute for Fusion Studies, University of Texas, Austin, Texas, United States of America G.W. HAMMETT, M

Hammett, Greg

43

Energy transport using natural convection boundary layers  

SciTech Connect (OSTI)

Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.

Anderson, R.

1986-04-01T23:59:59.000Z

44

Sustainable Transportation Energy Pathways Research  

E-Print Network [OSTI]

Modeling Vehicle Technology Evaluation Energy, Environmental & Economic Cost Analysis Scenarios · Fuel cell electric Climate change, Air quality, Energy security A comprehensive energy strategy should · Electricity · Low-carbon liquid fuels (coal / NG with sequestration) #12;POTENTIAL FOR VEHICLE ENERGY

Handy, Susan L.

45

Solar energy in the context of energy use, energy transportation, and energy storage  

E-Print Network [OSTI]

Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans- portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

MacKay, David J.C.

46

Solar energy in the context of energy use, energy transportation, and energy storage  

E-Print Network [OSTI]

Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans­ portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

MacKay, David J.C.

47

Transportation Energy Data Book: Edition 30  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

48

Transportation Energy Data Book: Edition 31  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

49

Transportation Energy Data Book: Edition 32  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-08-01T23:59:59.000Z

50

Transportation Energy Data Book: Edition 26  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2007-07-01T23:59:59.000Z

51

Transportation Energy Data Book: Edition 29  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

52

Transportation Energy Data Book: Edition 24  

SciTech Connect (OSTI)

The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2005-03-08T23:59:59.000Z

53

Transportation Energy Data Book: Edition 25  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

54

Transportation Energy Data Book: Edition 23  

SciTech Connect (OSTI)

The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2003-10-24T23:59:59.000Z

55

Transportation Energy Data Book: Edition 28  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

56

Transportation Energy Data Book: Edition 27  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

57

Transportation Energy Data Book: Edition 14  

SciTech Connect (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

58

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy Savers [EERE]

Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies,...

59

Departmental Energy, Renewable Energy and Transportation Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines requirements and responsibilities for managing the Department's energy, building and fleets.

2008-02-27T23:59:59.000Z

60

Decision Models for Bulk Energy Transportation Networks  

E-Print Network [OSTI]

-mouth generation at Powder River Basin How much impact would 25% wind penetration have on price ? 2 What is modeled spatial & temporal energy flows nodal prices (fuel & elec) SO2, allowance price1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc

Tesfatsion, Leigh

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

62

Energy transport through rare collisions  

E-Print Network [OSTI]

We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

Franois Huveneers

2011-07-14T23:59:59.000Z

63

ECE 465: Realistic Sustainable Energy -Energy use in transportation,  

E-Print Network [OSTI]

- Wave and tidal power generation possibilities - Role of heat pipes in modern HVAC systems - RecyclingECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

Schumacher, Russ

64

Transportation Security | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartment

65

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 4: POLICY AND SUSTAINABLE TRANSPORTATION Part 4: Policy and pollutants such as aerosols and black carbon. Third, more #12;250 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

California at Davis, University of

66

Sustainable Transportation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppressionSustainable SuccessSustainable

67

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCES

68

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice

69

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterials ProgramProtected:

70

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice Corn Gene into

71

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice Corn Gene intoPredicting

72

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice Corn Gene

73

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice Corn GeneSandian's

74

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice Corn

75

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice CornMaterials &

76

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers Splice CornMaterials

77

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers SpliceVehicle Technologies On

78

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternativeVehicleHydrogen

79

Energy and Transportation Science | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-upEnergyTricksJohn MaplesDMgO.

80

VIM continuous energy Monte Carlo transport code  

SciTech Connect (OSTI)

VIM is a continuous energy neutron and photon transport code. VIM solves the steady-state neutron or photon transport problem in any detailed three-dimensional geometry using either continuous energy-dependent ENDF nuclear data or multigroup cross sections. Neutron transport is carried out in a criticality mode, or in a fixed source mode (optionally incorporating subcritical multiplication). Photon transport is simulated in the fixed source mode. The geometry options are infinite medium, combinatorial geometry, and hexagonal or rectangular lattices of combinatorial geometry unit cells, and rectangular lattices of cells of assembled plates. Boundary conditions include vacuum, specular and white reflection, and periodic boundaries for reactor cell calculations. VIM was developed primarily as a reactor criticality code. Its tally and edit features are very easy to use, and automatically provide fission, fission production, absorption, capture, elastic scattering, inelastic scattering, and (n,2n) reaction rates for each edit region, edit energy group, and isotope, as well as the corresponding macroscopic information, including group scalar fluxes. Microscopic and macroscopic cross sections, including microscopic P{sub N} group-to-group cross sections are also easily produced.

Blomquist, R.N. [Argonne National Lab., IL (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff

82

Transportation Organization and Functions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel ProcessorTransportation Work

83

Energy Information Administration - Transportation Energy Consumption by  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,

84

Energy Preview: Residential Transportation Energy Consumption Survey,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 15 15t

85

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION FUTURE PART 3 Part 3: Scenarios

California at Davis, University of

86

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3 CHAPTER 10: OPTIMIZING THE TRANSPORTATION CLIMATE MITIGATION WEDGE Chapter

California at Davis, University of

87

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

carbon content of transport fuels by 2020, measured as lifecycle greenhouse gas emissions per unit of energy.

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

88

Molecular Structure and Free Energy Landscape for Electron Transport...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome...

89

Transportation Storage Interface | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorage Interface Transportation Storage

90

National Transportation Stakeholders Forum | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanks |Transportation Stakeholders

91

Fuel Cells For Transportation - 1999 Annual Progress Report Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies...

92

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy Savers [EERE]

is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

93

Sustainable Transportation Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program SHARE Sustainable Transportation Program Oak Ridge National Laboratory's Sustainable Transportation Program Office administratively facilitates the integration of...

94

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 8: SCENARIOS FOR DEEP REDUCTIONS IN GREENHOUSE GAS EMISSIONS PART 3

California at Davis, University of

95

Transportation and Energy Use Data Files  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore Shale ProvedCountry:Data Files Transportation

96

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources Jump to: navigation,Ashton-SandyLeibo- Transport Jump to:

97

Transportation Equipment (2010 MECS) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation

98

Transportation of Nuclear Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa HowellTechnologies »Transportation of

99

Global Transportation Roadmap Model | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation,GigaCreteInformation| Open EnergyTransportation

100

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Energy Storage: Grid and Transportation Services Workshop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workshop Structure 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and...

102

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Lee, Henry. 2009. Oil Security and the TransportationCanadian Oil Sands: Energy Security and Climate Change.is closely tied to oil security. Any discussion of oil

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

103

INL Site Executable Plan for Energy and Transportation Fuels Management  

SciTech Connect (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

104

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

as a source of energy in the production of a biofuel, soil erosion might increase and fewer nutrients and lessSUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan TRANSPORTATION ENERGY PATHWAYS PART 1: INDIVIDUAL FUEL/VEHICLE PATHWAYS PART 2 Chapter 7: Comparing Land, Water

California at Davis, University of

105

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

106

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be...

107

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

108

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Broader source: Energy.gov [DOE]

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

109

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan, batteries, and ultracapacitors. Andrew #12;316 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS AUTHORS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;315 SUSTAINABLE

California at Davis, University of

110

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network [OSTI]

energy use and compare the results for city or metropolitan areaenergy consumption as we have seen in previous literature at city or metropolitan area

Kim, Chun Kon

2008-01-01T23:59:59.000Z

111

Sandia National Laboratories: Transportation Energy Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engines for Tomorrow's Transportation Needs (November 17-18, 2009) 90-Billion Gallon Biofuel Deployment Study (Executive Summary) Tagged with: Combustion Research Facility *...

112

Transportation Policies and Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Policies and Programs State and local governments can support reduced petroleum use by implementing policies and programs that promote the use of alternative fuel...

113

Transportation Energy Data Book: Edition 32, from the Center for Transportation Analysis (CTA)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Transportation Energy Data Book: Edition 32 is a statistical compendium designed for use as a reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. (Roltek, Inc.)

114

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

SciTech Connect (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

115

New concepts in energy and mass transport within carbon nanotubes  

E-Print Network [OSTI]

The unique structure of carbon nanotubes (CNTs) contributes to their distinguished properties, making them useful in nanotechnology. CNTs have been explored for energy transport in next-generation, such as light-emitting ...

Choi, Wonjoon, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

116

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

SciTech Connect (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

117

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network [OSTI]

W. Yu, X. Yang, P. Wang, and L. Meng 19 Rotating Rate Dependency of Methanol Oxidation on a Smooth and Methanol Transport in Direct Methanol Proton Exchange Membrane Fuel Cells M. Lefebvre and D. Olmeijer 35 solution-based room temperature reduction technique whereby nanoscale iron powder is produced. This new

Azad, Abdul-Majeed

118

A method for evaluating transport energy consumption in suburban areas  

SciTech Connect (OSTI)

Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

2012-02-15T23:59:59.000Z

119

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

120

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect (OSTI)

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

H{sup -} beam transport experiments in a solenoid low energy beam transport  

SciTech Connect (OSTI)

The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Back, J. J. [High Energy Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [ISIS Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Izaola, Z. [ESS Bilbao, Accelerator Physics Group, Edificio Cosimet Paseo Landabarri, 2, 1 Planta. 48940 Leioa (Spain)

2012-02-15T23:59:59.000Z

122

advanced energy transport: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced energy transport First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Conversion Advanced...

123

Green Growth and Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,Green Energy World GmbHTransport

124

Enhancing Transportation Energy Security through Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The Pathway to Energy Security...

125

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

126

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

Yang, Christopher

2011-01-01T23:59:59.000Z

127

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

travel demand, reducing energy intensity and reducing carbonVehicles Vehicle Energy Intensity (E) MPGGE 1990 CA Fleetthe improvements in energy intensity that could be achieved

Yang, Christopher

2011-01-01T23:59:59.000Z

128

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.2009). March 2009. Annual Energy Outlook (AEO). 2011. Annual

Yang, Christopher

2011-01-01T23:59:59.000Z

129

Clean Transportation Education Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicy OptionsTransportation

130

Transportation Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do Brasil EnergiaSurPVTip forIdeas fromTransport

131

TransportToolkit Prototype | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KKCapitalTransportToolkit

132

Oregon Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is a county in Florida.Transportation Address:

133

Decision Models for Bulk Energy Transportation  

E-Print Network [OSTI]

(ISU - Randy Larabee) · City of Ames (Ames - Merlin Hove) · MidAmerican Energy (Des Moines - Alan O of emission allowances? 5. What data can be made available to us? 6. Would you be interested in employing one in a description/depiction, a clear articulation of the "other flows" in the US energy system: · Information

Tesfatsion, Leigh

134

Does energy follow urban form? : an examination of neighborhoods and transport energy use in Jinan, China  

E-Print Network [OSTI]

This thesis explores the impacts of neighborhood form and location on household transportation energy use in the context of Jinan, China. From a theoretical perspective, energy use is a derived outcome of activities, and ...

Jiang, Yang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

135

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network [OSTI]

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

136

Transport in PEMFC Stacks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor for'Cell Stacks |in PEMFC

137

Transportation Efficiency Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor for'Cell Stacks

138

Transportation Infrastructure Requirement Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor

139

Advances in Transportation Technologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2

140

Modernizing Public Transport Webinar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker,(Biasi,

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Gender and Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: Energy Resources Jump to:Genability Explorerand

142

Integration for Seamless Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation FuelsIntegratedAir Warfarefor

143

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

144

Consumer Views on Transportation and Energy (Third Edition)  

SciTech Connect (OSTI)

This report has been assembled to provide the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. The data presented in this report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation (ORC) for the National Renewable Energy Laboratory (NREL) that are commissioned and funded by EERE, Gallup polls, news organization polls, surveys conducted by independent groups and academic institutions, and other sources.

Kubik, M.

2006-01-01T23:59:59.000Z

145

Waste Isolation Pilot Plant Transportation Security | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivitesTransportation

146

Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

Su-Jong Yoon; Piyush Sabharwall

2014-07-01T23:59:59.000Z

147

LDRD project 151362 : low energy electron-photon transport.  

SciTech Connect (OSTI)

At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

2013-09-01T23:59:59.000Z

148

Career Map: Transportation Worker | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-ChevronSeveral sales engineers collaborate ontraining

149

Standardization of Transport Properties Measurements: Internal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * AnalyzerNanoAgency (IEA-AMT) Annex on

150

Energy and Transportation Science Division (ETSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & BatteryDepartmentContact Us

151

Water Transport Exploratory Studies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment of Energy Watch it LiveOctober

152

Sandia National Laboratories: Transportation Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers SpliceVehicle TechnologiesEnergy

153

Transportation Emergency Preparedness Program | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartment ofChairs'TransmissionDepartment ofProgram

154

Transportation Security Rulemaking Activities | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartment ofChairs'TransmissionDepartmentActivities

155

Nuclear Transportation Management Services | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed| Department

156

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

energy use and emissions in 2050. The ultimate marketmarket introduction of FCVs and associated refueling infrastructure. Vehicle EnergyEnergy Use in California Studying these factors will also help determine the rate of adoption and also maximum market

Yang, Christopher

2011-01-01T23:59:59.000Z

157

Resonance energy transport in an oscillator chain  

E-Print Network [OSTI]

We investigate energy transfer and localization in a linear time-invariant oscillator chain weakly coupled to a forced nonlinear actuator. Two types of perturbation are studied: (1) harmonic forcing with a constant frequency is applied to the actuator (the Duffing oscillator) with slowly changing parameters; (2) harmonic forcing with a slowly increasing frequency is applied to the nonlinear actuator with constant parameters. In both cases, stiffness of linear oscillators as well as linear coupling remains constant, and the system is initially engaged in resonance. The parameters of the systems and forcing are chosen to guarantee autoresonance (AR) with gradually increasing energy in the nonlinear actuator. As this paper demonstrates, forcing with constant frequency generates oscillations with growing energy in the linear chain but in the system excited by forcing with slowly time-dependent frequency energy remains localized on the nonlinear actuator whilst the response of the linear chain is bounded. This means that the systems that seem to be almost identical exhibit different dynamical behavior caused by their different resonance properties. Numerical examples a good agreement between exact (numerical) solutions and their asymptotic approximations found by the multiple time scales method.

Agnessa Kovaleva

2015-01-03T23:59:59.000Z

158

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Coal steam Renewable electricity Table 3. 2050 values for vehicle energy,Coal with CCS Renewable or Nuclear H 2 Table 5. 2050 values for vehicle energy,

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

159

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

160

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎ | DIA-Toolkit Jump

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sustainable Transportation Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupply StoresSustainable

162

MECS 2006 - Transportation Equipment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature CombustionGlass MECS 2006 -

163

Climate Adaptation for Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder27. It isfor

164

Navigating Transport NAMAs | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc ||Navarre, Ohio:

165

Colorado Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft River 5 MWCommission

166

Sustainable Transportation Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppressionSustainable Success Sustainable

167

Arizona Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass FacilityArdica Technologies JumpArizona Department

168

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRRUtility(RECP)

169

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGYWorld OilEnergyRestructuring our

170

Transport Modeling Working Group | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |

171

Transportation Policies and Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell

172

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

Yang, Christopher

2011-01-01T23:59:59.000Z

173

Texas Transportation Institute Energy Management and Conservation Plan  

E-Print Network [OSTI]

and continues to improve its in-house preventive maintenance program. #12;Texas Transportation Institute Energy efficiency, TTI maintains an in-house preventive maintenance program for all fleet vehicles. Preventive methods to improve its preventive maintenance program · Consideration of fuel efficiency rating when

174

Ratchet for energy transport between identical reservoirs Souvik Das,1,  

E-Print Network [OSTI]

Ratchet for energy transport between identical reservoirs Souvik Das,1, * Onuttom Narayan,2 of the many realizations of this concept of a ``Brownian ratchet'' and their relevance to the working of motor,3 . Implementations of the ratchet idea generally involve randomly forced particles in periodic, non

California at Santa Cruz, University of

175

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

-duty markets for advanced electric-drive technologies such as plug-in hybrids and hydrogen fuel cell vehicles electric vehicles (PHEVs) play a major role beyond 2025. · FCV success--Hydrogen fuel cell vehicles (FCVs TRANSPORTATION ENERGY PATHWAYS PART 1: INDIVIDUAL FUEL/VEHICLE PATHWAYS PART 3 Chapter 9: Transition Scenarios

California at Davis, University of

176

Integrated transport and renewable energy systems B. V. Mathiesen*  

E-Print Network [OSTI]

, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning2 emissions, electricity and heating have traditionally been in focus. As more and more countries have been successful within electricity and heating where political focus has produced actions

177

PBA Transportation Websites | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory and Successes PAFCTrainingJ-2PBA

178

Packaging and Transportation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9 Revision: 0Science

179

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpen Energy| OpenVote

180

California Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city inCCSE Jump to: navigation,Resources |California

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Category:Transportation Toolkits | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NY Jump to:Operators JumpAdd a new

182

Montana Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont Vista Capital LLC

183

Nevada Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Jump to: navigation,Department of

184

Internal Labeling Technique Tracks Nanoparticle Transport - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses to Engineered Nanomaterials: The

185

EIA - Household Transportation report: Household Vehicles Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. EIA4.Consumption

186

Sandia National Laboratories: energy for transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuelssituations EC, DHS'senergy for

187

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire Address ChaseGeoNames ID

188

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValeroTrans Co Inc JumpVerveVictoria

189

Wisconsin Clean Transportation Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugustChilocco WindWinter Is2SCR

190

Wisconsin Clean Transportation Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugustChilocco WindWinter Is2SCR1

191

Wisconsin Clean Transportation Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugustChilocco WindWinter Is2SCR10

192

Sandia National Laboratories: Transportation Energy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers SpliceVehicle Technologies

193

Sandia National Laboratories: Transportation Energy Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers SpliceVehicle

194

Caltrans Transportation Permits Manual | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3:Information USCalloway County,Caltrans

195

Sandia National Laboratories: radiative energy transport zone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystemsquantum qubits Jerry

196

Transportation Energy Futures (TEF) Data and Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearch keywordsclear

197

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect (OSTI)

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

198

Energy transport by acoustic modes of harmonic lattices  

E-Print Network [OSTI]

We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

2006-11-21T23:59:59.000Z

199

US Department of Energy automated transportation management system  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has approximately 80 facilities throughout the United States that specialize in either scientific research, engineering, technology, production, and/or waste management activities. These facilities can best be described as Government Owned, Contractor Operated (GOCO) sites, and vary in size from very small laboratories to large industrial plant type facilities. Each of these GOCO`s have varying needs for transportation of materials into and/or out of their facility. Therefore, Traffic Management operations will differ from site to site due to size and the internal or site specific mission. The DOE Transportation Management Division (TMD) has the corporate responsibility to provide a well managed transportation management program for the safe, efficient, and economical transportation of all DOE-owned materials. To achieve this mission, TMD provides oversight, and when necessary, resources to assist in ensuring regulatory compliance in the packaging and shipment of DOE-owned materials. A large part of TMD`s responsibility is to develop, administer, and provide policies and guidance concerning department-wide transportation and packaging operations. This responsibility includes overall Transportation Management policies and programs for the packaging and movement of all DOE materials, including radioactive materials, other hazardous materials/substances, and hazardous wastes. TMD formulates policies and guidance that assist the DOE Field Elements and GOCO`s in meeting TMD`s goal for safe, efficient and economical transportation. Considering there are at least 80 shipping and receiving sites, the challenge encountered by TMD has been the difficulty in managing such a diverse transportation community.

Thomas, T.M. [Dept. of Energy, Germantown, MD (United States); Frost, D.M.; Lopez, C.A. [MELE Associates, Rockville, MD (United States)] [and others

1996-12-31T23:59:59.000Z

200

Macomb College Transportation and Energy Technology 126.09  

SciTech Connect (OSTI)

The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

None

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy transport between two pure-dephasing reservoirs  

E-Print Network [OSTI]

A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of energy between two pure-dephasing markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary energy transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid in the ultrastrong inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

T. Werlang; D. Valente

2014-08-21T23:59:59.000Z

202

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

203

Electric vehicles and renewable energy in the transport sector energy system  

E-Print Network [OSTI]

energy resources, such as wind power. Economic aspects for electric vehicles interactingElectric vehicles and renewable energy in the transport sector ­ energy system consequences Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles Lars Henrik Nielsen and Kaj

204

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

205

Energy, Industry, and Transport in South-Central Africas History  

E-Print Network [OSTI]

Energy must be seen in interaction with transportation and industry in order for its role in South-Central Africa to be fully understood. All threeenergy, industry, and transportationare themselves always socialized and ...

Mavhunga, Clapperton Chakanets

2014-01-01T23:59:59.000Z

206

Alternative energy sources for non-highway transportation. Appendices  

SciTech Connect (OSTI)

A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

Not Available

1980-06-01T23:59:59.000Z

207

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

208

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

intensity and reducing carbon intensity. The equations belowin energy use and carbon intensity. We forecast that totalFleet Average a Fuel Carbon Intensity (C) kWh/mi gCO 2 /gge

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

209

Baseline projections of transportation energy consumption by mode: 1981 update  

SciTech Connect (OSTI)

A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

1982-04-01T23:59:59.000Z

210

Spontaneous synchronization driven by energy transport in interconnected networks  

E-Print Network [OSTI]

Understanding dynamical processes on networks is an important area of research in complex systems, with far reaching implications and applications in many real-world cases. Here we introduce and study a model of intertwined dynamics on interconnected networks, inspired by the human brain, which consists of bidirectionally coupled synchronization and energy transport processes. Remarkably, the proposed model allows the emergence of spontaneous switch-like synchronization transitions driven by the energy transport dynamics, which qualitatively mirror the transitions observed in human brain dynamics between resting-state and cognitive activity. We provide a steady-state analytical explanation for the observed behavior and show that the switch-like transition is robust over a wide range of model parameters and network topologies. Finally, we suggest that the complexity inherent in other interconnected dynamical processes might be responsible for various other emergent behaviors observed in natural systems.

Vincenzo Nicosia; Per Sebastian Skardal; Vito Latora; Alex Arenas

2015-02-26T23:59:59.000Z

211

Innovation Center for Energy and Transportation ICET | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergy InformationInformationInformation

212

Solar Energy for Transportation Fuel (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

Lewis, Nate

2011-04-28T23:59:59.000Z

213

GIZ Transport & Mobility Compass | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette,Transport & Mobility

214

International Association of Public Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International Association of Public Transport Jump to:

215

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

Economy on Transportation, Energy Use, and Air Emissions fossil fuel imports such as natural gas.Economy on Transportation, Energy Use, and Air Emissions penetration of H 2 -FCVs could increase the use of natural gasEconomy on Transportation, Energy Use, and Air Emissions With the most cost-effective sources of hydrogen likely to be natural gas

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

216

Transportation and Program Management Services | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorage Interface Transportation Storageand

217

Center for Sustainable Transport of Mexico | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV EconomicsOregon: EnergySolutionsTransport of Mexico

218

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramIDPromotingNo. 154 -EIS,

219

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Emissions Impact of a Bus Rapid Transport Project in Mexicoemissions from the main classes of transport emitters in the Mexico

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

220

Transportation Energy Technology DivisionEnergy Technology Division --TribologyTribology  

E-Print Network [OSTI]

-frictionless carbon coatings to the components when appropriate · Develop and evaluate polymer composite materials to their prototype using Hitco C/C composite and anodized aluminum material combination. · Fabricated and evaluatedTransportation Materials Energy Technology DivisionEnergy Technology Division -- Tribology

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Transport of hydrogen in metals with occupancy dependent trap energies  

SciTech Connect (OSTI)

Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12?H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment.

Schmid, K., E-mail: klaus.schmid@ipp.mpg.de; Toussaint, U. von; Schwarz-Selinger, T. [Max-Planck-Institut fr Plasmaphysik, Boltzmannstrae 2, D-85748 Garching b. Mnchen (Germany)

2014-10-07T23:59:59.000Z

222

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

223

A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport  

E-Print Network [OSTI]

A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport Fred Y. Huanga) and Mark J. Kushnerb) Departm&t of Electrical and Computer Engineering, University of Illinois, 1406 West Green Street, Urbana, Illinois 61801

Kushner, Mark

224

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

SciTech Connect (OSTI)

Recently it has been discovered - contrary to expectations of physicists as well as biologists - that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D. [Centre for High Energy Physics and Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

2011-09-23T23:59:59.000Z

225

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network [OSTI]

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Apoorva D. Patel

2011-04-07T23:59:59.000Z

226

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network [OSTI]

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D

2011-01-01T23:59:59.000Z

227

Chemistry and Transport - Combustion Energy Frontier Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistantChemistry and Transport

228

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage, NewOR) JumpInformation transport

229

Transportation Emergency Preparedness Program (TEPP) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation Emergency

230

Transportation Fact of the Week - 2009 Archive | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09 Archive

231

Transportation Fact of the Week - 2010 Archive | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09 Archive0

232

Transportation Fact of the Week - 2011 Archive | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09 Archive01

233

Transportation Fact of the Week - 2012 Archive | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09 Archive012

234

Transportation Fact of the Week - 2013 Archive | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09 Archive0123

235

Transportation Fact of the Week - 2014 Archive | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09 Archive01234

236

Transportation Fact of the Week | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell |Transportation09

237

Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer and Peter Rez  

E-Print Network [OSTI]

Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer damage which can be related to the energy deposited in the specimen. We derive an expression for the energy deposition using the electron transport equation and give results for beam energies of l-10 k

Biewer, Theodore

238

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

of coupling to the electricity sector. The chapter examinesfrom the transportation and electricity sectors together.transportation and electricity sectors will likely interact

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

239

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

240

Spontaneous synchronization driven by energy transport in interconnected networks  

E-Print Network [OSTI]

Understanding dynamical processes on networks is an important area of research in complex systems, with far reaching implications and applications in many real-world cases. However, the research to date has mainly focused on single dynamical processes occurring on isolated networks, and very little is known about the more interesting and realistic case of different kinds of intertwined dynamical processes taking place on interconnected networks. An example of the non-trivial combination of two types of dynamics can be found in the human brain, where cerebral circulation delivers the nutrients and oxygenated blood needed for the activity of the different brain areas, and in turn the activity of a region can induce changes in the distribution of blood flow. Here, we introduce and study a model of intertwined dynamics on interconnected networks, inspired by the human brain, which consists of bidirectionally coupled synchronization and energy transport processes. Remarkably, the proposed model allows the emergence of spontaneous switch-like synchronization transitions driven by the energy transport dynamics, which qualitatively mirror the transitions observed in human brain dynamics between resting-state and cognitive activity. We provide a steady-state analytical explanation for the observed behavior and furthermore show that the switch-like transition is robust over a wide range of model parameters and network topologies. We suggest that the complexity inherent in other interconnected dynamical processes might be responsible for various other emergent behaviors observed in natural systems.

Vincenzo Nicosia; Per Sebastian Skardal; Vito Latora; Alex Arenas

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

SciTech Connect (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

242

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

243

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors  

E-Print Network [OSTI]

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

Pietra, Paola

244

AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS  

E-Print Network [OSTI]

AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS #3; STEFAN HOLST, ANSGAR J  UNGEL y AND PAOLA PIETRA z Abstract. Energy-transport models are used in semiconductor and energy of the electrons, coupled to the Poisson equation for the electrostatic potential. The movement

Pietra, Paola

245

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

246

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

247

ERTP: Energy-Efficient and Reliable Transport Protocol for Data Streaming in Wireless Sensor  

E-Print Network [OSTI]

ERTP: Energy-Efficient and Reliable Transport Protocol for Data Streaming in Wireless Sensor applications in Wireless Sensor Networks require re- liable and energy-efficient transport protocols [17] [18 of minutes or hours), energy-efficiency is. Long-term operation and reliable delivery of the sensed data

New South Wales, University of

248

Visualization and analysis of multiobjective solutions to the energy and transportation investment optimization problem  

E-Print Network [OSTI]

ABSTRACT Most U.S. energy usage is for electricity production and vehicle transportation, two, accelerated by public con- cern over global warming. The U.S. Energy Information Administration suggests and transportation accounted for almost 60% of US greenhouse emissions. Intentional and strategic energy system

249

Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link  

E-Print Network [OSTI]

- rail transport developed because steam engine (developed 1769) created way to take significant energy mobile ­ initially wood burning, but supplies and safety created shift to coal (now old engines left typically burn oil) - oil generated road system after perfection of internal combustion engine ~1930's

250

Energy use in ground transportation. Final report, June-December 1982  

SciTech Connect (OSTI)

Transportation systems account for approximately twenty-five percent of the country's total energy consumption. Such a large fraction on the Nation's energy resources has prompted increased awareness of the role which transportation technology plays in the area of energy consumption. Of the different transportation modes, automobiles and trucks combine to consume approximately three-quarters of all transportation energy as of 1980. The report stresses that the importance of technologies aimed at reducing these large expenditures of our Nation's resources cannot be minimized.

Karlin, A.; Riviera, A.; McDonald, M.; Turner, D.; Stickler, J.

1983-06-01T23:59:59.000Z

251

Transportation  

E-Print Network [OSTI]

Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

Vinson, Steve

2013-01-01T23:59:59.000Z

252

Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

Marsha Keister

2010-04-01T23:59:59.000Z

253

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

Policy process; Hydrogen; Transportation energy policy 1.Prospects for hydrogen in the German energy system. Energytransportation energy: The case of hydrogen in the United

Collantes, Gustavo Oscar

2008-01-01T23:59:59.000Z

254

On the energy transported by exact plane gravitational-wave solutions  

E-Print Network [OSTI]

The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

2009-09-24T23:59:59.000Z

255

The fluctuation energy balance in non-suspended fluid-mediated particle transport  

E-Print Network [OSTI]

Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an ...

Phtz, Thomas; Ho, Tuan-Duc; Valance, Alexandre; Kok, Jasper F

2015-01-01T23:59:59.000Z

256

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

from 15 years of alternative fuels experience19882003. Learned from 15 Years of Alternative Fuels Experience: 1988-Challenges for Alternative Fuel Vehicle and Transportation

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

257

SciTech Connect: Atomistic mechanisms of rapid energy transport...  

Office of Scientific and Technical Information (OSTI)

(fuels), solid state lighting, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable...

258

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

production plant, processing them to produce transportation fuels, providing refueling sites, and delivering has developed over a century, encompassing worldwide oil exploration and production, long

California at Davis, University of

259

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1  

SciTech Connect (OSTI)

This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

NONE

1998-01-01T23:59:59.000Z

260

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect (OSTI)

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Addressing transportation energy and environmental impacts: technical and policy research directions  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

1995-08-01T23:59:59.000Z

262

Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #834: About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles

263

Wind turbines application for energy savings in Gas transportation system.  

E-Print Network [OSTI]

?? The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the (more)

Mingaleeva, Renata

2014-01-01T23:59:59.000Z

264

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

that reduces long-haul truck transport growth between 2010ef?ciency. Most long-haul trucks use tandem drive axles, duepower demand in a long-haul truck, typically accounting for

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

265

Energy Policy Act transportation rate study: Interim report on coal transportation  

SciTech Connect (OSTI)

The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

NONE

1995-10-01T23:59:59.000Z

266

Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)  

SciTech Connect (OSTI)

The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

Not Available

2012-12-01T23:59:59.000Z

267

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY VEHICLES VehicleTransportation

268

Energy Carrier Transport In Surface-Modified Carbon Nanotubes  

E-Print Network [OSTI]

of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties...

Ryu, Yeontack

2012-11-30T23:59:59.000Z

269

The Dynamic Context for Sustainable Transportation Energy Research  

E-Print Network [OSTI]

IN VEHICLES time constants: 20-60 years #12;REFUELING STATIONS FOR GASOLINE & ALTERNATIVE FUELS Gasoline CNG MethanolEthanol ~100+ H2refueling stations worldwide #12;HISTORICAL DATA: MAJOR US TRANSPORTATION

Handy, Susan L.

270

Energy, Transportation Ministers from Asia-Pacific Nations Pledge...  

Energy Savers [EERE]

The ministers called for the promotion of biofuels, natural gas vehicles and electric vehicles to reduce the use of oil in transportation. They also stressed the need to maintain...

271

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

IEA. ______. 2008b. World Energy Outlook 2008. Paris,contributed to IEAs World Energy Outlooks. Mr. Di?glio hascurrent path. The IEA World Energy Outlook 2008 provides a

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

272

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

EIA). 2009a. Annual Energy Outlook 2009. Washington, DC.EIA). 2009. Annual Energy Outlook 2009. Washington, DC. U.S.EIA). 2009. Annual Energy Outlook 2009. DOE/EIA-0383(2008).

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

273

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

hybrid motor using braking energy or by a waste heat recovery system,source of energy. Long-haul hybrid systems can be effective

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

274

Integration of renewable energy into the transport and electricity sectors through V2G  

E-Print Network [OSTI]

Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind energy systems allows integration of much higher levels of wind electricity without excess electric

Firestone, Jeremy

275

Zachary Hensley, Jibonananda Sanyal, Joshua New Energy and Transportation Sciences Division  

E-Print Network [OSTI]

modified and evaluated using different energy models, including DOE's EnergyPlus and multiple programsZachary Hensley, Jibonananda Sanyal, Joshua New Energy and Transportation Sciences Division@ornl.gov Provenance In the scientific world, it is important for researchers to know where their data came from

Wang, Xiaorui "Ray"

276

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses  

E-Print Network [OSTI]

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses KEVIN E energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate

Fasullo, John

277

Generation and transport of a low energy intense ion beam  

E-Print Network [OSTI]

and J. K. Walters Tri Alpha Energy Inc. , Foothill Ranch,supported by UCI and Tri Alpha Energy, Inc. R. N. Sudan and

2004-01-01T23:59:59.000Z

278

Comparative assessment of five potential sites for hydrothermal-magma systems: energy transport  

SciTech Connect (OSTI)

A comparative assessment of five sites is being prepared as part of a Continental Scientific Drilling Program (CSDP) review of thermal regimes for the purpose of scoping areas for future research and drilling activities. This background report: discusses the various energy transport processes likely to be encountered in a hydrothermal-magma system, reviews related literature, discusses research and field data needs, and reviews the sites from an energy transport viewpoint. At least three major zones exist in the magma-hydrothermal transport system: the magma zone, the hydrothermal zone, and the transition zone between the two. Major energy transport questions relate to the nature and existence of these zones and their evolution with time. Additional energy transport questions are concerned with the possible existence of critical state and super-critical state permeable convection in deep geothermal systems. A review of thermal transport models emphasizes the fact that present transport models and computational techniques far outweigh the scarcity and quality of deep field data.

Hardee, H.C.

1980-09-01T23:59:59.000Z

279

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

generally is linear, static, highly simplified, and tightly circumscribed, and the real world, which LCA, analysts, policy makers, and the public began to worry that burning coal, oil, and gas would affect the global climate. Interest in alternative transportation fuels, which had subsided with the low oil prices

California at Davis, University of

280

Energy-Efficient Mobile Data Transport via Online Multi-Network Packet Aaron Cote, Adam Meyerson, Brian Tagiku  

E-Print Network [OSTI]

Energy-Efficient Mobile Data Transport via Online Multi-Network Packet Scheduling Aaron Cote, Adam related to energy-efficiency in mobile data transport. This model incorporates multiple networks with non energy-efficiency, our model requires that packets have larger values for more energy- efficient networks

Meyerson, Adam W.

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network [OSTI]

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

282

Conference on Transportation, Economics, Energy and the Environment (TE3 Hosted by the University of Michigan Energy Institute (UMEI)  

E-Print Network [OSTI]

) Gabriel E. Lade (UC Davis), C.-Y. Cynthia Lin (UC Davis), and Aaron Smith (UC Davis) "The Effect of PolicyConference on Transportation, Economics, Energy and the Environment (TE3 ) Hosted by the University of Michigan Energy Institute (UMEI) Rackham Amphitheatre, Ann Arbor, Michigan -- Friday, 3 October 2014 8

Daly, Samantha

283

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

284

Energy policy act transportation study: Interim report on natural gas flows and rates  

SciTech Connect (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

285

Agenda: Rail, Barge, Truck Transportation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,ProposedEnergySITING Agenda:Energy

286

Weather and the Transport of Hazardous Materials | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergyU.S. DOE6WaterWater PowerWeather

287

India-Low Carbon Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDSDloomis'sTransport in India) Jump to:

288

A mixed finite-element scheme of a semiconductor energy-transport model  

E-Print Network [OSTI]

A mixed finite-element scheme of a semiconductor energy-transport model using dual entropy variables Stephan Gadau, Ansgar J¨ungel, and Paola Pietra Abstract. One-dimensional stationary energy employing a mixed-hybrid finite- element method which has the advantage to fulfill current conser- vation

Hanke-Bourgeois, Martin

289

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

E-Print Network [OSTI]

such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange to address global energy needs, such as reverse electro- dialysis1-4 (RED), capacitive energy extraction based on Donnan potential5 (CDP), and capacitive reverse electro- dialysis6 (CRED), has encouraged

290

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy  

E-Print Network [OSTI]

). Fossil fuel use increases CO2 emissions and raises the risk of global warming. The high energy contentAddressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute Harvey W 94720, Sandia National Laboratories, Albuquerque, New Mexico 87185, **Department of Plant Biology

Knowles, David William

291

Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms  

E-Print Network [OSTI]

As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.

Meyers, Johan

2012-01-01T23:59:59.000Z

292

Transportation Research Board 94th Annual Meeting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel

293

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and...

294

Thermal Energy Storage Technology for Transportation and Other Applications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAged by Lean/Rich CyclingD.

295

Department of Energy Office of Science Transportation Overview  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of EnergyUniversities forCo-ops of

296

EM Waste and Materials Disposition & Transportation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirementsDraft Environmental ImpactEM Active Sitesof Energy WasteOnEM

297

Surface Transportation Board Website Citations | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRaineyEnergyEXC-14-0002 |Website

298

Long-term energy consumptions of urban transportation: A prospective...  

Open Energy Info (EERE)

Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of...

299

Hybrid method of deterministic and probabilistic approaches for continuous energy neutron transport problem  

SciTech Connect (OSTI)

This paper presents a new hybrid method of continuous energy Monte Carlo (MC) and multi-group Method of Characteristics (MOC). For a continuous energy neutron transport analysis, the hybrid method employs a continuous energy MC for resonance energy range to treat the resonances accurately and a multi-group MOC for high and low energy ranges for efficiency. Numerical test with a model problem confirms that the hybrid method can produce consistent results with the reference continuous energy MC-only calculation as well as multi-group MOC-only calculation. (authors)

Lee, H.; Lee, D. [Ulsan National Institute of Science and Technology UNIST, gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)

2013-07-01T23:59:59.000Z

300

CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Theory Guide  

SciTech Connect (OSTI)

This document presents the mathematical theory implemented in the CFEST (Coupled Flow, Energy, and Solute Transport) simulator. The simulator is a three-dimensional finite element model that can be used for evaluating flow and solute mass transport. Although the theory for thermal transport is presented in this guide, it has not yet been fully implemented in the simulator. The flow module is capable of simulating both confined and unconfined aquifer systems, as well as constant and variable density fluid flows. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. Mesh construction employs collapsible, hexahedral finite elements in a three-dimensional coordinate system. CFEST uses the Galerkin finite element method to convert the partial differential equations to algebraic form. To solve the coupled equations for momentum, solute and heat transport, either Picard or Newton-Raphson iterative schemes are used to treat nonlinearities. An upstream weighted residual finite-element method is used to solve the advective-dispersive transport and energy transfer equations, which circumvents problems of numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers available in ITPACK and PETSc, solvers that are available in the public domain. These solvers are based on the preconditioned conjugate gradient and ORTHOMIN methods for symmetric and a nonsymmetric matrices, respectively.

Freedman, Vicky L.; Chen, Yousu; Gupta, Sumant K.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The fluctuation energy balance in non-suspended fluid-mediated particle transport  

E-Print Network [OSTI]

Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small.

Thomas Phtz; Orencio Durn; Tuan-Duc Ho; Alexandre Valance; Jasper F. Kok

2015-01-16T23:59:59.000Z

302

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

cells, materials for hydrogen storage, and hydrogen systemsand lifespan, hydrogen storage weight and volume, materials,hydrogen as a main fuel will be dif?cult due to driving range requirements and energy storage

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

303

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KKCapital LimitedTransport

304

Long-range coherent energy transport in Photosystem II  

E-Print Network [OSTI]

We simulate the long-range inter-complex electronic energy transfer in Photosystem II -- from the antenna complex, via a core complex, to the reaction center -- using a non-Markovian (ZOFE) quantum master equation description that allows us to quantify the electronic coherence involved in the energy transfer. We identify the pathways of the energy transfer in the network of coupled chromophores, using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation -- localized, coherent initial excitation versus delocalized, incoherent initial excitation -- and find that the energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the original parameters lie in ...

Roden, Jan J J; Whaley, K Birgitta

2015-01-01T23:59:59.000Z

305

Capital requirements for the transportation of energy materials: 1979 arc estimates  

SciTech Connect (OSTI)

Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

Not Available

1980-08-29T23:59:59.000Z

306

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

307

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,Proposed Penalty (2011-SCE-1624)DOE

308

The Ohio Advanced Transportation Partnership (OATP) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of2 DOE

309

The Ohio Advanced Transportation Partnership (OATP) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of2 DOE1 DOE

310

The Ohio Advanced Transportation Partnership (OATP) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of2 DOE1 DOE0

311

Transport Modeling Working Group Meeting Reports | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor for'

312

2013 US Department of Energy National Transportation Stakeholders Forum  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOEQA:Program PeerDepartmentDOE33 US Department of

313

EM Office of Packaging and Transportation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0: DOE512: Alaska EM|ofTaxpayers |

314

EM Waste and Materials Disposition & Transportation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0: DOE512:Shines with Five DOE

315

Spent Fuel Transportation Risk Assessment | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy AgencyImpactSouthDepartment of09-01Special Topics inSpent

316

DOE-Idaho's Packaging and Transportation Perspective | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE Zero Energy Ready Home16, 2009133-20147502-95

317

Department of Energy Office of Science Transportation Overview | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE Zero EnergyDataResearch CenterWindNo DepartmentConditionalConditionalof

318

INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report  

SciTech Connect (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2009-12-01T23:59:59.000Z

319

Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon  

E-Print Network [OSTI]

Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

Kurapov, Alexander

320

TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009  

E-Print Network [OSTI]

, Doug Leach, Matt Tobin Propel Biofuels/Jeff Stephens California Department of Food and Agriculture, Weights and Measurements/Gary Castro, Allan Morrison, John Mough, Ed Williams Clean Energy Fuels

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Return currents and energy transport in the solar flaring atmosphere  

E-Print Network [OSTI]

According to a standard ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated to these local currents has an ohmic nature and significantly shortens the acceleration electron path. In the present paper we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. Specifically, we show that this new formula for the energy l...

Codispoti, Anna; Piana, Michele; Pinamonti, Nicola

2013-01-01T23:59:59.000Z

322

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

323

39-613 Energy Transport and Storage Spring Semester 2012  

E-Print Network [OSTI]

Transmission / Distribution #6 Thur 2/2 Connecting Renewables to the Grid i.e. solar, hydro, wind (current & future) HW#3 due #12 Thu 2/23 Micro Grid; Distributed Generation; distributed energy

McGaughey, Alan

324

Energy, Transportation Ministers from Asia-Pacific Nations Pledge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting JobsClean Energy and

325

Low-Carbon Land Transport Policy Handbook | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland,InformationEnergyRoadmapLand

326

USDOT-Transportation and Climate Change Clearinghouse | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:DevelopmentEnergyEurasia Climate

327

Energy and Environmental Issues, 1991. Transportation research record  

SciTech Connect (OSTI)

Partial Contents: Mitigation of Traffic Mortality of Endangered Brown Pelicans on Coastal Bridges; Cooperation Between State Highway and Environmental Agencies in Dealing With Hazardous Waste in the Right-of-Way; Comparison of Intersection Air Quality Models' Ability to Simulate Carbon Monoxide Concentrations in an Urban Area; Model Calculation of Environment-Friendly Traffic Flows in Urban Networks; Sensitivity Analysis for Land Use, Transportation, and Air Quality; Special Events and Carbon Monoxide Violations: TSM, Crowd Control, Economics, and Solutions to Adverse Air Quality Impacts; Mode Split at Large Special Events and Effects on Air Quality; Internal Consistency and Stability of Measurements of Community Reaction to Noise; Impact and Potential Use of Attitude and Other Modifying Variables in Reducing Community Reaction to Noise; Techniques for Aesthetic Design of Freeway Noise Barriers; Effects of Road Surface Texture on Traffic and Vehicle Noise; Electrokinetic Soil Processing in Waste Remediation and Treatment: Synthesis of Available Data; Site Remediation by In Situ Vitrification.

Not Available

1991-01-01T23:59:59.000Z

328

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid  

SciTech Connect (OSTI)

Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

2013-02-15T23:59:59.000Z

329

Environmental emissions and socioeconomic considerations in the production, storage, and transportation of biomass energy feedstocks  

SciTech Connect (OSTI)

An analysis was conducted to identify major sources and approximate levels of emissions to land, air, and water, that may result, in the year 2010, from supplying biofuel conversion facilities with energy crops. Land, fuel, and chemicals are all used in the establishment, maintenance, harvest, handling and transport of energy crops. The operations involved create soil erosion and compaction, particulate releases, air emissions from fuel use and chemical applications, and runoff or leachate. The analysis considered five different energy facility locations (each in a different major crop growing region) and three classes of energy crops -- woody crops, perennial herbaceous grasses, and an annual herbaceous crop (sorghum). All projections had to be based on reasonable assumptions regarding probable species used, type of land used, equipment requirements, chemical input requirements, and transportation fuel types. Emissions were summarized by location and class of energy crop.

Perlack, R.D.; Ranney, J.W.; Wright, L.L.

1992-07-01T23:59:59.000Z

330

Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)  

SciTech Connect (OSTI)

While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

Not Available

2014-12-01T23:59:59.000Z

331

Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes  

E-Print Network [OSTI]

Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to the relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy $\\lambda$, bath frequency cutoff $\\gamma$, temperature $T$, bath spatial correlations, initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. We identify the ratio of $\\lambda T/\\gamma\\*g$ as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.

Masoud Mohseni; Alireza Shabani; Seth Lloyd; Herschel Rabitz

2011-04-25T23:59:59.000Z

332

Energy transport faster than light in good conductors and superconductors  

E-Print Network [OSTI]

People need a model to study tachyons whose prediction can be tested easily. The dispersion relation w^2=k^2C^2-a^2C^2 of a low-frequency electromagnetic field in good conductors is equivalent to the energy-momentum equation E^2=p^2C^2-m^2C^4 of a tachyon where the proportionality coefficient is h^2. An experiment in 1980s to measure the phase velocity Vp [1] can be regarded as an indirect evidence of the superluminal velocity V>>c of those photons just equals the rate of energy flow S/w of the field.Instability of the tachyonic field corresponds to the Joule heat. To detect the speed of energy is difficult and we plan to modulate signals to observe the information velocity (speed of points of non-analyticity)[2].

Z. Y. Wang

2012-02-09T23:59:59.000Z

333

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP |Save05.1BIdaho |in Alaska |

334

National Transportation Stakeholders Forum (NTSF) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation,Energy StrategyNational

335

Energy Savers in the Community: Green Transportation Rally | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERECommercial2010Energy John

336

Systems Approach to New Transportation Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspectEngines |Impacts| Department

337

South Coast AQMD Clean Transportation Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4Solid-StateDepartmentSystemsSouthSouth

338

Remarks on Rail Transportation of Energy Resources John R. Birge  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services System:Affairs, to the Beijing Energy Club|Accesson

339

Transportation Plan Ad Hoc Working Group | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartment ofChairs'TransmissionDepartment ofProgramPlan

340

Capacity Building on Sustainable Urban Transport (CAPSUT) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar33.6850215°, -117.2730931°

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Office of Secure Transportation Activities | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed|3Programson 20 Years,2008FreedomI mLLCSecure

342

Update on EM Transportation Program Activities | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering ResearchServices4/08 Tank10TrentMeasures | DepartmentUpcoming

343

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect (OSTI)

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

344

RETURN CURRENTS AND ENERGY TRANSPORT IN THE SOLAR FLARING ATMOSPHERE  

SciTech Connect (OSTI)

According to the standard Ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated with these local currents has an Ohmic nature and significantly shortens the accelerated electron path. In the present paper, we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. We show that this new formula for the energy loss rate provides a better fit of the experimental data with respect to the model based on the effects of standard Ohmic return currents.

Codispoti, Anna; Torre, Gabriele; Piana, Michele; Pinamonti, Nicola [Dipartimento di Matematica, Universita di Genova, via Dodecaneso 35, I-16146 Genova (Italy)

2013-08-20T23:59:59.000Z

345

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission

346

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND

347

Fuel Cells For Transportation - 1999 Annual Progress Report Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable

348

Nevada Department of Transportation - Occupancy Permits | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo Inc JumpWater

349

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎

350

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid < LEDSGP‎ |

351

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid < LEDSGP‎

352

LEDSGP/Transportation Toolkit/Strategies/Shift | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid <

353

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid <<

354

Long-term energy consumptions of urban transportation: A prospective  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona:Lockland,LIPAsimulation of

355

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy FocusBenefit

356

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupply Stores

357

MIT- Center for Transportation and Logistics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM Communications Smart

358

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic Bioenergy |

359

Meeting Society's Transport Needs Under Tight Budgets | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is aElectricMeeme,

360

Alaska Department of Transportation and Public Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheeler

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Funding Urban Public Transport: Case Study Compendium | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to: navigation,

362

GIZ Sourcebook Module 4e: Intelligent Transport Systems | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette, Jump| Open

363

Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia

364

International Council on Clean Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International Association of PublicClean EnergyandCouncil

365

UN-Glossary for Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to: navigation, searchDistrictUNfor

366

EPA State and Local Transportation Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon TransitionENERGY STARLocal

367

Thermalization at lowest energies? A view from a transport model  

E-Print Network [OSTI]

Using the Isospin Quantum Molecular Dynamics (IQMD) model we analyzed the production of pions and kaons in the energy range of 1-2 AGeV in order to study the question why thermal models could achieve a successful description. For this purpose we study the variation of pion and kaon yields using different elementary cross sections. We show that several ratios appear to be rather robust versus their variations.

C Hartnack; H Oeschler; J Aichelin

2010-10-05T23:59:59.000Z

368

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfordefaultSolarsediments

369

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining

370

Energy and water vapor transport across a simplified cloud-clear air interface  

E-Print Network [OSTI]

We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

2015-01-01T23:59:59.000Z

371

Self-Energy-Limited Ion Transport in Subnanometer Channels Douwe Jan Bonthuis,1  

E-Print Network [OSTI]

Self-Energy-Limited Ion Transport in Subnanometer Channels Douwe Jan Bonthuis,1 Jingshan Zhang,2 -Hemolysin (-HL) pore embedded in an insulating phospholipid membrane. An ion current of I 80 pA is reduced, and a minimum of the current as a function of C. These observations are interpreted as the result of the ion

Meller, Amit

372

Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)  

E-Print Network [OSTI]

Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111) S annealing of three-dimensional (3D) TiN(111) mounds, consisting of stacked 2D islands, at temperatures-limited decay of 2D TiN islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002) 176102

Israeli, Navot

373

Paraboloidal Dish Arrays with Steam Energy Transport Network Jeff Cumpston1  

E-Print Network [OSTI]

Paraboloidal Dish Arrays with Steam Energy Transport Network Jeff Cumpston1 , Keith Lovegrove2 of Engineering, Australian National University, Canberra, ACT, 0200, Australia, +61 2 6125 3072, jeff.cumpston@anu.edu.au 2 PhD, Consultant, IT Power Australia, Address: PO Box 6127, O'Connor, ACT, 2602, Australia 3 B

374

Small scale energy release and the acceleration and transport of energetic particles  

E-Print Network [OSTI]

Small scale energy release and the acceleration and transport of energetic particles Hugh Hudson1, and of their radio emission mechanisms. The RHESSI3 results are the most distinctive in this time frame observatory) 4 Very Large Array (Socorro, New Mexico) 5 Nobeyama Radio Heliograph (Nobeyama, Japan) 6

Hudson, Hugh

375

Scheme for Low Energy Beam Transport with a non-neutralized section  

E-Print Network [OSTI]

A typical Low Energy Beam Transport (LEBT) design relies on dynamics with nearly complete beam space charge neutralization over the entire length of the LEBT. This paper argues that, for a beam with modest perveance and uniform current density distribution when generated at the source, a downstream portion of the LEBT can be un-neutralized without significant emittance growth.

Shemyakin, A

2015-01-01T23:59:59.000Z

376

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

377

Direct Conversion of Biomass into Transportation Fuels - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac Charge

378

New Mexico Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to: navigation, searchOhio:MO) JumpPermits Webpage JumpNew

379

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎ | DIA-Toolkit Jump<

380

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎ | DIA-Toolkit Jump<Key

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LEDSGP/Transportation Toolkit/Strategies/Shift | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid < LEDSGP‎Shift

382

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid << LEDSGP‎ |

383

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation KumasiTools < LEDSGP‎Avoid << LEDSGP‎

384

Hydrogen Energy Storage for Grid and Transportation Services Workshop |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose of thisDepartment of

385

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported provedReal2.1Total

386

Table E13. Transportation Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.1.3.

387

Table E6. Transportation Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.E6.

388

Special Topics on Energy Use in Household Transportation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0DecadeThousand3 0.3Home

389

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy FocusBenefit ToolInformation

390

Assumption to the Annual Energy Outlook 2014 - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and

391

SciTech Connect: Transportation Energy Futures Series: Projected Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidic Membraneless Fuel

392

Annual Energy Outlook 2015 Modeling updates in the Transportation sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan FebNaturalWorking Group1 st

393

International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry

394

Electric Drive Transportation Association Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQEnergyGovernment Officials.Electric Drive

395

United States Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to:UnionmetInformation EnergyUSState

396

Energy Transport Corridor Draft Environmental Impact Statement Available  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick on the graphic to learn more the USVI'sfor

397

Enhancing Transportation Energy Security through Advanced Combustion and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials | Department ofDepartmentAssessment

398

EIA - Household Transportation report: Household Vehicles Energy Use:  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. EIA4.ConsumptionLatest

399

Production Costs of Alternative Transportation Fuels | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPriorOpenis a town

400

Costs of Storing and Transporting Hydrogen | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergyDistrictAssistance RecipientsDepartmentCosts

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind Energy Jump to:Windenergie

402

Department of Energy Receives Highest Transportation Industry Safety Award  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopment ofNoPrepares for Hurricane| Department of

403

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy ResourcesNews Home > BlogsPurchasing(GREET) Model

404

Handbook of Emission Factors for Road Transport (HBEFA) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPower Finance Jump to:Information of Emission

405

NEMS Freight Transportation Module Improvement Study - Energy Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - EventsNEET Benefits

406

Cart or Horse: Transport and Economic Growth | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility |Carpentersville, Illinois:Board ofFacility |Cart or

407

Sandia National Laboratories: Sandia Transportation-Energy Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US Patent ClimateECEnergyComputational

408

NREL: Transportation Research - Energy Department Announces New Tools for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternativeVehicleHydrogen Fueling

409

Anion Exchange Membranes - Transport/Conductivity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,AnAnTubaAnalysisAndy Oare About Us

410

Hawaii Department of Transportation Harbors Divsion | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division | Open EnergyDivision

411

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network [OSTI]

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

Farrell, Brian F.

412

Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions (Transportation Energy Futures Series)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYearEffect0/2002catalysts:|Effects of Travel

413

Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OF CHRONIC COPPERBaO/Al2O3 lean NOxDEMAND

414

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

415

A probability current analysis of energy transport in open quantum systems  

E-Print Network [OSTI]

We introduce a probability current analysis of excitation energy transfer between states of an open quantum system. Expressing the energy transfer through currents of excitation probability between the states in a site representation enables us to gain key insights into the energy transfer dynamics. It allows to, i) identify the pathways of energy transport in large networks of sites and to quantify their relative weights, ii) quantify the respective contributions of unitary dynamics, dephasing, and relaxation/dissipation processes to the energy transfer, and iii) quantify the contribution of coherence to the energy transfer. Our analysis is general and can be applied to a broad range of open quantum system descriptions (with coupling to non-Markovian environments) in a straightforward manner.

Jan J. J. Roden; K. Birgitta Whaley

2015-01-24T23:59:59.000Z

416

Recent Progress in the Research on Ion and Electron Transport in Gases at Swarm Energies  

SciTech Connect (OSTI)

This paper deals with the presentation and discussion of recent research on the transport of electrons and ions in gases at low energies. Particular emphasis is placed on electron swarm experiments related with the negative differential conductivity of electrons in some gas mixtures, and with secondary ionisation processes due to the impact of metastables with neutrals (Penning ionisation). Ion transport is firstly addressed through some recent measurements on atomic and molecular systems for which both theory and experiment have reached a high degree of agreement, and also on those in which the ranges of the density-normalized electric field intensity E/N have been increased substantiality. Also, the recent advances on the application of transport theories dealing with inelastic collisions are presented, as well as some recent measurements of negative ions and charged clusters in gaseous mixtures, leading to the successful test of Blanc's law at low fields, to the experimental mobilities.

Urquijo, Jaime de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251, Cuernavaca, Mor. (Mexico)

2004-12-01T23:59:59.000Z

417

Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site  

SciTech Connect (OSTI)

Beginning in the 1940`s, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments.

Smith, R.J.

1995-02-01T23:59:59.000Z

418

US Department of Energy, Westinghouse Hanford Company ARECO cesium transportation plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is committed to the safe, efficient, and cost-effective transportation of all materials that support its various programs and activities. DOE strives to ensure that hazardous materials (particularly radioactive),hazardous substances, and hazardous mixed waste are handled and transported in compliance with all applicable federal, state,tribal, and local rules and regulations. This plan outlines the activities and responsibilities of DOE and other agencies that will be followed to conclude a significant movement of radioactive cesium (Cs) chloride capsules in a safe and uneventful manner. DOE-Headquarters (DOE-HQ) has directed that Cs capsules manufactured at the Waste Encapsulation and Storage Facility (WESF) be returned to WESF, located at DOE`s Hanford Site in southeast Washington State. Currently, there are 25 Cs capsules at the Applied Radiant Energy Corporation (ARECO)facility utilized for the polymerization of wood products in Lynchburg, Virginia, that requires removal as part of the overall Cs capsule return effort. This plan has been prepared in cooperation with member states of the Western Governors` Association (WGA) and the Southern States Energy Board (SSEB);the Council of State Governments Midwestern Office; and the Confederated Tribes of the Umatilla Indian Reservations, through whose jurisdictions these shipments will pass, and is an example of DOE-HQ`s commitment to early coordination and substantive involvement in its decision-making processes. This transportation plan identifies responsibilities, requirements,and procedures to ensure the success of the capsule return program. The plan summarizes transportation activities,organizational responsibilities, emergency preparedness guidelines, and other methods for achieving safe transport.

Clements, E.P., Westinghouse Hanford

1996-07-15T23:59:59.000Z

419

Folk Quantification of Transportation Energy: An initial investigation of perceptions of automobile energy use  

E-Print Network [OSTI]

Engineers Part D-Journal of Automobile Engineering 219(D6):of perceptions of automobile energy use Julia Silvis Wayneof perceptions of automobile energy use Julia Silvis

Silvis, Julia; Leighty, Wayne; Karner, Alex

2007-01-01T23:59:59.000Z

420

Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven pH Decrease  

E-Print Network [OSTI]

Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven p. (2013) Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven p

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions  

SciTech Connect (OSTI)

The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigacin en Fsica, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland)] [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autnoma de Sinaloa, Culiacan (Mexico)] [Facultad de Ciencias Fisico-Matematicas, Universidad Autnoma de Sinaloa, Culiacan (Mexico); Midttun, ystein [CERN, Geneva (Switzerland) [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

2014-02-15T23:59:59.000Z

422

Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector  

E-Print Network [OSTI]

. Energy densities of different energy storage systems. The num- bers are based on higher heats produce their energy mainly in the form of electricity. This means that if we want to decouple trans- port from the use of fossil fuels, we must find ways to use electric energy in vehicles. Electric trains

423

Event simulations in a transport model for intermediate energy heavy ion collisions: Applications to multiplicity distributions  

E-Print Network [OSTI]

We perform transport model calculations for central collisions of mass 120 on mass 120 at laboratory beam energy in the range 20 MeV/nucleon to 200 MeV/nucleon. A simplified yet accurate method allows calculation of fluctuations in systems much larger than what was considered feasible in a well-known and already existing model. The calculations produce clusters. The distribution of clusters is remarkably similar to that obtained in equilibrium statistical model.

Mallik, S; Chaudhuri, G

2015-01-01T23:59:59.000Z

424

Event simulations in a transport model for intermediate energy heavy ion collisions: Applications to multiplicity distributions  

E-Print Network [OSTI]

We perform transport model calculations for central collisions of mass 120 on mass 120 at laboratory beam energy in the range 20 MeV/nucleon to 200 MeV/nucleon. A simplified yet accurate method allows calculation of fluctuations in systems much larger than what was considered feasible in a well-known and already existing model. The calculations produce clusters. The distribution of clusters is remarkably similar to that obtained in equilibrium statistical model.

S. Mallik; S. Das Gupta; G. Chaudhuri

2015-03-19T23:59:59.000Z

425

2005 Tour de Sol: The Sustainable Energy and Transportation Festival and Competition  

SciTech Connect (OSTI)

This report gives a summary of the 2005Tour de Sol: The Sustainable Energy and Transportation Festival and Competition. It lists our objectives, what we did, and an analysis of how we met our objectives. An 80-page report with a list of verified print, radio and TV media coverage, and copies of selected news clips and web media coverage is available at the NESEA office for review.

Nancy Hazard

2005-05-07T23:59:59.000Z

426

Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions  

E-Print Network [OSTI]

The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

2013-01-01T23:59:59.000Z

427

Transport growth in Bangkok: Energy, environment, and traffic congestion. Workshop proceedings  

SciTech Connect (OSTI)

Bangkok, the capital of Thailand, is a physically and economically complexcity with a complicated transport system. With daily traffic congestion averaging 16 hours, the air quality is such that to breathe street level pollution for 8 eight hours is roughly equivalent to smoking nine cigarettes per day. Estimates suggest idling traffic costs up to $1.6 billion annually. Energy use within the transport sector is on a steady rise with an estimated increase in 11 years of two and one half times. Severe health impacts have begun to effect many residents - young children and the elderly being particularly vulnerable. Bangkok`s air quality and congestion problems are far from hopeless. Great potential exists for Bangkok to remedy its transport-related problems. The city has many necessary characteristics that allow an efficient, economical system of transport. For example, its high density level makes the city a prime candidate for an efficient system of mass transit and the multitude and close proximity of shops, street vendors, restaurants, and residential areas is highly conducive to walking and cycling. Technical knowledge and capacity to devise and implement innovative policies and projects to address air quality and congestion problems is plentiful. There is also consensus among Bangkokians that something needs to be done immediately to clear the air and the roads. However, little has been done. This report proposes a new approach to transport planning for Bangkok that integrates consideration of ecological, social, and financial viability in the process of making decisions regarding managing existing infrastructure and investments in new infrastructure. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Philpott, J. [Asia Regional Office, Bangkok (Thailand)

1995-07-01T23:59:59.000Z

428

Initialization of hydrodynamics in relativistic heavy ion collisions with an energy-momentum transport model  

E-Print Network [OSTI]

A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the pre-thermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.

V. Yu. Naboka; S. V. Akkelin; Iu. A. Karpenko; Yu. M. Sinyukov

2015-01-14T23:59:59.000Z

429

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

430

Folk Quantification of Transportation Energy: An initial investigation of perceptions of automobile energy use  

E-Print Network [OSTI]

carbon dioxide emissions, kilometers per tank, and efforts to distinguish between fossil and non-fossil energy.

Silvis, Julia; Leighty, Wayne; Karner, Alex

2007-01-01T23:59:59.000Z

431

Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned  

SciTech Connect (OSTI)

Over the last 30 years, the U.S. Department of Energy (DOE) has successfully and safely transported shipments of spent nuclear fuel over America's highways and railroads. During that time, an exemplary safety record has been established with no identifiable fatalities, injuries, or environmental damage caused by the radioactive nature of the shipments. This paper evaluates some rail and truck shipping campaigns, planning processes, and selected transportation plans to identify lessons learned in terms of planning and programmatic activities. The intent of this evaluation is to document best practices from current processes and previous plans for DOE programs preparing or considering future plans. DOE's National Transportation Program (NTP) reviewed 13 plans, beginning with core debris shipments from Three Mile Island to current, ongoing fuel campaigns. This paper describes lessons learned in the areas of: emergency planning, planning information, security, shipment prenotification, emergency notification/response, terrorism/sabotage risk, and recovery and cleanup, as well as routing, security, carrier/driver requirements, transportation operational contingencies, tracking, inspections and safe parking.

Holm, Judith A.; Thrower, Alex W.; Antizzo, Karen

2003-02-27T23:59:59.000Z

432

Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security  

E-Print Network [OSTI]

on transportation sector's energy security Mohd Nor Azman Hassan a,n , Paulina Jaramillo a , W. Michael Griffin a sector accounts for 41% of the country's total energy use. The country is expected to become a net oil% of total energy consumption. This is expected to increase to about 1100 PJ in 2015 extrapolat- ing

Jaramillo, Paulina

433

Energy relaxation during hot-exciton transport in quantum wells: Direct observation by spatially resolved phonon-sideband spectroscopy  

E-Print Network [OSTI]

We investigate the energy relaxation of excitons during the real-space transport in ZnSe quantum wells by using microphotoluminescence with spatial resolution enhanced by a solid immersion lens. The spatial evolution of ...

Zhao, Hui; Moehl, Sebastian; Kalt, Heinz

2002-10-01T23:59:59.000Z

434

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

435

Simulation of household in-home and transportation energy use : an integrated behavioral model for estimating energy consumption at the neighborhood scale  

E-Print Network [OSTI]

Household in-home activities and out-of-home transportation are two major sources of urban energy consumption. In light of China's rapid urbanization and income growth, changing lifestyles and consumer patterns - evident ...

Yu, Feifei, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

436

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

437

Modeling the Energy Use of a Connected and Automated Transportation System (Poster)  

SciTech Connect (OSTI)

Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing traffic flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.

Gonder, J.; Brown, A.

2014-07-01T23:59:59.000Z

438

Washington State Department of Transportation energy efficiency guidelines for small buildings  

SciTech Connect (OSTI)

This document provides energy efficiency guidelines for the construction and remodel of small buildings owned by the Washington State Department of Transportation (DOT). For the purpose of these guidelines {open_quotes}small buildings{close_quotes} are defined as those under 25,000 square feet. However, many of the guidelines can also be used for larger buildings. DOT is responsible for 641 buildings totaling 2.2 million square feet and consuming approximately $1,087,500 dollars in energy costs each year. Building types covered by these guidelines are small offices, shop buildings, and heated and unheated storage. These building types can be expected to vary greatly in both the distribution and magnitude of energy use.

NONE

1995-03-01T23:59:59.000Z

439

Reduction in tribological energy losses in the transportation and electric utilities sectors  

SciTech Connect (OSTI)

This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

1985-09-01T23:59:59.000Z

440

A generalized framework for in-line energy deposition during steady-state Monte Carlo radiation transport  

SciTech Connect (OSTI)

A rigorous treatment of energy deposition in a Monte Carlo transport calculation, including coupled transport of all secondary and tertiary radiations, increases the computational cost of a simulation dramatically, making fully-coupled heating impractical for many large calculations, such as 3-D analysis of nuclear reactor cores. However, in some cases, the added benefit from a full-fidelity energy-deposition treatment is negligible, especially considering the increased simulation run time. In this paper we present a generalized framework for the in-line calculation of energy deposition during steady-state Monte Carlo transport simulations. This framework gives users the ability to select among several energy-deposition approximations with varying levels of fidelity. The paper describes the computational framework, along with derivations of four energy-deposition treatments. Each treatment uses a unique set of self-consistent approximations, which ensure that energy balance is preserved over the entire problem. By providing several energy-deposition treatments, each with different approximations for neglecting the energy transport of certain secondary radiations, the proposed framework provides users the flexibility to choose between accuracy and computational efficiency. Numerical results are presented, comparing heating results among the four energy-deposition treatments for a simple reactor/compound shielding problem. The results illustrate the limitations and computational expense of each of the four energy-deposition treatments. (authors)

Griesheimer, D. P. [Bertis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122 (United States); Stedry, M. H. [Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network [OSTI]

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between el...

Fletcher, L

2007-01-01T23:59:59.000Z

442

Transportation risk assessment for the US Department of Energy Environmental Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

In its Programmatic Environmental Impact Statement (PEIS), the Office of Environmental Management (EM) of the US Department of Energy (DOE) is considering a broad range of alternatives for the future management of radioactive and hazardous waste at the facilities of the DOE complex. The alternatives involve facilities to be used for treatment, storage, and disposal of various wastes generated from DOE`s environmental restoration activities and waste management operation. Included in the evaluation are six types of waste (five types of radioactive waste plus hazardous waste), 49 sites, and numerous cases associated with each different alternative for waste management. In general, the alternatives are evaluated independently for each type of waste and reflect decentralized, regionalized, and centralized approaches. Transportation of waste materials is an integral component of the EM PEIS alternatives for waste management. The estimated impact on human health that is associated with various waste transportation activities is an important element leading to a complete appraisal of the alternatives. The transportation risk assessment performed for the EM PEIS is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful and consistent.

Chen, S.Y.; Monette, F.A.; Biwer, B.M.; Lazaro, M.A.; Hartmann, H.M.; Policastro, A.J.

1994-08-01T23:59:59.000Z

443

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

SciTech Connect (OSTI)

As described in the Department of Energy Office of Nuclear Energys Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, Produce hydrogen for industrial processes and transportation fuels, and Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nations energy security through more effective utilization of our countrys resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

444

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

SciTech Connect (OSTI)

Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

Zhou, Nan; McNeil, Michael A.

2009-05-01T23:59:59.000Z

445

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Sustainable Transportation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasofOfficeKathleen Hogan,

446

Transport model analysis of the transverse momentum and rapidity dependence of pion interferometry at SPS energies  

E-Print Network [OSTI]

Based on the UrQMD transport model, the transverse momentum and the rapidity dependence of the Hanbury-Brown-Twiss (HBT) radii $R_L$, $R_O$, $R_S$ as well as the cross term $R_{OL}$ at SPS energies are investigated and compared with the experimental NA49 and CERES data. The rapidity dependence of the $R_L$, $R_O$, $R_S$ is weak while the $R_{OL}$ is significantly increased at large rapidities and small transverse momenta. The HBT "life-time" issue (the phenomenon that the calculated $\\sqrt{R_O^{2}-R_S^{2}}$ value is larger than the correspondingly extracted experimental data) is also present at SPS energies.

Qingfeng Li; Marcus Bleicher; Xianglei Zhu; Horst Stoecker

2006-12-07T23:59:59.000Z

447

Holographic perfect fluidity, Cotton energy-momentum duality and transport properties  

E-Print Network [OSTI]

We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton--York tensor takes the form of the energy--momentum tensor of a perfect fluid, i.e. they are of Petrov type D_t. Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy--momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality.

Ayan Mukhopadhyay; Anastasios C. Petkou; P. Marios Petropoulos; Valentina Pozzoli; Konstadinos Siampos

2014-04-18T23:59:59.000Z

448

Holographic perfect fluidity, Cotton energy-momentum duality and transport properties  

E-Print Network [OSTI]

We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton tensor takes the form of the energy-momentum tensor of a perfect fluid. Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality.

Mukhopadhyay, Ayan; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos

2013-01-01T23:59:59.000Z

449

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect (OSTI)

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

450

Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric  

Broader source: Energy.gov [DOE]

Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

451

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

GDP per capita Transport Future outlook Drivers of Transport Energyenergy demand per passenger-km. Figure 20. Car Ownership and GDP

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

452

Verification of high-energy transport codes on the basis of activation data  

E-Print Network [OSTI]

Nuclide production cross sections measured at ITEP for the targets of nat-Cr, 56-Fe, nat-Ni, 93-Nb, 181-Ta, nat-W, nat-Pb, 209-Bi irradiated by protons with energies from 40 to 2600 MeV were used to estimate the predictive accuracy of several popular high-energy transport codes. A general agreement of the ITEP data with the data obtained by other groups, including the numerous GSI data measured by the inverse kinematics method was found. Simulations of the measured data were performed with the MCNPX (Bertini and ISABEL options), CEM03.02, INCL4.2+ABLA, INCL4.5+ABLA07, PHITS, and CASCADE.07 codes. Deviation factors between the calculated and experimental cross sections have been estimated for each target and for the whole energy range covered by our measurements. Two-dimensional diagrams of deviation factor values were produced for estimating the predictive power of every code for intermediate, not measured masses of nuclei-targets and bombarding energies of protons. Further improvements of all tested here codes are recommended. In addition, new measurements at ITEP of nuclide yields from a 208-Pb target irradiated by 500 MeV protons are presented. A good agreement between these new data and the GSI measurements obtained by the inverse kinematics method was found

Yu. E. Titarenko; V. F. Batyaev; M. A. Butko; D. V. Dikarev; S. N. Florya; K. V. Pavlov; A. Yu. Titarenko; R. S. Tikhonov; V. M. Zhivun; A. V. Ignatyuk; S. G. Mashnik; A. Boudard; S. Leray; J. -C. David; J. Cugnon; D. Mancusi; Y. Yariv; H. Kumawat; K. Nishihara; N. Matsuda; G. Mank; W. Gudowski

2011-06-02T23:59:59.000Z

453

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMANDCOMMERCIAL

454

Alternative Fuels Used in Transportation: Science Projects in Renewable Energy and Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s) All27,AlternativeFuelsFuels

455

Energy transport, overshoot, and mixing in the atmospheres of very cool stars  

E-Print Network [OSTI]

We constructed hydrodynamical model atmospheres for mid M-type main-, as well as pre-main-sequence objects. Despite the complex chemistry encountered in such cool atmospheres a reasonably accurate representation of the radiative transfer is possible. The detailed treatment of the interplay between radiation and convection in the hydrodynamical models allows to study processes usually not accessible within the framework conventional model atmospheres. In particular, we determined the efficiency of the convective energy transport, and the efficiency of mixing by convective overshoot. The convective transport efficiency expressed in terms of an equivalent mixing-length parameter amounts to values around ~2 in the optically thick, and ~2.8 in the optically thin regime. The thermal structure of the formally convectively stable layers is little affected by convective overshoot and wave heating, i.e. stays close to radiative equilibrium. Mixing by convective overshoot shows an exponential decline with geometrical distance from the Schwarzschild stability boundary. The scale height of the decline varies with gravitational acceleration roughly as g^(-1/2), with 0.5 pressure scale heights at log(g)=5.0.

H. -G. Ludwig

2002-08-30T23:59:59.000Z

456

A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics  

E-Print Network [OSTI]

We present the new code ALCAR developed to model multidimensional, multi energy-group neutrino transport in the context of supernovae and neutron-star mergers. The algorithm solves the evolution equations of the 0th- and 1st-order angular moments of the specific intensity, supplemented by an algebraic relation for the 2nd-moment tensor to close the system. The scheme takes into account frame-dependent effects of order O(v/c) as well as the most important types of neutrino interactions. The transport scheme is significantly more efficient than a multidimensional solver of the Boltzmann equation, while it is more accurate and consistent than the flux-limited diffusion method. The finite-volume discretization of the essentially hyperbolic system of moment equations employs methods well-known from hydrodynamics. For the time integration of the potentially stiff moment equations we employ a scheme in which only the local source terms are treated implicitly, while the advection terms are kept explicit, thereby allo...

Just, Oliver; Janka, H -Thomas

2015-01-01T23:59:59.000Z

457

Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks  

SciTech Connect (OSTI)

We present details of a new bismuth germanate [Bi{sub 4}Ge{sub 3}O{sub 12} (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

James, A. N.; Hollmann, E. M.; Tynan, G. R. [UC San Diego Center for Energy Research, La Jolla, California 92093-0417 (United States)

2010-10-15T23:59:59.000Z

458

Modulator considerations for beam chopping in the low energy beam transport at the SSC Laboratory  

SciTech Connect (OSTI)

Beam chopping in the low energy transport line at the Superconducting Super Collider Laboratory is accomplished using an electrostatic deflection system. LINAC requirements dictate the design of two modulators operating at 10 Hz with rise and fall times (as measured from approximately 10--99%) of {approximately}100 ns. Design of the first pulser, normally at 10 kV and pulsed to ground potential, utilizes a transformer-coupled diode-clamped solid state circuit to achieve the 2--35 {mu}s pulse width range required. The second pulser, which pulses from ground to approximately 7 kV, relies on a series vacuum tube circuit. The current designs, as well as recent test results and other circuit topologies considered, will be presented. 6 refs.

Anderson, D.; Pappas, G.

1991-06-01T23:59:59.000Z

459

Fuel cells for future transportation: The Department of Energy OTT/OUT partnership  

SciTech Connect (OSTI)

The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

1997-12-31T23:59:59.000Z

460

Multi-Path Transportation Futures Study - Lessons for the Transportati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study Multi-Path Transportation Futures Study - Lessons for the Transportation Energy...

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ELM PARTICLE AND ENERGY TRANSPORT IN THE SOL AND DIVERTOR OF DIII-D  

SciTech Connect (OSTI)

A271 ELM PARTICLE AND ENERGY TRANSPORT IN THE SOL AND DIVERTOR OF DIII-D. Results from a series of dedicated experiments measuring the effect of particle and energy pulses from Type-I Edge Localized Modes (ELMs) in the DIII-D scrape-off layer (SOL) and divertor are compared with a simple model of ELM propagation in the boundary plasma. The simple model asserts that the propagation of ELM particle and energy perturbations is dominated by ion parallel convection along SOL fields lines and the recovery from the ELM perturbation is determined by recycling physics. Time scales associated with the initial changes of boundary plasma parameters are expected to be on the order of the ion transit time from the outer midplane, where the ELM instability is initiated, to the divertor targets. To test the model, the ion convection velocity is changed in the experiment by varying the plasma density. At moderate to high density, n{sub e}/n{sub Gr} = 0.5-0.8, the delays in the response of the boundary plasma to the midplane ELM pulses, the density dependence of those delays and other observations are consistent with the model. However, at the lowest densities, n{sub e}/n{sub Gr} {approx} 0.35, small delays between the response sin the two divertors, and changes in the response of the pedestal thermal energy to ELM events, indicate that additional factors including electron conduction in the SOL, the pre-ELM condition of the divertor plasma, and the ratio of ELM instability duration to SOL transit time, may be playing a role. The results show that understanding the response of the SOL and divertor plasmas to ELMs, for various pre-ELM conditions, is just as important to predicting the effect of ELM pulses on the target surfaces of future devices as is predicting the characteristics of the ELM perturbation of the core plasma.

FENSTERMACHER,ME; LEONARD,AW; SNYDER,PB; BOEDO,JA; COLCHIN,RJ; GROEBNER,RJ; GRAY,DS; GROTH,M; HOLLMANN,E; LASNIER,CJ; OSBORNE,TH; PETRIE,TW; RUDAKOV,DL; TAKAHASHI,H; WATKINS,JG; ZENG,L

2003-04-01T23:59:59.000Z

462

The Transportation Energy and Carbon Footprints of the 100 Largest U.S. Metropolitan Areas  

SciTech Connect (OSTI)

We present estimates of the automobile and truck travel based energy and carbon footprints of the largest 100 U.S. metropolitan areas. The footprints are based on the estimated vehicle miles traveled and the transportation fuels consumed. Results are presented on an annual basis and represent end use emissions only. Total carbon emissions, emissions per capita, and emissions per dollar of gross metropolitan product are reported. Two years of annual data were examined, 2000 and 2005, with most of the in-depth analysis focused on the 2005 results. In section 2 we provide background data on the national picture and derive some carbon and energy consumption figures for the nation as a whole. In section 3 of the paper we examine the metropolitan area-wide results based on the sums and averages across all 100 metro areas, and compare these with the national totals and averages. In section 4 we present metropolitan area specific footprints and examine the considerable variation that is found to exist across individual metro areas. In doing so we pay particular attention to the effects that urban form might have on these differences. Finally, section 5 provides a summary of major findings, and a list of caveats that need to be borne in mind when using the results due to known limitations in the data sources used.

Southworth, Frank [ORNL; Sonnenberg, Anthon [Georgia Institute of Technology; Brown, Marilyn A [ORNL

2008-01-01T23:59:59.000Z

463

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

SciTech Connect (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

464

Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round  

E-Print Network [OSTI]

Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round Jennifer Baka a , David Roland-Holst b,? a Yale School of Forestry and Environmental Studies agricultural production constant, we find that the EU has the potential to reduce oil imports between 6% and 28

Kammen, Daniel M.

465

Notice of Intent to Revise Department of Energy Order 460.1C, Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this memorandum is to provide justification for the proposed revision of Department of Energy (DOE} Order (O} 460.lC, Packaging and Transportation Safety as part of the quadrennial review and recertification required by DOE O 251.lC, Departmental Directives Program.

2015-01-15T23:59:59.000Z

466

When it comes to transporting energy, nature has two vital tools at its disposal: conduction by heat and by  

E-Print Network [OSTI]

When it comes to transporting energy, nature has two vital tools at its disposal: conduction by heat and by electricity. But these two phenomena have never been treated equally by scientists that have transformed many aspects of our lives. But similar devices that allow the flow of heat

Li, Baowen

467

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping.  

E-Print Network [OSTI]

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans m). So we can toss this out. Now estimate the energy content of gasoline: Many of you tried figuring

Nimmo, Francis

468

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

by end users while primary energy consumption includes finalelectricity. When primary energy consumption in the end use37%) in terms of primary energy consumption. However, energy

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

469

Recent Performance of the SNS H- ion source and low-energy beam transport system  

SciTech Connect (OSTI)

Recent measurements of the H beam current show that SNS is injecting about 55 mA into the RFQ compared to 45 mA in 2010. Since 2010, the H beam exiting the RFQ dropped from 40 mA to 34 mA, which is sufficient for 1 MW of beam power. To minimize the impact of the RFQ degradation, the service cycle of the best performing source was extended to 6 weeks. The only degradation is fluctuations in the electron dump voltage towards the end of some service cycles, a problem that is being investigated. Very recently, the RFQ was retuned, which partly restored its transmission. In addition, the electrostatic low-energy beam transport system was reengineered to double its heat sinking and equipped with a thermocouple that monitors the temperature of the ground electrode between the two Einzel lenses. The recorded data show that emissions from the source at high voltage dominate the heat load. Emissions from the partly Cs-covered first lens cause the temperature to peak several hours after starting up. On rare occasions, the temperature can also peak due to corona discharges between the center ground electrode and one of the lenses.

Stockli, Martin P [ORNL] [ORNL; Ewald, Kerry D [ORNL] [ORNL; Han, Baoxi [ORNL] [ORNL; Murray Jr, S N [ORNL] [ORNL; Pennisi, Terry R [ORNL] [ORNL; Piller, Chip [ORNL] [ORNL; Santana, Manuel [ORNL] [ORNL; Tang, Johnny Y [ORNL] [ORNL; Welton, Robert F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

470

Improved design of proton source and low energy beam transport line for European Spallation Source  

SciTech Connect (OSTI)

The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)] [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dellInformazione, delle Infrastrutture e dellEnergia Sostenibile, Universit Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden)] [European Spallation Source ESS AB, Lund (Sweden); Galat, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro (Italy)] [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universit degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

2014-02-15T23:59:59.000Z

471

Isospin transport in 84Kr+112,124Sn reactions at Fermi energies  

E-Print Network [OSTI]

Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the /Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on a n-poor 112Sn and a n-rich 124Sn targets is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z about 20 for ions punching through the first detector layer) built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The /Z of the decay products emitted when the n-rich target is used is always higher than that associated to the n-poor one. Since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the /Z as a function of the lab velocity of the fragment increases when we move from the QuasiProjectile velocity to the centre of mass (neck zone). This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density) and the more diluted neck zone.

S. Piantelli; G. Casini; A. Olmi; S. Barlini; M. Bini; S. Carboni; P. R. Maurenzig; G. Pasquali; G. Poggi; A. A. Stefanini; R. Bougault; N. LeNeindre; O. Lopez; M. Parlog; E. Vient; E. Bonnet; A. Chbihi; J. D. Frankland; D. Gruyer; E. Rosato; G. Spadaccini; M. Vigilante; B. Borderie; M. F. Rivet; M. Bruno; L. Morelli; M. Cinausero; M. Degerlier; F. Gramegna; T. Marchi; R. Alba; C. Maiolino; D. Santonocito; T. Kozik; T. Twarog

2013-09-06T23:59:59.000Z

472

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect (OSTI)

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

473

Mexico's Energy Reform and the Potential Impact on Texas' Transportation System  

E-Print Network [OSTI]

preparation ­ Heavy bulldozers and dump trucks to build road to serve pad site · Move rotary rig to pad site;Transportation and Well Development · Five-step well development process: ­ Site preparation ­ Rigging up ­ Drilling ­ Hydraulic fracturing ­ Rigging down #12;Transportation and Well Development · Initial site

474

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

475

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

a direct impact on rural energy consumption. Residential16 Figure 11. 2020 Rural and Urban Energy Consumptionareas. Figure 11. 2020 Rural and Urban Energy Consumption

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

476

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network [OSTI]

2. Define reliability in hydrogen energy systems 3.metrics to value reliability in hydrogen energy systems 4.Specify hydrogen energy systems to evaluate 5. Develop

McCarthy, Ryan

2004-01-01T23:59:59.000Z

477

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 709BProspects for building a hydrogen energy infrastructure,[1999. U.S. Department of Energy, Hydrogen, fuel cells and

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

478

Inland-transport modes for coal and coal-derived energy: an evaluation method for comparing environmental impacts  

SciTech Connect (OSTI)

This report presents a method for evaluating relative environmental impacts of coal transportation modes (e.g., unit trains, trucks). Impacts of each mode are evaluated (rated) for a number of categories of environmental effects (e.g., air pollution, water pollution). The overall environmental impact of each mode is determined for the coal origin (mine-mouth area), the coal or coal-energy product destination (demand point), and the line-haul route. These origin, destination, and en route impact rankings are then combined into a systemwide ranking. Thus the method accounts for the many combinations of transport modes, routes, and energy products that can satisfy a user's energy demand from a particular coal source. Impact ratings and system rankings are not highly detailed (narrowly defined). Instead, environmental impacts are given low, medium, and high ratings that are developed using environmental effects data compiled in a recent Argonne National Laboratory report entitled Data for Intermodal Comparison of Environmental Impacts of Inland Transportation Alternatives for Coal Energy (ANL/EES-TM-206). The ratings and rankings developed for this report are generic. Using the method presented, policy makers can apply these generic data and the analytical framework given to particular cases by adding their own site specific data and making some informed judgements. Separate tables of generic ratings and rankings are developed for transportation systems serving coal power plants, coal liquefaction plants, and coal gasification plants. The final chapter presents an hypothetical example of a site-specific application and adjustment of generic evaluations. 44 references, 2 figures, 14 tables.

Bertram, K.M.

1983-06-01T23:59:59.000Z

479

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

480

The impact of energy conservation in transport models on the $\\pi^-/\\pi^+$ multiplicity ratio in heavy-ion collisions and the symmetry energy  

E-Print Network [OSTI]

The charged pion multiplicity ratio in intermediate energy central heavy-ion collisions has been proposed as a suitable observable to constrain the high density dependence of the isovector part of the equation of state, with contradicting results. Using an upgraded version of the T\\"ubingen QMD transport model, which allows the conservation of energy at a local or global level by accounting for the potential energy of hadrons in two-body collisions and leading thus to particle production threshold shifts, we demonstrate that compatible constraints for the symmetry energy stiffness can be extracted from pion multiplicity and elliptic flow observables. Nevertheless, pion multiplicities are proven to be highly sensitive to the yet unknown isovector part of the in-medium $\\Delta$(1232) potential which hinders presently the extraction of meaningful information on the high density dependence of the symmetry energy. A solution to this problem together with the inclusion of contributions presently neglected, such as ...

Cozma, M D

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "diegel transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571  

SciTech Connect (OSTI)

The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

2012-07-01T23:59:59.000Z

482

Sustainable Transportation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

Not Available

2012-09-01T23:59:59.000Z

483

What is greener than a VMT tax? The case for an indexed energy user fee to finance us surface transportation  

SciTech Connect (OSTI)

Highway finance in the United States is perceived by many to be in a state of crisis, primarily due to the erosion of motor fuel tax revenues due to inflation, fuel economy improvement, increased use of alternative sources of energy and diversion of revenues to other purposes. Monitoring vehicle miles of travel (VMT) and charging highway users per mile has been proposed as a replacement for the motor fuel tax. A VMT user fee, however, does not encourage energy efficiency in vehicle design, purchase and operation, as would a user fee levied on all forms of commercial energy used for transportation and indexed to the average efficiency of vehicles on the road and to inflation. An indexed roadway user toll on energy (IRoUTE) would induce two to four times as much reduction in greenhouse gas (GHG) emissions and petroleum use as a pure VMT user fee. However, it is not a substitute for pricing GHG emissions and would make only a small but useful contribution to reducing petroleum dependence. An indexed energy user fee cannot adequately address the problems of traffic congestion and heavy vehicle cost responsibility. It could, however, be a key component of a comprehensive system of financing surface transportation that would eventually also include time and place specific monitoring of VMT for congestion pricing, externality charges and heavy vehicle user fees.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

484

Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports  

E-Print Network [OSTI]

The degree to which total meridional heat transport is sensitive to the details of its atmospheric and oceanic components is explored. A coupled atmosphere, ocean, and sea ice model of an aquaplanet is employed to simulate ...

Marshall, John C.

485

Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT)  

SciTech Connect (OSTI)

Current methods of skeletal dose assessment in both medical physics (radionuclide therapy) and health physics (dose reconstruction and risk assessment) rely heavily on a single set of bone and marrow cavity chord-length distributions in which particle energy deposition is tracked within an infinite extent of trabecular spongiosa, with no allowance for particle escape to cortical bone. In the present study, we introduce a paired-image radiation transport (PIRT) model which provides a more realistic three-dimensional (3D) geometry for particle transport in the skeletal site at both microscopic and macroscopic levels of its histology. Ex vivo CT scans were acquired of the pelvis, cranial cap, and individual ribs excised from a 66-year male cadaver (BMI of 22.7 kg m{sup -2}). For the three skeletal sites, regions of trabecular spongiosa and cortical bone were identified and segmented. Physical sections of interior spongiosa were taken and subjected to microCT imaging. Voxels within the resulting microCT images were then segmented and labeled as regions of bone trabeculae, endosteum, active marrow, and inactive marrow through application of image processing algorithms. The PIRT methodology was then implemented within the EGSNRC radiation transport code whereby electrons of various initial energies are simultaneously tracked within both the ex vivo CT macroimage and the CT microimage of the skeletal site. At initial electron energies greater than 50-200 keV, a divergence in absorbed fractions to active marrow are noted between PIRT model simulations and those estimated under existing techniques of infinite spongiosa transport. Calculations of radionuclide S values under both methodologies imply that current chord-based models may overestimate the absorbed dose to active bone marrow in these skeletal sites by 0% to 27% for low-energy beta emitters ({sup 33}P, {sup 169}Er, and {sup 177}Lu), by {approx}4% to 49% for intermediate-energy beta emitters ({sup 153}Sm, {sup 186}Re, and {sup 89}Sr), and by {approx}14% to 76% for high-energy beta emitters ({sup 32}P, {sup 188}Re, and {sup 90}Y). The PIRT methodology allows for detailed modeling of the 3D macrostructure of individual marrow-containing bones within the skeleton thus permitting improved estimates of absorbed fractions and radionuclide S values for intermediate-to-high energy beta emitters.

Shah, Amish P.; Rajon, Didier A.; Patton, Phillip W.; Jokisch, Derek W.; Bolch, Wesley E. [Department of Biomedical Engineering and Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deparment of Neurosurgery, University of Florida, Gainesville, Florida 32611 (United States); Department of Health Physics, University of Nevada-Las Vegas, Las Vegas, Nevada (United States); Department of Physics and Astronomy, Francis Marion University, Florence, South Carolina 29501-0547 (United States); Department of Biomedical Engineering and Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2005-05-01T23:59:59.000Z

486

Energy transport corridors: the potential role of Federal lands in states identified by the Energy Policy Act of 2005, section 368(b).  

SciTech Connect (OSTI)

On August 8, 2005, the President signed the Energy Policy Act of 2005 (EPAct) into law. In Subtitle F of EPAct, Congress set forth various provisions that would change the way certain federal agencies (Agencies) coordinate to authorize the use of land for a variety of energy-related purposes. As part of Subtitle F of EPAct, Section 368 addresses the issue of energy transportation corridors on federal land for oil, gas, and hydrogen pipelines, as well as electricity transmission and distribution facilities. Because of the critical importance of improving the nation's electrical transmission grid, Congress recognized that electricity transmission issues should receive added attention when the Agencies address corridor location and analysis issues. In Section 368, Congress specifically directed the Agencies to consider the need for upgraded and new facilities to deliver electricity: In carrying out [Section 368], the Secretaries shall take into account the need for upgraded and new electricity transmission and distribution facilities to (1) improve reliability; (2) relieve congestion; and (3) enhance capability of the national grid to deliver electricity. Section 368 does not require the Agencies to consider or approve specific projects, applications for rights-of-way (ROWs), or other permits within designated energy corridors. Importantly, Section 368 does not direct, license, or otherwise permit any on-the-ground activity of any sort. If an applicant is interested in obtaining an authorization to develop a project within any corridor designated under Section 368, the applicant would have to apply for a ROW authorization and applicable permits. The Agencies would consider each application by applying appropriate project-specific reviews under requirements of laws and related regulations, including, but not limited to, the National Environmental Policy Act (NEPA), the Clean Water Act, the Clean Air Act, Section 7 of the Endangered Species Act (ESA), and Section 106 of the National Historic Preservation Act (NHPA). Under Section 368, Congress divided the United States into two groups of states: the 11 contiguous western states and the remaining states. Direction for energy transportation corridor analysis and selection in the 11 western states was addressed in Section 368(a) of EPAct, while direction for energy transportation corridor analysis and selection in all other states was addressed under Section 368(b) of EPAct. It was clearly the priority of Congress to conduct corridor location studies and designation first on federal lands in the western states. Under Section 368(a), the Agencies produced a programmatic environmental impact statement (EIS), Designation of Energy Corridors on Federal Land in the 11 Western States (DOE and DOI 2008), that was used in part as the basis for designating more than 6,000 mi (9,656 km) of energy transportation corridors on federal land in 11 western states. Under Section 368(a) of EPAct, Congress clearly stated the Agencies needed to (1) designate energy transportation corridors on federal land, (2) conduct the necessary environmental review of the designated corridors, and (3) incorporate the designated corridors into the appropriate land use plans. Congressional direction under Section 368(b) of EPAct differs from that provided under Section 368(a). Specifically, Section 368(b) requires the secretaries of the Agencies, in consultation with the Federal Energy Regulatory Commission (FERC), affected utility industries, and other interested persons, to jointly: (1) Identify corridors for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities on federal land in states other than the 11 western states identified under Section 368(a) of EPAct, and (2) Schedule prompt action to identify, designate, and incorporate the corridors into the applicable land use plans. While Section 368(a) clearly directs designation as a necessary first step for energy transportation corridors in the 11 western states, Section 368(b) directs the Agencies to first identify corridor

Krummel, J.; Hlohowskyj, I.; Kuiper, J.; Kolpa, R.; Moore, R.; May, J.; VanKuiken, J.C.; Kavicky, J.A.; McLamore, M.R.; Shamsuddin, S. (Decision and Information Sciences); ( EVS)

2011-09-01T23:59:59.000Z

487

Particle transport in low-energy ventilation systems. Part 1: theory of steady states  

E-Print Network [OSTI]

of the global population. According to the Energy Information Administration (http://www.eia.doe.gov/) the US of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US total energy budget. To reduce energy consumption various low-energy systems such as displacement

Bolster, Diogo

488

A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies  

E-Print Network [OSTI]

programs for industries, residential and commercial sectors. But now the largest share of the energyA new challenge for the energy efficiency evaluation community: energy savings and emissions de Nantes, France Abstract The energy efficiency evaluation community has a large experience about

Boyer, Edmond

489

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

BProspects for building a hydrogen energy infrastructure,[case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 7091999. U.S. Department of Energy, Hydrogen, fuel cells and

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

490

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

2001. [36] EIA, Annual energy outlook 2005 with projectionsAdministration, Annual energy outlook 2006 with projectionsMC NRC O&M SMR WTW Annual Energy Outlook coal gasification

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

491

Assessment of transportation risk for the U.S. Department of Energy Environmental Management programmatic environmental impact statement  

SciTech Connect (OSTI)

In its Programmatic Environmental Impact Statement (PEIS), the Office of Environmental Management (EM) of the U.S. Department of Energy (DOE) is considering a broad range of alternatives for the future management of radioactive and hazardous waste at the facilities of the DOE complex. The alternatives involve facilities to be used for treatment, storage, and disposal of various wastes generated from DOE environmental restoration activities and waste management operations. The evaluation includes five types of waste (four types of radioactive waste plus hazardous waste), 49 sites, and numerous cases associated with each alternative for waste management. In general, the alternatives are evaluated independently for each type of waste and reflect decentralized, regionalized, and centralized approaches. Transportation of waste materials is an integral component of the EM PEIS alternatives for waste management. The estimated impact on human health that is associated with various waste transportation activities is an important component of a complete appraisal of the alternatives. The transportation risk assessment performed for the EM PEIS is designed to ensure through uniform and judicious selection of models, data, and assumptions that relative comparisons of risk among the various alternatives are meaningful and consistent. Among other tasks, Argonne National Laboratory is providing technical assistance to the EM PEIS on transportation risk assessment. The objective is to perform a human health risk assessment for each type of waste relative to the EM PEIS alternatives for waste management. The transportation risk assessed is part of the overall impacts being analyzed for the EM PEIS to determine the safest, most environmentally and economically sound manner in which to satisfy requirements for waste management in the coming decades.

Chen, S.Y.; Monette, F.A.; Biwer, B.M.; Lazaro, M.A.; Hartmann, H.M.; Policastro, A.J.

1995-03-01T23:59:59.000Z

492

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

hybrid electric vehicle internal combustion engine light duty vehicles MARKet ALlocation energy system

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

493

Near-Field Nanopatterning and Associated Energy Transport Analysis with Thermoreflectance  

E-Print Network [OSTI]

. Also, with the laser nano-patterning experiments, thermal damage of NSOM probes is observed which can be attributed to the low transport efficiency (10-4 10-6) and associated heating of the metal cladding of NSOM probes. The heating of NSOM probes...

Soni, Alok

2013-05-31T23:59:59.000Z

494

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network [OSTI]

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

495

World Renewable Energy Congress 2011 Sweden Sustainable Transport (ST) 8-11 May 2011, Linkping, Sweden  

E-Print Network [OSTI]

, Sweden Effects of Biodiesel Fuel Use on Vehicle Emissions Larry G. Anderson1,* 1 University of Colorado of biodiesel blended fuels to slow their growth of fossil fuel use for transportation purposes. Before the use of biodiesel fuels increase, it is critical that we understand the effect of using biodiesel blends on vehicle

496

Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation  

E-Print Network [OSTI]

Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

Horvath, Arpad; Chester, Mikhail

2008-01-01T23:59:59.000Z

497

The Energy Efficiency Potential of Global Transport to 2050 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds Families The Energy

498

Ocean Heat Transport, Sea Ice, and Multiple Climate States: Insights from Energy Balance Models  

E-Print Network [OSTI]

Several extensions of energy balance models (EBMs) are explored in which (i) sea ice acts to insulate the

Rose, Brian Edward James

499

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

1995-09-27T23:59:59.000Z

500

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

1996-10-02T23:59:59.000Z