National Library of Energy BETA

Sample records for diamond thrust bearings

  1. THRUST BEARING

    DOE Patents [OSTI]

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  2. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  3. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  4. Thrust bearing assembly for a downhole drill motor

    SciTech Connect (OSTI)

    Geczy, B. A.

    1985-12-24

    A bidirectional thrust bearing assembly is used between a downhole fluid motor and a rock bit for drilling oil wells. The bearing assembly has a stationary housing with radial journal bearing sleeves and a rotatable drive shaft also having radial bearing sleeves. A pair of oppositely facing thrust bearing rings are mounted in the housing. A second pair of thrust bearing rings are mounted on the shaft so as to have faces opposing the bearing faces on the first pair of rings. Belleville springs resiliently bias a pair of the thrust bearing rings apart and carry the thrust load between such rings. Each ring has a plurality of inserts of hard material, preferably polycrystalline diamond, at the bearing surface. Means are provided for circulating drilling fluid from the motor through the thrust bearing faces for forming hydrodynamic fluid bearing films in the bearing interfaces.

  5. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect (OSTI)

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  6. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOE Patents [OSTI]

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  7. Optimization of residual heat removal pump axial thrust and axial bearing

    SciTech Connect (OSTI)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  8. Thrusts - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Hero Image.JPG Thrusts Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP research thrusts THRUST 1: Electrocatalysis Thrust-01-FINAL-COMPOSITE.jpg Thrust-01-FINAL-COMPOSITE.jpg THRUST 2: Photoelectrocatalysis Thrust 3: integration

  9. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  10. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  11. Phlogopite and Quartz Lamellae in Diamond-bearing Diopside from Marbles of the Kokchetav Massif Kazakhstan: Exsolution or Replacement Reaction

    SciTech Connect (OSTI)

    L Dobrzhinetskaya; R Wirth; D Rhede; Z Liu; H Green

    2011-12-31

    Exsolution lamellae of pyroxene in garnet (grt), coesite in titanite and omphacite from UHPM terranes are widely accepted as products of decompression. However, interpretation of oriented lamellae of phyllosilicates, framework silicates and oxides as a product of decompression of pyroxene is very often under debate. Results are presented here of FIB-TEM, FEG-EMP and synchrotron-assisted infrared (IR) spectroscopy studies of phlogopite (Phlog) and phlogopite + quartz (Qtz) lamellae in diamond-bearing clinopyroxene (Cpx) from ultra-high pressure (UHP) marble. These techniques allowed collection of three-dimensional information from the grain boundaries of both the single (phlogopite), two-phase lamellae (phlogopite + quartz), and fluid inclusions inside of diamond included in K-rich Cpx and understanding their relationships and mechanisms of formation. The Cpx grains contain in their cores lamellae-I, which are represented by topotactically oriented extremely thin lamellae of phlogopite (that generally are two units cell wide but locally can be seen to be somewhat broader) and microdiamond. The core composition is: (Ca{sub 0.94}K{sub 0.04}Na{sub 0.02})(Al{sub 0.06}Fe{sub 0.08}Mg{sub 0.88})(Si{sub 1.98}Al{sub 0.02})O{sub 6.00}. Fluid inclusions rich in K and Si are recognized in the core of the Cpx, having no visible connections to the lamellae-I. Lamellar-II inclusions consist of micron-size single laths of phlogopite and lens-like quartz or slightly elongated phlogopite + quartz intergrowths; all are situated in the rim zone of the Cpx. The composition of the rim is (Ca{sub 0.95}Fe{sub 0.03}Na{sub 0.02})(Al{sub 0.05}Fe{sub 0.05}Mg{sub 0.90})Si{sub 2}O{sub 6}, and the rim contains more Ca, Mg than the core, with no K there. Such chemical tests support our microstructural observations and conclusion that the phlogopite lamellae-I are exsolved from the K-rich Cpx-precursor during decompression. It is assumed that Cpx-precursor was also enriched in H{sub 2}O, because

  12. Thrust 1 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Electrocatalysis Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  13. Thrust 2 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Photoelectrocatalysis Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  14. Thrust 3 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Integration Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  15. Thrust 4 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Prototyping Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  16. Fluid lubricated bearing assembly

    DOE Patents [OSTI]

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  17. Fluid lubricated bearing construction

    DOE Patents [OSTI]

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  18. Performance evaluation of half-wetted hydrodynamic bearings with DLC coated surfaces.

    SciTech Connect (OSTI)

    Eryilmaz, O.; Erdemir, A.; Energy Systems

    2008-01-01

    In conventional liquid lubrication it is assumed that surfaces are fully wetted and no slip occurs between the fluid and the solid boundary. Under the 'no slip' condition the maximum shear gradient occurs at the fluid-surface interface. When one or both surfaces are non-wetted by the fluid, boundary slip can occur due to weak bonding between the fluid and the solid surface, which reduces shear stresses in the fluid adjacent to the non-wetted surface. A thrust bearing tribometer was used to compare the performance of 'no slip' hydrodynamic thrust bearings with bearings surfaces that were made to slip at the interface between the surface and fluid. Hydrophobic surfaces on both runner and bearing were achieved with the deposition of hydrogenated diamond like carbon (H-DLC) films, produced by plasma-enhanced CVD on titanium alloy surfaces. Hydrophilic surfaces were created through the surface modification of DLC. A mixtures of water and glycerol was used as the lubricant. The tests were conducted using different constant bearing gaps. The normal load and the torque or traction force between the rotating runner and hydrodynamic thrust bearing were measured with load cells. The experimental results confirmed that load support is still possible when surfaces are partially-wetted or nonwetted.

  19. Variable thrust cartridge

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  20. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian ...

  1. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  2. Diamond fiber field emitters

    DOE Patents [OSTI]

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  3. Bearing construction for refrigeration compresssor

    DOE Patents [OSTI]

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  4. Thrusts in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to ...

  5. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  6. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  7. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  8. Low-thrust rocket trajectories

    SciTech Connect (OSTI)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  9. Low-thrust rocket trajectories

    SciTech Connect (OSTI)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  10. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  11. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  12. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  13. Diamond tool machining of materials which react with diamond

    DOE Patents [OSTI]

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  14. Diamond tool machining of materials which react with diamond

    DOE Patents [OSTI]

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  15. Bearing Analytics

    Broader source: Energy.gov [DOE]

    Bearing Analytics is a leading-edge equipment monitoring company aimed at pioneering a new era in industrial bearing condition monitoring. Our objective is to consolidate the needs of customers, environment, and manufacturers to improve asset management and energy efficiency capabilities one bearing at a time.

  16. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1998-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  17. Journal bearing

    DOE Patents [OSTI]

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  18. Diamond nucleation using polyethene

    DOE Patents [OSTI]

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  19. Diamond films: Historical perspective

    SciTech Connect (OSTI)

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  20. Ultrananocrystalline Diamond (UNCD) Seal Faces | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultrananocrystalline Diamond (UNCD) Seal Faces Ultrananocrystalline Diamond (UNCD) Seal Faces New Diamond Coatings Reduce Friction and Improve Performance of Mechanical Seals ...

  1. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  2. PROCESS FOR COLORING DIAMONDS

    DOE Patents [OSTI]

    Dugdale, R.A.

    1960-07-19

    A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

  3. Nitrogen-incorporated ultrananocrystalline diamond microneedle...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for ... Title: Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for ...

  4. Diamond machine tool face lapping machine

    DOE Patents [OSTI]

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  5. Diamond-graphite field emitters

    DOE Patents [OSTI]

    Valone, Steven M.

    1997-01-01

    A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

  6. Thrust bolting: roof bolt support apparatus

    DOE Patents [OSTI]

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  7. Fluidized bed deposition of diamond

    DOE Patents [OSTI]

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  8. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect (OSTI)

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  9. CVD diamond - fundamental phenomena

    SciTech Connect (OSTI)

    Yarbrough, W.A.

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  10. Collar nut and thrust ring

    DOE Patents [OSTI]

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  11. Lower pressure synthesis of diamond material

    DOE Patents [OSTI]

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  12. Structure and properties of diamond and diamond-like films

    SciTech Connect (OSTI)

    Clausing, R.E.

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  13. LANSCE | Lujan Center | Science Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Thrust Areas User research at the Lujan Center is focused in four science thrust areas. Each has a contact person who is available to discuss proposed experiments and to provide advice on the appropriate instrument and instrument scientist, available sample environments, and other details for planned experiments. Lujan Center instrument scientists welcome questions and discussions about new experiments and are happy to provide guidance for proposal development. New users are encouraged

  14. Conversion of fullerenes to diamond

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  15. Conversion of fullerenes to diamond

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  16. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  17. Why Physics Needs Diamonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Physics Needs Diamonds Why Physics Needs Diamonds April 26, 2016 - 3:31pm Addthis A detailed view of the diamond wafers scientists use to get a better measure of spinning electrons. | Photo courtesy of Jefferson Lab. A detailed view of the diamond wafers scientists use to get a better measure of spinning electrons. | Photo courtesy of Jefferson Lab. Kandice Carter Jefferson Lab Diamonds are one of the most coveted gemstones. But while some may want the perfect diamond for its sparkle,

  18. Conversion of fullerenes to diamonds

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  19. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1995-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  20. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  1. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1997-01-01

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide.

  2. Blue Diamond Ventures Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Blue Diamond Ventures Inc Place: Houston,, Texas Zip: 77071 Product: Agriculture, bio fuels and commercial development company. References: Blue Diamond Ventures Inc1 This...

  3. High efficiency diamond solar cells

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  4. DRAFT Bear Safety Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bear Safety Plan June 2010 NSAbspRev9.doc 1 Atmospheric Radiation Measurement Climate Research Facility North Slope of AlaskaAdjacent Arctic Ocean (ACRFNSAAAO) Bear Safety ...

  5. Tailoring nanocrystalline diamond film properties

    DOE Patents [OSTI]

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  6. Conversion of fullerenes to diamond

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic hydrogen defect free diamond or diamond like films on a substrate. The method involves providing vapor containing fullerene molecules with or without an inert gas, providing a device to impart energy to the fullerene molecules, fragmenting at least in part some of the fullerene molecules in the vapor or energizing the molecules to incipient fragmentation, ionizing the fullerene molecules, impinging ionized fullerene molecules on the substrate to assist in causing fullerene fragmentation to obtain a thickness of diamond on the substrate.

  7. Amorphous-diamond electron emitter

    DOE Patents [OSTI]

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  8. Method of dehalogenation using diamonds

    DOE Patents [OSTI]

    Farcasiu, Malvina (Roslyn Harbor, NY); Kaufman, Phillip B. (Lafayette, LA); Ladner, Edward P. (Pittsburgh, PA); Anderson, Richard R. (Brownsville, PA)

    2000-01-01

    A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.

  9. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  10. Passive magnetic bearing configurations

    DOE Patents [OSTI]

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  11. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect (OSTI)

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  12. Thrust bolting: Roof-bolt-support apparatus

    SciTech Connect (OSTI)

    Tadolini, S.C.; Dolinar, D.R.

    1991-01-01

    The invention relates to a method for installing a roof bolt in a borehole of a rock formation and more specifically to tensioning the unit without the aid of a mechanical anchoring device or threaded tensioning threads. The bolt is capable of being placed into tension along the length and the levels of active support can be controlled by varying the length of the grouted portion and the level of thrust applied to the bolt during installation.

  13. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1987-02-06

    Use of double or multiple bevel culet geometry on a diamond anvil to provide increased sample pressure and stability for a given force applied to the diamond tables. 7 figs.

  14. Method of Forming Diamonds from Carbonaceous Material

    SciTech Connect (OSTI)

    Daulton, Tyrone; Lewis, Roy; Rehn, Lynn; Kirk, Marquis

    1999-11-30

    A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

  15. Method for forming diamonds from carbonaceous material

    DOE Patents [OSTI]

    Daulton, Tyrone; Lewis, Roy; Rehn, Lynn; Kirk, Marquis

    2001-01-01

    A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

  16. Diamond and diamond-like films for transportation applications

    SciTech Connect (OSTI)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  17. Characterization of single-crystal diamond grown from the vapor phase on substrates of natural diamond

    SciTech Connect (OSTI)

    Altukhov, A. A.; Vikharev, A. L.; Gorbachev, A. M.; Dukhnovsky, M. P.; Zemlyakov, V. E.; Ziablyuk, K. N.; Mitenkin, A. V.; Muchnikov, A. B. Radishev, D. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2011-03-15

    The results of studies of single-crystal diamond layers with orientation (100) grown on substrates of IIa-type natural diamond by chemical-vapor deposition and of semiconductor diamond obtained subsequently by doping by implantation of boron ions are reported. Optimal conditions of postimplantation annealing of diamond that provide the hole mobility of 1150 cm{sup 2} V{sup -1} s{sup -1} (the highest mobility obtained so far for semiconductor diamond after ion implantation) are given.

  18. Ultratough single crystal boron-doped diamond

    DOE Patents [OSTI]

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  19. Bear Creek Valley Watershed

    Broader source: Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding the Bear Creek Valley Watershed.

  20. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  1. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=58 GPa, T=1400K2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  2. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  3. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  4. Saturation of CVD Diamond Detectors

    SciTech Connect (OSTI)

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  5. Center for Inverse Design: Research Thrusts and Subtasks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize ...

  6. Tobias Hanrath > Research Thrust Leader - Fuel Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanrath Research Thrust Leader - Fuel Cells and Batteries Assistant Professor Chemical and Biomolecular Engineering Research Group Webpage th358@cornell.edu Research There is a...

  7. David Muller > Research Thrust Leader - Complex OxidesProfessor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Muller Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage dm24@cornell.edu He joined the Applied and Engineering Physics...

  8. Late Cretaceous extension in the hinterland of the Sevier thrust...

    Open Energy Info (EERE)

    Sevier thrust belt, northwestern Utah and southern Idaho Abstract Cover rocks of the Raft River metamorphic core complex, located in the Sevier belt hinterland, preserve a...

  9. Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices

    SciTech Connect (OSTI)

    Auciello, O.; Krauss, A. R.; Gruen, D. M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.; Molodvan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busman, H. G.; Meyer, E. M.

    2000-08-24

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties, and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors. However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophyllic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments. Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS-MMAs) is 10,000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS-MMA applications. A thin film deposition process has been developed that produces phase-pure nanocrystalline diamond with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. The authors have developed lithographic techniques for the fabrication of diamond microstructure including cantilevers and multi-level devices, acting as precursors to micro-bearings and gears, making nanocrystalline diamond a promising material for the development of high performance MEMS devices.

  10. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...

    Energy Savers [EERE]

    5: Diamond Green Diesel Facility in Norco, LA EA-1795: Diamond Green Diesel Facility in Norco, LA April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond ...

  11. Diamond turning machine controller implementation

    SciTech Connect (OSTI)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  12. Bruce Diamond | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Bruce Diamond General Counsel Bruce Diamond Bruce Diamond became the General Counsel for the NNSA in February, 2011. Before that, Bruce was DOE Assistant General Counsel for Environment, the senior career environmental attorney for the Department dealing principally with complex issues regarding the clean-up of the nuclear complex and implementation of National Environmental Policy Act obligations. In addition, he was responsible for addressing health and safety issues. Previously, he was a

  13. Diamond-silicon carbide composite and method

    DOE Patents [OSTI]

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  14. Diamond turning of thermoplastic polymers

    SciTech Connect (OSTI)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  15. Superconducting nanowire single photon detector on diamond

    SciTech Connect (OSTI)

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lon?ar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310?nm and 632?nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300?pm Root Mean Square surface roughness are obtained.

  16. Diamond Wire Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    Wire Technology LLC Jump to: navigation, search Name: Diamond Wire Technology LLC Place: Colorado Springs, Colorado Zip: 80916 Sector: Solar Product: US-based manufacturer of...

  17. Diamond Walnut Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleDiamondWalnutBiomassFacility&oldid397401" Feedback Contact needs updating Image needs updating...

  18. Diamond Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pty Ltd Jump to: navigation, search Name: Diamond Energy Pty Ltd Place: Melbourne, Australia Zip: 3124 Product: Victoria based clean energy project developer. Coordinates:...

  19. Modeling electron emission and surface effects from diamond cathodes...

    Office of Scientific and Technical Information (OSTI)

    and surface effects from diamond cathodes Citation Details In-Document Search Title: Modeling electron emission and surface effects from diamond cathodes Authors: Dimitrov D. ...

  20. All diamond self-aligned thin film transistor

    DOE Patents [OSTI]

    Gerbi, Jennifer

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  1. Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices.

    SciTech Connect (OSTI)

    Auciello, O.; Gruen, D. M.; Krauss, A. R.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.; Moldovan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busmann, H. G.; Meyer, E. M.

    2000-11-15

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties, and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors, However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophyllic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments. Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS-MMAS) is 10,000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS-MMA applications. A thin film deposition process has been developed that produces phase-pure ultrananocrystalline diamond (UNCD) with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. We have developed lithographic techniques for the fabrication of diamond microstructure including cantilevers and multi-level devices, acting as precursors to micro-bearings and gears, making UNCD a promising material for the development of high performance MEMS devices.

  2. Fluorinated diamond bonded in fluorocarbon resin

    DOE Patents [OSTI]

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  3. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, William C.

    1988-01-01

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.

  4. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  5. Diamond film growth argon-carbon plasmas

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  6. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  7. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon bearing trace gases Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide

  8. Thrust stand for vertically oriented electric propulsion performance evaluation

    SciTech Connect (OSTI)

    Moeller, Trevor; Polzin, Kurt A.

    2010-11-15

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  9. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles

    SciTech Connect (OSTI)

    Kang, Qiping; He, Xinbo Ren, Shubin; Liu, Tingting; Liu, Qian; Wu, Mao; Qu, Xuanhui

    2015-07-15

    An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO{sub 3} in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m{sup −} {sup 1} K{sup −} {sup 1}. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications.

  10. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  11. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  12. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  13. Multifrequency spin resonance in diamond

    SciTech Connect (OSTI)

    Childress, Lilian; McIntyre, Jean

    2010-09-15

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating-wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  14. Fabrication of large radii toroidal surfaces by single point diamond turning

    SciTech Connect (OSTI)

    Cunningham, J.P.; Marlar, T.A.; Miller, A.C.; Paterson, R. L.

    1995-12-31

    An unconventional machining technique has been developed for producing relatively large radii quasi-toroidal surfaces which could not normally be produced by conventional diamond turning technology. The maximum radial swing capacity of a diamond turning lathe is the limiting factor for the rotational radius of any toroid. A typical diamond turned toroidal surface is produced when a part is rotated about the spindle axis while the diamond tool contours the surface with any curved path. Toric surfaces sliced horizontally, have been used in laser resonator cavities. This paper will address the fabrication of a special case of toroids where a rotating tool path is a circle whose center is offset from the rotational axis of the toroid by a distance greater than the minor radius of the tool path. The quasi-toroidal surfaces produced by this technique approximate all asymmetrical combinations of concave/convex section of a torus. Other machine configurations have been reported which offer alternative approaches to the fabrication of concave asymmetric aspheric surfaces. Prototypes of unique lenses each having two quasi-toroidal surfaces were fabricated in the Ultraprecision Manufacturing Technology Center at form key components of a scanned laser focusing system. As an example of the problem faced, the specifications for one of the surfaces was equivalent to a section of a torus with a two meter diameter hole. The lenses were fabricated on a Nanoform 600 diamond turning lathe. This is a numerically controlled two axis T-base lathe with an air bearing spindle and oil hydrostatic slides. The maximum radial swing for this machine is approximately 0.3 meters.

  15. Diamond coated silicon field emitter array

    SciTech Connect (OSTI)

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  16. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.

    1997-04-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.

  17. Diamond film growth argon-carbon plasmas

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  18. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  19. Methods for determining atypical gate valve thrust requirements

    SciTech Connect (OSTI)

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G.

    1995-04-01

    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation.

  20. Problems of millipound thrust measurement. The "Hansen Suspension"

    SciTech Connect (OSTI)

    Carta, David G.

    2014-03-31

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  1. Getting a better measure of spin with diamond | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting a better measure of spin with diamond Diamond detector The Hall C Compton Polarimeter uses a novel detector system built of thin slivers of diamond, seen here. The lab-grown slices of diamond, measuring roughly three-quarters of an inch square (2 cm) and a mere two hundredths of an inch thick, are outfitted like computer chips, with 96 tiny electrodes stuck to them. The electrodes send a signal when the diamond detector counts an electron. Getting a better measure of spin with diamond

  2. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  3. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  4. Centrifugally decoupling touchdown bearings

    DOE Patents [OSTI]

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  5. Passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  6. Rotating plug bearing and seal

    DOE Patents [OSTI]

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  7. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  8. n-Type diamond and method for producing same

    DOE Patents [OSTI]

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  9. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  10. Bearing for liquid metal pump

    DOE Patents [OSTI]

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  11. Comparative evaluation of CVD diamond technologies

    SciTech Connect (OSTI)

    Anthony, T.R.

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  12. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  13. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect (OSTI)

    Benecha, E. M.; Lombardi, E. B.

    2013-12-14

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0 μ{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33 meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  14. Vacancy induced structural changes in diamond.

    SciTech Connect (OSTI)

    Barnard, A.; Sternberg, M.; Univ. of Melbourne

    2008-01-01

    Although optically active defects in nanodiamond are being considered as candidates for optical labeling in biomedical applications, development in this area is being hindered the fact that suitable defects are rarely seen in diamond nanoparticles in the size regime required. These defects usually form as a complex with an impurity and a neutral of charged vacancy, so a measurable concentration of vacancy point defects is also necessary. Presented here are results of density functional tight binding computer simulations investigating the stability of vacancies in diamond nanoparticles with different surface structures. The results indicate that both neutral and charged vacancies alter the structure of as-grown diamond nanoparticles and are likely to diffuse out of the particle during synthesis or irradiation. We also find that suitable passivation of the particle may alleviate this problem, and hence facilitate the formation of defect complexes.

  15. STATUS OF DIAMOND SECONDARY EMISSION ENHANCED PHOTOCATHODE

    SciTech Connect (OSTI)

    RAO,T.; BEN-ZVI, I.; CHANG, X.; GRIMES, J.; GROVER, R.; ISAKOVIC, A.; SMEDLEY, J.; TODD, R.; WARREN, J.; WU, Q.

    2007-05-25

    The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.

  16. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  17. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  18. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  19. Joel Brock > Research Thrust Leader - Complex Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professor Applied and Engineering Physics > Faculty Directory > The Energy Materials Center at Cornell Joel Brock Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage jdb20@cornell.edu After receiving his doctoral degree, Brock spent two years as a postdoctoral research associate at the Massachusetts Institute of Technology and then joined the Cornell faculty in 1989. He served as Director of the School of Applied & Engineering

  20. ARM - Who's Professor Polar Bear?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professor Polar Bear? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Who's Professor Polar Bear? Professor Polar Bear's home is located at "the top of the world" just north of Barrow, Alaska. Barrow is located at the northernmost point on the continent, 330 miles north of the

  1. Robust and intelligent bearing estimation

    DOE Patents [OSTI]

    Claassen, John P.

    2000-01-01

    A method of bearing estimation comprising quadrature digital filtering of event observations, constructing a plurality of observation matrices each centered on a time-frequency interval, determining for each observation matrix a parameter such as degree of polarization, linearity of particle motion, degree of dyadicy, or signal-to-noise ratio, choosing observation matrices most likely to produce a set of best available bearing estimates, and estimating a bearing for each observation matrix of the chosen set.

  2. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect (OSTI)

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  3. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    SciTech Connect (OSTI)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

  4. Diamond Shaving of Contaminated Concrete Surfaces

    SciTech Connect (OSTI)

    Mullen, Lisa K.

    2008-01-15

    Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to

  5. Workshop on diamond and diamond-like-carbon films for the transportation industry

    SciTech Connect (OSTI)

    Nichols, F.A.; Moores, D.K.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  6. Measurement of tool forces in diamond turning

    SciTech Connect (OSTI)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  7. Precision diamond grinding of ceramics and glass

    SciTech Connect (OSTI)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  8. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  9. Stability of polarized states for diamond valleytronics

    SciTech Connect (OSTI)

    Hammersberg, J.; Majdi, S.; Kovi, K. K.; Suntornwipat, N.; Gabrysch, M.; Isberg, J.; Twitchen, D. J.

    2014-06-09

    The stability of valley polarized electron states is crucial for the development of valleytronics. A long relaxation time of the valley polarization is required to enable operations to be performed on the polarized states. Here, we investigate the stability of valley polarized states in diamond, expressed as relaxation time. We have found that the stability of the states can be extremely long when we consider the electron-phonon scattering processes allowed by symmetry considerations. We determine electron-phonon coupling constants by Time-of-Flight measurements and Monte Carlo simulations and use these data to map out the relaxation time temperature dependency. The relaxation time for diamond can be microseconds or longer below 100 K and 100 V/cm due to the strong covalent bond, which is highly encouraging for future use in valleytronic applications.

  10. Method to fabricate micro and nano diamond devices

    DOE Patents [OSTI]

    Morales, Alfredo M; Anderson, Richard J; Yang, Nancy Y. C.; Skinner, Jack L; Rye, Michael J

    2014-10-07

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  11. Argonne researchers develop two new diamond inventions | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory researchers develop two new diamond inventions By Jared Sagoff * October 10, 2014 Tweet EmailPrint ARGONNE, IL - Researchers at the US Department of Energy's Argonne National Laboratory have continued their research into advanced ultrananocrystalline diamond technologies and have developed two new applications for this special material. Ultrananocrystalline diamond (UNCD) thin films have shown a great deal of promise in the semiconductor and microelectromechanical systems (MEMS)

  12. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Diamond Green Diesel Facility in Norco, LA EA-1795: Diamond Green Diesel Facility in Norco, LA April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond Green Diesel, LLC for Construction of the Diamond Green Diesel Facility in Norco, Louisiana April 18, 2011 EA-1795: Finding of No Significant Impact Loan Guarantee to Diamond Green Diesel for Construction of the Diamond Green Diesel Facility in Norco, Louisiana

  13. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  14. USES OF HYPERTHERMAL ATOMIC BEAM FOR LOW TEMPERATURE DIAMOND...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality of the film. An example is growing diamond films with large micrometer sized grains below 100 C. Reducing the growth temperature requires finding ways of selectively...

  15. Diamond Plates Create Nanostructures through Pressure, Not Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plates Create Nanostructures through Pressure, Not Chemistry - Sandia Energy Energy Search ... Diamond Plates Create Nanostructures through Pressure, Not Chemistry HomeAdvanced ...

  16. Diamond Bar, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Diamond Bar, California US South Coast Air Quality Management District SCAQMD References US Census Bureau Incorporated place...

  17. Thin Sheet of Diamond Has Worlds of Uses

    DOE R&D Accomplishments [OSTI]

    Sagoff, Jared

    2011-04-01

    A new technique from Argonne National Laboratory creates thin diamond films that are helping industry save energy and could even be used in heart and eye implants.

  18. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOE Patents [OSTI]

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  19. Fabrication and current optical performance of a large diamond...

    Office of Scientific and Technical Information (OSTI)

    Fabrication and current optical performance of a large diamond-machined ZnSe immersion grating Citation Details In-Document Search Title: Fabrication and current optical ...

  20. The Best of Both Worlds: Bulk Diamond Properties Realized at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a level of crystallographic and electronic ordering in purified HPHT nanodiamonds that matches fundamental properties of bulk diamond to the nanoscale while retaining its...

  1. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Diamond Green Diesel project is a joint venture between Valero Energy Corporation and Darling International Inc. Valero Energy Corporation will direct the design, construction ...

  2. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect (OSTI)

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  3. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste ...

  4. New Superhard Form of Carbon Dents Diamond | U.S. DOE Office...

    Office of Science (SC) Website

    New Superhard Form of Carbon Dents Diamond Advanced Scientific Computing Research (ASCR) ... New Superhard Form of Carbon Dents Diamond Squeezing creates new class of material built ...

  5. Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cummings, Vanderbilt University, Thrust Leader). This thrust integrate multiscale computational modeling and novel experimental probes of interfacial fluid properties at 'simple' interfaces, such as planar, cylindrical, and spherical surfaces, parallel slit and cylindrical pores, etc. which can be rigorously modeled with the minimum incorporation of simplifying approximations and assumptions. Such simple interfaces are

  6. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  7. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  8. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOE Patents [OSTI]

    Gruen, Dieter M.; Busmann, Hans-Gerd; Meyer, Eva-Maria; Auciello, Orlando; Krauss, Alan R.; Krauss, Julie R.

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  9. Panel 2 - properties of diamond and diamond-like-carbon films

    SciTech Connect (OSTI)

    Blau, P.J.; Clausing, R.E.; Ajayi, O.O.; Liu, Y.Y.; Purohit, A.; Bartelt, P.F.; Baughman, R.H.; Bhushan, B.; Cooper, C.V.; Dugger, M.T.; Freedman, A.; Larsen-Basse, J.; McGuire, N.R.; Messier, R.F.; Noble, G.L.; Ostrowki, M.H.; Sartwell, B.D.; Wei, R.

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  10. Diamond/diamond-like thin film growth in a butane plasma on unetched, unheated, N-type Si(100) substrates

    SciTech Connect (OSTI)

    Williams, E.S.; Richardson, J.S. Jr.; Anderson, D.; Starkey, K.

    1995-06-01

    Deposition of diamond/diamond-like thin films on unetched, unheated, n-type Si(100) substrates in a butane plasma is reported. An interconnection between values of index of refraction, hydrogen flow rate, butane flow rate and Rf power was determined. The H{sub 2} and C{sub 4}H{sub 10} molecules are disassociated by Rf energy to create a plasma. Carbon from the butane forms a thin diamond/diamond-like film on a suitable substrate, which in the current investigation, is n-type Si(100).

  11. Data Archive and Portal Thrust Area Strategy Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  12. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect (OSTI)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  13. Diamond-cBN alloy: A universal cutting material

    SciTech Connect (OSTI)

    Wang, Pei; He, Duanwei Kou, Zili; Li, Yong; Hu, Qiwei; Xu, Chao; Lei, Li; Wang, Qiming; Wang, Liping; Zhao, Yusheng; Xiong, Lun; Liu, Jing

    2015-09-07

    Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis and characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.

  14. Fabrication of diamond based sensors for use in extreme environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    2015-04-23

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less

  15. Fabrication of diamond based sensors for use in extreme environments

    SciTech Connect (OSTI)

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    2015-04-23

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This method can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.

  16. Analyzing the performance of diamond-coated micro end mills.

    SciTech Connect (OSTI)

    Torres, C. D.; Heaney, P. J.; Sumant, A. V.; Hamilton, M. A.; Carpick, R. W.; Pfefferkorn, F. E.; Univ. of Wisconsin at Madison; Univ. of Pennsylvania

    2009-06-01

    A method is presented to improve the tool life and cutting performance of 300 {micro}m diameter tungsten carbide (WC) micro end mills by applying thin (<300 nm) fine-grained diamond (FGD) and nanocrystalline diamond (NCD) coatings using the hot-filament chemical vapor deposition (HF-CVD) process. The performance of the diamond-coated tools has been evaluated by comparing their performance in dry slot milling of 6061-T6 aluminum against uncoated WC micro end mills. Tool wear, coating integrity, and chip morphology were characterized using SEM and white light interferometry. The initial test results show a dramatic improvement in the tool integrity (i.e., corners not breaking off), a lower wear rate, no observable adhesion of aluminum to the diamond-coated tool, and a significant reduction in the cutting forces (>50%). Reduction of the cutting forces is attributed to the low friction and adhesion of the diamond coating. However, approximately 80% of the tools coated with the larger FGD coatings failed during testing due to delamination. Additional machining benefits were attained for the NCD films, which was obtained by using a higher nucleation density seeding process for diamond growth. This process allowed for thinner, smaller grained diamond coatings to be deposited on the micro end mills, and enabled continued operation of the tool even after the integrity of the diamond coating had been compromised. As opposed to the FGD-coated end mills, only 40% of the NCD-tools experienced delamination issues.

  17. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOE Patents [OSTI]

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  18. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  19. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  20. Method and apparatus for diamond wire cutting of metal structures

    DOE Patents [OSTI]

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  1. Diamond Shamrock nears completion of major expansions

    SciTech Connect (OSTI)

    True, W.R.

    1993-05-24

    With completion later this year of a second refined products line into Colorado, Diamond Shamrock Inc., San Antonio, will have added more than 600 miles of product and crude-oil pipeline on its system and expanded charge and production capacities at its two state-of-the-art refineries, all within 30 months. The projects aim at improving the company's ability to serve markets in the U.S. Southwest and increasing capacities and flexibility at its two refineries. The paper describes these projects under the following headings: new products service; another new line; and refineries, crude pipelines; Three Rivers expansion and Supplies for McKee.

  2. Air bearing vacuum seal assembly

    DOE Patents [OSTI]

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  3. Tensile properties of amorphous diamond films

    SciTech Connect (OSTI)

    Lavan, D.A.; Hohlfelder, R.J.; Sullivan, J.P.; Friedmann, T.A.; Mitchell, M.A.; Ashby, C.I.

    1999-12-02

    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter.

  4. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect (OSTI)

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko; Saguy, Cecile; Kalish, Rafi; Djerdj, Igor; Tonejc, Andelka; Gamulin, Ozren

    2008-08-01

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  5. SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CX-200005: Categorical Exclusion Determination ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC Listing of DOEFE Authorizations...

  6. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  7. Optical excitation of paramagnetic nitrogen in chemical vapor deposited diamond

    SciTech Connect (OSTI)

    Graeff, C.F.; Rohrer, E.; Nebel, C.E.; Stutzmann, M.; Guettler, H.; Zachai, R.

    1996-11-01

    Investigations of polycrystalline chemical vapor deposited diamond films by electron-spin-resonance (ESR), light-induced (L)ESR, and the constant photoconductivity method have identified dispersed substitutional nitrogen (P1 center) as the main paramagnetic form of N incorporated in the CVD diamond. The density of N-related paramagnetic states is strongly affected by illumination and heat treatment. It is found that the P1 center in CVD diamond gives rise to a deep donor state about 1.5 eV below the conduction band. {copyright} {ital 1996 American Institute of Physics.}

  8. Printable, flexible and stretchable diamond for thermal management

    DOE Patents [OSTI]

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  9. SOURCE TERM TARGETED THRUST FY 2005 NEW START PROJECTS

    SciTech Connect (OSTI)

    NA

    2005-10-05

    While a significant amount of work has been devoted to developing thermodynamic data. describing the sorption of radionuclides to iron oxides and other geomedia, little data exist to describe the interaction of key radionuclides found in high-level radioactive waste with the uranium surfaces expected in corroded spent nuclear fuel (SNF) waste packages. Recent work indicates that actinide adsorption to the U(VI) solids expected in the engineered barrier system may play a key role in the reduction of dissolved concentrations of radionuclides such as Np(V). However, little is known about the mechanism(s) of adsorption, nor are the thermodynamic data available to represent the phenomenon in predictive modeling codes. Unfortunately, this situation makes it difficult to consider actinide adsorption to the U(VI) silicates in either geochemical or performance assessment (PA) predictions. The primary goal in the Source Term Targeted Thrust area is to ''study processes that control radionuclide release from the waste form''. Knowledge of adsorption of actinides to U(VI) silicate solids its and parameterization in geochemical models will be an important step towards this goal.

  10. Bearing system employing a superconductor element

    SciTech Connect (OSTI)

    Agarwala, A.K.

    1992-06-30

    This patent describes a bearing system. It comprises a bearing having a generally planar surface; means maintaining the material at a temperature less than T{sub c}; a magnetic rotor.

  11. Magnetic bearing element with adjustable stiffness

    DOE Patents [OSTI]

    Post, Richard F

    2013-11-12

    A compact magnetic bearing element is provided which is made of permanent magnet discs configured to be capable of the adjustment of the bearing stiffness and levitation force over a wide range.

  12. Argonne National Laboratory Investigates Premature Bearing Failures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investigates Premature Bearing Failures Argonne National Laboratory Investigates Premature Bearing Failures August 1, 2013 - 4:13pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. Researchers at Argonne National Laboratory (ANL) are investigating a leading cause of premature bearing failures in wind turbine gearboxes that can occur within the first 2 years of a gearbox's intended design life (20 years). The bearing

  13. Engineering shallow spins in diamond with nitrogen delta-doping...

    Office of Scientific and Technical Information (OSTI)

    Title: Engineering shallow spins in diamond with nitrogen delta-doping We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of ...

  14. Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2005-09-15

    The inclusion of dopants (such as nitrogen) in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Although most commercial diamond nanoparticles contain a small fraction of nitrogen, it is still unclear whether it is located within the core or at the surface of the nanoparticle. Presented here are density functional tight binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional nitrogen in nanodiamond and bucky-diamond particles. The results predict that nitrogen is likely to be positioned at the surface of both hydrogenated nanodiamond and (dehydrogenated) bucky-diamond, and that the coordination of the dopants within the particles is dependent upon the surface structure.

  15. Slip sliding away: Graphene and diamonds prove a slippery combination...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slip sliding away: Graphene and diamonds prove a slippery combination By Jared Sagoff * May 22, 2015 Tweet EmailPrint Scientists at the U.S. Department of Energy's Argonne National...

  16. Blue Diamond, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Diamond is a census-designated place in Clark County, Nevada.1 References US...

  17. Ramp Compression of Diamond to 5 TPa: Experiments Taking Carbon...

    Office of Scientific and Technical Information (OSTI)

    Title: Ramp Compression of Diamond to 5 TPa: Experiments Taking Carbon to the Thomas-Fermi-Dirac Regime Authors: Smith, R F ; Eggert, J H ; Jeanloz, R ; Duffy, T S ; Braun, D G ; ...

  18. Diamonds are an Electronic Device’s Best Friend

    Broader source: Energy.gov [DOE]

    Researchers at Argonne National Lab recently devised a way to use diamonds to brighten the performance of electronic devices, which could put a bit more sparkle in everyone’s day.

  19. Plasma-assisted conversion of solid hydrocarbon to diamond

    DOE Patents [OSTI]

    Valone, Steven M.; Pattillo, Stevan G.; Trkula, Mitchell; Coates, Don M.; Shah, S. Ismat

    1996-01-01

    A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

  20. Black Diamond, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Black Diamond is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  1. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  2. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect (OSTI)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  3. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W.; Roybal, Herman E.

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  4. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  5. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  6. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  7. BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS

    Office of Legacy Management (LM)

    BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO October 27, 1989 Prepared for: U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Prepared by: R.F. Weston/Office of Technical Services BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO INTRODUCTION The Department of Energy (DOE) is conducting a program to identify and examine the radiological conditions at sites used in the early years of nuclear

  8. Frank DiSalvo > Research Thrust Leader - Fuel Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frank DiSalvo Research Thrust Leader - Fuel Cells and Batteries John A. Newman Professor of Physical Science Chemistry and Chemical Biology Research Group Webpage fjd3@cornell.edu...

  9. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  10. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan; Muller, Erik

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  11. Method to Produce High Specific Impulse and Moderate Thrust from a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine) --- Inventor(s) Samuel A. Cohen, Michael Paluszek, Yosef Razin, and Gary Pajer | Princeton Plasma Physics Lab Method to Produce High Specific Impulse and Moderate Thrust from a Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine) --- Inventor(s) Samuel A. Cohen, Michael Paluszek, Yosef Razin, and Gary Pajer This Invention describes a fusion-powered rocket engine that will produce high specific impulse, Isp, moderate thrust,

  12. Valve assembly having remotely replaceable bearings

    DOE Patents [OSTI]

    Johnson, Evan R.; Tanner, David E.

    1980-01-01

    A valve assembly having remotely replaceable bearings is disclosed wherein a valve disc is supported within a flow duct for rotation about a pair of axially aligned bearings, one of which is carried by a spindle received within a diametral bore in the valve disc, and the other of which is carried by a bearing support block releasably mounted on the duct circumferentially of an annular collar on the valve disc coaxial with its diametrical bore. The spindle and bearing support block are adapted for remote removal to facilitate servicing or replacement of the valve disc support bearings.

  13. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  14. The 'Crazy Diamond' (and other blazars)

    SciTech Connect (OSTI)

    Vercellone, S.; Giuliani, A.

    2009-04-08

    During the first year of observations, AGILE detected several blazars at high significance: 3 C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3 C 273, MKN 421, and W Comae. We obtained long-term coverage of the Crazy Diamond 3 C 454.3, for more than 100 days at energies above 100 MeV. 3 C 273 was the first blazar detected simultaneously by the AGILE gamma-ray imaging detector and by its hard X-ray monitor. S5 0716+714, an intermediate BL Lac object, exhibited a very fast and intense gamma-ray transient event during an optical high-state phase, while MKN 421 and W Comae where detected during an AGILE target of opportunity (ToO) repointing. Thanks to the rapid dissemination of our alerts, we were able to obtain multi-wavelength ToO data from other observatories such as Spitzer, Swift, INTEGRAL, RXTE, Suzaku, MAGIC, VERITAS, as well as optical coverage by means of the WEBT Consortium and REM.

  15. Graphene diamond-like carbon films heterostructure

    SciTech Connect (OSTI)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ?25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  16. Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

    Office of Scientific and Technical Information (OSTI)

    Pulsed laser Raman spectroscopy in the laser-heated diamond anvil cell Citation Details In-Document Search Title: Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

  17. Fabrication and testing of diamond-machined gratings in ZnSe...

    Office of Scientific and Technical Information (OSTI)

    Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of ...

  18. Two- and three-dimensional ultrananocrystalline diamond (UNCD) structures for a high resolution diamond-based MEMS technology.

    SciTech Connect (OSTI)

    Auciello, O.; Krauss, A. R.; Gruen, D. M.; Busmann, H. G.; Meyer, E. M.; Tucek, J.; Sumant, A.; Jayatissa, A.; Moldovan, N.; Mancini, D. C.; Gardos, M. N.

    2000-01-17

    Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO{sub 2} layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. The authors demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C{sub 60}-Ar or CH{sub 4}-Ar gas mixtures, which result in films that have 3--5 nm grain size, are 10--20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.

  19. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  20. Heavy-ion irradiation induced diamond formation in carbonaceous materials.

    SciTech Connect (OSTI)

    Daulton, T. L.

    1999-01-08

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond.

  1. Effects of hydrogen atoms on surface conductivity of diamond film

    SciTech Connect (OSTI)

    Liu, Fengbin Cui, Yan; Qu, Min; Di, Jiejian

    2015-04-15

    To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100) orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3H{sub bc}-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  2. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  3. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  4. Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release

    SciTech Connect (OSTI)

    Tushar K Ghosh

    2008-10-13

    The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.

  5. Bear Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown owns majority Developer CEI Iberdrola Energy Purchaser PPL Corp. Location Near Bear...

  6. Sabdia's Radial Flow Air Bearing Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Sandia Cooler) vapor chamber hydrodynamic air bearing heat-sink-impeller Dr. Jeff Koplow, jkoplow@sandia.gov Sandia National Laboratories Project Summary Timeline: Start date: ...

  7. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    This report documents the results of an independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit Federal Operational Readiness Review. ...

  8. Plasma deposited diamond-like carbon films for large neutralarrays

    SciTech Connect (OSTI)

    Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

    2004-07-15

    To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

  9. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  10. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect (OSTI)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  11. Capacitively coupled RF diamond-like-carbon reactor

    DOE Patents [OSTI]

    Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven

    2000-01-01

    A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.

  12. SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR HEAD (USA) LLC - FE DKT. NO. ... REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (DBA Oregon LNG) - FE DKT. NO. 12-48-LNG - ...

  13. Gearbox Reliability Collaborative Bearing Calibration

    SciTech Connect (OSTI)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  14. Geology of oil and gas accumulations in the Papuan fold and thrust belt

    SciTech Connect (OSTI)

    Foo, W.K. )

    1990-06-01

    The high level of exploration interest in Papua New Guinea has developed in large part because of recent discoveries in the western Papuan fold and thrust belt and shows in the adjacent foreland region. Results from recent drilling in the Iagifu/Hedinia area by a Chevron-led joint venture have outlined several pools in culminations along a 50 km long structural axis. Oil and gas are sourced from a thick succession of Jurassic marine shales that were deposited along the rifted northern margin of the Australian plate. Generation and migration is interpreted to have peaked coincident with development of the fold and thrust belt during the Neogene. Trapping occurred as anticlines and thrust sheets developed sequentially from northeast to southwest. Several trends remain untested on lands held by various groups, primarily in the area west of the Juha gas condensate pool.

  15. Diamond turning of Si and Ge single crystals

    SciTech Connect (OSTI)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  16. Smooth diamond films as low friction, long wear surfaces

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Erdemir, Ali; Bindal, Cuma; Zuiker, Christopher D.

    1999-01-01

    An article and method of manufacture of a nanocrystalline diamond film. The nanocrystalline film is prepared by forming a carbonaceous vapor, providing an inert gas containing gas stream and combining the gas stream with the carbonaceous containing vapor. A plasma of the combined vapor and gas stream is formed in a chamber and fragmented carbon species are deposited onto a substrate to form the nanocrystalline diamond film having a root mean square flatness of about 50 nm deviation from flatness in the as deposited state.

  17. Simplified models of growth, defect formation, and thermal conductivity in diamond chemical vapor deposition

    SciTech Connect (OSTI)

    Coltrin, M.E.; Dandy, D.S.

    1996-04-01

    A simplified surface reaction mechanism is presented for the CVD of diamond thin films. The mechanism also accounts for formation of point defects in the diamond lattice, an alternate, undesirable reaction pathway. Both methyl radicals and atomic C are considered as growth precursors. While not rigorous in all details, the mechanism is useful in describing the CVD diamond process over a wide range of reaction conditions. It should find utility in reactor modeling studies, for example in optimizing diamond growth rate while minimizing defect formation. This report also presents a simple model relating the diamond point-defect density to the thermal conductivity of the material.

  18. Methods and systems for micro bearings

    DOE Patents [OSTI]

    Stalford, Harold L

    2015-01-27

    A micro drive assembly may comprise a substrate, a micro shaft oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.

  19. Methods and systems for micro bearings

    DOE Patents [OSTI]

    Stalford, Harold L.

    2012-10-09

    A micro drive assembly may comprise a substrate, a micro shall oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.

  20. Self-adjusting magnetic bearing systems

    DOE Patents [OSTI]

    Post, R.F.

    1998-07-21

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described. 7 figs.

  1. Self-adjusting magnetic bearing systems

    DOE Patents [OSTI]

    Post, Richard F.

    1998-01-01

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described.

  2. Rotor and bearing system for a turbomachine

    DOE Patents [OSTI]

    Lubell, Daniel; Weissert, Dennis

    2006-09-26

    A rotor and bearing system for a turbomachine. The turbomachine includes a drive shaft, an impeller positioned on the drive shaft, and a turbine positioned on the drive shaft proximate to the impeller. The bearing system comprises one gas journal bearing supporting the drive shaft between the impeller and the turbine. The area between the impeller and the turbine is an area of increased heat along the drive shaft in comparison to other locations along the drive shaft. The section of the drive shaft positioned between impeller and the turbine is also a section of the drive shaft that experiences increased stressed and load in the turbomachine. The inventive bearing machine system positions only one radial bearing in this area of increased stress and load.

  3. Large piezoresistive effect in surface conductive nanocrystalline diamond

    SciTech Connect (OSTI)

    Janssens, S. D. Haenen, K.; Drijkoningen, S.

    2014-09-08

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350 nm thick, with a diameter of 656 μm and a sheet resistance of 1.45 MΩ/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  4. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  5. Exploration within the Sub-Andean Thrust Belt of Southern Bolivia

    SciTech Connect (OSTI)

    Nelson, K.J. )

    1993-02-01

    The Sub-Andean thrust belt of Southern Bolivia is a proven hydrocarbon province. Chevron began a regional study of the area in 1988 and chose the Caipipendi block due to its high potential for significant new oil reserves. A regional work program designed to acquire and integrate seismic data, geologic field data, geochemistry, and gravity data was used to generated structural models, evaluate regional risk components and to detail leads. The structural style within the Caipipendi block is interpreted as being an in sequence, thin skinned thrust belt with eastward verging folds and thrust faults. Tight surface anticlines associated with a Middle Devonian detachment have been later folded by deeper fault bend folds associated with the Silurian detachment. While the tight surface folds are presently producing oil, the deeper broader structures associated with the Silurian detachement have not been tested. Seismic data, utilized for the first time in this part of the Sub-Andean thrust belt, integrated with balanced structural cross sections, is the key to evaluating this new play. Geochemical analysis, including oil biomarker work, indicate that the oils are sourced from the Silurian-Devonian sequence. A generative oil system model formulated by integrating the geochemical analysis with maturation modeling indicates that the Devonian Los Monos formation is the primary oil source. Anticipated reservoirs for the new play are Carboniferous and Devonian sandstones which are also productive elsewhere in the basin.

  6. Compressor ported shroud for foil bearing cooling

    DOE Patents [OSTI]

    Elpern, David G.; McCabe, Niall; Gee, Mark

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  7. Exploration for hydrocarbons under thrust belts - a challenging new frontier in the Carpathians

    SciTech Connect (OSTI)

    Picha, F.J. )

    1993-09-01

    The Carpathian thrust belt has been explored with mixed results. Large reserves of oil and gas have been found in Romania and the western Ukraine, while exploration in other areas has been disappointing. Deep drilling and seismic profiling, as well as better understanding of structure, however, has contributed to the opening of promising new plays beneath the allochthonous belt. The thin-skinned Carpathian thrust belt is characterized by a long-range tectonic transport over the Neogene foredeep and the underlying European platform. The complex structure of the platform involves Caledonian and Variscan compressional deformation, Mesozoic extension, related to the development of the northern Tethyan margins, and Cenozoic normal faulting and wrenching associated with the Alpine Orogeny. Elements of the platform were also detached and incorporated into the thrust belt proper. In addition to numerous structural plays, significant morphologic features, such as large Paleogene and neogene buried valleys, have been found within the platform margins. Both the valley fill and the associated subsea fans and channels represent promising plays. Generation of hydrocarbons from various source rocks within the platform was greatly enhanced by emplacement of the wedge-shaped Carpathian thrust belt. The low heat flow, typical for the subthrust setting, enabled generation and preservation of hydrocarbons at great depths. Although several oil and gas fields have been found in shallower parts of the platform, the deeper structures (below 5 km) remain mostly unexplored. The complexity and diversity of subthrust geology offers a big challenge to exploration, but also provides an opportunity for finding significant oil and gas accumulations not only in the Carpathians, but elsewhere under thin-skinned thrust belts.

  8. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  9. Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd ...

    Open Energy Info (EERE)

    Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Jump to: navigation, search Name: Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Place: Beijing...

  10. Statistics Show Bearing Problems Cause the Majority of Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September ...

  11. Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bear...

  12. EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preferred Sodium Bearing Waste Treatment Technology EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology Idaho High-Level Waste (HLW) and Facilities Disposition...

  13. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Energy Savers [EERE]

    Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume ...

  14. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  15. Diamond Wire Saw for Precision Machining of Laser Target Components

    SciTech Connect (OSTI)

    Bono, M J; Bennett, D W

    2005-08-08

    The fabrication of precision laser targets requires a wide variety of specialized mesoscale manufacturing techniques. The diamond wire saw developed in this study provides the capability to precisely section meso-scale workpieces mounted on the assembly stations used by the Target Fabrication Group. This new capability greatly simplifies the fabrication of many types of targets and reduces the time and cost required to build the targets. A variety of materials are used to fabricate targets, including metals, plastics with custom designed chemical formulas, and aerogels of various densities. The materials are usually provided in the form of small pieces or cast rods that must be machined to the required shape. Many of these materials, such as metals and some plastics, can be trimmed using a parting tool on a diamond turning machine. However, other materials, such as aerogels and brittle materials, cannot be adequately cut with a parting tool. In addition, the geometry of the parts often requires that the workpieces be held in a special assembly station, which excludes the use of a parting tool. In the past, these materials were sectioned using a small, handheld coping saw that used a diamond-impregnated wire as a blade. This miniature coping saw was effective, but it required several hours to cut through certain materials. Furthermore, the saw was guided by hand and often caused significant damage to fragile aerogels. To solve these problems, the diamond wire saw shown in Figure 1 was developed. The diamond wire saw is designed to machine through materials that are mounted in the Target Fabrication Group's benchtop assembly stations. These assembly stations are the primary means of aligning and assembling target components, and there is often a need to machine materials while they are mounted in the assembly stations. Unfortunately, commercially available saws are designed for very different applications and are far too large to be used with the assembly stations

  16. Bear Valley Electric Service- Solar Initiative Program

    Broader source: Energy.gov [DOE]

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  17. Sun Bear Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Sun Bear Solar Ltd Place: Hong Kong Sector: Solar Product: Hong Kong-based firm that manufactures solar product equipment, such as PV glass,...

  18. Flywheel energy storage with superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  19. CONTENTS Gas Hydrate-Bearing Sand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTENTS Gas Hydrate-Bearing Sand Reservoir Systems in the Offshore of India: Results of the India National Gas Hydrate Program Expedition 02 ..............1 The Potential for Abiotic Methane in Arctic Gas Hydrates .................9 Coupled Thermo-Hydro-Chemo- Mechanical (THCM) Models for Hydrate-Bearing Sediments ....13 Emerging Issues in the Development of Geologic Models for Gas Hydrate Numerical Simulation ................19 Announcements ...................... 23 * DOE/NETL FY2016 Methane

  20. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOE Patents [OSTI]

    Holcombe, Jr., Cressie E.; Seals, Roland D.

    1995-01-01

    A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.

  1. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOE Patents [OSTI]

    Holcombe, C.E. Jr.; Seals, R.D.

    1995-09-26

    A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.

  2. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1999-01-01

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.

  3. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1999-03-30

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  4. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  5. Characterization of textured polycrystalline diamond by electron spin resonance spectroscopy

    SciTech Connect (OSTI)

    Graeff, C.F.; Nebel, C.E.; Stutzmann, M.; Floeter, A.; Zachai, R.

    1997-01-01

    Electron spin resonance (ESR) is shown to be a useful and versatile technique for the detection and characterization of preferred orientation effects in polycrystalline diamond films. A nitrogen related center known as P1 is used for this purpose. The ESR signal coming from this center is composed of a central line and hyperfine satellite lines. It is found that crystallite disorientation causes a linewidth broadening of the satellite lines, which can thus be used to quantitatively characterize the diamond film texture. It is shown that the method is able to separate contributions of disorder induced by rotations of the crystallites around the growth direction from other contributions. The general conditions in which the method can be applied, and its applicability to other materials, are discussed. {copyright} {ital 1997 American Institute of Physics.}

  6. Method for producing fluorinated diamond-like carbon films

    DOE Patents [OSTI]

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  7. Adhesion at WC/diamond interfaces - A theoretical study

    SciTech Connect (OSTI)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  8. Molecular dynamics simulation of radiation damage cascades in diamond

    SciTech Connect (OSTI)

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  9. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect (OSTI)

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  10. High-Current Cold Cathode Employing Diamond and Related Materials

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  11. Promising Technology: Magnetic Bearing Variable-Speed Centrifugal Chillers

    Broader source: Energy.gov [DOE]

    Magnetic bearing variable speed centrifugal chillers save energy compared to conventional chillers by eliminating friction with the magnetic bearings and by improving efficiency at partial loads with the variable speed drive. In addition to saving energy, the magnetic bearings eliminate the maintenance costs associated with lubricating conventional metal bearings.

  12. Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Diamond Amplified Photocathode at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of ...

  13. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect (OSTI)

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  14. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    SciTech Connect (OSTI)

    Eldiwany, B.; Alvarez, P.D.; Wolfe, K.

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  15. The quest for better seismic imaging in the sub-Andean thrust belt of southern Bolivia

    SciTech Connect (OSTI)

    Dunn, J.F.; Nelson, K.J.

    1996-08-01

    Like many thrust belts around the world, the sub-Andean thrust belt of southern Bolivia is a difficult place to acquire good seismic data because of the challenges of complex geology, rugged topography, and remote access. This is further aggravated by the fact that we generally desire to image below the surface anticlines, where the conditions for acquiring good data are the worst. Near-surface, steeply-dipping beds also challenge some of the fundamental assumptions of seismic processing. Our approach has been to integrate detailed structural analysis of the surface and subsurface with the seismic interpretation. Seismic imaging of structural geometry is a fundamental risk element in thrust belt hydrocarbon exploration. Acquiring high-quality seismic data in mountainous terrain has been a difficult, time consuming, and costly task. We have exerted considerable effort into finding innovative ways to improve data quality. After an initial round of acquisition in Bolivia, we designed a seismic test program to optimize acquisition parameters. We found that standard parameters were acceptable in the valleys, but larger dynamite charges yielded better results in the mountainous areas where imaging had previously been poor. Additionally, a swath line layout (three parallel receiver lines 200 m apart) helped improve the signal-to-noise ratio. Better static solutions, detailed velocity analysis, and careful structural modeling and depth migrations all help to yield better data and a more reliable interpretation.

  16. Bearing assemblies, apparatuses, and motor assemblies using the same

    DOE Patents [OSTI]

    Sexton, Timothy N.; Cooley, Craig H.; Knuteson, Cody W.

    2015-12-29

    Various embodiments of the invention relate to bearing assemblies, apparatuses and motor assemblies that include geometric features configured to impart a selected amount of heat transfer and/or hydrodynamic film formation. In an embodiment, a bearing assembly may include a plurality of superhard bearing pads distributed circumferentially about an axis. At least some of the plurality of superhard bearing pads may include a plurality of sub-superhard bearing elements defining a bearing surface. At least some of the plurality of sub-superhard bearing elements may be spaced from one another by one or more voids to impart a selected amount of heat transfer and hydrodynamic film formation thereon during operation. The bearing assembly may also include a support ring that carries the plurality of superhard bearing pads. In addition, at least a portion of the sub-superhard bearing elements may extend beyond the support ring.

  17. Amorphous Diamond Flat Panel Displays - Final Report of ER-LTR CRADA project with SI Diamond Technology

    SciTech Connect (OSTI)

    Ager III, Joel W.

    1998-05-08

    The objective of this project was to determine why diamond-based films are unusually efficient electron emitters (field emission cathodes) at room temperature. Efficient cathodes based on diamond are being developed by SI Diamond Technology (SIDT) as components for bright, sunlight-readable, flat panel displays. When the project started, it was known that only a small fraction (<1%) of the cathode area is active in electron emission and that the emission sites themselves are sub-micron in size. The critical challenge of this project was to develop new microcharacterization methods capable of examining known emission sites. The research team used a combination of cathode emission imaging (developed at SIDT), micro-Raman spectroscopy (LBNL), and electron microscopy and spectroscopy (National Center for Electron Microscopy, LBNL) to examine the properties of known emission sites. The most significant accomplishment of the project was the development at LBNL of a very high resolution scanning probe that, for the first time, measured simultaneously the topography and electrical characteristics of single emission sites. The increased understanding of the emission mechanism helped SIDT to develop a new cathode material,''nano-diamond,'' which they have incorporated into their Field Emission Picture Element (FEPix) product. SIDT is developing large-format flat panel displays based on these picture elements that will be brighter and more efficient than existing outdoor displays such as Jumbotrons. The energy saving that will be realized if field emission displays are introduced commercially is in line with the energy conservation mission of DOE. The unique characterization tools developed in this project (particularly the new scanning microscopy method) are being used in ongoing BES-funded basic research.

  18. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  19. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  20. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  1. Robust Bearing Estimation for 3-Component Stations

    SciTech Connect (OSTI)

    Claassen, John P.

    1999-06-03

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the in- herent information in the arrival at every step of the process to achieve near-optimal results. In particular, the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, andjinally to apply bias corrections when calibration information is available to yield a single final estimate. The method was applied to a small but challenging set of events in a seismically active region. The method demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted fiom these findings.

  2. Robust bearing estimation for 3-component stations

    SciTech Connect (OSTI)

    CLAASSEN,JOHN P.

    2000-02-01

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the inherent information in the arrival at every step of the process to achieve near-optimal results. In particular the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, and finally to apply bias corrections when calibration information is available to yield a single final estimate. The algorithm was applied to a small but challenging set of events in a seismically active region. It demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted from these findings.

  3. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  4. Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Gaowei, M.; Muller, E. M.; Rumaiz, A. K.; Weiland, C.; Cockayne, E.; Woicik, J. C.; Jordan-Sweet, J.; Smedley, J.

    2012-05-14

    Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

  5. Wear Analysis of Wind Turbine Gearbox Bearings

    SciTech Connect (OSTI)

    Blau, Peter Julian; Walker, Larry R; Xu, Hanbing; Parten, Randy J; Qu, Jun; Geer, Tom

    2010-04-01

    The objective of this effort was to investigate and characterize the nature of surface damage and wear to wind turbine gearbox bearings returned from service in the field. Bearings were supplied for examination by S. Butterfield and J. Johnson of the National Wind Technology Center (NREL), Boulder, Colorado. Studies consisted of visual examination, optical and electron microscopy, dimensional measurements of wear-induced macro-scale and micro-scale features, measurements of macro- and micro-scale hardness, 3D imaging of surface damage, studies of elemental distributions on fracture surfaces, and examinations of polished cross-sections of surfaces under various etched and non-etched conditions.

  6. Friction behavior of a multi-interface system and improved performance by AlMgB14–TiB2–C and diamond-like-carbon coatings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; Cook, Bruce A.

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB14–TiB2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreased the slipmore » ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  7. The Cordilleran foreland thrust belt in northwestern Montana and northern Idaho from COCORP and industry seismic reflection data

    SciTech Connect (OSTI)

    Yoos, T.R.; Potter, C.J.; Thigpen, J.L.; Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1991-06-01

    COCORP and petroleum industry seismic reflection profiles in northwestern Montana reveal the structure of the Cordilleran foreland thrust belt. The Front Ranges consist of thick thrust sheets containing Precambrian Belt Supergroup and Paleozoic miogeoclinal shelf rocks above a thin remnant of Paleozoic rocks and gently westward-dipping North American basement. Interpretation of the seismic data and results from a recent petroleum exploration well suggest that 15-22 km of Precambrian Belt Supergroup sedimentary rocks are present in several thrust plates beneath the eastern Purcell anticlinorium. Previous hypotheses of a large mass of Paleozoic miogeoclinal sedimentary rocks or slices of crystalline basement located beneath the eastern Purcell anticlinorium do not appear to be supported by the data. The easternmost occurrence of allochthonous basement is interpreted to be in the western part of the anticlinorium near the Montana-Idaho border. Comparison of the Cordilleran foreland thrust belt in northwestern Montana and southern Canada suggest that a change in the deep structure of the Purcell anticlinorium occurs along strike. The anticlinorium in southern Canada has been interpreted as a hanging-wall anticline that was thrust over the western edge of thick Proterozoic North American basement, whereas in northwestern Montana the anticlinorium appears to consist of a complex series of thrust sheets above highly attenuated North American basement.

  8. Magnetostratigraphic constraints on the development of paired fold-thrust belts/foreland basins in the Argentine Andes

    SciTech Connect (OSTI)

    Reynolds, J.H. ); Damanti, J.F. ); Jordan, T.E. )

    1991-03-01

    Development of a paired fold thrust-thrust belt/foreland basin is correlated to the flattening of the subducting Nazca plate between 28-33{degree}S. Magnetostratigraphic studies in neogene basin-filling continental strata determine local basin subsidence rates and provide relatively precise chronostratigraphic correlation between different depositional environments. The data demonstrate that most existing lithostratigraphic units are diachronous and require new tectonic interpretations. Increases in sediment accumulation rates closely correspond to changes in provenance and indicate that the Frontal Cordillera, on the Chile-Argentina border was a positive topographic province by 18 Ma. The Precordillera evolved from {approx}16 Ma to the present as thrusting migrated from west to east. Published ages from intercalated airfall tuffs constrain some sedimentary sections in the eastern Sierras Pampeanas where the earliest uplift occurred since 10 Ma. The youngest uplifts are on the west side close to continuing thrusting in the Precordillera. Not all fold-thrust belt/foreland basin pairs are associated with flat subduction, suggesting that tectonic controls exceeding the scale of individual plate segments may be important. The hydrocarbon-producing Subandean fold-thrust belt/foreland basin, located in the area of 'steep' subduction that underlies northern Argentina and Bolivia (18-24{degree}S), is also believed to have evolved since middle Miocene time. Recently initiated magnetostratigraphic studies in the Subandean foreland basin will attempt to temporally constrain the Neogene tectonic evolution for comparison with the southern region.

  9. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect (OSTI)

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  10. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage of 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.

  11. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  12. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  13. Method of bonding diamonds in a matrix and articles thus produced

    DOE Patents [OSTI]

    Taylor, G.W.

    1981-01-27

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  14. Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same

    DOE Patents [OSTI]

    Rao, Triveni; Walsh, Josh; Gangone, Elizabeth

    2015-12-29

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsule is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.

  15. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    DOE Patents [OSTI]

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  16. Structural styles of subandean fold and thrust belt of Peru and Southern Ecuador

    SciTech Connect (OSTI)

    Aleman, A.M.

    1988-01-01

    Along-strike variations in structural styles of the east-verging Subandean fold and thrust belt (SAFTB) in Peru and southern Ecuador are controlled by the presence or absence of thick Late Permian to Jurassic evaporite sequences rather than changes in subducting plate geometries as has been suggested previously for the Andes. Salt distribution and thickness have not only controlled the styles and segmentation along the SAFTB but also have been important factors in strike variations across the belt. The southern Ecuador SAFTB lacks significant evaporite units and is characterized by thick-skinned deformation that encompasses high-angle reverse faults, and broad, low-amplitude folds. The style changes to thin-skinned deformation near 2S lat. and it is well illustrated in the Santiago and Huallaga basins where thick evaporite units are present. This segment is characterized by a major decollement on the salt, grabens formed by salt withdrawal from reactivation of thrust faults as listric normal faults, salt piercement at or near synclinal axes, and periclines and asymmetric folds. The frontal thrust of this thin-skinned segment consists of box, overturned and upright folds above shallow salt domes, and by a major backthrust at the mountain front. This segment extends to 1030'S lat., near Oxapampa, Peru, where the thin-skinned SAFTB is narrow and changes across strike to a thick-skinned deformation as the evaporite units thin and disappear eastward. South of 1030'S lat., a new thick-skinned deformation segment is present in southern Peru and characterizes most of the deformation in the SAFTB of the Ucayali and Madre De Dios basins.

  17. Alignment of the diamond nitrogen vacancy center by strain engineering

    SciTech Connect (OSTI)

    Karin, Todd [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Dunham, Scott [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States); Fu, Kai-Mei [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-08-04

    The nitrogen vacancy (NV) center in diamond is a sensitive probe of magnetic field and a promising qubit candidate for quantum information processing. The performance of many NV-based devices improves by aligning the NV(s) parallel to a single crystallographic direction. Using ab initio theoretical techniques, we show that NV orientation can be controlled by high-temperature annealing in the presence of strain under currently accessible experimental conditions. We find that (89??7)% of NVs align along the [111] crystallographic direction under 2% compressive biaxial strain (perpendicular to [111]) and an annealing temperature of 970?C.

  18. Method and apparatus for making diamond-like carbon films

    DOE Patents [OSTI]

    Pern, Fu-Jann; Touryan, Kenell J.; Panosyan, Zhozef Retevos; Gippius, Aleksey Alekseyevich

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  19. Charging characteritiscs of ultrananocrystalline diamond in RF MEMS capacitive switches.

    SciTech Connect (OSTI)

    Sumant, A. V.; Goldsmith, C.; Auciello, O.; Carlisle, J.; Zheng, H.; Hwang, J. C. M.; Palego, C.; Wang, W.; Carpick, R.; Adiga, V.; Datta, A.; Gudeman, C.; O'Brien, S.; Sampath, S.

    2010-05-01

    Modifications to a standard capacitive MEMS switch process have been made to allow the incorporation of ultra-nano-crystalline diamond as the switch dielectric. The impact on electromechanical performance is minimal. However, these devices exhibit uniquely different charging characteristics, with charging and discharging time constants 5-6 orders of magnitude quicker than conventional materials. This operation opens the possibility of devices which have no adverse effects of dielectric charging and can be operated near-continuously in the actuated state without significant degradation in reliability.

  20. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect (OSTI)

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  1. Refractory two-dimensional hole gas on hydrogenated diamond surface

    SciTech Connect (OSTI)

    Hiraiwa, Atsushi; Daicho, Akira; Kurihara, Shinichiro; Yokoyama, Yuki; Kawarada, Hiroshi

    2012-12-15

    Use of two-dimensional hole gas (2DHG), induced on a hydrogenated diamond surface, is a solution to overcoming one of demerits of diamond, i.e., deep energy levels of impurities. This 2DHG is affected by its environment and accordingly needs a passivation film to get a stable device operation especially at high temperature. In response to this requirement, we achieved the high-reliability passivation forming an Al{sub 2}O{sub 3} film on the diamond surface using an atomic-layer-deposition (ALD) method with an H{sub 2}O oxidant at 450 Degree-Sign C. The 2DHG thus protected survived air annealing at 550 Degree-Sign C for an hour, establishing a stable high-temperature operation of 2DHG devices in air. In part, this achievement is based on high stability of C-H bonds up to 870 Degree-Sign C in vacuum and above 450 Degree-Sign C in an H{sub 2}O-containing environment as in the ALD. Chemically, this stability is supported by the fact that both the thermal decomposition of C-H bonds and reaction between C-H bonds and H{sub 2}O are endothermic processes. It makes a stark contrast to the instability of Si-H bonds, which decompose even at room temperature being exposed to atomic hydrogen. In this respect, the diamond 2DHG devices are also promising as power devices expectedly being free from many instability phenomena, such as hot carrier effect and negative-bias temperature instability, associated with Si devices. As to adsorbate, which is the other prerequisite for 2DHG, it desorbed in vacuum below 250 Degree-Sign C, and accordingly some new adsorbates should have adsorbed during the ALD at 450 Degree-Sign C. As a clue to this question, we certainly confirmed that some adsorbates, other than those at room temperature, adsorbed in air above 100 Degree-Sign C and remained at least up to 290 Degree-Sign C. The identification of these adsorbates is open for further investigation.

  2. Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuna Area), Tierra del Fuego, southern Chile

    SciTech Connect (OSTI)

    Alvarez-Marron, J.; McClay, K.R. ); Harambour, S.; Rojas, L.; Skarmeta, J. )

    1993-11-01

    The Magallanes foreland thrust and fold belt is a thin-skinned foreland thrust and fold belt of Paleocene to Oligocene age that deforms Upper Jurassic through Tertiary volcanic, volcaniclastic, and siliciclastic strata of the Magallanes basin, southern Andean Cordillera, Chile. This paper is a detailed description and analysis of the geology and structural evolution of the thrust front (Vicuna area of southern Tierra del Fuego). Reflection seismic and well data, together with 1:50,000 scale geological mapping, have been used in the analysis. In the southern part of the Vicuna area, two different thrust systems have been found: an upper imbricate fan that deforms Upper Jurassic and Cretaceous strata, and a younger, lower duplex composed of Cretaceous and probably Upper Jurassic rocks. The imbricate fan is characterized by fault-propagation folding in which listric thrust faults merge downward into a sole thrust that probably is located within the Upper Jurassic stratigraphy. The sole thrust of the upper imbricates forms the roof thrust of the underlying duplex. In the northern part of the Vicuna area, the syntectonic sedimentary wedge of the foredeep consists of Late Cretaceous through Tertiary siliciclastics that have been deformed and uplifted by passive back thrusting at the triangle zone. The structural style in the foreland region shows three main subhorizontal detachment levels located within the sedimentary wedge as a result of the progressive transfer of slip from the thrust belt to the foreland. Minor blind thrusts produce stacked [open quotes]pop up[close quotes] and triangle structures that result in complex geometries in the cores of anticlines. A forward-breaking sequence of thrusting is interpreted. During deformation, the active foredeep wedge migrated at least 10 km northward. Balanced geological cross sections indicate approximately 60% (-30 km) shortening for this part of the Magallanes thrust belt.

  3. CX-005184: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy MachinesCX(s) Applied: A9, B3.6Date: 01/28/2011Location(s): Orem, UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  4. CX-005128: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy MachinesCX(s) Applied: A9, B3.6Date: 01/25/2011Location(s): Orem, UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. TH-C-19A-06: Measurements with a New Commercial Synthetic Single Crystal Diamond Detector

    SciTech Connect (OSTI)

    Laub, W; Crilly, R

    2014-06-15

    Purpose: A commercial version of a synthetic single crystal diamond detector in a Scottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg). In this study we investigate the dosimetric properties of this detector and explore if the use of the microDiamond detector can be expanded to high energy photon beams of up to 15MV and to large field measurements. Methods: Energy dependency was investigated. Photon and electron depth-dose curves were measured. Photon PDDs were measured with the Semiflex type 31010, microLion type 31018, P-Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector. Electron depth-dose curves were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E-Diode and microDiamond at dose maximum depths. Results: The microDiamond detector shows no energy dependence in high energy photon or electron dosimetry. Electron PDD measurements with the E-Diode and microDiamond are in good agreement except for the bremsstrahlungs region, where values are about 0.5 % lower with the microDiamond detector. Markus detector measurements agree with E-Diode measurements in this region. For depths larger than dmax, depth-dose curves of photon beams measured with the microDiamond detector are in close agreement to those measured with the microLion detector for small fields and with those measured with a Semiflex 0.125cc ionization chamber for large fields. For profile measurements, microDiamond detector measurements agree well with microLion and P-Diode measurements in the high-dose region and the penumbra region. For areas outside the open field, P-Diode measurements are about 0.5–1.0% higher than microDiamond and microLion measurements. Conclusion: The investigated diamond detector is suitable for a wide range of applications in high energy photon and electron dosimetry and is interesting

  6. Mechanical stiffness and dissipation in ultrananocrystalline diamond micro-resonators.

    SciTech Connect (OSTI)

    Sumant, A. V.; Adiga, V. P.; Suresh, S.; Gudeman, C.; Auciello, O.; Carlis, J. A.; Carpick, R. W.

    2009-01-01

    We have characterized mechanical properties of ultrananocrystalline diamond (UNCD) thin films grown using the hot filament chemical vapor deposition (HFCVD) technique at 680 C, significantly lower than the conventional growth temperature of {approx}800 C. The films have {approx}4.3% sp{sup 2} content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, {approx}1 {micro}m thick, exhibit a net residual compressive stress of 370 {+-} 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838 {+-} 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum (UHV) conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790 {+-} 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057 {+-} 0.038. The quality factors (Q) of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators.

  7. Magnetic-Bearing Chiller Compressors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment » Magnetic-Bearing Chiller Compressors Magnetic-Bearing Chiller Compressors Centrifugal, two-stage, magnetic-bearing chiller compressors equipped with variable-speed drives are a relatively new technology that operates at a high efficiency. Based on this case study, independent analysis by the U.S. Department of the Navy has verified that magnetic bearing compressors operate more efficiently than reciprocating and screw compressors, especially during partial load

  8. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  9. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Literature Review and DOE-LM Site Surveys | Department of Energy Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review

  10. Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching.

    SciTech Connect (OSTI)

    Moldovan, N.; Divan, R.; Zeng, H.; Carlisle, J. A.; Advanced Diamond Tech.

    2009-12-07

    Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD{reg_sign}) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips ({approx} 10 nm tip radius) with etch rates of 650 nm/min.

  11. Dynamically stable magnetic suspension/bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  12. Dynamically stable magnetic suspension/bearing system

    DOE Patents [OSTI]

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  13. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect (OSTI)

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  14. Thin film circuit fabrication on diamond substrates for high power applications

    SciTech Connect (OSTI)

    Norwood, D.; Worobey, W.; Peterson, D.; Sweet, J.; Johnson, D.; Miller, D.; Andaleon, D.

    1995-05-01

    Sandia Laboratories has developed a thin film diamond substrate technology to meet the requirements for high power and high density circuits. Processes were developed to metallize, photopattern, laser process, and, package diamond thin film networks which were later assembled into high power multichip modules (MCMS) to test for effectiveness at removing heat. Diamond clearly demonstrated improvement in heat transfer during 20 Watt, strip heating experiments with junction-to-ambient temperature increases of less than 24 C compared to 126 C and 265 C for the aluminum nitride and ceramic versions, respectively.

  15. Adhesion of diamond coatings synthesized by oxygen-acetylene flame CVD on tungsten carbide

    SciTech Connect (OSTI)

    Marinkovic, S.; Stankovic, S.; Dekanski, A.

    1995-12-31

    The results of a study concerned with chemical vapor deposition of diamond on tungsten carbide cutting tools using an oxygen-acetylene flame in a normal ambient environment are presented. Effects of preparation conditions on the adhesion of the coating have been investigated, including different surface treatment, different position of the flame with respect to the coated surface, effect of an intermediate poorly crystalline diamond layer, etc. In particular, effect of polishing and ultrasonic lapping with diamond powder was compared with that of a corresponding treatment with SiC powder.

  16. Gerotor and bearing system for whirling mass orbital vibrator

    DOE Patents [OSTI]

    Brett, James Ford; Westermark, Robert Victor; Turner, Jr., Joey Earl; Lovin, Samuel Scott; Cole, Jack Howard; Myers, Will

    2007-02-27

    A gerotor and bearing apparatus for a whirling mass orbital vibrator which generates vibration in a borehole. The apparatus includes a gerotor with an inner gear rotated by a shaft having one less lobe than an outer gear. A whirling mass is attached to the shaft. At least one bearing is attached to the shaft so that the bearing engages at least one sleeve. A mechanism is provided to rotate the inner gear, the mass and the bearing in a selected rotational direction in order to cause the mass, the inner gear, and the bearing to backwards whirl in an opposite rotational direction. The backwards whirling mass creates seismic vibrations.

  17. Co-Optimization of Fuels and Engines (Co-Optima) -- Thrust II Engine Projects, Sprays, and Emissions Control Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FT039 - Part 1 Co-Optimization of Fuels and Engines Advanced Engine Development Team Paul Miles, 4 Magnus Sjöberg, 4 John Dec, 4 Steve Ciatti, 1 Chris Kolodziej, 1 Scott Curran, 3 Mark Musculus, 4 Charles Mueller 4 1. Argonne National Laboratory 2. National Renewable Energy Laboratory 3. Oak Ridge National Laboratory 4. Sandia National Laboratories Co-Optima DOE VTO Management Team: Kevin Stork, Gurpreet Singh, & Leo Breton Thrust II engine projects June 9 th , 2016 Overview: Thrust II

  18. Submicron cubic boron nitride as hard as diamond

    SciTech Connect (OSTI)

    Liu, Guoduan; Kou, Zili E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua; Yan, Xiaozhi E-mail: yanxz@hpstar.ac.cn; Li, Wentao; Bi, Yan; Leng, Yang; He, Duanwei

    2015-03-23

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  19. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOE Patents [OSTI]

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  20. Nucleation of nanocrystalline diamond by fragmentation of fullerene precursors.

    SciTech Connect (OSTI)

    Gruen, D. M.

    1998-05-04

    Growth of diamond films from C{sub 60}/Ar microwave discharges results in a nanocrystalline microstructure with crystallite sizes in the range 3-10 nm. Heterogeneous nucleation rates of 10{sup 10} cm{sup {minus}2} sec are required to account for the results. The nucleation mechanism presented here fulfills this requirement and is based on the insertion of carbon dimer, C{sub 2}, molecules, produced by fragmentation of C{sub 60}, into the n-bonded dimer rows of the reconstructed (100) surface of diamond. Density functional theory is used to calculate the energetic of C{sub 2} insertion into carbon clusters that model the (100) surface. The reaction of singlet C{sub 2} with the double bond of the C{sub 9}H{sub 12} cluster leads to either carbene structures or a cyclobutynelike structure. At the HF/6-31G* level, the carbene product has a C{sub 2v} structure, while at the B3LYP/6-31G* levels of theory, it has a C{sub s} structure with the inserted C{sub 2} tilted. No barrier for insertion into the C=C double bond of the C{sub 9}H{sub 12} cluster was found at the HF/6-31G* and B3LYP/6-31G* levels of theory. Thus, calculations including correlation energy and geometry optimization indicate that insertion of C{sub 2} into a C=C double bond leads to a large energy lowering, {approximately}120 kcal/mol for a C{sub 9}H{sub 12} cluster, and there is no barrier for insertion.

  1. Preparation of W-Ta thin-film thermocouple on diamond anvil cell...

    Office of Scientific and Technical Information (OSTI)

    Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure Citation Details In-Document Search Title: Preparation of W...

  2. A photoemission study of the diamond and the single crystal C{sub 60}

    SciTech Connect (OSTI)

    Wu, Jin

    1994-03-01

    This report studied the elctronic structure of diamond (100) and diamond/metal interface and C{sub 60}, using angle-resolved and core level photoemission. The C(100)-(2X1) surface electronic structure was studied using both core level and angle resolved valence band photoemission spectroscopy. The surface component of the C 1s core level spectrum agrees with theoretical existence of only symmetrical dimers. In the case of metal/diamond interfaces, core level and valence photoelectron spectroscopy and LEED studies WERE MADE OF B and Sb on diamond (100) and (111) surfaces. In the case of single-crystal C{sub 60}, photoemission spectra show sharp molecular features, indicating that the molecular orbitals are relatively undisturbed in solid C{sub 60}.

  3. Ramp Compression of Diamond at 5 TPa (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Ramp Compression of Diamond at 5 TPa Authors: Smith, R F ; Eggert, J H ; Jeanloz, R ; Duffy, T S ; Braun, D G ; Patterson, J R ; Rudd, R ...

  4. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    SciTech Connect (OSTI)

    Gal?, P. Mal, P.; ?ermk, J.; Kromka, A.; Rezek, B.

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380700?nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150?nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200?nm deep inside the NCD film.

  5. The semi-empirical tight-binding model for carbon allotropes between diamond and graphite

    SciTech Connect (OSTI)

    Lytovchenko, V.; Kurchak, A.; Strikha, M.

    2014-06-28

    The new carbon allotropes between diamond and graphite have come under intensive examination during the last decade due to their numerous technical applications. The modification of energy gap in thin films of these allotropes was studied experimentally using optical methods. The proposed simple model of carbon clusters with variable lengths of chemical bonds allows us to imitate the transfer from diamond and diamond-like to graphite-like structures, as well as the corresponding modification of hybridization sp{sup 3}/sp{sup 2} for diamond-like and sp{sub z} for graphite-like phases. This enables us to estimate various allotropes parameters, like the gap E{sub g}, energies of valence E{sub v}, and conduction E{sub c} band edges, and the value of electronic affinity, i.e., optical work function X, which are all of practical importance. The obtained estimations correspond to the experimental data.

  6. Flywheel energy storage advances using HTS bearings.

    SciTech Connect (OSTI)

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  7. Dented Diamonds, Carbon Cages and Exceptional Potential | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Dented Diamonds, Carbon Cages and Exceptional Potential News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 08.27.12 Dented Diamonds, Carbon Cages and Exceptional Potential Office of Science

  8. Carbon atom, dimer and trimer chemistry on diamond surfaces from molecular dynamics simulations

    SciTech Connect (OSTI)

    Valone, S.M.

    1995-07-01

    Spectroscopic studies of various atmospheres appearing in diamond film synthesis suggest evidence for carbon atoms, dimers, or trimers. Molecular dynamics simulations with the Brenner hydrocarbon potential are being used to investigate the elementary reactions of these species on a hydrogen-terminated diamond (111) surface. In principle these types of simulations can be extended to simulations of growth morphologies, in the 1-2 monolayer regime presently.

  9. Diamonds help generate new record for static pressures for study | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory A double-stage diamond anvil cell mounted at the beamline at the Advanced Photon Source. (Image courtesy Vitali Prakapenka) A double-stage diamond anvil cell mounted at the beamline at the Advanced Photon Source. (Image courtesy Vitali Prakapenka) University of Bayreuth scientist and study co-author Leonid Dubrovinsky at the beamline. (Image courtesy Vitali Prakapenka) University of Bayreuth scientist and study co-author Leonid Dubrovinsky at the beamline. (Image courtesy

  10. Self-healing diamond-like carbon coating could revolutionize lubrication |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Self-healing diamond-like carbon coating could revolutionize lubrication Share Description Argonne scientists discovered a technique to create a layer of diamond-like carbon on the surfaces between moving parts. This could change the future of lubrication-potentially making engines more efficient, more reliable, and even greener (by reducing heavy metal additives needed in engine oils.) Duration 0:45 Topic Energy Energy efficiency Manufacturing Credit Argonne

  11. Self-healing diamond-like carbon coating could revolutionize lubrication |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Self-healing diamond-like carbon coating could revolutionize lubrication Share Description Argonne scientists discovered a technique to create a layer of diamond-like carbon on the surfaces between moving parts. This could change the future of lubrication-potentially making engines more efficient, more reliable, and even greener (by reducing heavy metal additives needed in engine oils.) Duration 0:45 Credit Argonne National Laboratory Browse By - Any - General

  12. Note: Laser ablation technique for electrically contacting a buried implant layer in single crystal diamond

    SciTech Connect (OSTI)

    Ray, M. P.; Baldwin, J. W.; Butler, J. E.; Pate, B. B.; Feygelson, T. I.

    2011-05-15

    The creation of thin, buried, and electrically conducting layers within an otherwise insulating diamond by annealed ion implantation damage is well known. Establishing facile electrical contact to the shallow buried layer has been an unmet challenge. We demonstrate a new method, based on laser micro-machining (laser ablation), to make reliable electrical contact to a buried implant layer in diamond. Comparison is made to focused ion beam milling.

  13. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    SciTech Connect (OSTI)

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Kuball, Martin; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  14. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Kagan, Harris; Kass, Richard; Gan, K.K.

    2014-01-23

    With the LHC upgrades in 2013, and further LHC upgrades scheduled in 2018, most LHC experiments are planning for detector upgrades which require more radiation hard technologies than presently available. At present all LHC experiments now have some form of diamond detector. As a result Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of all LHC experiments. Moreover CVD diamond is now being discussed as an alternative sensor material for tracking very close to the interaction region of the HL-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications. Our accomplishments include: Developed a two U.S.companies to produce electronic grade diamond, Worked with companies and acquired large area diamond pieces, Performed radiation hardness tests using various proton energies: 70 MeV (Cyric, Japan), 800 MeV (Los Alamos), and 24 GeV (CERN).

  15. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; et al

    2016-03-14

    Here, the shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic andmore » polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less

  16. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    SciTech Connect (OSTI)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  17. Diamond formation due to a pH drop during fluid–rock interactions

    SciTech Connect (OSTI)

    Sverjensky, Dimitri A.; Huang, Fang

    2015-11-03

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly with eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state.

  18. Diamond formation due to a pH drop during fluid–rock interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sverjensky, Dimitri A.; Huang, Fang

    2015-11-03

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly withmore » eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state.« less

  19. Positive contact, self retaining bearing seals

    DOE Patents [OSTI]

    Johnson, Bruce H.; Larsen, Lawrence E.; Welch, Edmund F.

    1992-05-05

    An ultra-low friction bearing including an inner race, an outer race, bearing elements engaged between the inner and outer races and a seal between the inner and outer races is disclosed. The seal includes first and second sealing washers. The first washer has an outer diameter greater than an inner diameter of the outer race and an inner diameter greater than the outer diameter of the inner race. The second washer has an inner diameter less than the outer diameter of the inner race and an outer diameter less than the inner diameter of the outer race. The first washer slidably engages the outer race, the second washer slidably engages the inner race and the washers overlap and slidably engage one another. One of the washers snap fits into its respective inner or outer race while the other washer engages a stepped surface of the other of the inner and outer races. The grooved and stepped surface are offset from one another in a longitudinal direction of the races such that the washers are conically loaded thus providing a seal between the inner and outer races sufficient to prevent lubricant and contaminating particles from passing therethrough. The washers are made from a non-metallic semi-flexible low-modulus material.

  20. Rolling bearing life models and steel internal cleanliness

    SciTech Connect (OSTI)

    Beswick, J.; Gabelli, A.; Ioannides, S.; Tripp, J.H.; Voskamp, A.P.

    1999-07-01

    The most widely used steel grade for rolling bearings is based on a steel composition first used almost a hundred years ago, the so-called 1C-1.5Cr steel. This steel is used either in a selective surface induction hardened conditions or in a through hardened heat treated condition, both yielding exceptional structural and contact fatigue properties. The Lundberg and Palmgren rolling bearing life prediction model, published in 1947, was the first analytical approach to bearing performance prediction, subsequently becoming a widely accepted basis for rolling bearing life calculations. At that time the fatigue life of rolling bearings was dominated by the classical sub-surface initiated failure mode. This mode results from the accumulation of micro-plastic strain at the depth of maximum Hertzian stress and is accelerated by the stress concentrations occurring at the micro internal defects. In common with all fatigue processes, rolling bearing failure is a statistical process: the failures of bearings with high inclusion content tested at high stress levels belong to the well-known family of Weibull distributions. Steady improvements in bearing steel cleanliness due, amongst other things, to the introduction of secondary metallurgy steel making techniques, have resulted in a significantly increased rolling bearing life and load carrying capacity. In recognition of this, in 1985 Ioannides and Harris introduced a new fatigue life model for rolling bearings, comprising a more widely applicable approach to the modeling of bearing life based on the relevant failure mode. Subsequently this has been extended to include effects of hardness and of micro-inclusion distributions in state-of-the-art clean bearing steel.

  1. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  2. Operating Experience Level 2, Evaluation of Nitrate Bearing Transurani...

    Broader source: Energy.gov (indexed) [DOE]

    015 OE-2 2015-01: Evaluation of Nitrate Bearing Transuranic Waste Streams This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation of...

  3. Predicting sigma formation in mo-bearing stainless steels. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Predicting sigma formation in mo-bearing stainless steels. No abstract prepared. Authors: Perricone, Matthew ; Dupont, John Neuman ; Anderson, T. D. 1 ; Robino, Charles ...

  4. Review of the Sodium Bearing Waste Treatment Project - Integrated...

    Office of Environmental Management (EM)

    Verification Review IWTU Integrated Waste Treatment Unit LCO Limiting Condition for ... Analysis Report SBWTP Sodium Bearing Waste Treatment Project SMP Safety Management ...

  5. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle...

    Office of Scientific and Technical Information (OSTI)

    a Pressurized Water Reactor Citation Details In-Document Search Title: Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor You ...

  6. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle...

    Office of Scientific and Technical Information (OSTI)

    a Pressurized Water Reactor Citation Details In-Document Search Title: Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor ...

  7. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  8. Passive magnetic bearing element with minimal power losses

    DOE Patents [OSTI]

    Post, R.F.

    1998-12-08

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

  9. Passive magnetic bearing element with minimal power losses

    DOE Patents [OSTI]

    Post, Richard F.

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

  10. Rare Earth-Bearing Murataite Ceramics

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Stefanovsky, Olga; Yudintsev, Sergey; Nikonov, Boris

    2007-07-01

    Phase composition of the murataite-based ceramics containing 10 wt.% lanthanum, cerium, neodymium, europium, gadolinium, yttrium, zirconium oxides was studied. The ceramics were prepared by melting of oxide mixtures in 20 mL glass-carbon crucibles in air at {approx}1500 deg. C. They are composed of predominant murataite-type phases and minor extra phases: rutile, crichtonite, perovskite, ilmenite/pyrophanite, and zirconolite (in the Zr-bearing sample only). Three murataite-related phases with five- (5C), eight- (8C), and three-fold (3C) elementary fluorite unit cell are normally present in all the ceramics. These phases form core, intermediate zone, and rim of the murataite grains, respectively. They are predominant host phases for the rare earth elements whose concentrations are reduced in a row: 5C>8C>3C. Appreciate fraction of La and Ce may enter the perovskite phase. (authors)

  11. Resonant frequency method for bearing ball inspection

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Chungkao Hsieh.

    1993-11-02

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

  12. Resonant frequency method for bearing ball inspection

    DOE Patents [OSTI]

    Khuri-Yakub, B. T.; Hsieh, Chung-Kao

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  13. Passive magnetic bearing for a horizontal shaft

    DOE Patents [OSTI]

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  14. Adsorptive Separation and Sequestration of Krypton, I and C14 on Diamond Nanoparticles

    SciTech Connect (OSTI)

    Ghosh, Tushar; Loyalka, Sudarsha; Prelas, Mark; Viswanath, Dabir

    2015-03-31

    The objective of this research proposal was to address the separation and sequestration of Kr and I from each other using nano-sized diamond particles and retaining these in diamond until they decay to the background level or can be used as a byproduct. Following removal of Kr and I, an adsorbent will be used to adsorb and store CO2 from the CO2 rich stream. A Field Enhanced Diffusion with Optical Activation (FEDOA-a large scale process that takes advantage of thermal, electrical, and optical activation to enhance the diffusion of an element into diamond structure) was used to load Kr and I on micron or nano sized particles having a larger relative surface area. The diamond particles can be further increased by doping it with boron followed by irradiation in a neutron flux. Previous studies showed that the hydrogen storage capacity could be increased significantly by using boron-doped irradiated diamond particles. Diamond powders were irradiated for a longer time by placing them in a quartz tube. The surface area was measured using a Quantachrome Autosorb system. No significant increase in the surface area was observed. Total surface area was about 1.7 m2/g. This suggests the existence of very minimal pores. Interestingly it showed hysteresis upon desorption. A reason for this may be strong interaction between the surface and the nitrogen molecules. Adsorption runs at higher temperatures did not show any adsorption of krypton on diamond. Use of a GC with HID detector to determine the adsorption capacity from the breakthrough curves was attempted, but experimental difficulties were encountered.

  15. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

  16. DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR

    SciTech Connect (OSTI)

    Rule, Keith; Perry, Erik; Parsells, Robert

    2003-02-27

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.

  17. The Nanoscience Beamline (I06) at Diamond Light Source

    SciTech Connect (OSTI)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-23

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  18. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  19. Modeling electron emission and surface effects from diamond cathodes

    SciTech Connect (OSTI)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  20. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  1. Permanent magnet design for high-speed superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  2. Permanent magnet design for high-speed superconducting bearings

    DOE Patents [OSTI]

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  3. Fabrication of layered self-standing diamond film by dc arc plasma jet chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, G. C.; Dai, F. W.; Li, B.; Lan, H.; Askari, J.; Tang, W. Z.; Lu, F. X.

    2007-01-15

    Layered self-standing diamond films, consisting of an upper layer, buffer layer, and a lower layer, were fabricated by fluctuating the ratio of methane to hydrogen in high power dc arc plasma jet chemical vapor deposition. There were micrometer-sized columnar diamond crystalline grains in both upper layer and lower layer. The size of the columnar diamond crystalline grains was bigger in the upper layer than that in the lower layer. The orientation of the upper layer was (110), while it was (111) for the lower layer. Raman results showed that no sp{sup 3} peak shift was found in the upper layer, but it was found and blueshifted in the lower layer. This indicated that the internal stress within the film body could be tailored by this layered structure. The buffer layer with nanometer-sized diamond grains formed by secondary nucleation was necessary in order to form the layered film. Growth rate was over 10 {mu}m/h in layered self-standing diamond film fabrication.

  4. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  5. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOE Patents [OSTI]

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  6. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOE Patents [OSTI]

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  7. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  8. Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.

    SciTech Connect (OSTI)

    Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S.

    2008-12-01

    This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

  9. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    SciTech Connect (OSTI)

    Fittje, James E.; Buehrle, Robert J.

    2006-01-20

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  10. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Rainer Wallny

    2012-10-15

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  11. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    SciTech Connect (OSTI)

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  12. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    SciTech Connect (OSTI)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrents around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials photosensitivity.

  13. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  14. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  15. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Harris Kagan; K.K. Gan; Richard Kass

    2009-03-31

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  16. Surprising stability of neutral interstitial hydrogen in diamond and cubic BN

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lyons, J. L.; Van de Walle, C. G.

    2016-01-21

    We report that in virtually all semiconductors and insulators, hydrogen interstitials (Hi) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for Hi in diamond and cubic BN. In diamond, Hi is a very strong positive-U center, and the H0icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the unique behavior of Hi in thesemore » covalent wide-band-gap semiconductors.« less

  17. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    SciTech Connect (OSTI)

    Lobanov, Sergey S.; Prakapenka, Vitali B.; Prescher, Clemens; Konôpková, Zuzana; Liermann, Hanns-Peter; Crispin, Katherine L.; Zhang, Chi; Goncharov, Alexander F.

    2015-07-21

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.

  18. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrentsmore » around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  19. Large area polycrystalline diamond films as high current photocathodes for linear induction accelerators

    SciTech Connect (OSTI)

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.

    1997-08-01

    Investigations are underway at Los Alamos to develop a new generation of high current, low source temperature photo cathodes able to operate in vacuum environments with pressures above 10e-6 torr without poisoning or degradation of emission properties. Polycrystalline diamond films are emerging as the ideal material for these photocathodes. Robustness, high quantum efficiency and high thermal conductivity are fundamental necessary attributes that are found in diamond. The high electron/hole mobility in the boron doped diamond lattice and the ability to create a negative electron affinity surface through downward band bending allow for high current density emission with quantum efficiencies of 0.5% when illuminated by a ArF laser. We report the results to date toward the development of a four kiloampere photocathode with a source temperature below 5eV for the DARHT linear induction Accelerator

  20. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  1. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  2. Laramide thrusting and Tertiary deformation Tierra Caliente, Michoacan and Guerrero States, southwestern Mexico

    SciTech Connect (OSTI)

    Johnson, C.A.; Harrison, C.G.A. ); Lang, H. ); Barros, J.A.; Cabral-Cano, E.

    1990-05-01

    Field investigations and detailed interpretations of Landsat Thematic Mapper images are in progress to improve understanding of regional structure and tectonics of the southernmost extension of the North American cordillera. Two areas have been selected within the Ciudad Altamirano 1:250,000 topographical sheet for geologic mapping and structural interpretation at 1:50,000 scale. The authors results to date require modification of previous ideas concerning the style and timing of deformations, the role and timing of terrane accretion in the overall tectonic history of the region, and the importance of southern Mexico to investigations of the tectonic evolution of the plates in the region. The relative sequence of deformation in the area correlates well with variations in relative motion between North America and plates in the Pacific. Post-Campanian thrusts and generally eastward-verging folds deformed the Mesozoic sequence during the (Laramide equivalent) Hidalgoan orogeny, associated with high-velocity east-west convergence with the Farallon plate that began about 70 Ma. The resulting unconformity was covered by the Tertiary Balsas Formation, a thick sequence of mostly continental clastics. The Tertiary stratigraphy is regionally and sometimes locally variable, but it can be divided into two members. The lower member is relatively volcanic poor and more deformed, and it lies below a regionally significant mid-Tertiary unconformity, which may mark a change to northeast-directed convergence with the Farallon plate sometime prior to 40 Ma. Continued mid-Tertiary deformation in southern Mexico may be related to eastward movement of the Chortis block and the resulting truncation of the Pacific margin of Mexico. The authors also suggest a tentative correlation between the volcaniclastic member of the Lower Cretaceous San Lucas Formation and the protolith of the Roca Verde metamorphics to the east.

  3. The Nanoscience Beamline at Diamond, Optical Design Considerations

    SciTech Connect (OSTI)

    Reininger, Ruben; Dhesi, Sarnjeet

    2007-01-19

    The main requirement of the Nanoscience Beamline at Diamond is to deliver the highest possible flux at the sample position of a PEEM with a resolving power of about 5000 in the energy range 80-2000 eV. The source of the beamline is a couple of APPLE II helical undulators in tandem that can also be used separately to allow for faster switching of the circular polarization. Based on its versatility, a collimated plane grating monochromator using sagittally focusing elements was chosen to cover the required energy range with three gratings. The operation of this monochromator requires a collimated beam incident on the grating along the dispersion direction. This can be achieved either with a toroid, focusing with its major radius along the non-dispersive direction at the exit slit, or with a sagittal cylinder. The former option uses a sagittal cylinder after the grating to focus the collimated beam at the exit slit. In the latter case, a toroid after the grating is used to focus in both directions at the exit slit. The advantage of the toroid downstream the grating is the higher horizontal demagnification. This configuration fulfills the Nanoscience Beamline's required resolving power but cannot be used to achieve very high resolution due to the astigmatic coma aberration of the toroidal mirror. The focusing at the sample position is performed with a KB pair of plane elliptical mirrors. Assuming achievable values for the errors on all the optical surfaces, the expected spots FWHW in the horizontal and vertical directions are 10 {mu}m and 3 {mu}m, respectively. The calculated photon flux at this spot at 5000 resolving power is >1012 photons/sec between 80 and 1600 eV for linearly polarized light and between 106 and 1200 eV for circularly polarized light. The beamline is expected to be operational in January 2007.

  4. Photo-stimulated low electron temperature high current diamond film field emission cathode

    DOE Patents [OSTI]

    Shurter; Roger Philips , Devlin; David James , Moody; Nathan Andrew , Taccetti; Jose Martin , Russell; Steven John

    2012-07-24

    An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.

  5. Field emission from bias-grown diamond thin films in a microwave plasma

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  6. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect (OSTI)

    Ming, L. C.; Zinin, P. V.; Sharma, S. K.

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  7. Paramont's Black Bear No. 4 mine does it right, again

    SciTech Connect (OSTI)

    Sanda, A.

    2007-07-15

    The Paramont Coal Company Virginia, LLC, a subsidiary of Alpha Natural Resources, recently won the '2007 overall award for excellence in mining and reclamation from the Virginia Division of Mined Land Reclamation and the Virginia Mining Association. Coal People Magazine recently visited Black Bear No. 4 mine where a settling pond was being removed and stream bed placed to drain the area, part of the 451-acre award winning reclamation project. The article recounts discussions with mining engineers about the company's operations with emphasis on the Black Bear No. 4 mine. Black Bear No. 1 mine won five state and national awards last year for conservation and land management practices. 8 photos.

  8. Montana grizzly bears protest exploratory drilling in wilderness area

    SciTech Connect (OSTI)

    Bieg, J.P.

    1983-04-01

    Grizzly bears require vast areas for their natural ranging habits and thrive best when isolated from humans. The continued encroachment of man, with increased recreation, logging, mining, and energy development, has reduced the bears' natural habitat until it is in danger of extinction. In 1975 Congress recognized the precarious future of the grizzly and listed it as a threatened species under the Endangered Species Act. The Forest Service has indicated that the impact of drilling, along with other uses of wilderness areas, could adversely affect the bears.

  9. Development of transfer zones and location of oil and gas fields in frontal part of Bolivian Andean fold-and-thrust belt

    SciTech Connect (OSTI)

    Baby, P. ); Specht, M.; Colletta, B.; Letouzey, J. ); Mendez, E. ); Guillier, B. )

    1993-02-01

    The frontal part of the Bolivian Andean thrust belt consists of a thick series of paleozoic to cenozoic sedimentary rocks (5 to 8 km thick) which are folded and thrusted towards the east on a sole thrust at the base of paleozoic series. The front of this tectonic wedge is characterized by transfer zones of various scales and geometries. The main oil and gas fields are located in these transfer zones. A study realized from YPFB (Yacimientos Petroliferos Fiscales Bolivianos) seismic data shows that in all the cases, the deformation is controlled by the geometry and thickness variations of the paleozoic basin. The most spectacular transfer zone appears at the bolivian orocline scale and corresponds to the famous bending of the andean thrust front close to Santa Cruz. More to the south (19 to 22[degrees] S) the southern foreland fold and thrust belt is characterized by a set of local right lateral offset transfer zones ([open quotes]en echellon[close quotes] folds). The difference of geometry and scale of the transfer zones seems to be related to the variation of the angle value between the shortening direction and the direction of the paleozoic basin borders. In order to test our interpretation, to constrain the boundary conditions and to study the thrust propagation sequence, we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  10. Big Bear City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bear City is a census-designated place in San Bernardino County, California.1...

  11. Big Bear Lake, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bear Lake is a city in San Bernardino County, California. It falls under California's...

  12. Evaluation of Nitrate-Bearing Transuranic Waste Streams

    Energy Savers [EERE]

    OE-2: 2015-1 June 2015 Evaluation of Nitrate-Bearing Transuranic Waste Streams PURPOSE This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation...

  13. Cooling system for a bearing of a turbine rotor

    DOE Patents [OSTI]

    Schmidt, Mark Christopher

    2002-01-01

    In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

  14. BPA employees help rescue bear cub in Shelton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energized high-voltage electrical equipment. The bear spent a chilly night in a nearby tree before being lured to a trap with donuts as bait. "We saw the little guy on our...

  15. Cryocooler applications for high-temperature superconductor magnetic bearings.

    SciTech Connect (OSTI)

    Niemann, R. C.

    1998-05-22

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping.

  16. High performance magnetic bearing systems using high temperature superconductors

    DOE Patents [OSTI]

    Abboud, R.G.

    1998-05-05

    Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

  17. High performance magnetic bearing systems using high temperature superconductors

    DOE Patents [OSTI]

    Abboud, Robert G.

    1998-01-01

    A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

  18. Radial Flow Bearing Heat Exchanger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radial Flow Bearing Heat Exchanger Radial Flow Bearing Heat Exchanger Sandia's Radial Flow Heat Exchanger Sandia's Radial Flow Heat Exchanger Lead Performer: Sandia National Laboratories - Albuquerque, NM Partners: -- Tribologix - Golden, CO -- United Technologies Research Center - East Hartford, CT -- University of Maryland - College Park, MD -- Oak Ridge National Laboratory - Oak Ridge, TN -- Whirlpool - Benton Harbor, MI -- Optimized Thermal Systems - College Park, MD DOE Funding: $5,472,285

  19. A Simplified Thermohydrodynamic Model for Fluid Film Bearings

    Energy Science and Technology Software Center (OSTI)

    1994-03-01

    CADJOB was constructed with the industrial designer in mind. The objective of the program is to assist the mechanical designer in selecting a journal bearing (single or multi-pad, tilting or fixed-pad, single or multi-slot inlet, isothermal or THD operation) that will satisfy, specific working conditions. CADJOB may also be used for instructional purposes, to provide the student with insight into the relative importance of the various bearing parameters.

  20. DOE - Office of Legacy Management -- American Bearing Corp - IN 09

    Office of Legacy Management (LM)

    Bearing Corp - IN 09 FUSRAP Considered Sites Site: American Bearing Corp. (IN.09 ) Eliminated from further consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: 429 South Harding Street , Indianapolis , Indiana IN.09-1 Evaluation Year: 1986 IN.09-3 Site Operations: Uranium metal fabrication work during the mid-1950s IN.09-3 Site Disposition: Eliminated - No Authority - NRC licensed IN.09-2 IN.09-4 Radioactive Materials Handled: Yes Primary

  1. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence.

    Office of Scientific and Technical Information (OSTI)

    Literature Review and DOE-LM Site Surveys (Technical Report) | SciTech Connect Technical Report: Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence. Literature Review and DOE-LM Site Surveys Citation Details In-Document Search Title: Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence. Literature Review and DOE-LM Site Surveys This report on evaporite mineralization was completed as an Ancillary Work Plan for the Applied Studies and Technology program

  2. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells

    SciTech Connect (OSTI)

    Sinogeikin, Stanislav V. Smith, Jesse S.; Rod, Eric; Lin, Chuanlong; Kenney-Benson, Curtis; Shen, Guoyin

    2015-07-15

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.

  3. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  4. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  5. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect (OSTI)

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  6. High quality factor nanocrystalline diamond micromechanical resonators limited by thermoelastic damping

    SciTech Connect (OSTI)

    Najar, Hadi; Chan, Mei-Lin; Yang, Hsueh-An; Lin, Liwei; Cahill, David G.; Horsley, David A.

    2014-04-14

    We demonstrate high quality factor thin-film nanocrystalline diamond micromechanical resonators with quality factors limited by thermoelastic damping. Cantilevers, single-anchored and double-anchored double-ended tuning forks, were fabricated from 2.5??m thick in-situ boron doped nanocrystalline diamond films deposited using hot filament chemical vapor deposition. Thermal conductivity measured by time-domain thermoreflectance resulted in 24??3?W m{sup ?1} K{sup ?1} for heat transport through the thickness of the diamond film. The resonant frequencies of the fabricated resonators were 46?kHz8?MHz and showed a maximum measured Q???86?000 at f{sub n}?=?46.849?kHz. The measured Q-factors are shown to be in good agreement with the limit imposed by thermoelastic dissipation calculated using the measured thermal conductivity. The mechanical properties extracted from resonant frequency measurements indicate a Young's elastic modulus of ?788?GPa, close to that of microcrystalline diamond.

  7. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond

    SciTech Connect (OSTI)

    Hemawan, Kadek W. Hemley, Russell J.

    2015-11-15

    A key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma–substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C{sub 2}, and H (Balmer series) important for diamond growth were identified and analyzed. The emission intensities of these electronically excited species were found to be more dependent on operating pressure than on microwave power. Plasma gas temperatures were calculated from measurements of the C{sub 2} Swan band (d{sup 3}Π → a{sup 3}Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH{sub 4}+H{sub 2} plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.

  8. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOE Patents [OSTI]

    Carlisle, John A.; Gruen, Dieter M.; Auciello, Orlando; Xiao, Xingcheng

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  9. Characterization of diamond film and bare metal photocathodes as a function of temperature and surface preparation

    SciTech Connect (OSTI)

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.

    1996-07-01

    High current photocathodes using bare metal and polycrystalline diamond films illuminated by ultraviolet lasers are being developed at Los Alamos for use in a new generation of linear induction accelerators. These photocathodes must be able to produce multiple 60 ns pulses separated by several to tens of nanoseconds. The vacuum environment in which the photocathodes must operate is 10{sup -5} torr.

  10. N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Auciello, Orlando H.; Carlisle, John A.

    2004-09-21

    An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 10.sup.19 atoms/cm.sup.3 of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.

  11. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect (OSTI)

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at λ = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  12. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to develop and produce in quantity novel superhard and ultratough thermally stable polycrystalline (TSP) diamond/SiC nanocomposites reinforced with SiC/C nanofibers for drill-bit applications and multiple industrial functions.

  13. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt. No.- 15-33-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 25, 2015, by Bear Head LNG, requesting long-term multi-contract authority as further described in their...

  14. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian; Vizkelethy, Gyorgy; Bielejec, Edward S.

    2016-05-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less

  15. Stem thrust prediction model for Westinghouse wedge gate valves with linkage type stem-to-disk connection

    SciTech Connect (OSTI)

    Wang, J.K.; Sharma, V.; Kalsi, M.S.

    1996-12-01

    The Electric Power Research Institute (EPRI) conducted a comprehensive research program with the objective of providing nuclear utilities with analytical methods to predict motor operated valve (MOV) performance under design basis conditions. This paper describes the stem thrust calculation model developed for evaluating the performance of one such valve, the Westinghouse flexible wedge gate valve. These procedures account for the unique functional characteristics of this valve design. In addition, model results are compared to available flow loop and in situ test data as a basis for evaluating the performance of the valve model.

  16. Tectonic implications of new Pennsylvanian-Permian conodont data from the Diamond Mountains, Nevada

    SciTech Connect (OSTI)

    Van Hofwegen, D.T. . Geology Dept.)

    1993-04-01

    An unstable Late Paleozoic Cordilleran margin has been recognized by several authors, however, detailed data documented the timing of individual tectonic episodes have been unavailable. In the central and northern Great Basin, a regional unconformity separates Lower and Middle Pennsylvanian strata from overlying Permian units. The timing and extent of this unconformity vary within the region, raising questions about the paleotopography. The hiatus represented by the Pennsylvanian-Permian unconformity may have resulted from Late Paleozoic tectonism, yet available age dates have been insufficient to bracket its duration with the resolution required to test this tectonic hypothesis. New conodont and lithostratigraphic data from central Nevada document the nature and extent of the hiatus locally, and suggest definitions of regional tectonic episodes. Variation in the magnitude of the hiatus between Pennsylvanian and Permian units, rapid facies shifts and variation in the thickness of Permian strata are recorded in three stratigraphic sections along the 45 mile length of the Diamond Mountains, north of Eureka, Nevada. Differences in the duration of this hiatus can be recognized using Pennsylvanian conodont lineages of Streptogathodus and Idiognathodus, and the Permian Mesogondollela bisseli-Sweetognathus whitei and Neostreptognathodus pequopensis-Sweetognathus behnkeni assemblage zones. The hiatus in the northern Diamond Mountains ranges from Atokan to latest Wolfcampian; in the central Diamonds, Morrowan to Leonardian ; in the southern Diamonds, Atokan to late Wolfcampian or Leonardian. Immediately south of the Diamond Mountains, at Secret Canyon, the hiatus spans Late Mississippian to lower upper Wolfcampian. Early Permian sedimentation in the region seems to have been strongly influenced by tectonically produced Late Pennsylvanian topography.

  17. An advanced feed pump based on magnetic bearings

    SciTech Connect (OSTI)

    Hanson, L.

    1996-11-01

    Pumps have not used magnetic bearings commercially due to their high initial cost and the perception of a high risk to reward ratio. However, by taking advantage of the capability of the bearings to operate submerged in the pumped liquid, an advanced boiler feed pump has been developed with measurably improved efficiency and reduced seal maintenance. When the economic value of these improvements are evaluated against the additional first cost of the bearing change, attractive paybacks are generated for most new plant applications and even for some retrofits where the first cost reductions from eliminating the oil system, bearings, and seals do not apply. These savings are in addition to the benefits long recognized for magnetic bearings: improved reliability; built-in remote monitoring and diagnostics; elimination of the pressure feed oil system and its maintenance and potential fire hazard. Based on these advantages a research and development prototype pump incorporating the new technology was built and tested. A commercial opportunity to demonstrate this new design arose in 1994 and resulted in the sale of an eight stage, 3500 HP feed pump to Tampa Electric Company for their new Polk Station Generating Plant. This is the largest known magnetic bearing pump delivered for commercial operation worldwide. The pump was shipped during August 1995 and is expected to enter service during the first half of 1996. This paper will briefly introduce magnetic bearings and then discuss the design of the advanced pump. The basis for predicting improved efficiency and estimating its value will be presented followed by the experience in manufacturing and testing the pump for Polk Generating Station.

  18. Independent Oversight Review, Sodium Bearing Waste Treatment Project- Federal- June 2012

    Broader source: Energy.gov [DOE]

    Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review

  19. Independent Oversight Review, Sodium Bearing Waste Treatment Project- Contractor- June 2012

    Broader source: Energy.gov [DOE]

    Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review

  20. Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project- November 2012

    Broader source: Energy.gov [DOE]

    Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project

  1. EXCITATION OF STRUCTURAL RESONANCE DUE TO A BEARING FAILURE

    SciTech Connect (OSTI)

    Leishear, R; David Stefanko, D

    2007-04-30

    Vibration due to a bearing failure in a pump created significant vibrations in a fifteen foot by fifteen foot by eight feet tall mounting platform due to excitation of resonant frequencies. In this particular application, an 18,000 pound pump was mounted to a structural steel platform. When bearing damage commenced, the platform vibrated with sufficient magnitude that conversations could not be heard within forty feet of the pump. Vibration analysis determined that the frequency of the bearing was coincident to one of the natural frequencies of the pump, which was, in turn, coincident to one of the natural frequencies of the mounting platform. This coincidence of frequencies defines resonance. Resonance creates excessive vibrations when the natural frequency of a structure is coincident to an excitation frequency. In this well documented case, the excitation frequency was related to ball bearing failures. The pump is a forty foot long vertical pump used to mix nuclear waste in 1,300,000 gallon tanks. A 300 horsepower drive motor is mounted to a structural steel platform on top of the tank. The pump hangs down into the tank from above to mix the waste and is inaccessible after installation. Initial awareness of the problem was due to increased noise from the pump. Initial vibration analysis indicated that the vibration levels of the bearing were within the expected range for this type of bearing, and the resonant condition was not obvious. Further analysis consisted of disassembly of the motor to inspect the bearings and extensive vibration monitoring. Vibration data for the bearings was obtained from the manufacturer and compared to measured vibration plots for the pump and mounting platform. Vibration data measured along the length of the pump was available from full scale testing, and vibrations were also measured at the installed pump. One of the axial frequencies of the pump, the platform frequency in the vertical direction, and the ball spin frequency for the

  2. Restoration of geological surface-UNFOLD method-a validation of complex structural mapping interpretation in the Andean Thrust Belt

    SciTech Connect (OSTI)

    Guillier, B. ); Oller, J.; Mendez, E.; Leconte, J.C.; Letouzey, J.; Specht, M.; Gratier, J.P.

    1993-02-01

    One of the most important problems in petroleum structural geology is dependable interpretation of structural maps obtained by seismic and sub-surface data. One method for validating the geometry of geological structures is the balancing cross-section technique which allows verification of cross-section geometry by a return to its initial horizontal state. However, this can not be used for of 3D halokinesis, shale tectonics, structures formed by polyphased noncoaxial tectonic events, or strike-slip and wrench faulting. An alternative approach is to test the restoration of folded and faulted surfaces to verify 3D structures by balancing geological surfaces represented by a structural map. This method tests the geometry of studied horizon and faults and is based upon the fact that, initially, actual folded/faulted structures were continuous at deposition. The balancing surface program, UNFOLD, restores the actual geological surface to its initial state. Misfits along faults implied poor structural map drawings or strong internal deformation of the geological level. By trial and error method, we returned to the initial data interpretation modifications. This method has been applied to 2D and 3D seismic structural interpretation in different structural styles, environments, rift zones, salt basins, wrench faulting, thrust belt,etc. Some applications to oil field structures in the Andean Thrust Belt have been done to check and validate the complex structural mapping interpretation.

  3. Mitigation of Micropitting in Wind Turbine Main Shaft Bearings

    SciTech Connect (OSTI)

    Sethuraman, Latha; Guo, Yi; Sheng, Shuangwen

    2015-09-03

    In recent years, increasing evidence of failures has been reported from spherical roller main bearings used in three-point mounting (TPM) drivetrains of wind turbines. One of the leading causes has been micropitting, a failure mode that is possibly overlooked by design, selection and life-prediction tools. It remains to be seen if retrofitting problematic spherical roller bearings (SRBs) with improved bearing design solutions can improve their durability. Questions to ask might be: ‘Are the operating conditions of the main bearing well understood?’ and ‘Are the failures caused by deficient design practice or other unidentified external sources within the system?’ These questions fundamentally challenge the underlying design basis and encourage the need for a system analysis approach that is currently being undertaken by researchers from the National Renewable Energy Laboratory (NREL). Specifically, this article discusses a few potential design alternatives and system-level reassessment to circumvent micropitting in main bearings used in TPM drivetrains.

  4. Magnetic bearings for free-piston Stirling engines

    SciTech Connect (OSTI)

    Curwen, P.W.; Fleming, D.P.; Rao, D.K.; Wilson, D.S.

    1992-08-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  5. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    SciTech Connect (OSTI)

    Chu, Yueh-Chieh; Jiang, Gerald; Tu, Chia-Hao; Chang Chi; Liu, Chuan-pu; Ting, Jyh-Ming; Lee, Hsin-Li; Tzeng, Yonhua; Auciello, Orlando

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  6. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam

    SciTech Connect (OSTI)

    Sakai, Takeshi Ohfuji, Hiroaki; Yagi, Takehiko; Irifune, Tetsuo; Ohishi, Yasuo; Hirao, Naohisa; Suzuki, Yuya; Kuroda, Yasushi; Asakawa, Takayuki; Kanemura, Takashi

    2015-03-15

    Micron-sized diamond anvils with a 3 ?m culet were successfully processed using a focused ion beam (FIB) system and the generation of high pressures was confirmed using the double stage diamond anvil cell technique. The difficulty of aligning two second-stage micro-anvils was solved via the paired micro-anvil method. Micro-manufacturing using a FIB system enables us to control anvil shape, process any materials, including nano-polycrystalline diamond and single crystal diamond, and assemble the sample exactly in a very small space between the second-stage anvils. This method is highly reproducible. High pressures over 300 GPa were achieved, and the pressure distribution around the micro-anvil culet was evaluated by using a well-focused synchrotron micro-X-ray beam.

  7. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition

    SciTech Connect (OSTI)

    Teraji, Tokuyuki

    2015-09-21

    Defect formation during diamond homoepitaxial growth was sufficiently inhibited by adding oxygen simultaneously in the growth ambient with high concentration of 2%. A 30-μm thick diamond films with surface roughness of <2 nm were homoepitaxially deposited on the (100) diamond single crystal substrates with reasonable growth rate of approximately 3 μm h{sup −1} under the conditions of higher methane concentration of 10%, higher substrate temperature of ∼1000 °C, and higher microwave power density condition of >100 W cm{sup −3}. Surface characteristic patterns moved to an identical direction with growth thickness, indicating that lateral growth was dominant growth mode. High chemical purity represented by low nitrogen concentration of less than 1 ppb and the highest {sup 12}C isotopic ratio of 99.998% of the obtained homoepitaxial diamond (100) films suggest that the proposed growth condition has high ability of impurity control.

  8. Levitation pressure and friction losses in superconducting bearings

    DOE Patents [OSTI]

    Hull, John R.

    2001-01-01

    A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.

  9. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    SciTech Connect (OSTI)

    Ren, X. D. Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  10. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect (OSTI)

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  11. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K

    SciTech Connect (OSTI)

    Du Zhixue; Amulele, George; Lee, Kanani K. M.; Miyagi, Lowell

    2013-02-15

    In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, the side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.

  12. Effect of nitrogen on the growth of boron doped single crystal diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profilemore » of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.« less

  13. Nucleation of diamond by pure carbon ion bombardment--a transmission electron microscopy study

    SciTech Connect (OSTI)

    Yao, Y.; Liao, M.Y.; Wang, Z.G.; Lifshitz, Y.; Lee, S.

    2005-08-08

    A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 deg. C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model.

  14. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    SciTech Connect (OSTI)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie Gu, Changzhi

    2014-05-05

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3?K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63?nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity.

  15. Single-shot measurements of plasmons in compressed diamond with an x-ray laser

    SciTech Connect (OSTI)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Gauthier, M.; Granados, E.; Hastings, J. B.; Glenzer, S. H.; Zastrau, U.; MacDonald, M. J.; Vorberger, J.; Gericke, D. O.

    2015-05-15

    Strong plasmon resonances characteristics of electron density fluctuations have recently been observed in dynamically compressed diamond for the first time at the Linac Coherent Light Source. These experiments observe the forward scattering spectra from 8 keV x-ray pulses at record peak brightness to probe laser-compressed diamond foils at the Matter in Extreme Conditions instrument. We demonstrate single-shot measurements of the x-ray scattering spectrum, which are sensitive to the temperatures and densities of the compressed samples. The inferred values from the inelastic scattering are compared to simulations, finding good agreement with the temperature and demonstrating the need to include solid state effects in the modeling of the plasmon oscillation.

  16. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    SciTech Connect (OSTI)

    Antipov, S.; Baryshev, Sergey; Butler, J. E.; Antipova, O.; Liu, Zunping; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  17. Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell

    SciTech Connect (OSTI)

    Chigarev, Nikolay; Zinin, Pavel; Ming Lichung; Amulele, George; Bulou, Alain; Gusev, Vitalyi

    2008-11-03

    Laser ultrasonics in a point-source-point-receiver configuration is applied for the evaluation of elastic properties of nontransparent materials in a diamond anvil cell at high pressures. Measurement of both longitudinal and shear acoustic wave velocities in an iron foil at pressures up to 23 GPa does not require any information in addition to the one obtained by all-optical pump-probe technique.

  18. Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Diamond Amplified Photocathode at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  19. Demonstration of a high heat removal CVD diamond substrate edge-cooled multichip module

    SciTech Connect (OSTI)

    Peterson, D.W.; Sweet, J.N.; Andaleon, D.D.; Renzi, R.F.; Johnson, D.R.

    1994-05-01

    A single substrate intended for a 3-dimensional (3D) edge-cooled multichip module (MCM) has been built and thermally tested. The substrate, with dimensions 1.9 in. by 2 in., is mounted in a fluid cooled block at one end. To test this cooling architecture and verify the accuracy of thermal models, the authors constructed thermal test modules using alumina (Al{sub 2}O{sub 3}), aluminum nitride (AlN), and CVD diamond substrate materials. Each module was populated with an array of 16 Sandia ATC03 test chips with resistive heaters and temperature sensing diode thermometers. Comparative measurements of the 3 substrates were made in which the top row of 4 die were heated at 5 W each for a total of 20 W. The maximum temperature differences between the heated die and the interface with the cold chuck, {delta}T{sub js}, were 24, 126, and 265{degrees}C for diamond, AIN and alumina, respectively. Measurements on the diamond thermal test module, uniformly heated at a total power of 40 W, gave a measured junction-to-sink temperature of {delta}T{sub js} = 18{degrees}C. This result indicates that the diamond edge-cooled substrate could dissipate a total power {approximately}200 W for a maximum {delta}T{sub js} {approximately}100{degrees}C. If multiple substrates were mounted in the fluid cooled block, spaced 0.075 in. apart, the volumetric power density would be about 880 W/in.

  20. Argonne discovery yields self-healing diamond-like carbon | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Argonne discovery yields self-healing diamond-like carbon Author: Greg Cunningham and Katie Jones August 5, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version Large-scale reactive molecular dynamics simulations carried out on the Mira supercomputer at the Argonne Leadership Computing Facility, along with experiments conducted by researchers in Argonne's Energy Systems Division, enabled the design of a "self-healing," anti-wear

  1. The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale Friday, August 9, 2013 - 10:30am SLAC, Conference Room 137-322 Presented by Abraham Wolcott, Department of Chemistry, Columbia University High-pressure, high-temperature (HPHT) nanodiamonds with nitrogen vacancy centers represent a unique class of fluorophores due to their long-lived electron spin properties, all-carbon matrix, and long-term photostability. While this class

  2. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    SciTech Connect (OSTI)

    Benecha, E. M.; Lombardi, E. B.

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  3. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect (OSTI)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  4. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  5. Optimization of superconducting tiling pattern for superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  6. Optimization of superconducting tiling pattern for superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  7. PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.

    2010-02-01

    Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

  8. Gearbox Reliability Collaborative High Speed Shaft Tapered Roller Bearing Calibration

    SciTech Connect (OSTI)

    Keller, J.; Guo, Y.; McNiff, B.

    2013-10-01

    The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is a project investigating gearbox reliability primarily through testing and modeling. Previous dynamometer testing focused upon acquiring measurements in the planetary section of the test gearbox. Prior to these tests, the strain gages installed on the planetary bearings were calibrated in a load frame.

  9. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect (OSTI)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  10. Syntaxin 1a Variants Lacking an N-peptide or Bearing the LE Mutation...

    Office of Scientific and Technical Information (OSTI)

    an N-peptide or Bearing the LE Mutation Bind to Munc18a in a Closed Conformation Citation Details In-Document Search Title: Syntaxin 1a Variants Lacking an N-peptide or Bearing ...

  11. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    SciTech Connect (OSTI)

    Tulenko, James; Subhash, Ghatu

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  12. Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life

    SciTech Connect (OSTI)

    Harris, T.; Rumbarger, J. H.; Butterfield, C. P.

    2009-12-01

    This report describes the design criteria, calculation methods, and applicable standards recommended for use in performance and life analyses of ball and roller (rolling) bearings for yaw and pitch motion support in wind turbine applications. The formulae presented here for rolling bearing analytical methods and bearing-life ratings are consistent with methods in current use by wind turbine designers and rolling-bearing manufacturers.

  13. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  14. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  15. Failure Atlas for Rolling Bearings in Wind Turbines

    SciTech Connect (OSTI)

    Tallian, T. E.

    2006-01-01

    This Atlas is structured as a supplement to the book: T.E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2nd edition, ASME Press New York, (1999). The content of the atlas comprises plate pages from the book that contain bearing failure images, application data, and descriptions of failure mode, image, and suspected failure causes. Rolling bearings are a critical component of the mainshaft system, gearbox and generator in the rapidly developing technology of power generating wind turbines. The demands for long service life are stringent; the design load, speed and temperature regimes are demanding and the environmental conditions including weather, contamination, impediments to monitoring and maintenance are often unfavorable. As a result, experience has shown that the rolling bearings are prone to a variety of failure modes that may prevent achievement of design lives. Morphological failure diagnosis is extensively used in the failure analysis and improvement of bearing operation. Accumulated experience shows that the failure appearance and mode of failure causation in wind turbine bearings has many distinguishing features. The present Atlas is a first effort to collect an interpreted database of specifically wind turbine related rolling bearing failures and make it widely available. This Atlas is structured as a supplement to the book: T. E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2d edition, ASME Press New York, (1999). The main body of that book is a comprehensive collection of self-contained pages called Plates, containing failure images, bearing and application data, and three descriptions: failure mode, image and suspected failure causes. The Plates are sorted by main failure mode into chapters. Each chapter is preceded by a general technical discussion of the failure mode, its appearance and causes. The Plates part is supplemented by an introductory part, describing the appearance classification and failure classification

  16. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08

    The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

  17. Bearing repair services offer a cost-effective alternative to expensive replacement

    SciTech Connect (OSTI)

    2009-02-15

    The article, based on a presentation during MINExpo 2008, explains how advancement is bearing design, material, maintenance and repair methods have greatly improved the potential for and popularity of bearing repair as an effective way to extend bearing life. The Trinken Co. offers a variety of service options including repair, recertification, reconditioning and remanufacturing. Benefits of a quality repair program are outlined. 2 photos.

  18. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore status updates are no longer required. * Fixing/Decontamination Activities-Decontaminated equipment has been removed from Room 7 of Panel 7 to prepare for Room 7 closure activities. Remaining items in Panel 7, Room 7 include thirteen empty magnesium oxide racks, about 200 roof bolts, nine messenger

  19. Uranium- and thorium-bearing pegmatites of the United States

    SciTech Connect (OSTI)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  20. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  1. Electron emission and defect formation in the interaction of slow,highly charged ions with diamond surfaces

    SciTech Connect (OSTI)

    Sideras-Haddad, E.; Shrivastava, S.; Rebuli, D.B.; Persaud, A.; Schneider, D.H.; Schenkel, T.

    2006-05-31

    We report on electron emission and defect formation in theinteraction between slow (v~;0.3 vBohr) highly charged ions (SHCI) withinsulating (type IIa) and semiconducting (type IIb) diamonds. Electronemission induced by 31Pq+ (q=5 to 13), and 136Xeq+ (q=34 to 44) withkinetic energies of 9 kVxq increase linearly with the ion charge states,reaching over 100 electrons per ion for high xenon charge states withoutsurface passivation of the diamond with hydrogen. Yields from bothdiamond types are up to a factor of two higher then from reference metalsurfaces. Crater like defects with diameters of 25 to 40 nm are formed bythe impact of single Xe44+ ions. High secondary electron yields andsingle ion induced defects enable the formation of single dopant arrayson diamond surfaces.

  2. High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures

    SciTech Connect (OSTI)

    Lin, Jung-Fu; Speciale, Sergio; Prakapenka, Vitali B.; Dera, Przemek; Lavina, Babara; Watson, Heather C.

    2010-06-22

    Iron-bearing silicate perovskite is believed to be the most abundant mineral of the Earth's lower mantle. Recent studies have shown that Fe{sup 2+} exists predominantly in the intermediate-spin state with a total spin number of 1 in silicate perovskite in the lower part of the lower mantle. Here we have measured the spin states of iron and the pressure-volume relation in silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}] at pressure conditions relevant to the lowermost mantle using in situ X-ray emission and X-ray diffraction in a diamond cell. Our results showed that the intermediate-spin Fe{sup 2+} is stable in the silicate perovskite up to {approx} 125 GPa but starts to transition to the low-spin state at approximately 135 GPa. Concurrent X-ray diffraction measurements showed a decrease of approximately 1% in the unit cell volume in the silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}], which is attributed to the intermediate-spin to the low-spin transition. The transition pressure coincides with the pressure conditions of the lowermost mantle, raising the possibility of the existence of the silicate perovskite phase with the low-spin Fe{sup 2+} across the transition from the post-perovskite to the perovskite phases in the bottom of the D{double_prime} layer.

  3. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    SciTech Connect (OSTI)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  4. Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

    SciTech Connect (OSTI)

    Le Floch, J.-M.; Tobar, M. E.; Bradac, C.; Nand, N.; Volz, T.; Castelletto, S.

    2014-09-29

    We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single negatively charged NV center (NV{sup }) in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV{sup } major axis in a straightforward manner.

  5. Cleaning of diamond nanoindentation probes with oxygen plasma and carbon dioxide snow

    SciTech Connect (OSTI)

    Morris, Dylan J. [National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, Maryland 20899-8520 (United States)

    2009-12-15

    Diamond nanoindentation probes may perform thousands of indentations over years of service life. There is a broad agreement that the probes need frequent cleaning, but techniques for doing so are mostly anecdotes shared between experimentalists. In preparation for the measurement of the shape of a nanoindentation probe by a scanning probe microscope, cleaning by carbon dioxide snow jets and oxygen plasma was investigated. Repeated indentation on a thumbprint-contaminated surface formed a compound that was very resistant to removal by solvents, CO{sub 2} snow, and plasma. CO{sub 2} snow cleaning is found to be a generally effective cleaning procedure.

  6. Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate

    DOE Patents [OSTI]

    Feng, Z.; Brewer, M.; Brown, I.; Komvopoulos, K.

    1994-05-03

    A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment. 6 figures.

  7. Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate

    DOE Patents [OSTI]

    Feng, Zhu; Brewer, Marilee; Brown, Ian; Komvopoulos, Kyriakos

    1994-01-01

    A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment.

  8. Stability of B-H and B-D complexes in diamond under electron beam excitation

    SciTech Connect (OSTI)

    Barjon, J.; Mehdaoui, A.; Jomard, F.; Chevallier, J.; Mer, C.; Nesladek, M.; Bergonzo, P.; Pernot, J.; Omnes, F.; Deneuville, A.

    2008-08-11

    The substitution of hydrogen by deuterium is generally known to increase the stability of the defect passivation in semiconductors, occasionally giving rise to giant isotope effects. In this work, the stability under an electron beam irradiation of boron-hydrogen and boron-deuterium pairs in diamond are compared. The dissociation kinetics was followed in situ by cathodoluminescence spectroscopy. Surprisingly, B-H complexes are more stable than B-D complexes under electron beam at low temperature ({approx}100 K), with a dissociation rate about twice smaller. These experimental results are coherent with a dissociation mechanism involving a cumulative vibrational excitation of the complexes.

  9. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect (OSTI)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  10. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.

    1994-01-01

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  11. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  12. High-Speed Shaft Bearing Loads Testing and Modeling in the NREL Gearbox Reliability Collaborative: Preprint

    SciTech Connect (OSTI)

    McNiff, B.; Guo, Y.; Keller, J.; Sethuraman, L.

    2014-12-01

    Bearing failures in the high speed output stage of the gearbox are plaguing the wind turbine industry. Accordingly, the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) has performed an experimental and theoretical investigation of loads within these bearings. The purpose of this paper is to describe the instrumentation, calibrations, data post-processing and initial results from this testing and modeling effort. Measured HSS torque, bending, and bearing loads are related to model predictions. Of additional interest is examining if the shaft measurements can be simply related to bearing load measurements, eliminating the need for invasive modifications of the bearing races for such instrumentation.

  13. An ultra-thin diamond membrane as a transmission particle detector and vacuum window for external microbeams

    SciTech Connect (OSTI)

    Grilj, V.; Skukan, N.; Jakšić, M.; Pomorski, M.; Kada, W.; Iwamoto, N.; Kamiya, T.; Ohshima, T.

    2013-12-09

    Several applications of external microbeam techniques demand a very accurate and controlled dose delivery. To satisfy these requirements when post-sample ion detection is not feasible, we constructed a transmission single-ion detector based on an ultra-thin diamond membrane. The negligible intrinsic noise provides an excellent signal-to-noise ratio and enables a hit-detection efficiency of close to 100%, even for energetic protons, while the small thickness of the membrane limits beam spreading. Moreover, because of the superb mechanical stiffness of diamond, this membrane can simultaneously serve as a vacuum window and allow the extraction of an ion microbeam into the atmosphere.

  14. Demonstration of a three-dimensional photonic crystal nanocavity in a 〈110〉-layered diamond structure

    SciTech Connect (OSTI)

    Tajiri, T.; Takahashi, S.; Ota, Y.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2015-08-17

    We experimentally demonstrate a three-dimensional photonic crystal (3D PC) nanocavity in a 〈110〉-layered diamond structure with a quality factor (Q-factor) of 12 800 at a wavelength of 1.1 μm. The observed Q is 1.2 times higher than that of a 3D PC nanocavity in a woodpile structure with the same in-plane size and the same number of stacked layers. This result indicates the potential importance of the 〈110〉-layered diamond structure for getting high Q 3D PC nanocavities within a limited in-plane space.

  15. Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF{sub 6} plasma treatment

    SciTech Connect (OSTI)

    Osterkamp, Christian; Lang, Johannes; Scharpf, Jochen; Mller, Christoph; McGuinness, Liam Paul; Naydenov, Boris Jelezko, Fedor; Diemant, Thomas; Behm, R. Jrgen

    2015-03-16

    Here we report the fabrication of stable, shallow (<5?nm) nitrogen-vacancy (NV) centers in diamond by nitrogen delta doping at the last stage of the chemical vapor deposition growth process. The NVs are stabilized after treating the diamond in SF{sub 6} plasma, otherwise the color centers are not observed, suggesting a strong influence from the surface. X-ray photoelectron spectroscopy measurements show the presence of only fluorine atoms on the surface, in contrast to previous studies, indicating very good surface coverage. We managed to detect hydrogen nuclear magnetic resonance signal from protons in the immersion oil, revealing a depth of the NVs of about 5?nm.

  16. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect (OSTI)

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  17. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  18. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    SciTech Connect (OSTI)

    Offermann, Dustin T; Flippo, Kirk A; Gaillard, Sandrine A

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  19. Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond

    SciTech Connect (OSTI)

    Bernardi, E. Battiato, A.; Olivero, P.; Vittone, E.; Picollo, F.

    2015-01-14

    In this work, we present an investigation by Kelvin Probe Microscopy (KPM) of buried graphitic microchannels fabricated in single-crystal diamond by direct MeV ion microbeam writing. Metal deposition of variable-thickness masks was adopted to implant channels with emerging endpoints and high temperature annealing was performed in order to induce the graphitization of the highly-damaged buried region. When an electrical current was flowing through the biased buried channel, the structure was clearly evidenced by KPM maps of the electrical potential of the surface region overlying the channel at increasing distances from the grounded electrode. The KPM profiling shows regions of opposite contrast located at different distances from the endpoints of the channel. This effect is attributed to the different electrical conduction properties of the surface and of the buried graphitic layer. The model adopted to interpret these KPM maps and profiles proved to be suitable for the electronic characterization of buried conductive channels, providing a non-invasive method to measure the local resistivity with a micrometer resolution. The results demonstrate the potential of the technique as a powerful diagnostic tool to monitor the functionality of all-carbon graphite/diamond devices to be fabricated by MeV ion beam lithography.

  20. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect (OSTI)

    Cazzaniga, C., E-mail: carlo.cazzaniga@mib.infn.it; Nocente, M.; Gorini, G. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Rebai, M.; Giacomelli, L. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Tardocchi, M.; Croci, G.; Grosso, G. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Calvani, P.; Girolami, M.; Trucchi, D. M. [CNR-ISM, Research Area Roma 1, Via Salaria km 29.300, 00015-Monterotondo Scalo (Rm) (Italy); Griesmayer, E. [Atominstitut, Vienna University of Technology, Vienna (Austria); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy)

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, ?){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  1. Temperature dependence of mechanical stiffness and dissipation in ultrananocrystalline diamond films grown by the HFCVD techinque.

    SciTech Connect (OSTI)

    Adiga, V. P.; Sumant, A. V.; Suresh, S.; Gudeman, C.; Auciello, O.; Carlisle, J. A.; Carpick, R. W.; Materials Science Division; Univ. of Pennsylvania; Innovative Micro Tech.; Advanced Diamond Tech.

    2009-06-01

    We have characterized mechanical properties of ultrananocrystalline diamond (UNCD) thin films grown using the hot filament chemical vapor deposition (HFCVD) technique at 680 C, significantly lower than the conventional growth temperature of -800 C. The films have -4.3% sp{sup 2} content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, -1 {micro}m thick, exhibit a net residual compressive stress of 370 {+-} 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838 {+-} 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum (UHV) conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790 {+-} 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057 {+-} 0.038. The quality factors (Q) of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators.

  2. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    SciTech Connect (OSTI)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  3. Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector

    SciTech Connect (OSTI)

    Morales, Johnny E.; Crowe, Scott B.; Trapp, J. V.; Hill, Robin; Freeman, Nigel

    2014-11-01

    Purpose: Small field x-ray beam dosimetry is difficult due to lack of lateral electronic equilibrium, source occlusion, high dose gradients, and detector volume averaging. Currently, there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods: Small field sizes were defined by BrainLAB circular cones (430 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses (PDDs) were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, ?{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were calculated by Monte Carlo methods using BEAMnrc and correction factors, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were derived for the PTW 60019 microDiamond detector. Results: For the small fields of 430 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, ?{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were derived for the PTW 60019 microDiamond detector. Conclusions: The

  4. Electrostatic stabilizer for a passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  5. Electrostatic stabilizer for a passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2015-12-01

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  6. Method for digesting a nitro-bearing explosive compound

    DOE Patents [OSTI]

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

  7. Method of fabricating a uranium-bearing foil

    SciTech Connect (OSTI)

    Gooch, Jackie G.; DeMint, Amy L.

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  8. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOE Patents [OSTI]

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  9. Silver-bearing, high-temperature, superconducting (HTS) paint

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1990-02-15

    A substantial set of device applications awaits development of a workable, durable, high-temperature superconducting (HTS) paint. Such a paint should be truly superconducting with its critical temperature T sub c>77K. For most of these applications, a high critical current (J sub c) is not required, although probably desirable. A process is described which can be used to produce silver-bearing HTS paint coatings on many engineering materials. Preliminary tests have shown good adherence to several ceramics and the ability to meet the superconducting criteria. Moreover, the coatings withstand multiple thermal cycling and stability under laboratory ambient storage conditions for periods of at least several months.

  10. Feed Composition for Sodium-Bearing Waste Treatment Process

    SciTech Connect (OSTI)

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  11. Stabilization, Packaging, and Storage of Plutonium-Bearing Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-STD-3013-2000 September 2000 Superseding DOE-STD-3013-99 November 1999 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax:

  12. Stailization, Packaging, and Storage of Plutonium-Bearing Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-STD-3013-2012 MARCH 2012 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/NuclearSafety/ns/techstds/ DOE-STD-3013-2012 iii ABSTRACT This Standard provides guidance for the stabilization, packaging, and safe storage

  13. Criteria for Packaging and Storing Uranium-233-Bearing Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3028-2000 July 2000 DOE STANDARD CRITERIA FOR PACKAGING AND STORING URANIUM-233-BEARING MATERIALS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S.

  14. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    SciTech Connect (OSTI)

    Robinson, W.F. ); Swift, C.M. Jr. )

    1996-01-01

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation. Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.

  15. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    SciTech Connect (OSTI)

    Robinson, W.F.; Swift, C.M. Jr.

    1996-12-31

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation. Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.

  16. Does the Use of Diamond-Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.; Luo, Huimin; Qu, Jun

    2015-08-22

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  17. Pu-bearing materials - from fundamental science to storage standards.

    SciTech Connect (OSTI)

    Tam, S. W.; Liu, Y.; Decision and Information Sciences; Michigan Technical Univ.

    2008-01-01

    The behavior of plutonium (Pu) oxides in the presence of water/moisture in a confined space and the associated issues of hydrogen and oxygen generation due to radiolysis have important implications for the storage and transportation of Pu-bearing materials. This paper reviews the results of recent studies of gas generation in the Pu-O-H system, including the determination of release rates via engineering-scale measurement. The observations of the significant differences in gas generation behavior between 'pure' Pu-bearing materials and those that contain salt impurities are addressed. In conjunction with the discussion of these empirical observations, the work also addresses recent scientific advances in the investigations of the Pu-O-H system using state-of-the-art ab initio electronic structure calculations, as well as advanced synchrotron techniques to determine the electronic structure of the various Pu-containing phases. The role of oxidizing species such as the hydroxyl radical from the radiolysis of water is examined. Discussed also is the challenge in the predictive ab-initio calculations of the electronic structure of the Pu-H-O system, due to the nature of the 5f valence electrons in Pu. Coupled with the continuing material surveillance program, it is anticipated that this work may help determine the electronic structure of the various Pu-containing phases and the role of impurity salts on gas generation and the long-term stability of oxygen/hydrogen-containing plutonium oxides beyond PuO{sub 2}.

  18. Evaluation of water saturation in oil-bearing shaly sands

    SciTech Connect (OSTI)

    Martinovic, S.; Vojnovic, V. )

    1990-06-01

    The physical properties of shaly formations are difficult to evaluate because the shale component strongly affects geophysical well log and laboratory test data. This is particularly true in the case of water saturation. On the other hand, the accuracy of in-situ hydrocarbon estimates depends directly on the accuracy of water saturation values. The most important interpretation models for water saturation rely on double-layer models. These interpretation models compute highly probably water saturation values of oil-bearing shaly sands using sound mathematical and physical postulates. Certain disadvantages, such as the inability to evaluate some crucial parameters directly from geophysical well logs, simplifications along the system-model line, inherent deficiencies of logging techniques, etc., give rise to errors and other problems which are more or less solved at this stage of development. A simple program for water saturation of oil-bearing shaly sands was designed and tested. The program uses equations based on double layer models. Program listing and test results also are presented.

  19. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect (OSTI)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  20. Combined passive magnetic bearing element and vibration damper

    DOE Patents [OSTI]

    Post, Richard F.

    2001-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.