National Library of Energy BETA

Sample records for diegel transportation energy

  1. Transportation Stacy C. Davis Susan W. Diegel Robert G. Boundy

    E-Print Network [OSTI]

    Pennycook, Steve

    ;Transportation Energy Data Book Quick Facts Petroleum The U.S. produces 7.9 million barrels of petroleum per day TRANSPORTATION ENERGY DATA BOOK: EDITION 31 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory Robert G. Boundy Roltek, Inc. July 2012 Transportation Energy Data Book: Edition 31 can be found on line at: cta

  2. (Edition 27 of ORNL-5198) Center for Transportation Analysis

    E-Print Network [OSTI]

    Pennycook, Steve

    and Transportation Science Division TRANSPORTATION ENERGY DATA BOOK: EDITION 27 Stacy C. Davis Susan W. Diegel Oak Government or any agency thereof. #12;Spreadsheets of the tables in the Transportation Energy Data Book can be found on the web at: cta.ornl.gov/data Users of the Transportation Energy Data Book are encouraged

  3. (Edition 32 of ORNL-5198) Center for Transportation Analysis

    E-Print Network [OSTI]

    Pennycook, Steve

    Science Division TRANSPORTATION ENERGY DATA BOOK: EDITION 32 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory Robert G. Boundy Roltek, Inc. July 2013 Transportation Energy Data Book: Edition 32 can Government or any agency thereof. #12;Users of the Transportation Energy Data Book are encouraged to comment

  4. (Edition 22 of ORNL-5198) Center for Transportation Analysis

    E-Print Network [OSTI]

    & Technology Division TRANSPORTATION ENERGY DATA BOOK: EDITION 22 Stacy C. Davis Susan W. Diegel Oak Ridge Government or any agency thereof. #12;This and previous editions of the Transportation Energy Data Book can be found on the web at: www-cta.ornl.gov/data Users of the Transportation Energy Data Book are encouraged

  5. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS #12;SUSTAINABLE;6 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS #12;1 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

  6. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  7. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportation Energy Home Analysis Final

  8. Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  9. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE)

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  10. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data...

  11. Jenn Baka, Frank Ling, and Daniel Kammen UC Berkeley Towards Energy Independence in 2025

    E-Print Network [OSTI]

    Kammen, Daniel M.

    2005 Annual Energy Outlook, Table 11, Energy Information Agency. 2 Ibid. 3 Davis, S., Diegel, S, Algeria and Gabon. Sources: Oil use and import projections from 2005 EIA Annual Energy Outlook, Table 11Jenn Baka, Frank Ling, and Daniel Kammen UC Berkeley 1 Towards Energy Independence in 2025 Prepared

  12. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  13. Energy Intensity Indicators: Transportation Energy Consumption

    Broader source: Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  14. Essays on Urban Transportation and Transportation Energy Policy

    E-Print Network [OSTI]

    Kim, Chun Kon

    2008-01-01

    and Transportation Energy Policy Chun Kon Kim University of California,California Goyang, KOREA viii P???????????? ??? W?????? P????? The Impacts of Transportation EnergyCalifornia Transportation Center (UCTC) Regents’ Dissertation Fellowship University of California, Irvine California Energy

  15. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  17. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportation Energy Home

  18. TRANSPORTATION ENERGY RESEARCH PIER Transportation Research

    E-Print Network [OSTI]

    . The project also tested a Caterpillar C15 engine certified to 2007 U.S. Environmental Protection Agency.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration of a heavy-duty tractor-trailer modified to meet the SmartWayTM Equipment Standards for lower fuel

  19. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of energy sources and improved efficiency standards fit together into secure, robust, and sustainable solutions? Sandia's transportation energy analysis program is focused on...

  20. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  1. Transporting Information and Energy Simultaneously

    E-Print Network [OSTI]

    Goyal, Vivek K

    Transporting Information and Energy Simultaneously Lav R. Varshney Laboratory for Information--The fundamental tradeoff between the rates at which energy and reliable information can be transmitted over received energy. A capacity-energy function is defined and a coding theorem is given. The capacity-energy

  2. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

  3. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  4. Proposed Energy Transport Corridors: West-wide energy corridor...

    Office of Environmental Management (EM)

    Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor...

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  6. Anomalous energy transport across topological insulator superconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous energy transport across topological insulator superconductor junctions Citation Details In-Document Search Title: Anomalous energy transport across topological insulator...

  7. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  8. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    s values, forecasts of future energy prices and politicalYergin, D. , eds. 1979. Energy Future: Report of the Energy02, Sacramento, Calif. ENERGY FUTURES 103. Ullman, T. L. ,

  9. Sustainable Transportation Energy Pathways Research

    E-Print Network [OSTI]

    Handy, Susan L.

    FUEL/VEHICLE PATHWAYS (ROAD VEH.) #12;Transport Fuels Today (94% petro-based, 2% biofuel) IEA Energy Technology Perspectives (2010) #12;IEA ETP 2012: THREE ENERGY SCENARIOS 6 DS (Current Policies), 4 DS, 2DS Source: IEA Energy Technology Perspectives (2012) #12;MEETING 2050 GHG REDUCTION GOALS => FUEL MIX

  10. No energy transport without discord

    E-Print Network [OSTI]

    Seth Lloyd; Vazrik Chiloyan; Yongjie Hu; Samuel Huberman; Zi-Wen Liu; Gang Chen

    2015-10-16

    Quantum systems can be correlated in ways that classical systems can not. A wide variety of non-classical forms of correlation exist: amongst the best known are entanglement and discord. Quantum correlations can be used to enhance measurement accuracy and energy transport. This paper shows that quantum correlations -- in the form of discord -- are mandatory for any energy transport. Without discord, energy transport cannot occur. Moreover, we show that the initial rate of heat transfer between two systems prepared at different temperatures is directly proportional to the rate of increase in diagonal/energetic discord between the systems. We measured the increase of energetic discord induced by nanoscale heat flow across an aluminum-sapphire interface. The rate of increase of discord is measured to be 4.28*10^24 bits m^{-2} K^{-1} s^{-1}.

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

  12. Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown ofTransportToolkit Prototype Jump

  13. ENERGY TRANSPORT IN SEMICONDUCTOR DEVICES ANSGAR JUNGEL

    E-Print Network [OSTI]

    Jüngel, Ansgar

    ENERGY TRANSPORT IN SEMICONDUCTOR DEVICES ANSGAR J¨UNGEL Abstract. The modeling, analysis, and numerical approximation of energy-transport models for semiconductor devices is reviewed. The derivation-dependent energy-transport equations with physical transport coefficients. The discretization of the stationary

  14. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    & pipelines · Coal mines & rail/barges · Storage · Electricity market · Electric gen & trans · Costs ... ... Primary Energy Supplies Gas Coal Railroad, Barge ... ... Storage & Transportation Systems Energy Transportation Networks #12;Structural Model: Energy Flows GAS COAL ELECTRIC Case A: 2002

  15. Transportation Energy and Alternatives

    E-Print Network [OSTI]

    Handy, Susan L.

    · Experience · Ease of Conversion 0 2 4 6 8 10 12 Hydrogen Gas (30 M Pa) Hydrogen Liquid (-253°C) Natural Gas (30 M Pa) Natural Gas liquid (-162°C) Ethanol M ethanol Gasoline Diesel kWh/L #12;Ease of Use Gasoline Petrol Natural Gas Nuclear Energy Use What Primary Energy Resources Can be Used? Some pathways have more

  16. Essays on Urban Transportation and Transportation Energy Policy

    E-Print Network [OSTI]

    Kim, Chun Kon

    2008-01-01

    E?ects of Transportation Energy policy on Tra?c Crashes .e?ciency standards. Energy Policy, 33(3), 407–419. Blincoe,what’s necessary? Energy Policy, 34(9), 971–974. Bose, R.

  17. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  18. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    on Transportation, Energy and Policy convened in 1988. Oilon Transportation, Energy and Policy has been held at theon Transportation, Energy and Policy in July 2009 was the

  19. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    California Department of Transportation, the California EnergyCalifornia Energy Commission Climate and TransportationTransportation and Energy Policy, at Paci?c Grove, California.

  20. Transportation Energy Consumption Surveys

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)Product:Energy

  1. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  2. Transportation Energy Pathways LDRD.

    SciTech Connect (OSTI)

    Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

  3. TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015

    E-Print Network [OSTI]

    Pennycook, Steve

    C­1 TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 APPENDIX C MAPS #12;C­2 TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 #12;C­3 TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 Table C.1 Census Illinois Indiana Michigan Ohio Wisconsin Source: U.S. Census Bureau. #12;C­4 TRANSPORTATION ENERGY DATA

  4. ORNL Energy and Transportation Science Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Program Hosted by Tennessee Valley Authority Presented by: Johney Green, Jr., Ph.D. Director, Energy and Transportation Science Division April 23, 2015 2 2...

  5. Badger Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: EnergyMontana)DistrictTransport Jump to:

  6. Decision Models for Bulk Energy Transportation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Decision Models for Bulk Energy Transportation Networks James D. McCalley August 23, 2005 #12, and Electric Transportation Systems (1) What energy flow patterns would yield significantly improved energy (ISU - Randy Larabee) · City of Ames (Ames - Merlin Hove) · MidAmerican Energy (Des Moines - Alan O

  7. The Energy Efficiency Potential of Global Transport to 2050 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Efficiency Potential of Global Transport to 2050 The Energy Efficiency Potential of Global Transport to 2050 Broad view of sustainability of global transportation...

  8. Sandia Energy - Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Transport Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment TransportTara...

  9. Energy, Transportation Ministers from Asia-Pacific Nations Pledge...

    Office of Environmental Management (EM)

    Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations...

  10. Department of Energy Office of Science Transportation Overview...

    Office of Environmental Management (EM)

    Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation. Department of...

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    policy implications.   Energy Policy.   2009. 37 (12). ppin Southern California”, Energy Policy, 39 (2011) 1923–1938.and Policy and Director, Sustainable Transportation Energy

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  13. Energy Transport in the Vaidya System

    E-Print Network [OSTI]

    J. P. Krisch; E. N. Glass

    2005-03-21

    Energy transport mechanisms can be generated by imposing relations between null tetrad Ricci components. Several kinds of mass and density transport generated by these relations are studied for the generalized Vaidya system.

  14. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Office of Environmental Management (EM)

    Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy...

  15. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    of transportation fuel and crude oil import requirements. The transportation energy demand forecasts make. The transportation fuel and crude oil import requirement assessments build on assumptions about California crude oil forecasts, transportation energy, gasoline, diesel, jet fuel, crude oil production, fuel imports, crude oil

  16. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    ... ... Primary Energy Supplies Gas Coal Railroad, Barge ... ... Storage & Transportation Systems Energy Transportation Networks #12;Structural Model: Energy Flows GAS COAL ELECTRIC Case A: 2002, and the amount of electricity generated #12;Structural Model: Effects of Katrina Average natural gas nodal price

  17. Energy for Cleaner Transportation Hydro-Quebec

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash Illinois Institute of Technology Naperville, Illinois, USA R. D. McConnell National Renewable Energy in the United States of America #12;iii Preface Energy for Cleaner Transportation This symposium covered

  18. Measuring Transport Protocol Potential for Energy Efficiency

    E-Print Network [OSTI]

    Tsaoussidis, Vassilis

    Measuring Transport Protocol Potential for Energy Efficiency S. Kontogiannis, L. Mamatas, I. Psaras. Several attempts have been made to measure the energy efficiency of trans- port protocols, (e.g. [10], [12-saving potential of transport pro- tocols. We focus on the system-related aspect of energy. Do we have to damage

  19. Transportation in Community Strategic Energy Plans

    Broader source: Energy.gov [DOE]

    This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

  20. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  1. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  2. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  3. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

  4. Transportation Energy Data Book, Edition 18

    SciTech Connect (OSTI)

    Davis, Stacy C.

    1998-09-01

    The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

  5. Transportation Energy Data Book, Edition 19

    SciTech Connect (OSTI)

    Davis, S.C.

    1999-09-01

    The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

  6. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportation Energy Home Analysis

  7. Energy use by biological protein transport pathways

    E-Print Network [OSTI]

    Economou, Tassos

    Energy use by biological protein transport pathways Nathan N. Alder1 and Steven M. Theg2 1 of metabolic energy, using the free energy of ATP and GTP hydrolysis and/or a transmembrane protonmotive force provided insights into the mechanisms of energy transduction, force generation and energy use by different

  8. Effective Potential Energy Expression for Membrane Transport

    E-Print Network [OSTI]

    Robert W. Finkel

    2007-02-11

    All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.

  9. Transportation energy data book: edition 16

    SciTech Connect (OSTI)

    Davis, S.C.; McFarlin, D.N.

    1996-07-01

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  10. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve...

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the demand for energy from the supply. Vehicle efficiency isreductions in energy demand, rather than the supply of low-supply of low-carbon biofuels available for use in the transportation sector and other sectors of the energy

  12. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  13. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  14. Transportation energy data book: Edition 12

    SciTech Connect (OSTI)

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  15. Transportation Energy Data Book: Edition 32 | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Data Book: Edition 32 Re-direct Destination: The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge...

  16. Thermal Energy Storage Technology for Transportation and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    energy demand along with the potential for technologies in different transportation sectors to reduce fuelpotential for reductions in energy demand, rather than the supply of low-carbon transportation fuel.potential for reductions in fuel use is provided. California’s Energy

  18. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    /Individuals Providing Comments California Natural Gas Vehicle Coalition/ Mike Eaves League of Women VotersCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

  19. Transportation energy data book: Edition 15

    SciTech Connect (OSTI)

    Davis, S.C.

    1995-05-01

    The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  20. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  1. --SNAPSHOT --STEPS (Sustainable Transportation Energy Pathways)

    E-Print Network [OSTI]

    California at Davis, University of

    of all types of alternative fuels and fuel uses and further the Energy Commission's goals of promoting of alternative vehicles and fuels in California, in order to help inform the Energy Commission's investment-- SNAPSHOT -- STEPS (Sustainable Transportation Energy Pathways) TECHNICAL ASSISTANCE AGREEMENT

  2. Energy transport in stochastically perturbed lattice dynamics

    E-Print Network [OSTI]

    Giada Basile; Stefano Olla; Herbert Spohn

    2008-09-12

    We consider lattice dynamics with a small stochastic perturbation of order ? and prove that for a space-time scale of order \\varepsilon\\^-1 the local spectral density (Wigner function) evolves according to a linear transport equation describing inelastic collisions. For an energy and momentum conserving chain the transport equation predicts a slow decay, as 1/\\sqrt{t}, for the energy current correlation in equilibrium. This is in agreement with previous studies using a different method.

  3. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 12: KEY MEASUREMENT UNCERTAINTIES FOR BIOFUEL POLICY

  4. Transportation Energy Data Book: Edition 30

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2011-07-01

    The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  5. Transportation Energy Data Book: Edition 29

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2010-07-01

    The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  6. Transportation Energy Data Book: Edition 28

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  7. Transportation Energy Data Book: Edition 24

    SciTech Connect (OSTI)

    Davis, S.C.

    2005-03-08

    The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  8. Transportation Energy Data Book: Edition 26

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W

    2007-07-01

    The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  9. Transportation Energy Data Book: Edition 23

    SciTech Connect (OSTI)

    Davis, S.C.

    2003-10-24

    The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  10. Transportation Energy Data Book: Edition 25

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W

    2006-06-01

    The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  11. Transportation Energy Data Book: Edition 27

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2008-06-01

    The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  12. Transportation Energy Data Book: Edition 14

    SciTech Connect (OSTI)

    Davis, S.C.

    1994-05-01

    Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  13. Transportation Energy Data Book: Edition 21

    SciTech Connect (OSTI)

    Davis, S.C.

    2001-09-13

    The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  14. Transportation Energy Data Book (Edition 20)

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-10-09

    The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  15. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    International Energy Agency (IEA). 2008a. Energy Technologyand Strategies to 2050. Paris, France: IEA. ______. 2008b.2008. Paris, France: IEA. ______. 2009. Transport, Energy

  16. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 4: POLICY AND SUSTAINABLE TRANSPORTATION Part 4: Policy and pollutants such as aerosols and black carbon. Third, more #12;250 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

  17. ECE 465: Realistic Sustainable Energy -Energy use in transportation,

    E-Print Network [OSTI]

    Connors, Daniel A.

    ECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation Sustainable Energies are covered in depth including: Solar, Wind, Hydro and Geothermal. - Shortcomings is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

  18. Energy Transport in Trapped Ion Chains

    E-Print Network [OSTI]

    Michael Ramm; Thaned Pruttivarasin; Hartmut Häffner

    2013-12-20

    We experimentally study energy transport in chains of trapped ions. We use a pulsed excitation scheme to rapidly add energy to the local motional mode of one of the ions in the chain. Subsequent energy readout allows us to determine how the excitation has propagated throughout the chain. We observe energy revivals that persist for many cycles. We study the behavior with an increasing number of ions of up to 37 in the chain, including a zig-zag configuration. The experimental results agree well with the theory of normal mode evolution. The described system provides an experimental toolbox for the study of thermodynamics of closed systems and energy transport in both classical and quantum regimes.

  19. Energy transport through rare collisions

    E-Print Network [OSTI]

    François Huveneers

    2011-07-14

    We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

  20. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, energy trans­ portation and energy storage. Phil Trans R Soc A 371: 20110431. http://dx.doi.org/10

  1. Sustainable Transportation Energy Pathways Research

    E-Print Network [OSTI]

    Handy, Susan L.

    800 1995 2000 2005 Year #Vehicles LPG CNG/LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;CURRENT FACING FUTURE ENERGY SYSTEM · Growth of demand, esp. in developing countries · Diversity

  2. Departmental Energy, Renewable Energy and Transportation Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-27

    The order defines requirements and responsibilities for managing the Department's energy, building and fleets.

  3. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Gap...

  4. Turbulent Energy Transport in Nonradiative Accretion Flows

    E-Print Network [OSTI]

    Steven A. Balbus

    2003-09-24

    Just as correlations between fluctuating radial and azimuthal velocities produce a coherent stress contributing to the angular momentum transport in turbulent accretion disks, correlations in the velocity and temperature fluctuations produce a coherent energy flux. This nonadvective energy flux is always of secondary importance in thin radiative disks, but cannot be neglected in nonradiative flows, in which it completes the mean field description of turbulence. It is, nevertheless, generally ignored in accretion flow theory, with the exception of models explicitly driven by thermal convection, where it is modeled phenomenologically. This flux embodies both turbulent thermal convection as well as wave transport, and its presence is essential for a proper formulation of energy conservation, whether convection is present or not. The sign of the thermal flux is likely to be outward in real systems, but the restrictive assumptions used in numerical simulations may lead to inward thermal transport, in which case qualitatively new effects may be exhibited. We find, for example, that a static solution would require inward, not outward, thermal transport. Even if it were present, thermal convection would be unlikely to stifle accretion, but would simply add to the outward rotational energy flux that must already be present.

  5. INVESTIGATING THERMODYNAMICS OF VERTICAL ATMOSPHERIC ENERGY TRANSPORT

    E-Print Network [OSTI]

    's climate and on enhancing the overall entropy production of the Earth's climate system are discussed. Potential thermodynamic constraint(s) for the Earth's climate system are also explored from these simple transport are investigated by using simple one-dimensional vertical energy balance models (i.e., radiative

  6. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    natural gas pipeline capacity from gulf to NE? Production: How would major investment in a specific/trading restrictions? What would be impacts on fuel and electricity markets? How do high natural gas prices drive1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc

  7. Energy transport systems for semiconductors

    E-Print Network [OSTI]

    Jerome, Joseph W.

    the ET model does not possess such modes. In both cases, however, we employ a conservation law format Subject Classification: 35J65, 82A70, 65C20, 76N10, 35L65 1. Introduction In this paper, an energy in the hydrodynamic model. The absence of hyperbolic modes makes for essential mathematical simplification. The plan

  8. Transport Protocol Behavior and Energy-Saving Lefteris Mamatas

    E-Print Network [OSTI]

    Tsaoussidis, Vassilis

    networks [1]. Several attempts have been made to measure the energy efficiency of transport protocols, (eTransport Protocol Behavior and Energy-Saving Potential Lefteris Mamatas Demokritos University of the transport level needs to be associated with some energy potential index which, unlike energy expenditure

  9. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Corresponding author: Energy and Resources Group, University of California, Berkeley, CA USA. Tel: 510 of California­Berkeley, the Energy Foundation, the Karsten Family Foundation (to Daniel M. Kammen. Davis and S. W. Diegel, Transportation Energy Data Book, 25th ed., ORNL-6974 (Washington: U

  10. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    Solar energy in the context of energy use, energy transportation, and energy storage By David J C to the following journal article, published July 2013: MacKay DJC. 2013 Solar energy in the context of energy use, converting, and delivering sustainable energy, looking in particular detail at the potential role of solar

  11. Vermont Agency of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act| Open EnergyTransportation

  12. 1Directorate-General for Energy and Transport countdowncountdown

    E-Print Network [OSTI]

    Hansen, Johan P.

    1Directorate-General for Energy and Transport April 2002 TheThe countdowncountdown has startedhas started #12;2Directorate-General for Energy and Transport The European satellite radionavigation programme;3Directorate-General for Energy and Transport "In the same way that no one nowadays can ignore the time of day

  13. Transport Services for Energy Constrained Environments , A. Medina

    E-Print Network [OSTI]

    Matta, Abraham "Ibrahim"

    Transport Services for Energy Constrained Environments N. Riga , A. Medina , I. Matta , C, there is no work on designing transport pro- tocols that seek to achieve a higher network-wide energy efficiency and protocols from the modem up to the transport layer, that collectively target a 102.5 factor in energy re

  14. Energy transport by acoustic modes of harmonic Lisa Harris

    E-Print Network [OSTI]

    Theil, Florian

    Energy transport by acoustic modes of harmonic lattices Lisa Harris , Jani Lukkarinen , Stefan vector, k = 0. To derive equations that describe the macroscopic energy transport we introduce the Wigner concentrating to k = 0. A simple consequence of our result is the complete characterization of energy transport

  15. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan presented in this book was drawn from the Sustainable Transportation Energy Pathways (STEPS) program.S. Environmental Protection Agency Volkswagen #12;312 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS

  16. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan their feedstocks displaces food crops. #12;298 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CONCLUSION: KEY FINDINGS. · Biofuels can make limited but significant contributions to a sustainable transportation energy supply

  17. Transportation Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History

  18. Energy Transport in Weakly Anharmonic Chains

    E-Print Network [OSTI]

    Kenichiro Aoki; Jani Lukkarinen; Herbert Spohn

    2006-02-05

    We investigate the energy transport in a one-dimensional lattice of oscillators with a harmonic nearest neighbor coupling and a harmonic plus quartic on-site potential. As numerically observed for particular coupling parameters before, and confirmed by our study, such chains satisfy Fourier's law: a chain of length N coupled to thermal reservoirs at both ends has an average steady state energy current proportional to 1/N. On the theoretical level we employ the Peierls transport equation for phonons and note that beyond a mere exchange of labels it admits nondegenerate phonon collisions. These collisions are responsible for a finite heat conductivity. The predictions of kinetic theory are compared with molecular dynamics simulations. In the range of weak anharmonicity, respectively low temperatures, reasonable agreement is observed.

  19. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy Secretary...

  20. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies...

  1. Center for Transportation Studies Transportation Seminar Series Energy Technology and Climate

    E-Print Network [OSTI]

    Bertini, Robert L.

    Center for Transportation Studies Transportation Seminar Series Energy Technology and Climate Institute of Technology Friday, November 14, 2008 at 12:00 pm. Room 204, Distance Learning Center Wing

  2. Broken symmetries and directed collective energy transport

    E-Print Network [OSTI]

    S. Flach; Y. Zolotaryuk; A. E. Miroshnichenko; M. V. Fistul

    2001-10-09

    We study the appearance of directed energy current in homogeneous spatially extended systems coupled to a heat bath in the presence of an external ac field E(t). The systems are described by nonlinear field equations. By making use of a symmetry analysis we predict the right choice of E(t) and obtain directed energy transport for systems with a nonzero topological charge Q. We demonstrate that the symmetry properties of motion of topological solitons (kinks and antikinks) are equivalent to the ones for the energy current. Numerical simulations confirm the predictions of the symmetry analysis and, moreover, show that the directed energy current drastically increases as the dissipation parameter $\\alpha$ reduces. Our results generalize recent rigorous theories of currents generated by broken time-space symmetries to the case of interacting many-particle systems.

  3. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    Strategy A Vehicle Energy Ef?ciency B Alternative Fuelalternative fuels will solve transportation energy problems motivates policies to promote alternative fuel vehicles (vehicles and alternative fuels, as well as estimating energy

  4. Energy Information Administration - Transportation Energy Consumption by

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption SurveyVehicles Energy

  5. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan. #12;188 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;187 SUSTAINABLE

  6. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;1 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS Introduction: Imagining the Future of Transportation We stand

  7. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan by 2030, even though transportation accounts for #12;235 PART 3 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;234 SUSTAINABLE

  8. Energy Constrained Transport Maximization across a Fluid Interface Sanjeeva Balasuriya*

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    Energy Constrained Transport Maximization across a Fluid Interface Sanjeeva Balasuriya* Department of maximizing fluid transport across a fluid interface subject to an available energy budget is examined advective fluid transport across such an interface is a first step towards achieving good mixing

  9. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 4: COMPARING FUEL ECONOMIES AND COSTS OF ADVANCED VS. CONVENTIONAL

  10. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 8: SCENARIOS FOR DEEP REDUCTIONS IN GREENHOUSE GAS EMISSIONS PART 3

  11. Design Drivers of Energy-Efficient Transport Aircraft

    E-Print Network [OSTI]

    Drela, Mark

    The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport ...

  12. Energy transport in jammed sphere packings

    E-Print Network [OSTI]

    Ning Xu; Vincenzo Vitelli; Matthieu Wyart; Andrea J. Liu; Sidney R. Nagel

    2008-11-17

    We calculate the normal modes of vibration in jammed sphere packings to obtain the energy diffusivity, a spectral measure of transport. At the boson peak frequency, we find an Ioffe-Regel crossover from a diffusivity that drops rapidly with frequency to one that is nearly frequency-independent. This crossover frequency shifts to zero as the system is decompressed towards the jamming transition, providing unambiguous evidence of a regime in frequency of nearly constant diffusivity. Such a regime, postulated to exist in glasses to explain the temperature dependence of the thermal conductivity, therefore appears to arise from properties of the jamming transition.

  13. Transportation and Energy Use Data Files

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData Files Transportation and Energy Use Data Files

  14. Asian Development Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport Jump to: navigation,

  15. Colorado Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation,EnergyColorado Department of Transportation

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    truck activity in California. Transport Policy. Volume 16,in California Travel Demand Reductions Decreasing transportCalifornia, USA. Transportation Research, Part D: Transport

  17. Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector

    E-Print Network [OSTI]

    of energy, rising oil prices and future security of supply have created strong efforts to find new transportRisø Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector 8 Energy consumption for transport accounts for approxi- mately 20% of all energy used worldwide [1

  18. The Transporta on Energy Data Book (TEDB) The Transportation Energy Data Book

    E-Print Network [OSTI]

    The Transporta on Energy Data Book (TEDB) The Transportation Energy Data Book (TEDB Analysis 865.946-1256 davissc@ornl.gov The Transportation Energy Data Book's most current electronic

  19. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  20. Reliable and Energy Efficient Transport Layer for Sensor Networks

    E-Print Network [OSTI]

    Valaee, Shahrokh

    Reliable and Energy Efficient Transport Layer for Sensor Networks Petar Djukic and Shahrokh Valaee Diversity Coded Directed Diffusion (DCDD), a reliable and energy efficient transport protocol for sensor-to-end reliability, as well as the effect of DCDD on energy consumption in the network. Our simulations show

  1. Essays on Urban Transportation and Transportation Energy Policy

    E-Print Network [OSTI]

    Kim, Chun Kon

    2008-01-01

    2000). Energy e?ciency and consumption – the rebound e?ect –The declining rebound e?ect. The Energy Journal, 28(1), 25–

  2. Fact #636: August 16, 2010 Transportation Energy Use by Mode

    Broader source: Energy.gov [DOE]

    Highway vehicles were responsible for 80.7% of all transportation energy use in 2008. Light vehicles make up the majority of highway fuel use.

  3. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL...

  4. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  5. Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link

    E-Print Network [OSTI]

    Energy Unit lecture outline & graphics ­ Fritz Stahr Tues 1/21/03 - Transportation of Energy & Energy of Transportation ­ an intricate link - history of settlement & industry largely due to transportation and energy supplies - initial towns on rivers or by sea where ships could service cargo as water

  6. Assessing Reliability in Transportation Energy Supply Pathways: A Hydrogen Case Study

    E-Print Network [OSTI]

    McCarthy, Ryan W.; Ogden, J

    2005-01-01

    in Transportation Energy Supply Pathways: A Hydrogen Casein Transportation Energy Supply Pathways: A Hydrogen Caseconcerns about energy supply security (and climate change)

  7. Transportation Data Programs:Transportation Energy Data Book,Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC Stacks Transport in

  8. FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties

    E-Print Network [OSTI]

    Malen, Jonathan A.

    FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface on fundamental transport properties of metal­ molecule­metal junctions that are related to thermoelectric energy

  9. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  10. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Broader source: Energy.gov [DOE]

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  11. Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    E-Print Network [OSTI]

    D. S. Brambila; A. Fratalocchi

    2013-01-22

    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. Parallel numerical simulations and analytic theory demonstrate that the interplay between nonlinearity and Anderson localization establishes a perfectly classical correspondence in the system, neglecting any quantum time reversal. The resulting dynamics exhibits a nonlinearly-induced, enhanced transport of energy through soliton wave particles.

  12. 39-613 Energy Transport and Storage Spring Semester 2012

    E-Print Network [OSTI]

    McGaughey, Alan

    Gas and Petroleum transport & storage HW#1 due HW#2 assigned #5 Tue 1/32 Electrical Grid, Power (current & future) HW#3 due #12 Thu 2/23 Micro Grid; Distributed Generation; distributed energy39-613 Energy Transport and Storage Spring Semester 2012 Class Meeting: Tuesdays & Thursdays 9

  13. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan #12;279 PART 4 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 13: BEYOND LIFE-CYCLE ANALYSIS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;278 SUSTAINABLE

  14. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;171 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 1: INDIVIDUAL FUEL/VEHICLE PATHWAYS PART 2 Chapter 7: Comparing Land, Water

  15. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan of the fuels we consider #12;122 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 5: COMPARING INFRASTRUCTURE://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;121 SUSTAINABLE

  16. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan scenario. #12;210 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 9: TRANSITION SCENARIOS FOR THE U://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;209 SUSTAINABLE

  17. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan, batteries, and ultracapacitors. Andrew #12;316 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS AUTHORS://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;315 SUSTAINABLE

  18. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;133 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 1: INDIVIDUAL FUEL/VEHICLE PATHWAYS PART 2 Chapter 6: Comparing Greenhouse

  19. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory U.S. Environmental Protection Agency U.S. Census Bureau National Renewal Energy Laboratory Ward's Automotive Info Bank 18 ORNL - Stacy C. Davis | Project...

  20. Essays on Urban Transportation and Transportation Energy Policy

    E-Print Network [OSTI]

    Kim, Chun Kon

    2008-01-01

    energy can be approached in two ways: one is through urban planningenergy, it may be approached in two ways: one is through urban planning

  1. Transportation Energy Data Book: Edition 32, from the Center for Transportation Analysis (CTA)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. [Roltek, Inc.

    The Transportation Energy Data Book: Edition 32 is a statistical compendium designed for use as a reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions.

  2. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    reported in IEA India transportation energy data. DifferentKeywords: India, transport, energy demand, decomposition,balance for India, transport energy consumption represents

  3. Phoenix Area Transportation Information for Energy Exchange ...

    Broader source: Energy.gov (indexed) [DOE]

    Information about traveling from the airport and getting around downtown Phoenix. View transportation information. More Documents & Publications 2012 Transmission Forum - Travel...

  4. Assessing Reliability in Transportation Energy Supply Pathways: A Hydrogen Case Study

    E-Print Network [OSTI]

    McCarthy, Ryan; Ogden, Joan M

    2005-01-01

    energy feedstocks, and can be produced, stored, transported,energy feedstocks and centralized versus distributed systems. In the Pathway #1, hydrogen is transported

  5. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 4th Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  6. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 3rd Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  7. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 1st Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  8. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    , motor fuels and natural gas. The Texas Transportation Institute (TTI) has been committed to reducingTexas Transportation Institute Energy Management and Conservation Plan Quarterly Report ­ June 30, gas, lighting and plumbing fixtures and implements. TTI Employee Awareness Program As a tenant agency

  9. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 2nd Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  10. World Energy Projection System Plus Model Documentation: Transportation Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. New concepts in energy and mass transport within carbon nanotubes

    E-Print Network [OSTI]

    Choi, Wonjoon, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    The unique structure of carbon nanotubes (CNTs) contributes to their distinguished properties, making them useful in nanotechnology. CNTs have been explored for energy transport in next-generation, such as light-emitting ...

  12. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. Transportation Energy Data Book, Vehicle Technologies Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the web has led to widespread use of the data and public education on transportation Many models developed for VTO use input data from the book, as well as other agencies' models,...

  15. ORNL/SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY

    E-Print Network [OSTI]

    ORNL/SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1 Tatyana Gurikova Macrosystems-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 #12;ii #12;iii TABLE ................................................................................................................. 1 2. ENERGY, OIL AND POLICY

  16. LEDSGP/Transportation Toolkit/Strategies/Shift | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact UsTransportationLEDSGP/Transportation

  17. Dissipative Particle Dynamics with Energy Conservation: Dynamic and Transport Properties

    E-Print Network [OSTI]

    Josep Bonet Avalos; Allan D. Mackie

    2000-02-16

    Simulation results of the thermal conductivity ${\\cal L}$ of Dissipative Particle Dynamics model with Energy Conservation (DPDE) are reported. We also present an analysis of the transport equations and the transport coefficients for DPDE based on a local equilibrium approximation. This approach is valid when the particle-particle thermal conductivity $\\lambda$ and the friction coefficient $\\zeta$ are large. A qualitative derivation of the scaling form of the kinetic contribution of the transport of energy is derived, yielding two different forms for the kinetic contribution to the heat transport, depending on the value of $\\lambda$. We find agreement between the theoretically predicted value for ${\\cal L}$ and the simulation results, for large $\\lambda$ and many particles interacting at one time. Significant differences are found for small number of interacting particles, even with large $\\lambda$. For smaller values of $\\lambda$, the obtained macroscopic thermal conductivity is dominated by diffusive transport, in agreement with the proposed scaling form.

  18. Energy transport in one-dimensional disordered granular solids

    E-Print Network [OSTI]

    V. Achilleos; G. Theocharis; Ch. Skokos

    2015-09-11

    We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear limit, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: i) an initial displacement and ii) an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our studies on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shock-like excitations.

  19. Energy transport in one-dimensional disordered granular solids

    E-Print Network [OSTI]

    V. Achilleos; G. Theocharis; Ch. Skokos

    2015-12-06

    We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear case, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: i) an initial displacement and ii) an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our studies on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shock-like excitations.

  20. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect (OSTI)

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  1. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  2. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect (OSTI)

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

  3. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  4. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  5. Energy Transport in Radioloud AGN Daniel Evans (Harvard), Julia Lee (Harvard), Martin Hardcastle (U. Herts), Ralph

    E-Print Network [OSTI]

    Evans, Dan

    Energy Transport in Radioloud AGN Daniel Evans (Harvard), Julia Lee (Harvard), Martin Hardcastle (U. Bristol), Judith Croston (U. Herts) #12;Energy Transport in Radioloud AGN Overview · Introduction to AGNC 321 #12;Energy Transport in Radioloud AGN #12;Energy Transport in Radioloud AGN What are Active

  6. Integrated simulation of ELM Triggered by Pellet Through Energy Absorption and Transport Enhancement

    E-Print Network [OSTI]

    Integrated simulation of ELM Triggered by Pellet Through Energy Absorption and Transport Enhancement

  7. Integrated Simulation of ELM Triggered by Pellet through Energy Absorption and Transport Enhancement

    E-Print Network [OSTI]

    Integrated Simulation of ELM Triggered by Pellet through Energy Absorption and Transport Enhancement

  8. Integrated Energy/Transportation Continent-wide Infrastructure Design

    E-Print Network [OSTI]

    McCalley, James D.

    to fracking impact: water/earthquake 2. GHG-induced climate change occurs rapidly re- quiring gas useIntegrated Energy/Transportation Continent-wide Infrastructure Design 1 James McCalley Harpole Wolf 13 11/20 14 12/4 RyanKonopinski (GE) 15 12/11 Huiyi Zhang, Nick Brown,DavidJahn #12;1. US energy

  9. Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    E-Print Network [OSTI]

    Grohs, E; Kishimoto, C T; Paris, M W; Vlasenko, A

    2015-01-01

    We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. Such an approach allows a detailed accounting of the evolution of the $\

  10. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Energy Efficiency and Renewable Energy. Office of VehicleEnergy Efficiency and Renewable Energy. U.S. Department ofReport. National Renewable Energy Laboratory (NREL)

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Efficiency and Renewable Energy. Office of Vehicleof Energy Efficiency and Renewable Energy. U.S. DepartmentDemonstration Report. National Renewable Energy Laboratory (

  13. Energy and Transportation Science Division (ETSD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    roof and attic design proves efficient in summer and winter ORNL debuts energy-saving heat pump Roofing energy efficiency: more than a simple black and white issue ORNL home to...

  14. Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants

    SciTech Connect (OSTI)

    Su-Jong Yoon; Piyush Sabharwall

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

  15. Financing Sustainable Urban Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to: navigation, search Tool Summary LAUNCH TOOL

  16. Transport in PEMFC Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC Stacks Transport in PEMFC

  17. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC Stacks TransportResources

  18. A quantum energy transport model for semiconductor device simulation

    SciTech Connect (OSTI)

    Sho, Shohiro; Odanaka, Shinji

    2013-02-15

    This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

  19. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  20. Sustainable Transportation Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use of non-petroleum-based fuels through advancing bio-based products and natural gas. Developments in energy storage technologies, charging methods, and advanced materials...

  1. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy (TBtu ...

  2. A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport

    E-Print Network [OSTI]

    Kushner, Mark

    A hybrid model for particle transport and electron energy distributions in positive column the fluid portion of the model. Transport coefficients, source functions, and energy distributions for all field has motivated a num- ber of investigations into its effect on the `electron energy distribution

  3. Victoria Transport Policy Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility RatesComercioElectric CoopTechTransport

  4. TransportToolkit Prototype | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown ofTransportToolkit Prototype Jump to:

  5. Caltrans Transportation Permits Manual | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(Redirected from Calpine PowerTransportation

  6. Wyoming Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department of Transportation

  7. Quantum Simulation of Energy Transport with Embedded Rydberg Aggregates D. W. Schnleber,1

    E-Print Network [OSTI]

    Eisfeld, Alexander

    Quantum Simulation of Energy Transport with Embedded Rydberg Aggregates D. W. Schönleber,1 A as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Energetic for energy transport. The transport can be monitored using the same mechanism that provides control over

  8. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II

    E-Print Network [OSTI]

    Johnson, Robert E.

    Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II that it is the description of the radial transport and the absence of energy transport to the surface, rather than¯ects the nature of the energizing process rather than the energy transport. In this paper we describe the details

  9. Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports

    E-Print Network [OSTI]

    Miami, University of

    ) data. 1. Introduction The transport of energy from the tropics toward the poles is a key aspect with ``energy transport'', although it should be remem- Explorations of Atmosphere­Ocean­Ice Climates on an Aquaplanet and Their Meridional Energy

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.March 2009. Annual Energy Outlook (AEO). 2011. Annual Energy

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of Plug-In Hybrid Electric Vehicles. Electric Power ResearchMarket for Hybrid Electric Vehicles. Transportation ResearchPlug-in Hybrid Electric Vehicles. Committee on Assessment of

  12. Consumer Views on Transportation and Energy (Third Edition)

    SciTech Connect (OSTI)

    Kubik, M.

    2006-01-01

    This report has been assembled to provide the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. The data presented in this report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation (ORC) for the National Renewable Energy Laboratory (NREL) that are commissioned and funded by EERE, Gallup polls, news organization polls, surveys conducted by independent groups and academic institutions, and other sources.

  13. Does energy follow urban form? : an examination of neighborhoods and transport energy use in Jinan, China

    E-Print Network [OSTI]

    Jiang, Yang, M.C.P. Massachusetts Institute of Technology

    2010-01-01

    This thesis explores the impacts of neighborhood form and location on household transportation energy use in the context of Jinan, China. From a theoretical perspective, energy use is a derived outcome of activities, and ...

  14. Transportation Energy Data Book, Vehicle Technologies Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory U.S. Environmental Protection Agency U.S. Census Bureau National Renewal Energy Laboratory Ward's Automotive Info Bank 19 Managed by UT-Battelle for the...

  15. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    1 6 44 0 3 4 41 11 1 14 8 47 16 7 5 0 480 78 195 2 0 2 Conventional Boilers 10 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Machine Drive Electro-Chemical...

  16. Transport NAMA Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History View NewTransparent

  17. Transport Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History ViewCase Study |

  18. Transportation Techniques LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource HistoryFuel Home There

  19. Modernizing Public Transport Webinar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004) | Open EnergyModelos y

  20. LEDSGP/Transportation Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: Energy

  1. Packaging and Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPowerPackaging and

  2. 5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions

    E-Print Network [OSTI]

    Peletier, Reynier

    5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

  3. Transportation Demand Management (TDM) Encyclopedia | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History ViewCaseInformation

  4. Integration for Seamless Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.InfinifuelInovaEnergy Information

  5. Global Transportation Roadmap Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma Energy Group JumpEnergy PartnersRoadmap

  6. Arizona Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| OpenExplorationArgentina: EnergyTexas:Arizona

  7. Career Map: Transportation Worker | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA)civil engineertrade worker inside a largeworkers

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

  9. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.2009). March 2009. Annual Energy Outlook (AEO). 2011. Annual

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the use of petroleum, use a decarbonized energy carrier andfrom petroleum or biofuels) because of fuel energy densityfrom petroleum or biofuels) because of fuel energy density

  11. Transport theory and low energy properties of colour superconductors

    E-Print Network [OSTI]

    Daniel F. Litim

    2001-11-12

    The one-loop polarisation tensor and the propagation of ``in-medium'' photons of colour superconductors in the 2SC and CFL phase is discussed. For a study of thermal corrections to the low energy effective theory in the 2SC phase, a classical transport theory for fermionic quasiparticles is invoked.

  12. School for Engineering of Matter, Transport and Energy Materials Science &

    E-Print Network [OSTI]

    School for Engineering of Matter, Transport and Energy Materials Science & Engineering Minor Requirements Why? Engineering or science majors who choose to minor in materials will enhance their education and increase their job opportunities by learning how to design, process, and select the best materials for any

  13. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    in a specific type of plant at a specific location? (5) How might buyers and sellers of energy respond emissions prices? How would CO2 regulations impact coal, gas, electricity, & SO2 markets? 3. Disruptions pipeline rupture Ellet Valley, VA, 2003: Norfolk Southern coal train derailed #12;5 Examples of Disruptions

  14. Resonance energy transport in an oscillator chain

    E-Print Network [OSTI]

    Agnessa Kovaleva

    2015-01-03

    We investigate energy transfer and localization in a linear time-invariant oscillator chain weakly coupled to a forced nonlinear actuator. Two types of perturbation are studied: (1) harmonic forcing with a constant frequency is applied to the actuator (the Duffing oscillator) with slowly changing parameters; (2) harmonic forcing with a slowly increasing frequency is applied to the nonlinear actuator with constant parameters. In both cases, stiffness of linear oscillators as well as linear coupling remains constant, and the system is initially engaged in resonance. The parameters of the systems and forcing are chosen to guarantee autoresonance (AR) with gradually increasing energy in the nonlinear actuator. As this paper demonstrates, forcing with constant frequency generates oscillations with growing energy in the linear chain but in the system excited by forcing with slowly time-dependent frequency energy remains localized on the nonlinear actuator whilst the response of the linear chain is bounded. This means that the systems that seem to be almost identical exhibit different dynamical behavior caused by their different resonance properties. Numerical examples a good agreement between exact (numerical) solutions and their asymptotic approximations found by the multiple time scales method.

  15. LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact Us < LEDSGP‎ | Transportation

  16. LEDSGP/Transportation Toolkit/Strategies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact Us <LEDSGP/Transportation

  17. LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact UsTransportation

  18. LEDSGP/Transportation Toolkit/Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContactLEDSGP/Transportation Toolkit/Tools

  19. LEDSGP/Transportation Toolkit/Training | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContactLEDSGP/Transportation

  20. Energy transport by acoustic modes of harmonic Lisa Harris # , Jani Lukkarinen + , Stefan Teufel # , and Florian Theil #

    E-Print Network [OSTI]

    Energy transport by acoustic modes of harmonic lattices Lisa Harris # , Jani Lukkarinen + , Stefan of energy transport in harmonic lattices with acoustic dispersion relations. 1 Introduction. The energy, we first need to understand how energy is transported within the crystal via purely harmonic

  1. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  2. Energy transport by acoustic modes of harmonic lattices

    E-Print Network [OSTI]

    Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

    2006-11-21

    We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

  3. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,Breakout SessionsEnergy ResponsesRestructuring our

  4. Clean Transportation Education Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart ofClark Energy GroupClasses,of

  5. Sustainable Transportation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShotSustainable

  6. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect (OSTI)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  7. Sustainable Transport Systems STS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to:PowerSystems STS Jump to:

  8. Sustainable Transportation Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 MoresteelmakingRenewableDepartment ofC: Navigating Roadblocks

  9. Gender and Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit HistoryGeary County,County,GenXLand

  10. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal Technologies Place:Standards Jump

  11. Transportation Assessment Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind Power Co Ltd JumpAssessment Toolkit

  12. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenterPrivateInternational

  13. Standardization of Transport Properties Measurements: Internal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2Standard Method of TestStandard

  14. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSetIdaho: Energy ResourcesTexas Department of

  15. Idaho Transportation Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010)Texas)Springs,

  16. California Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:CalendarResources |

  17. Transportation Policies and Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| DepartmentSecurity | Department ofeffort to

  18. Transportation of Nuclear Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| DepartmentSecurity | Department ofeffort toon legal

  19. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    cials (AASHTO), Transport Canada, the California DepartmentA case study of California. ” Transport. Res. Part D. West,smaller transport-related carbon footprint than California,

  20. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect (OSTI)

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  1. Energy transport between two pure-dephasing reservoirs

    E-Print Network [OSTI]

    T. Werlang; D. Valente

    2014-08-21

    A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of energy between two pure-dephasing markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary energy transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid in the ultrastrong inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

  2. Energy, Industry, and Transport in South-Central Africa’s History

    E-Print Network [OSTI]

    Mavhunga, Clapperton Chakanets

    2014-01-01

    Energy must be seen in interaction with transportation and industry in order for its role in South-Central Africa to be fully understood. All three—energy, industry, and transportation—are themselves always socialized and ...

  3. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    International Energy Agency (IEA). (2008). Energy Technologyand U.S. fleet average (IEA 2008b) Because fuel is a majorwinglets and longer wingspans) (IEA 2008, Schäfer 2009) and

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    The energy density of electricity storage in batteries orelectricity and hydrogen as alternative fuels is in energy storage.electricity demand. This large pool of battery storage (

  6. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    economy from today’s levels, cutting energy consumption pertoday, though they will likely continue to improve and be refined over time. California’s Energy

  7. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect (OSTI)

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  8. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  12. Thermocapillary transport of energy during water evaporation V. K. Badam,2

    E-Print Network [OSTI]

    Ward, Charles A.

    Thermocapillary transport of energy during water evaporation Fei Duan,1 V. K. Badam,2 F. Durst,2-vapor interface maintained at the circular mouth of a small funnel, studies of the energy transport have indicated 3.5 °C and Marangoni number Ma in the range 100 Ma 22,000, it was found that if energy transport

  13. JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    E-Print Network [OSTI]

    JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks (Technical Report BUCS the energy gains of JTP over one-size-fits-all transport protocols. I. INTRODUCTION Motivation and Scope physical to transport [8], [9]. JAVeLEN's design ensures that energy gains obtained in one layer would

  14. Ion heat flux and energy transport near the magnetotail neutral sheet Richard L. Kaufmann1

    E-Print Network [OSTI]

    Kaufmann, Richard L.

    Ion heat flux and energy transport near the magnetotail neutral sheet Richard L. Kaufmann1; published 10 May 2008. [1] Ten-year averages of energy transport rates near the neutral sheet showed (2008), Ion heat flux and energy transport near the magnetotail neutral sheet, J. Geophys. Res., 113, A

  15. The Energy Transport and the Drift Diffusion Equations as Relaxation Limits of the

    E-Print Network [OSTI]

    The Energy Transport and the Drift Diffusion Equations as Relaxation Limits of the Hydrodynamic to the solutions of the energy transport and the drift--diffusion equations, according respectively to different devices, because they take into account the transport of energy in the semiconductor. The particular

  16. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track

    E-Print Network [OSTI]

    Johnson, Robert E.

    Molecular dynamics study of non-equilibrium energy transport from a cylindrical track I. Test were carried out to describe the kinetic energy transport in a low temper- ature, condensed-gas solid, equilibration competes with radial transport of energy from the cylindrically excited region. The radial

  17. Groundwater flow with energy transport and waterice phase change: Numerical simulations, benchmarks, and application to

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Groundwater flow with energy transport and water­ice phase change: Numerical simulations saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes propor for groundwater and energy transport with ice formation and melting are proposed that may be used by other

  18. Spontaneous synchronization driven by energy transport in interconnected networks

    E-Print Network [OSTI]

    Vincenzo Nicosia; Per Sebastian Skardal; Vito Latora; Alex Arenas

    2015-02-26

    Understanding dynamical processes on networks is an important area of research in complex systems, with far reaching implications and applications in many real-world cases. Here we introduce and study a model of intertwined dynamics on interconnected networks, inspired by the human brain, which consists of bidirectionally coupled synchronization and energy transport processes. Remarkably, the proposed model allows the emergence of spontaneous switch-like synchronization transitions driven by the energy transport dynamics, which qualitatively mirror the transitions observed in human brain dynamics between resting-state and cognitive activity. We provide a steady-state analytical explanation for the observed behavior and show that the switch-like transition is robust over a wide range of model parameters and network topologies. Finally, we suggest that the complexity inherent in other interconnected dynamical processes might be responsible for various other emergent behaviors observed in natural systems.

  19. Transportation Sector Energy Use by Mode from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Mode. Data and Resources...

  20. Transportation Sector Energy Use by Type from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Type. Data and Resources...

  1. Transport and Fractionation in Periodic Potential-Energy Landscapes

    E-Print Network [OSTI]

    Kosta Ladavac; Matthew Pelton; David G. Grier

    2004-04-09

    Objects driven through periodically modulated potential-energy landscapes in two dimensions can become locked in to symmetry-selected directions that are independent of the driving force's orientation. We investigate this problem in the overdamped limit, and demonstrate that the crossover from free-flowing to locked-in transport can depend exponentially on an object's size, with this exceptional selectivity emerging from the periodicity of the environment.

  2. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Lewis, Nate

    2011-04-28

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  3. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect (OSTI)

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    meeting the DOE’s hydrogen energy density and cost goals is6). Liquid hydrogen storage improves energy density, but itenergy density of electricity storage in batteries or hydrogen

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    at the DOE Energy Storage Systems Program Review. Washingtonrefueling). Hydrogen storage systems are significantlycompressed hydrogen storage systems (Figure 6). Liquid

  6. Clean Urban Transport for Europe CUTE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal Technologies Place: FloridaClean Energy FuelsCostTransport

  7. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    vehicle is that it depends upon the uncertain status of a number of different policies, external commodity and energy prices, and alternative

  9. Soft Photons from transport and hydrodynamics at FAIR energies

    E-Print Network [OSTI]

    Andreas Grimm; Bjørn Bäuchle

    2012-11-11

    Direct photon spectra from uranium-uranium collisions at FAIR energies (E(lab) = 35 AGeV) are calculated within the hadronic Ultra-relativistic Quantum Molecular Dynamics transport model. In this microscopic model, one can optionally include a macroscopic intermediate hydrodynamic phase. The hot and dense stage of the collision is then modeled by a hydrodynamical calculation. Photon emission from transport-hydro hybrid calculations is examined for purely hadronic matter and matter that has a cross-over phase transition and a critical end point to deconfined and chirally restored matter at high temperatures. We find the photon spectra in both scenarios to be dominated by Bremsstrahlung. Comparing flow of photons in both cases suggests a way to distinguish these two scenarios.

  10. An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    E-Print Network [OSTI]

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks Technical Report BUCS-2007 delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1 We present a transport protocol whose goal is to reduce power consumption without compromising

  11. Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer and Peter Rez

    E-Print Network [OSTI]

    Biewer, Theodore

    Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer damage which can be related to the energy deposited in the specimen. We derive an expression for the energy deposition using the electron transport equation and give results for beam energies of l-10 k

  12. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund Renewable energy Wind powerQ1 a b s t r a c t Large-scale sustainable energy systems will be necessary replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy

  13. Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link

    E-Print Network [OSTI]

    transportable and denser energy than coal - McNeill's Coke-town cluster where it is due to ease of access of energy until ~1880s then coal, and finally oil takes over in US after ~1925, largely because oil most to coal shipped on water (and later rail) and steel shipped out, somewhat true of Mo-town cluster as well

  14. Near-Field Nanopatterning and Associated Energy Transport Analysis with Thermoreflectance 

    E-Print Network [OSTI]

    Soni, Alok

    2013-05-31

    probes strongly depend on the laser conditions and material properties of the target: the energy transport from the NSOM probes to the targets changes from pure optical to a combination of thermal and optical transport when the pulse duration...

  15. A random walk approach to anomalous particle and energy transport

    E-Print Network [OSTI]

    H. Isliker

    2007-10-26

    The combined Continuous Time Random Walk (CTRW) in position and momentum space is introduced, in the form of two coupled integral equations that describe the evolution of the probability distribution for finding a particle at a certain position and with a certain momentum as a function of time. The integral equations are solved numerically with a pseudospectral method that is based on the expansion of the unknown functions in terms of Chebyshev polynomials. In parallel, Monte-Carlo simulation are performed. Through the inclusion of momentum space, the combined CTRW is able to yield results on density and temperature profile evolution, on particle and heat fluxes and diffusivities, and on kinetic energy distributions. Depending on the choice of the probability distributions of the particle displacements in position and momentum space, the combined CTRW is able to model phenomena of anomalous transport in position as well as in momentum (or energy or velocity) space. An application is made to a toroidally confined plasma that undergoes off-center injection of cold plasma (off-axis fueling), using two variants of the model, the mixed model and the critical gradient model. The phenomenon of profile stiffness is addressed, both for the density and for the temperature profile, respectively, and the particle and energy confinement times are determined. The analysis of the particle and heat fluxes shows that the dynamics realized in the combined CTRW is incompatible with the classical approach of Fick's or Fourier's law for particle and heat transport, respectively.

  16. Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement

    E-Print Network [OSTI]

    Apoorva D. Patel

    2011-04-07

    Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

  17. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent Fuel Transportation Risk

  18. Sustainable Transport and Climate Process | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCaseSustainable Transport

  19. Directed transport of active particles over asymmetric energy barriers

    E-Print Network [OSTI]

    N. Koumakis; C. Maggi; R. Di Leonardo

    2015-06-29

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transitions rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions.

  20. The Suppression of Energy Discretization Errors in Multigroup Transport Calculations

    SciTech Connect (OSTI)

    Larsen, Edward

    2013-06-17

    The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to "coarsen" the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial and energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

  1. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  2. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  3. Innovation Center for Energy and Transportation ICET | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.Infinifuel BiodieselfDunan PVInnovalight Jump

  4. Proposed Energy Transport Corridors: West-wide energy corridor programmatic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYSDepartmentWorkDepartmentProperty Transfer|EIS,

  5. Westminster Energy Environment Transport Forum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWeVirginiaElectric AssnWater

  6. Friedel Oscillation-Induced Energy Gap Manifested as Transport Asymmetry at Monolayer-Bilayer Graphene Boundaries

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Friedel Oscillation-Induced Energy Gap Manifested as Transport Asymmetry at Monolayer will first develop a general theory of the Friedel energy gap and the transport asymmetry across a boundary at the Fermi energy for electrons with wave vectors perpendicular to the interface. If the Friedel gaps on two

  7. Transport Layer Approaches for Improving Idle Energy in Challenged Sensor Networks

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Transport Layer Approaches for Improving Idle Energy in Challenged Sensor Networks Yong Wang, Chieh Terms Design, Performance Keywords DTN, challenged sensor networks, idle energy, transport protocol, the study of energy efficient networking solutions in sensor networks has been focusing on networks

  8. SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves

    E-Print Network [OSTI]

    Pierce, Stephen

    SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

  9. APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves

    E-Print Network [OSTI]

    Pierce, Stephen

    APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

  10. Thermally-activated non-local amplification in quantum energy transport

    E-Print Network [OSTI]

    Bruno Leggio; Riccardo Messina; Mauro Antezza

    2015-11-18

    We study energy-transport efficiency in light-harvesting planar and 3D complexes of two-level atomic quantum systems, embedded in a common thermal blackbody radiation. We show that the collective non-local dissipation induced by the thermal bath plays a fundamental role in energy transport. It gives rise to a dramatic enhancement of the energy-transport efficiency, which may largely overcome $100\\%$. This effect, which improves the understanding of transport phenomena in experimentally relevant complexes, suggests a particularly promising mechanism for quantum energy management.

  11. Thermally-activated non-local amplification in quantum energy transport

    E-Print Network [OSTI]

    Bruno Leggio; Riccardo Messina; Mauro Antezza

    2015-05-13

    We study energy-transport efficiency in light-harvesting planar and 3D complexes of two-level atomic quantum systems, embedded in a common thermal blackbody radiation. We show that the collective non-local dissipation induced by the thermal bath plays a fundamental role in energy transport. It gives rise to a dramatic enhancement of the energy-transport efficiency, which may largely overcome $100\\%$. This effect, which improves the understanding of transport phenomena in experimentally relevant complexes, suggests a particularly promising mechanism for quantum energy management.

  12. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  13. Transportation Energy Survey Data Book 1.1

    SciTech Connect (OSTI)

    None

    2009-01-18

    This report provides information about how the American public views various transportation and environmental issues.

  14. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    Canadian Oil Sands: Energy Security and Climate Change.positions in national security, energy programs, energy2009. “Indicators for energy security. ” Energy Policy 37 (

  15. Enhancing energy transport in electrical-oscillator networks via off-diagonal dynamical disorder

    E-Print Network [OSTI]

    León-Montiel, Roberto de J; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L

    2015-01-01

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of $22.5 \\pm 3.6\\,\\%$ can be observed.

  16. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    institute TERI. (2001) TERI Energy Data Directory & Yearbookdesigned. Unfortunately, existing energy data do not provideIndia transportation energy data. Different scenarios were

  19. The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2008-01-01

    Policy process; Hydrogen; Transportation energy policy 1.Prospects for hydrogen in the German energy system. Energytransportation energy: The case of hydrogen in the United

  20. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    and Renewable Energy, Nuclear Energy, and Basic Energy Sciences, and will focus on solar electricity, fuels from sunlight, batteries and

  1. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes

    E-Print Network [OSTI]

    Shabani, A.

    Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not ...

  2. A MAC-aware Energy Efficient Reliable Transport Protocol for Wireless Sensor Networks

    E-Print Network [OSTI]

    Sahoo, Anirudha

    A MAC-aware Energy Efficient Reliable Transport Protocol for Wireless Sensor Networks Sandip Dalvi in WSN such as battery power and memory. In this paper, we propose a transport protocol which provides based on their residual energies and average MAC layer data rate. The event rate distribution happens

  3. On the energy transported by exact plane gravitational-wave solutions

    E-Print Network [OSTI]

    Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

    2009-09-24

    The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

  4. ERTP: Energy-Efficient and Reliable Transport Protocol for Data Streaming in Wireless Sensor

    E-Print Network [OSTI]

    New South Wales, University of

    ERTP: Energy-Efficient and Reliable Transport Protocol for Data Streaming in Wireless Sensor and Engineering The University of New South Wales Sydney 2052, Australia #12;Abstract Emerging data streaming applications in Wireless Sensor Networks require re- liable and energy-efficient transport protocols [17] [18

  5. AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS

    E-Print Network [OSTI]

    Pietra, Paola

    AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS #3; STEFAN HOLST, ANSGAR J  UNGEL y AND PAOLA PIETRA z Abstract. Energy-transport models are used in semiconductor simulations to account for ther- mal e#11;ects. The model consists of the continuity equations for the mass

  6. NUMERICAL COUPLING OF ELECTRIC CIRCUIT EQUATIONS AND ENERGY-TRANSPORT MODELS FOR SEMICONDUCTORS

    E-Print Network [OSTI]

    Jüngel, Ansgar

    NUMERICAL COUPLING OF ELECTRIC CIRCUIT EQUATIONS AND ENERGY-TRANSPORT MODELS FOR SEMICONDUCTORS effects is proposed. The charged particle flow in the semiconductor devices is described by the energy-transport equations for the electrons and the drift-diffusion equations for the holes. The electric circuit is modeled

  7. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  8. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    by the population density, we obtain the average primary energy consumption per unit area, which for Britain is 1 that could be supplied by many renewables: the gravitational poten- tial energy of rainfall in Scottish Energy Systems, puts it like this: "The total power consumption of the humans on Earth is approximately

  9. Solar energy in the context of energy use, energy transportation, and energy storage

    E-Print Network [OSTI]

    MacKay, David J.C.

    by the population density, we obtain the average primary energy consumption per unit area, which for Britain is 1 that could be supplied by many renewables: the gravitational poten­ tial energy of rainfall in Scottish for Solar Energy Systems, puts it like this: ``The total power consumption of the humans on Earth

  10. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation

    E-Print Network [OSTI]

    Horvath, Arpad; Chester, Mikhail

    2008-01-01

    Energy inventory Final Report to the University of California Transportationand Energy Use in Transportation (GREET) Model. http://greet.anl.gov/ Final Report to the University of Californiaand energy acquisition, transportation, manufacturing, construction, use and operation, maintenance, repair/renovation/retrofit, and Final Report to the University of California

  11. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  12. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  13. 2D numerical simulation of the MEP energy-transport model with a finite difference scheme

    SciTech Connect (OSTI)

    Romano, V. . E-mail: romano@dmi.unict.it

    2007-02-10

    A finite difference scheme of Scharfetter-Gummel type is used to simulate a consistent energy-transport model for electron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle. Simulations of silicon n{sup +}-n-n{sup +} diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature, show the validity of the model and the robustness of the numerical scheme.

  14. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  15. Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #834: About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles

  16. Addressing transportation energy and environmental impacts: technical and policy research directions

    SciTech Connect (OSTI)

    Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

    1995-08-01

    The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

  17. Office of Secure Transportation Activities | Department of Energy

    Office of Environmental Management (EM)

    Activities Our Mission To provide safe and secure ground and air transportation of nuclear weapons, nuclear weapons components, and special nuclear materials and conduct...

  18. Generated using version 3.0 of the official AMS LATEX template Meridional Energy Transport in the Coupled1

    E-Print Network [OSTI]

    Vallis, Geoff

    Generated using version 3.0 of the official AMS LATEX template Meridional Energy Transport The variability and compensation of the meridional energy transport in the atmosphere and ocean6 are examined be interpreted as arising from the highly efficient nature of the energy transport in the atmo-22 sphere rather

  19. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Analytical solutions for benchmarking cold regions subsurface water flow and energy transport Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have of powerful simulators of cold regions subsurface water flow and energy transport have emerged in recent years

  20. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  1. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    IEA. ______. 2008b. World Energy Outlook 2008. Paris,current path. The IEA World Energy Outlook 2008 provides acontributed to IEA’s World Energy Outlooks. Mr. Di?glio has

  2. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    Fuel Cell Vehicles and the Potential Hydrogen EnergyFuel Economy Potential in the United States. ” Annual Review of Energy andfuel economy potential to 2030. He has been retained by the International Energy

  3. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    IEA. ______. 2008b. World Energy Outlook 2008. Paris,contributed to IEA’s World Energy Outlooks. Mr. Di?glio hascurrent path. The IEA World Energy Outlook 2008 provides a

  4. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    IEA. ______. 2008b. World Energy Outlook 2008. Paris,EIA). 2009a. Annual Energy Outlook 2009. Washington, DC.EIA). 2009. Annual Energy Outlook 2009. Washington, DC. U.S.

  5. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    EIA). 2009a. Annual Energy Outlook 2009. Washington, DC.EIA). 2009. Annual Energy Outlook 2009. Washington, DC. U.S.EIA). 2009. Annual Energy Outlook 2009. DOE/EIA-0383(2008).

  6. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    Understanding the Canadian oil sands industry’s greenhouseM. Rubenstein. 2009. Canadian Oil Sands: Energy Security andConstraints for the Canadian Oil Sands Industry. ” Energy &

  7. Texas Transportation Institute, Agency 727 Energy Management and Conservation Plan (RP-49)

    E-Print Network [OSTI]

    consumption of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submittedTexas Transportation Institute, Agency 727 Energy Management and Conservation Plan (RP-49) Year implementations. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures

  8. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

  9. The Interannual Variability of Tropical Precipitation and Interhemispheric Energy Transport

    E-Print Network [OSTI]

    Donohoe, Aaron

    The interannual variability of the location of the intertropical convergence zone (ITCZ) is strongly (R = 0.75) correlated with the atmospheric heat transport across the equator (AHTEQ) over the satellite era (1979–2009). ...

  10. Energy Carrier Transport In Surface-Modified Carbon Nanotubes 

    E-Print Network [OSTI]

    Ryu, Yeontack

    2012-11-30

    of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties...

  11. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund, DE 19716, USA a r t i c l e i n f o Article history: Received 18 March 2008 Accepted 2 June 2008 Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV

  12. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy

    E-Print Network [OSTI]

    Knowles, David William

    energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hy- droelectric, wind, solar, and biomass), only biomass has the potential to provide a high- energy-content transportation is however not optimal, while plant cell walls (lignocellulose) represent a huge un- tapped source of energy

  13. Return currents and energy transport in the solar flaring Anna Codispoti1

    E-Print Network [OSTI]

    Piana, Michele

    Return currents and energy transport in the solar flaring atmosphere Anna Codispoti1 ,Gabriele electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy for the energy loss rate provides a better fit of the experimental data with respect to the model based

  14. A NextSTEPS white paper by: Kenneth B. Medlock III, Ph.D. (Sustainable Transportation Energy Pathways) Program

    E-Print Network [OSTI]

    California at Davis, University of

    Ecomagination, and the Sustainable Transportation Energy Pathways (NextSTEPS) consortium for financial supportA NextSTEPS white paper by: Kenneth B. Medlock III, Ph.D. NextSTEPS (Sustainable Transportation Energy Pathways) Program UC Davis Institute of Transportation Studies February 18, 2015 Final Version

  15. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION...

    Office of Scientific and Technical Information (OSTI)

    can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy...

  16. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  17. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  18. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  19. Energy transport in anharmonic lattices close and far from equilibrium

    E-Print Network [OSTI]

    Stefano Lepri; Roberto Livi; Antonio Politi

    1997-09-15

    The problem of stationary heat transport in the Fermi-Pasta-Ulam chain is numerically studied showing that the conductivity diverges in the thermodynamic limit. Simulations were performed with time-reversible thermostats, both for small and large temperature gradients. In the latter case, fluctuations of the heat current are shown to be in agreement with the recent conjectures of Gallavotti and Cohen.

  20. Alternative energy sources for non-highway transportation: technical section

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  1. Integrated transport and renewable energy systems B. V. Mathiesen*

    E-Print Network [OSTI]

    on second generation biofuel production for the substitution of oil products [4]. Worldwide, the focus it. Biomass is a limited resource and it is important to avoid effecting the production, transport gains increasing international attention due to its large oil dependency of app. 95 per cent

  2. Transport and Fractionation in Periodic Potential-Energy Landscapes Matthew Pelton and Kosta Ladavac

    E-Print Network [OSTI]

    Grier, David

    . Grier Dept. of Physics and Center for Soft Matter Research New York University, New York, NY 10003Transport and Fractionation in Periodic Potential-Energy Landscapes Matthew Pelton and Kosta (Dated: January 2, 2012) Objects driven through periodically modulated potential-energy landscapes in two

  3. Self-Energy-Limited Ion Transport in Subnanometer Channels Douwe Jan Bonthuis,1

    E-Print Network [OSTI]

    Meller, Amit

    Self-Energy-Limited Ion Transport in Subnanometer Channels Douwe Jan Bonthuis,1 Jingshan Zhang,2 electrostatic self-energy barrier originating from the large difference in the dielectric constants of water export and phage infection and is the underlying principle behind a number of new methods for nucleic

  4. A mixed finite-element scheme of a semiconductor energy-transport model

    E-Print Network [OSTI]

    Hanke-Bourgeois, Martin

    A mixed finite-element scheme of a semiconductor energy-transport model using dual entropy which are able to deal with physical effects such as carrier heating and velocity overshoot. The energy that the Joule heating term vanishes if the dual entropy variables w1 = (µ - V )/T and w2 = -1/T are employed

  5. World Renewable Energy Congress 2011 Sweden Sustainable Transport (ST) 8-11 May 2011, Linkping, Sweden

    E-Print Network [OSTI]

    World Renewable Energy Congress 2011 ­ Sweden Sustainable Transport (ST) 8-11 May 2011, Linköping: Renewable fuels, Biodiesel, Vehicle emissions, Regulated air pollutants, Hazardous air pollutants 1 in an attempt to reduce greenhouse gas emissions and to improve the energy security of the country. Biodiesel

  6. Surface excess properties from energy transport measurements during water evaporation Fei Duan and C. A. Ward*

    E-Print Network [OSTI]

    Ward, Charles A.

    Surface excess properties from energy transport measurements during water evaporation Fei Duan condi- tions, accounts for as little as 50% of the energy required to evaporate water at the measured 2004; revised manuscript received 21 March 2005; published 2 November 2005 When water evaporates

  7. Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms

    E-Print Network [OSTI]

    Meyers, Johan

    2012-01-01

    As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.

  8. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01

    Gilbert is a Toronto-based transport and energy consultantof the forthcoming book Transport Revolutions: Making theand substantial transition to transport systems based on

  9. Transportation Energy Futures Study: The Key Results and Conclusions...

    Open Energy Info (EERE)

    activities related to renewable energy and energy efficiency technologies. Austin Brown, Ph.D., is a senior analyst in the Washington, D.C. office of the National Renewable...

  10. Transport Coefficients for Holographic Hydrodynamics at Finite Energy Scale

    E-Print Network [OSTI]

    Xian-Hui Ge; Hong-Qiang Leng; Li Qing Fang; Guo-Hong Yang

    2014-08-19

    We investigate the relations between black hole thermodynamics and holographic transport coefficients in this paper. The formulae for DC conductivity and diffusion coefficient are verified for electrically single-charged black holes. We examine the correctness of the proposed expressions by taking charged dilatonic and single-charged STU black holes as two concrete examples, and compute the flows of conductivity and diffusion coefficient by solving the linear order perturbation equations. We then check the consistence by evaluating the Brown-York tensor at a finite radial position. Finally, we find that the retarded Green functions for the shear modes can be expressed easily in terms of black hole thermodynamic quantities and transport coefficients.

  11. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  12. Hydrogen Energy Storage: Grid and Transportation Services Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accessed September 30, 2014: http:energy.goveerefuelcellsdownloadsreversible-fuel-cells-workshop-summary-report. Saur, G.; Ramsden, T. (2011). Wind Electrolysis:...

  13. Transport calculation of dilepton production at ultrarelativistic energies

    E-Print Network [OSTI]

    C. Ernst; S. A. Bass; S. Soff; H. Stöcker; W. Greiner

    1999-07-30

    Dilepton spectra are calculated within the microscopic transport model UrQMD and compared to data from the CERES experiment. The invariant mass spectra in the region 300 MeV < M < 600 MeV depend strongly on the mass dependence of the $\\rho$ meson decay width which is not sufficiently determined by the Vector Meson Dominance model. A consistent explanation of both the recent Pb+Au data and the proton induced data can be given without additional medium effects.

  14. Collective Flow and Energy Loss with parton transport

    E-Print Network [OSTI]

    I. Bouras; A. El; O. Fochler; F. Reining; J. Uphoff; C. Wesp; Z. Xu; C. Greiner

    2010-12-21

    Quenching of gluonic jets and heavy quark production in Au+Au collisions at RHIC can be understood within the pQCD based 3+1 dimensional parton transport model BAMPS including pQCD bremsstrahlung $2 \\leftrightarrow 3$ processes. Furthermore, the development of conical structures induced by gluonic jets is investigated in a static box for the regimes of small and large dissipation.

  15. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUp GeorgiaLinacLiquefactionTransportation

  16. The fluctuation energy balance in non-suspended fluid-mediated particle transport

    E-Print Network [OSTI]

    Thomas Pähtz; Orencio Durán; Tuan-Duc Ho; Alexandre Valance; Jasper F. Kok

    2015-01-16

    Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small.

  17. INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2009-12-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  18. Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

  19. Capital requirements for the transportation of energy materials: 1979 arc estimates

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

  20. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  1. Deviations of the Energy-Momentum Tensor from Equilibrium in the Initial State for Hydrodynamics from Transport Approaches

    E-Print Network [OSTI]

    Oliinychenko, Dmytro

    2015-01-01

    Many hybrid models of heavy ion collisions construct the initial state for hydrodynamics from transport models. Hydrodynamics requires that the energy-momentum tensor $T^{\\mu\

  2. Deviations of the Energy-Momentum Tensor from Equilibrium in the Initial State for Hydrodynamics from Transport Approaches

    E-Print Network [OSTI]

    Dmytro Oliinychenko; Hannah Petersen

    2015-08-18

    Many hybrid models of heavy ion collisions construct the initial state for hydrodynamics from transport models. Hydrodynamics requires that the energy-momentum tensor $T^{\\mu\

  3. Long-term energy consumptions of urban transportation: A prospective...

    Open Energy Info (EERE)

    can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of appropriate urban...

  4. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14-15, 2014 Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity...

  5. Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas

    SciTech Connect (OSTI)

    Mishra, R.; Beg, F. N.; Leblanc, P.; Sentoku, Y.; Wei, M. S.

    2013-07-15

    Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.

  6. Funding Urban Public Transport: Case Study Compendium | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtc JumpInformation Funda o

  7. GIZ Sourcebook Module 4e: Intelligent Transport Systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co LtdGEOGHD Inc|

  8. GIZ Transport & Mobility Compass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon CoInformation g:&

  9. FRV SI Transport Solar LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbH EFCFBA FrancoFRED Home >SI Transport

  10. India-Low Carbon Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilitiesRenovInceisaTransport (Redirected

  11. Institute for Transportation & Development Policy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAndInformationInstalledTransportation

  12. LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondikeKunBLEDSLEDSGP/Transportation

  13. Transportation Energy Data Book: Edition 34 - Full Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts > ProductsSubtitleTransportation

  14. Transportation Energy Futures Series: Projected Biomass Utilization for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts > ProductsSubtitleTransportationFUELSFuels

  15. Transportation Fact of the Week - 2015 Archive | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory AuthorityTrack A -TRANSMISSION4 Archive Transportation5

  16. Long-range coherent energy transport in Photosystem II

    E-Print Network [OSTI]

    Jan J. J. Roden; Doran I. G. Bennett; K. Birgitta Whaley

    2015-01-27

    We simulate the long-range inter-complex electronic energy transfer in Photosystem II -- from the antenna complex, via a core complex, to the reaction center -- using a non-Markovian (ZOFE) quantum master equation description that allows us to quantify the electronic coherence involved in the energy transfer. We identify the pathways of the energy transfer in the network of coupled chromophores, using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation -- localized, coherent initial excitation versus delocalized, incoherent initial excitation -- and find that the energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the original parameters lie in a (broad) region that enables optimal transfer efficiency, and that the energy transfer appears to be very robust with respect to variations in the vibronic coupling. Nevertheless, vibrationally enhanced transfer appears to be crucial to obtain a high transfer efficiency. We compare our quantum simulation to a "classical" rate equation based on a modified-Redfield/generalized-F\\"orster description that was previously used to simulate energy transfer dynamics in the entire Photosystem II complex, and find very good agreement between quantum and rate-equation simulation of the overall energy transfer dynamics.

  17. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  18. Large deviation generating function for energy transport in the Pauli-Fierz model

    E-Print Network [OSTI]

    Wojciech De Roeck

    2007-11-14

    We consider a finite quantum system coupled to quasifree thermal reservoirs at different temperatures. Under the assumptions of small coupling and exponential decay of the reservoir correlation function, the large deviation generating function of energy transport into the reservoirs is shown to be analytic on a bounded set. Our method is different from the spectral deformation technique which was employed recently in the study of spin-boson-like models. As a corollary, we derive the Gallavotti-Cohen fluctuation relation for the entropy production and a central limit theorem for energy transport.

  19. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes

    E-Print Network [OSTI]

    Masoud Mohseni; Alireza Shabani; Seth Lloyd; Herschel Rabitz

    2012-12-31

    Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to the relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy $\\lambda$, bath frequency cutoff $\\gamma$, temperature $T$, bath spatial correlations, initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. We identify the ratio of $\\lambda T/\\gamma\\*g$ as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.

  20. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  1. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes

    SciTech Connect (OSTI)

    Mohseni, M.; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ; Shabani, A.; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 ; Lloyd, S.; Rabitz, H.

    2014-01-21

    Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy ?, bath frequency cutoff ?, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}?T/???g as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.

  2. Role of quantum coherence in chromophoric energy transport

    E-Print Network [OSTI]

    Patrick Rebentrost; Masoud Mohseni; Alán Aspuru-Guzik

    2009-02-04

    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.

  3. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    E-Print Network [OSTI]

    Zhou, Kai; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  4. Return currents and energy transport in the solar flaring atmosphere

    E-Print Network [OSTI]

    Codispoti, Anna; Piana, Michele; Pinamonti, Nicola

    2013-01-01

    According to a standard ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated to these local currents has an ohmic nature and significantly shortens the acceleration electron path. In the present paper we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. Specifically, we show that this new formula for the energy l...

  5. ORNL/SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY

    E-Print Network [OSTI]

    OF THE ENERGY SITUATION ....................................... 7 2.3 PERCEIVED EFFECTS OF GASOLINE PRICES ............................................................................................................................ 69 #12;iv #12;v LIST OF FIGURES Figure Page 1 VMT and Gasoline Price Change from Same Period Previous

  6. The Dynamic Context for Sustainable Transportation Energy Research

    E-Print Network [OSTI]

    Handy, Susan L.

    /LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;VEHICLE COMMERCIALIZATION TAKES TIME Source at Night #12;CHALLENGES FACING FUTURE ENERGY SYSTEM · Growth of demand, esp. in developing countries

  7. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  8. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany, Hanno Butsch, NOW GmbH Panel 1, Hawaii Hydrogen Projects Status and Lessons Learned,...

  9. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  10. Vermont Agency of Transportation Right of Way Manual | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act

  11. Transport NAMA submissions to the UNFCCC: Domestic frameworks | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History View

  12. Transportation Assessment Toolkit/Home | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History ViewCase

  13. Anomalous energy transport in the FPU-beta chain

    E-Print Network [OSTI]

    Jani Lukkarinen; Herbert Spohn

    2007-04-12

    We consider the energy current correlation function for the FPU-beta lattice. For small non-linearity one can rely on kinetic theory. The issue reduces then to a spectral analysis of the linearized collision operator. We prove thereby that, on the basis of kinetic theory, the energy current correlations decay in time as t^(-3/5). It follows that the thermal conductivity is anomalous, increasing as N^(2/5) with the system size N.

  14. LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact Us < LEDSGP‎ |

  15. LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact Us

  16. LEDSGP/Transportation Toolkit/Strategies/Shift | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: EnergyContact

  17. National Transportation Stakeholders Forum (NTSF) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment ofEnergyIncreasedNational104-113]

  18. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  19. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  20. Energy transport faster than light in good conductors and superconductors

    E-Print Network [OSTI]

    Z. Y. Wang

    2012-02-09

    People need a model to study tachyons whose prediction can be tested easily. The dispersion relation w^2=k^2C^2-a^2C^2 of a low-frequency electromagnetic field in good conductors is equivalent to the energy-momentum equation E^2=p^2C^2-m^2C^4 of a tachyon where the proportionality coefficient is h^2. An experiment in 1980s to measure the phase velocity Vp [1] can be regarded as an indirect evidence of the superluminal velocity V>>c of those photons just equals the rate of energy flow S/w of the field.Instability of the tachyonic field corresponds to the Joule heat. To detect the speed of energy is difficult and we plan to modulate signals to observe the information velocity (speed of points of non-analyticity)[2].

  1. Vermont Agency of Transportation EPSC Protocol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act 250OpenPollutionOpen

  2. Vermont Waste Transportation Permit and License Information | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorActInformationRuleVermont

  3. UC Berkeley-Transportation Sustainability Research Center | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA Region 10 Jump3 - Water4 -9 -9-403

  4. Energy Transport in a One-Dimensional Granular Gas

    E-Print Network [OSTI]

    Italo Ivo Lima Dias Pinto; Alexandre Rosas; Katja Lindenberg

    2009-02-13

    We study heat conduction in one-dimensional granular gases. In particular, we consider two mechanisms of viscous dissipation during inter-grain collisions. In one, the dissipative force is proportional to the grain's velocity and dissipates not only energy but also momentum. In the other, the dissipative force is proportional to the relative velocity of the grains and therefore conserves momentum even while dissipating energy. This allows us to explore the role of momentum conservation in the heat conduction properties of this one-dimensional nonlinear system. We find normal thermal conduction whether or not momentum is conserved.

  5. Low-Carbon Land Transport Policy Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd,LoudonLouviers,ResourceEnergyLow-CarbonLand

  6. Public Transport: Moving towards Sustainable Mobility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmian JumpOpen EnergyElec &

  7. Intelligent Transportation Systems Deployment Analysis System | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMakingBiofuels Jump to:Energy/Infinite Energy,

  8. Energy Savers in the Community: Green Transportation Rally | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for<StateSarah

  9. Agencies Publish Draft Environmental Impact Statement on Energy Transport

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FAL 99-01EnergyDepartment ofEnergyof8

  10. Sandia Energy - Sandia Paper Wins Recognition by the Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewable EnergyWAvesLawrenceImpactsPV Team

  11. Special Topics on Energy Use in Household Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Page Welcome to the Energy Information

  12. Transportation Sector Module of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model

  13. Energy Policy Act transportation rate study: Availability of data and studies

    SciTech Connect (OSTI)

    Not Available

    1993-10-13

    Pursuant to Section 1340(c) of the Energy Policy Act of 1992 (EPACT), this report presents the Secretary of Energy`s review of data collected by the Federal Government on rates for rail and pipeline transportation of domestic coal, oil, and gas for the years 1988 through 1997, and proposals to develop an adequate data base for each of the fuels, based on the data availability review. This report also presents the Energy Information Administration`s findings regarding the extent to which any Federal agency is studying the impacts of the Clean Air Act Amendments of 1990 (CAAA90) and other Federal policies on the transportation rates and distribution patterns of domestic coal, oil, and gas.

  14. Energy and water vapor transport across a simplified cloud-clear air interface

    E-Print Network [OSTI]

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  15. CHAPTER THREE: ENERGY-RELATED ACTIVITIES Petroleum Exploration, Production, and Transportation

    E-Print Network [OSTI]

    potential oil and gas deposits. Petroleum production includes the drilling and extraction of oil and gas contain dissolved compounds (i.e., polycyclic aromatic hydrocarbons, PAH) and dispersed crude oil (NRC67 CHAPTER THREE: ENERGY-RELATED ACTIVITIES Petroleum Exploration, Production, and Transportation

  16. Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational Study

    E-Print Network [OSTI]

    Geerts, Bart

    Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational an isolated, heated mountain are presented. The data were collected around the Santa Catalina Mountains congestus to cumulonimbus development over the mountain. Flights in the boundary layer around the mountain

  17. Zachary Hensley, Jibonananda Sanyal, Joshua New Energy and Transportation Sciences Division

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Zachary Hensley, Jibonananda Sanyal, Joshua New Energy and Transportation Sciences Division@ornl.gov Provenance In the scientific world, it is important for researchers to know where their data came from approach this property via a contextual outlook. The granularity of our system can change depending on how

  18. Investigation into the use of market segmentation analysis in transportation energy planning

    SciTech Connect (OSTI)

    Trombly, J.W.

    1985-01-01

    This research explores the application of market-segmentation analysis in transportation energy planning. The study builds on the concepts of market segmentation developed in the marketing literature to suggest a strategy of segmentation analysis for use in transportation planning. Results of the two statewide telephone surveys conducted in 1979 and 1980 for the New York State Department of Transportation are used as the data base for identifying target segments. Subjects in these surveys were asked to indicate which of 18 energy conservation actions had been implemented over the prior year to conserve gasoline. These responses serve as the basis for segmentation. Two alternative methods are pursued in identifying target market segments for purposes of transportation energy planning. The first approach consists of the application of conventional multivariate analysis procedures. The second method exploits the principles of latent trait or modern test theory. Results of the conventional analysis suggest that the data collected can be divided into eight segments. Results of the application of latent trait theory identify three market segments. Results of this study may be used to design future responses to energy shortages in addition to suggesting strategies to be pursued in measuring consumer response.

  19. ALTERNATIVE TRANSPORTATION FUELS WORKSHOP Organized by: the INNOVATIVE ENERGY and ENVIRONMENTAL TECHNOLOGY WORKGROUP

    E-Print Network [OSTI]

    Garfunkel, Eric

    Department of Environmental Protection 10:00 ­ 12:00 pm Session I ­ Natural Gas and Biomethane ­ Moderator: Chuck Feinberg, Chairman, New Jersey Clean Cities Coalition Bill Wells, NJ Natural Gas Graham BarkerALTERNATIVE TRANSPORTATION FUELS WORKSHOP Organized by: the INNOVATIVE ENERGY and ENVIRONMENTAL

  20. Energy localization and transport in two-dimensional electrical L.Q. English1

    E-Print Network [OSTI]

    Carretero, Ricardo

    Energy localization and transport in two-dimensional electrical lattices L.Q. English1 , F. Palmero and characterized in two-dimensional nonlinear electrical lattices which were driven by a spatially-uniform voltage-dimensional, damped-driven electrical lattices (see also Ref. [12]). We characterize these breather states

  1. DESIGN STUDY OF THE DIPOLE MAGNET FOR THE RHIC EBIS HIGH ENERGY TRANSPORT LINE

    E-Print Network [OSTI]

    DESIGN The bending section in EBIS HEBT line consists of two identical H type magnets with a slit betweenDESIGN STUDY OF THE DIPOLE MAGNET FOR THE RHIC EBIS HIGH ENERGY TRANSPORT LINE Takeshi Kanesue magnet body should be laminated. In this paper, design methods of the dipole magnet to optimize magnetic

  2. Paraboloidal Dish Arrays with Steam Energy Transport Network Jeff Cumpston1

    E-Print Network [OSTI]

    are theoretically capable of higher concentration ratios than other solar-thermal collector technologies collector system layout. The ANU Solar Thermal Group has constructed a 500m2 paraboloidal collector with collector placement for an array of paraboloidal dishes with a steam energy transport network is presented

  3. RETURN CURRENTS AND ENERGY TRANSPORT IN THE SOLAR FLARING ATMOSPHERE

    SciTech Connect (OSTI)

    Codispoti, Anna; Torre, Gabriele; Piana, Michele; Pinamonti, Nicola [Dipartimento di Matematica, Universita di Genova, via Dodecaneso 35, I-16146 Genova (Italy)

    2013-08-20

    According to the standard Ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated with these local currents has an Ohmic nature and significantly shortens the accelerated electron path. In the present paper, we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. We show that this new formula for the energy loss rate provides a better fit of the experimental data with respect to the model based on the effects of standard Ohmic return currents.

  4. Particle and Energy Transport in quantum disordered and quasi-periodic chains connected to mesoscopic Fermi reservoirs

    E-Print Network [OSTI]

    S. Ajisaka; F. Barra; C. Mejia-Monasterio; T. Prosen

    2012-05-06

    We study a model of nonequilibrium quantum transport of particles and energy in a many-body system connected to mesoscopic Fermi reservoirs (the so-called meso-reservoirs). We discuss the conservation laws of particles and energy within our setup as well as the transport properties of quasi-periodic and disordered chains.

  5. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  6. Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet

    E-Print Network [OSTI]

    Farrell, Brian F.

    Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

  7. Washington State Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,| Open

  8. Sustainable Urban Transport Project (SUTP) Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to:PowerSystems

  9. Technology Roadmap: Biofuels for Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformation ResearchPartners Jump

  10. Technology Roadmap: Biofuels for Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformation ResearchPartners Jump

  11. Meeting Society's Transport Needs Under Tight Budgets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop,Smw importMeeme,

  12. Long-term energy consumptions of urban transportation: A prospective

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranch Capitalsimulation of

  13. LEDSGP/Transportation Toolkit/Training | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania:

  14. Santa Clara Valley Transportation Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of Energy San10 DOEDistrict

  15. Hawaii Department of Transportation Highways Division | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy ResourcesHasselbach

  16. Energy Department Awards $45 Million to Deploy Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of theSolarDepartment of Energy

  17. Agencies Publish Draft Environmental Impact Statement on Energy Transport

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie Pezzullo OfficeDepartmentEnergyAdvocateCorridor

  18. Sustainable Transportation Day 2015 at the Energy Department | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainable Federal Fleetsof Energy

  19. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShot

  20. Superdiffusive Transport and Energy Localization in Disordered Granular Crystals

    E-Print Network [OSTI]

    Alejandro J. Martínez; P. G. Kevrekidis; Mason A. Porter

    2015-09-11

    We study the spreading of initially localized excitations in 1D disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We compare wave dynamics in chains with 3 different types of disorder: an uncorrelated (Anderson-like) disorder and 2 types of correlated disorders (random dimer arrangements), and for 2 types of initial conditions: displacement excitations and velocity excitations. For strongly precompressed chains, the dynamics depend strongly on the initial condition. For displacement excitations, the long-time behavior of the second moment $\\tilde{m}_2$ has oscillations that depend on the type of disorder, with a complex trend that differs markedly from a power law and which is particularly evident for an Anderson disorder. For velocity excitations, we find a scaling $\\tilde{m}_2\\sim t^{\\gamma}$ (for a constant $\\gamma$) for all 3 types of disorder. For weakly precompressed (strongly nonlinear) chains, $\\tilde{m}_2$ and the inverse participation ratio $P^{-1}$ satisfy $\\tilde{m}_2\\sim t^{\\gamma}$ and $P^{-1}\\sim t^{-\\eta}$, and the dynamics is superdiffusive for all examined cases. When precompression is strong, the IPR decreases slowly for all 3 types of disorder, and we observe a partial localization around the core and the leading edge of the wave. For an Anderson disorder, displacement perturbations lead to localization of energy primarily in the core, and velocity perturbations cause the energy to be divided between the core and the leading edge. This localization phenomenon does not occur in the sonic-vacuum regime, which yields the surprising result that the energy is no longer contained in strongly nonlinear waves but instead is spread across many sites. In this regime, the exponents are very similar in all cases.

  1. User:Nlangle/TransportTools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNew York:CategoryListsTimeline Test

  2. Sustainable Transport and Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to:PowerSystems STS Jump

  3. Sustainable Transport and Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to:PowerSystems STS

  4. Sustainable Transport and Climate Process | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd Jump to:PowerSystems STSProcess

  5. Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformation National

  6. International Association of Public Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13Renewable Power Jump to: navigation, searchPublic

  7. International Council on Clean Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13Renewable Power Jump to:(Redirected fromandClean

  8. Post-2012 Climate Instruments in the transport sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: EnergyOklahoma:Ewen,RiskInformation Post-2012

  9. Production Costs of Alternative Transportation Fuels | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,|ProarkInformation

  10. Nevada Department of Transportation - Occupancy Permits | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd JumpNesjavellir GeothermalArkansas: EnergyInformation

  11. Department of Energy Receives Highest Transportation Industry Safety Award

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory |EducationDepartment5-3: Pursuant to| Department of

  12. Energy, Transportation Ministers from Asia-Pacific Nations Pledge

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavingsAugust 26, 2013

  13. Alternatives to Traditional Transportation Fuels 2009 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel' Financing

  14. Alternatives to Traditional Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel' FinancingFuels

  15. NGV and FCV Light Duty Transportation Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen Lichvar FEof Energy NEWNGV and FCV Light

  16. Policies to Reduce Emissions from the Transportation Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexus Sol JumpLowLow

  17. RITA-Bureau of Transportation Statistics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFU Elektronik GmbH JumpChina LtdRITA-Bureau

  18. Anion Exchange Membranes - Transport/Conductivity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table ofDepartment of EnergyOperationsAndrewAndy-

  19. Sandia Energy - Storing Hydrogen Underground Could Boost Transportation,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWorkSensorsEnergy PermalinkSteve

  20. Sustainable Transport Illustrative Scenarios Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCase studiesIllustrative

  1. Sustainable Transport Illustrative Scenarios Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCase

  2. Sustainable Urban Transport Project (SUTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergySustainability Center ofCaseSustainable

  3. APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgramInformation ALLETE, Inc.EnergyPlcAOS Solar

  4. Capacity Building on Sustainable Urban Transport (CAPSUT) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty,New York:Information

  5. Cart or Horse: Transport and Economic Growth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan: Energy ResourcesCarson,

  6. Center for Sustainable Transport of Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo Energy JumpCeiling FanMoriches,

  7. Hawaii Department of Transportation Harbors Divsion | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy ResourcesHasselbach MeatsInformation

  8. Alaska Department of Transportation and Public Facilities | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamo Heights,Game Jump to:

  9. Transportation Emergency Preparedness Program (TEPP) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| DepartmentSecurity | Department ofeffort to address

  10. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect Pulse energy(Conference) |SciTech Connect

  11. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainX IncSheet),Renewable Energy,

  12. Electric Drive Transportation Association Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofof EnergyPlants" NowDepartment ofEffect ofThree

  13. Sandia Energy - Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW DatabaseNuclearScienceSediment

  14. The Transportation Sector Model of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4) The

  15. The Transportation Sector Model of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4) The5) The

  16. Scale-estimation of quantum coherent energy transport in multiple-minima systems

    E-Print Network [OSTI]

    Tristan Farrow; Vlatko Vedral

    2014-06-17

    A generic and intuitive model for coherent energy transport in multiple minima systems coupled to a quantum mechanical bath is shown. Using a simple spin-boson system, we illustrate how a generic donor-acceptor system can be brought into resonance using a narrow band of vibrational modes, such that the transfer efficiency of an electron-hole pair (exciton) is made arbitrarily high. Coherent transport phenomena in nature are of renewed interest since the discovery that a photon captured by the light-harvesting complex (LHC) in photosynthetic organisms can be conveyed to a chemical reaction centre with near-perfect efficiency. Classical explanations of the transfer use stochastic diffusion to model the hopping motion of a photo-excited exciton. This accounts inadequately for the speed and efficiency of the energy transfer measured in a series of recent landmark experiments. Taking a quantum mechanical perspective can help capture the salient features of the efficient part of that transfer. To show the versatility of the model, we extend it to a multiple minima system comprising seven-sites, reminiscent of the widely studied Fenna-Matthews-Olson (FMO) light-harvesting complex. We show that an idealised transport model for multiple minima coupled to a narrow-band phonon can transport energy with arbitrarily high efficiency.

  17. Effect of flow oscillations on axial energy transport in a porous material

    SciTech Connect (OSTI)

    Siegel, R. (NASA Lewis Research Center, Cleveland, OH (USA))

    1987-02-01

    It has been shown analytically and experimentally that flow oscillations of a fluid within a channel can enhance the axial transfer of energy. The transport arises from an axial gradient in fluid temperature resulting from having reservoirs at different temperatures at either end of the channel. The present analysis develops relations for axial energy diffusion in a porous medium with oscillating flow. In some devices, such as the Sterling engine, there are regenerators with oscillating flow. Axial transport in the regenerator provides an energy loss; hence it is desirable to determine what factors can limit this diffusion. A regenerator in the form of a porous medium is difficult to model since the flow is continually disrupted by the irregularities of the porous structure. The formulation here will employ an internal heat transfer coefficient that couples the fluid and solid temperatures. The final result shows how the diffusion depends on the magnitude of the heat transfer coefficient and the maximum fluid displacement.

  18. Cosmic ray transport and anisotropies to high energies

    E-Print Network [OSTI]

    Biermann, P L; Meli, A; Nath, B N; Seo, E -S; de Souza, V; Tjus, J Becker

    2015-01-01

    A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum $k^{-5/3}$ at small scales $\\lambda \\, = \\, 2 \\pi/k$ with $k$ the wave-number, then a saturation spectrum $k^{-1}$, and finally a shock-dominated spectrum $k^{-2}$ mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.

  19. TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 Acceleration power Measured in kilowatts. Pulse power obtainable from a battery used to accelerate a

    E-Print Network [OSTI]

    Pennycook, Steve

    G­1 TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 GLOSSARY Acceleration power ­ Measured TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 Anthropogenic ­ Human made. Usually used in the context

  20. A probability current analysis of energy transport in open quantum systems

    E-Print Network [OSTI]

    Jan J. J. Roden; K. Birgitta Whaley

    2015-01-24

    We introduce a probability current analysis of excitation energy transfer between states of an open quantum system. Expressing the energy transfer through currents of excitation probability between the states in a site representation enables us to gain key insights into the energy transfer dynamics. It allows to, i) identify the pathways of energy transport in large networks of sites and to quantify their relative weights, ii) quantify the respective contributions of unitary dynamics, dephasing, and relaxation/dissipation processes to the energy transfer, and iii) quantify the contribution of coherence to the energy transfer. Our analysis is general and can be applied to a broad range of open quantum system descriptions (with coupling to non-Markovian environments) in a straightforward manner.