National Library of Energy BETA

Sample records for diamond anvil cells

  1. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    SciTech Connect (OSTI)

    Lobanov, Sergey S.; Prakapenka, Vitali B.; Prescher, Clemens; Konôpková, Zuzana; Liermann, Hanns-Peter; Crispin, Katherine L.; Zhang, Chi; Goncharov, Alexander F.

    2015-07-21

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.

  2. Preparation of W-Ta thin-film thermocouple on diamond anvil cell...

    Office of Scientific and Technical Information (OSTI)

    Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure Citation Details In-Document Search Title: Preparation of W...

  3. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, William C.

    1988-01-01

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.

  4. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  5. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  6. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  7. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  8. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  9. Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell

    SciTech Connect (OSTI)

    Chigarev, Nikolay; Zinin, Pavel; Ming Lichung; Amulele, George; Bulou, Alain; Gusev, Vitalyi

    2008-11-03

    Laser ultrasonics in a point-source-point-receiver configuration is applied for the evaluation of elastic properties of nontransparent materials in a diamond anvil cell at high pressures. Measurement of both longitudinal and shear acoustic wave velocities in an iron foil at pressures up to 23 GPa does not require any information in addition to the one obtained by all-optical pump-probe technique.

  10. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K

    SciTech Connect (OSTI)

    Du Zhixue; Amulele, George; Lee, Kanani K. M.; Miyagi, Lowell

    2013-02-15

    In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, the side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.

  11. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOE Patents [OSTI]

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  12. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOE Patents [OSTI]

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  13. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells

    SciTech Connect (OSTI)

    Sinogeikin, Stanislav V. Smith, Jesse S.; Rod, Eric; Lin, Chuanlong; Kenney-Benson, Curtis; Shen, Guoyin

    2015-07-15

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.

  14. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    SciTech Connect (OSTI)

    Palmer, A; Silevitch, D M; Feng, Yejun; Wang, Y; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  15. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1987-02-06

    Use of double or multiple bevel culet geometry on a diamond anvil to provide increased sample pressure and stability for a given force applied to the diamond tables. 7 figs.

  16. Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

    Office of Scientific and Technical Information (OSTI)

    Pulsed laser Raman spectroscopy in the laser-heated diamond anvil cell Citation Details In-Document Search Title: Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

  17. Dynamic Diamond Anvil Cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    SciTech Connect (OSTI)

    Evans, W J; Yoo, C; Lee, G W; Cynn, H; Lipp, M J; Visbeck, K

    2007-02-23

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500 GPa/sec ({approx}0.16 s{sup -1} for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  18. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect (OSTI)

    Goncharov, Alexander F.; Struzhkin, Viktor V.; Dalton, D. Allen; Prakapenka, Vitali B.; Kantor, Innokenty; Rivers, Mark L.

    2010-11-15

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {mu}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10 000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {mu}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  19. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, Arnab; Ren, Yang; Rosenbaum, Thomas F.

    2015-09-04

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide rangemore » of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.« less

  20. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability

    SciTech Connect (OSTI)

    Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, Arnab; Ren, Yang; Rosenbaum, Thomas F.

    2015-09-04

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.

  1. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam

    SciTech Connect (OSTI)

    Sakai, Takeshi Ohfuji, Hiroaki; Yagi, Takehiko; Irifune, Tetsuo; Ohishi, Yasuo; Hirao, Naohisa; Suzuki, Yuya; Kuroda, Yasushi; Asakawa, Takayuki; Kanemura, Takashi

    2015-03-15

    Micron-sized diamond anvils with a 3 ?m culet were successfully processed using a focused ion beam (FIB) system and the generation of high pressures was confirmed using the double stage diamond anvil cell technique. The difficulty of aligning two second-stage micro-anvils was solved via the paired micro-anvil method. Micro-manufacturing using a FIB system enables us to control anvil shape, process any materials, including nano-polycrystalline diamond and single crystal diamond, and assemble the sample exactly in a very small space between the second-stage anvils. This method is highly reproducible. High pressures over 300 GPa were achieved, and the pressure distribution around the micro-anvil culet was evaluated by using a well-focused synchrotron micro-X-ray beam.

  2. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure

    SciTech Connect (OSTI)

    Yang Jie; Li Ming; Zhang Honglin; Gao Chunxiao

    2011-04-15

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases.

  3. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage of 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.

  4. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  5. Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils

    SciTech Connect (OSTI)

    Maple, M. Brian

    2005-09-13

    Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made

  6. High-pressure cells for in situ multi-anvil experiments

    SciTech Connect (OSTI)

    Leinenweber, K.; Mosenfelder, J.; Diedrich, T.; Soignard, E.; Sharp, T.G.; Tyburczy, J.A.; Wang, Y.

    2008-10-14

    A new series of high-pressure cells for in situ multi-anvil experiments is described. The cells are based on the conventional COMPRES cells, but modifications are made to improve the passage of X-rays. The modifications include cutting slits in parts of the assemblies that have very high X-ray absorption, such as lanthanum chromite and rhenium, the use of low-Z thermal insulation, such as forsterite, in place of zirconia, and the partial replacement of zirconia by MgO equatorial windows combined with a mullite octahedron. Details of the designs, thermal characterizations, and examples of the application of these cells are described.

  7. High efficiency diamond solar cells

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  8. Diamonds help generate new record for static pressures for study | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory A double-stage diamond anvil cell mounted at the beamline at the Advanced Photon Source. (Image courtesy Vitali Prakapenka) A double-stage diamond anvil cell mounted at the beamline at the Advanced Photon Source. (Image courtesy Vitali Prakapenka) University of Bayreuth scientist and study co-author Leonid Dubrovinsky at the beamline. (Image courtesy Vitali Prakapenka) University of Bayreuth scientist and study co-author Leonid Dubrovinsky at the beamline. (Image courtesy

  9. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications

    SciTech Connect (OSTI)

    Mortensen, D. R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y.-M.; Boman, G.; Bowden, M. E.

    2013-08-15

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

  10. High pressure low temperature studies on 1-2-2 iron-based superconductors using designer diamond cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.; Mitchell, Jonathan, E.; Safa-Sefat, Athena; Weir, Samuel

    2013-01-01

    In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba0.5Sr0.5Fe2As2 and Ba(Fe0.9Ru0.1)2As2 samples are presented to 10 K and 41 GPa. The collapsed tetragonal phasemore » was observed at a pressure of 14 GPa in Ba0.5Sr0.5Fe2As2 at ambient temperature. The highest superconducting transition temperature in Ba0.5Sr0.5Fe2As2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.« less

  11. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect (OSTI)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  12. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect (OSTI)

    Ming, L. C.; Zinin, P. V.; Sharma, S. K.

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  13. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    SciTech Connect (OSTI)

    Yan, Zhaoli Tian, Hao; Cheng, Xiaobin; Yang, Jun; Chen, Bin

    2015-12-15

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  14. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  15. Fabrication of diamond based sensors for use in extreme environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    2015-04-23

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less

  16. Fabrication of diamond based sensors for use in extreme environments

    SciTech Connect (OSTI)

    Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.

    2015-04-23

    Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This method can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.

  17. Plasma etching of cavities into diamond anvils for experiments...

    Office of Scientific and Technical Information (OSTI)

    Find in Google Scholar Find in Google Scholar Search WorldCat Search WorldCat to find libraries that may hold this journal Have feedback or suggestions for a way to improve these ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Pressure, stress, and strain distribution in the double-stage diamond anvil cell Lobanov, ... Pressure, stress, and strain distribution in the double-stage diamond anvil cell Lobanov, ...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Pressure, stress, and strain distribution in the double-stage diamond anvil cell Lobanov, ... Pressure, stress, and strain distribution in the double-stage diamond anvil cell Lobanov, ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... coupled with pulsed laser heating in diamond anvil cells Kupenko, I., E-mail: ... Continuous laser heating in diamond anvil cells is a widely used method to generate ...

  1. Single Crystal Preparation for High-Pressure Experiments in the...

    Office of Scientific and Technical Information (OSTI)

    Experiments in the Diamond Anvil Cell Citation Details In-Document Search Title: Single Crystal Preparation for High-Pressure Experiments in the Diamond Anvil Cell You are ...

  2. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8GPa and 600K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10GPa and 300–650K« less

  3. Time differentiated nuclear resonance spectroscopy coupled with...

    Office of Scientific and Technical Information (OSTI)

    heating in diamond anvil cells Citation Details In-Document Search Title: Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil ...

  4. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  5. Diamond fiber field emitters

    DOE Patents [OSTI]

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Compression of silver in a diamond anvil cell: Pressure dependences of strength and grain ... grain size 55+-6 nm), are compressed in a diamond anvil cell in separate experiments. ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... on wuestite in a laser-heated diamond anvil cell, finding an insulator-metal ... We performed X-ray diffraction measurements using a laser-heated diamond anvil cell to ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... of low-Z dense liquids in a diamond anvil cell: Validation on fluid Hsub 2 ... of dense low-Z fluids in a diamond anvil cell (DAC) using synchrotron x-ray diffraction. ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... crystalline NbSesub 3 nanobelt under high-pressure conditions in a diamond anvil cell. ... crystalline NbSesub 3 nanobelt under high-pressure conditions in a diamond anvil cell. ...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell ... with in situ laser heating in the diamond-anvil cell has revolutionized the field ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray ... synchrotron X-ray diffraction in diamond-anvil cells Tschauner, Oliver ; McClure, ...

  12. Sample cell for powder x-ray diffraction at up to 500 bars and 200 deg. C

    SciTech Connect (OSTI)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2006-11-15

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube.

  13. Sample cell for powder x-ray diffraction at up to 500 bars and 200 °C

    SciTech Connect (OSTI)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2008-10-03

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube.

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Leonid ; Dubrovinskaia, Natalia Diamond anvil cell (DAC) technique relies on ... August 2011 Diamond as a high pressure gauge up to 2.7 Mbar Dubrovinskaia, Natalia ; ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Leonid ; Dubrovinskaia, Natalia Diamond anvil cell (DAC) technique relies on ... Diamond as a high pressure gauge up to 2.7 Mbar Dubrovinskaia, Natalia ; Dubrovinsky, ...

  16. Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

    Office of Scientific and Technical Information (OSTI)

    5,000 K. We present performance comparisons of this system with that of a state-of-the-art conventional CW system using a 458 nm excitation source. We also demonstrate that the...

  17. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  18. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  19. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  20. Diamond tool machining of materials which react with diamond

    DOE Patents [OSTI]

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  1. Diamond tool machining of materials which react with diamond

    DOE Patents [OSTI]

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  2. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1998-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  3. Diamond nucleation using polyethene

    DOE Patents [OSTI]

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  4. Diamond films: Historical perspective

    SciTech Connect (OSTI)

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  5. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOE Patents [OSTI]

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  6. Ultrananocrystalline Diamond (UNCD) Seal Faces | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultrananocrystalline Diamond (UNCD) Seal Faces Ultrananocrystalline Diamond (UNCD) Seal Faces New Diamond Coatings Reduce Friction and Improve Performance of Mechanical Seals ...

  7. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  8. PROCESS FOR COLORING DIAMONDS

    DOE Patents [OSTI]

    Dugdale, R.A.

    1960-07-19

    A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

  9. Implementation of micro-ball nanodiamond anvils for high-pressure...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar Citation Details In-Document Search Title: ...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotronmore X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. ...

  11. High pressure effects on the iron iron oxide and nickel nickel...

    Office of Scientific and Technical Information (OSTI)

    and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotron X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. ...

  12. Nitrogen-incorporated ultrananocrystalline diamond microneedle...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for ... Title: Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for ...

  13. Diamond-graphite field emitters

    DOE Patents [OSTI]

    Valone, Steven M.

    1997-01-01

    A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

  14. Equation of state and phase diagram of FeO (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    We performed X-ray diffraction measurements using a laser-heated diamond anvil cell to achieve simultaneous high pressures and temperatures. Wuestite was mixed with iron metal, ...

  15. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption...

    Office of Scientific and Technical Information (OSTI)

    in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... More recently, this technique has been expanded to include work on significantly smaller samples (< 1mg) in large diamond anvil cells (DAC)2. However, these techniques require a ...

  17. Beamline 12.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Samples are loaded into DAC's with inert gases or other non-hazardous pressure media. Gas-loading for inert gases available Sample environment Diamond anvil cells...

  18. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ... temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. ...

  19. Fluidized bed deposition of diamond

    DOE Patents [OSTI]

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  20. CVD diamond - fundamental phenomena

    SciTech Connect (OSTI)

    Yarbrough, W.A.

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  1. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect (OSTI)

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  2. Lower pressure synthesis of diamond material

    DOE Patents [OSTI]

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  3. Structure and properties of diamond and diamond-like films

    SciTech Connect (OSTI)

    Clausing, R.E.

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  4. Conversion of fullerenes to diamond

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  5. Conversion of fullerenes to diamond

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  6. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  7. Why Physics Needs Diamonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Physics Needs Diamonds Why Physics Needs Diamonds April 26, 2016 - 3:31pm Addthis A detailed view of the diamond wafers scientists use to get a better measure of spinning electrons. | Photo courtesy of Jefferson Lab. A detailed view of the diamond wafers scientists use to get a better measure of spinning electrons. | Photo courtesy of Jefferson Lab. Kandice Carter Jefferson Lab Diamonds are one of the most coveted gemstones. But while some may want the perfect diamond for its sparkle,

  8. Conversion of fullerenes to diamonds

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  9. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1995-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  10. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  11. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1997-01-01

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide.

  12. Blue Diamond Ventures Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Blue Diamond Ventures Inc Place: Houston,, Texas Zip: 77071 Product: Agriculture, bio fuels and commercial development company. References: Blue Diamond Ventures Inc1 This...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Diamond as a high pressure gauge up to 2.7 Mbar Dubrovinskaia, Natalia ; Dubrovinsky, ... gauge is a key issue of any high pressure experiment in a diamond anvil cell (DAC). ...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... uranium and gold ions from the SIS heavy-ion synchrotron at GSI were injected through several mm of diamond into solid samples pressurized up to 14 GPa in a diamond anvil cell. ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... exist up to 10 GPa. less December 2013 Diamond as a high pressure gauge up to 2.7 Mbar ... gauge is a key issue of any high pressure experiment in a diamond anvil cell (DAC). ...

  16. Tailoring nanocrystalline diamond film properties

    DOE Patents [OSTI]

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  17. Conversion of fullerenes to diamond

    DOE Patents [OSTI]

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic hydrogen defect free diamond or diamond like films on a substrate. The method involves providing vapor containing fullerene molecules with or without an inert gas, providing a device to impart energy to the fullerene molecules, fragmenting at least in part some of the fullerene molecules in the vapor or energizing the molecules to incipient fragmentation, ionizing the fullerene molecules, impinging ionized fullerene molecules on the substrate to assist in causing fullerene fragmentation to obtain a thickness of diamond on the substrate.

  18. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    SciTech Connect (OSTI)

    Sano-Furukawa, A. Hattori, T.; Arima, H.; Yamada, A.; Tabata, S.; Kondo, M.; Nakamura, A.; Kagi, H.; Yagi, T.

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  19. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  20. Method of dehalogenation using diamonds

    DOE Patents [OSTI]

    Farcasiu, Malvina (Roslyn Harbor, NY); Kaufman, Phillip B. (Lafayette, LA); Ladner, Edward P. (Pittsburgh, PA); Anderson, Richard R. (Brownsville, PA)

    2000-01-01

    A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.

  1. Amorphous-diamond electron emitter

    DOE Patents [OSTI]

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  2. Plasma deposited diamond-like carbon films for large neutralarrays

    SciTech Connect (OSTI)

    Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

    2004-07-15

    To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

  3. Method of Forming Diamonds from Carbonaceous Material

    SciTech Connect (OSTI)

    Daulton, Tyrone; Lewis, Roy; Rehn, Lynn; Kirk, Marquis

    1999-11-30

    A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

  4. Method for forming diamonds from carbonaceous material

    DOE Patents [OSTI]

    Daulton, Tyrone; Lewis, Roy; Rehn, Lynn; Kirk, Marquis

    2001-01-01

    A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

  5. Diamond and diamond-like films for transportation applications

    SciTech Connect (OSTI)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  6. Characterization of single-crystal diamond grown from the vapor phase on substrates of natural diamond

    SciTech Connect (OSTI)

    Altukhov, A. A.; Vikharev, A. L.; Gorbachev, A. M.; Dukhnovsky, M. P.; Zemlyakov, V. E.; Ziablyuk, K. N.; Mitenkin, A. V.; Muchnikov, A. B. Radishev, D. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2011-03-15

    The results of studies of single-crystal diamond layers with orientation (100) grown on substrates of IIa-type natural diamond by chemical-vapor deposition and of semiconductor diamond obtained subsequently by doping by implantation of boron ions are reported. Optimal conditions of postimplantation annealing of diamond that provide the hole mobility of 1150 cm{sup 2} V{sup -1} s{sup -1} (the highest mobility obtained so far for semiconductor diamond after ion implantation) are given.

  7. Ultratough single crystal boron-doped diamond

    DOE Patents [OSTI]

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  8. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=58 GPa, T=1400K2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  9. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  10. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  11. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  12. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    SciTech Connect (OSTI)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.; Brannon, Rebecca

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayentas various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  13. Saturation of CVD Diamond Detectors

    SciTech Connect (OSTI)

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  14. Summary of the oil shale fragmentation program at Anvil Points Mine, Colorado

    SciTech Connect (OSTI)

    Dick, R.D.; Young, C.; Fourney, W.L.

    1984-01-01

    During 1981 and 1982, an extensive oil shale fragmentation research program was conducted at the Anvil Points Mine near Rifle, Colorado. The primary goals were to investigate factors involved for adequate fragmentation of oil shale and to evaluate the feasibility of using the modified in situ retort (MIS) method for recovery of oil from oil shale. The test program included single-deck, single-borehole tests to obtain basic fragmentation data; multiple-borehole, multiple-deck explosive tests to evaluate practical aspects for developing an in situ retort; and the development of a variety of instrumentation techniques to diagnose the blasting event. This paper will present an outline of the field program, the type of instrumentation used, some typical results from the instrumentation, and a discussion of explosive engineering problems encountered over the course of the program. 4 references, 21 figures, 1 table.

  15. Explosive fragmentation of oil shale: Results from Colony and Anvil Points Mines, Colorado

    SciTech Connect (OSTI)

    Dick, R.D.; Fourney, W.L.; Young, C. III

    1992-12-31

    From 1978 through 1983, numerous oil shale fragmentation tests were conducted at the Colony and Anvil Points Mines, Colorado. These experiments were part of an investigation to determine factors required for the adequate fragmentation of oil shale and to evaluate the feasibility of using the vertical modified in situ retort (VMIS) method for recovery of kerogen from oil shale. The objective of this research was to support the design of a large volume (10{sup 4} m{sup 3}) rubble bed for in situ processing. In addition, this rubble bed was to be formed in a large single-blast event which included decked charges, time delays, and multiple boreholes. Results are described.

  16. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...

    Energy Savers [EERE]

    5: Diamond Green Diesel Facility in Norco, LA EA-1795: Diamond Green Diesel Facility in Norco, LA April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond ...

  17. Diamond turning machine controller implementation

    SciTech Connect (OSTI)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  18. Diamond-silicon carbide composite and method

    DOE Patents [OSTI]

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  19. Bruce Diamond | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Bruce Diamond General Counsel Bruce Diamond Bruce Diamond became the General Counsel for the NNSA in February, 2011. Before that, Bruce was DOE Assistant General Counsel for Environment, the senior career environmental attorney for the Department dealing principally with complex issues regarding the clean-up of the nuclear complex and implementation of National Environmental Policy Act obligations. In addition, he was responsible for addressing health and safety issues. Previously, he was a

  20. Diamond turning of thermoplastic polymers

    SciTech Connect (OSTI)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  1. Diamond Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pty Ltd Jump to: navigation, search Name: Diamond Energy Pty Ltd Place: Melbourne, Australia Zip: 3124 Product: Victoria based clean energy project developer. Coordinates:...

  2. Diamond Walnut Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleDiamondWalnutBiomassFacility&oldid397401" Feedback Contact needs updating Image needs updating...

  3. Superconducting nanowire single photon detector on diamond

    SciTech Connect (OSTI)

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lon?ar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310?nm and 632?nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300?pm Root Mean Square surface roughness are obtained.

  4. Diamond Wire Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    Wire Technology LLC Jump to: navigation, search Name: Diamond Wire Technology LLC Place: Colorado Springs, Colorado Zip: 80916 Sector: Solar Product: US-based manufacturer of...

  5. Modeling electron emission and surface effects from diamond cathodes...

    Office of Scientific and Technical Information (OSTI)

    and surface effects from diamond cathodes Citation Details In-Document Search Title: Modeling electron emission and surface effects from diamond cathodes Authors: Dimitrov D. ...

  6. All diamond self-aligned thin film transistor

    DOE Patents [OSTI]

    Gerbi, Jennifer

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  7. Diamond film growth argon-carbon plasmas

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  8. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  9. Fluorinated diamond bonded in fluorocarbon resin

    DOE Patents [OSTI]

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  10. Explosive engineering problems from fragmentation tests in oil shale at the Anvil Points Mine, Colorado

    SciTech Connect (OSTI)

    Dick, R.D.; Fourney, W.L.; Young, C.

    1985-01-01

    During 1981 and 1982, an extensive oil shale fragmentation research program was conducted at the Anvil Points Mine near Rifle, Colorado. The primary goals were to investigate factors involved for adequate fragmentation of oil shale and to evaluate the feasibility of using the modified in situ retort (MIS) method for recovery of oil from oil shale. The field test program included single-deck, single-borehole experiments to obtain basic fragmentation data; multiple-deck, multiple-borehole experiments to evaluate some practical aspects for developing an in situ retort; and the development of a variety of instrumentation technique to diagnose the blast event. This paper discusses some explosive engineering problems encountered, such as electric cap performance in complex blasting patterns, explosive and stem performance in a variety of configurations from the simple to the complex, and the difficulties experienced when reversing the direction of throw of the oil shale in a subscale retort configuration. These problems need solutions before an adequate MIS retort can be created in a single-blast event and even before an experimental mini-retort can be formed. 6 references, 7 figures, 3 tables.

  11. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles

    SciTech Connect (OSTI)

    Kang, Qiping; He, Xinbo Ren, Shubin; Liu, Tingting; Liu, Qian; Wu, Mao; Qu, Xuanhui

    2015-07-15

    An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO{sub 3} in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m{sup −} {sup 1} K{sup −} {sup 1}. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications.

  12. Deformation T-Cup: A new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18GPa

    SciTech Connect (OSTI)

    Hunt, Simon A. McCormack, Richard J.; Bailey, Edward; Dobson, David P.; Weidner, Donald J.; Whitaker, Matthew L.; Li, Li; Vaughan, Michael T.

    2014-08-15

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to high strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 12 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10GPa at 800C.

  13. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  14. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  15. Phase transition and metallization of FeO at high pressures and...

    Office of Scientific and Technical Information (OSTI)

    We performed X-ray diffraction and radiometric measurements on wuestite in a laser-heated diamond anvil cell, finding an insulator-metal transition at high pressures and ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (Fe3-xTixO4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... of state of ferropericlase (Mgsub 0.75Fesub 0.25)O has been investigated by synchrotron X-ray diffraction up to 140 GPa and 2000 K in a laser-heated diamond anvil cell. ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ; Li, Linsen ; Jin, Song ; Song, Yang ; UWO) ZnO nanowires were investigated at high pressures of up to 27 GPa in situ in a diamond anvil cell using synchrotron X-ray diffraction. ...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore ...

  20. Structural feature controlling superconductivity in compressed...

    Office of Scientific and Technical Information (OSTI)

    By performing synchrotron X-ray powder diffraction measurements with diamond anvil cells up ... Feng-Jiang 3 ; Tang, Ling-Yun 1 ; Department of Physics, South China University of ...

  1. Multifrequency spin resonance in diamond

    SciTech Connect (OSTI)

    Childress, Lilian; McIntyre, Jean

    2010-09-15

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating-wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  2. Diamond coated silicon field emitter array

    SciTech Connect (OSTI)

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  3. Diamond film growth argon-carbon plasmas

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  4. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.

    1997-04-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.

  5. Method and apparatus for making diamond-like carbon films

    DOE Patents [OSTI]

    Pern, Fu-Jann; Touryan, Kenell J.; Panosyan, Zhozef Retevos; Gippius, Aleksey Alekseyevich

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  6. Getting a better measure of spin with diamond | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting a better measure of spin with diamond Diamond detector The Hall C Compton Polarimeter uses a novel detector system built of thin slivers of diamond, seen here. The lab-grown slices of diamond, measuring roughly three-quarters of an inch square (2 cm) and a mere two hundredths of an inch thick, are outfitted like computer chips, with 96 tiny electrodes stuck to them. The electrodes send a signal when the diamond detector counts an electron. Getting a better measure of spin with diamond

  7. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  8. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  9. n-Type diamond and method for producing same

    DOE Patents [OSTI]

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  10. Comparative evaluation of CVD diamond technologies

    SciTech Connect (OSTI)

    Anthony, T.R.

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  11. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  12. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect (OSTI)

    Benecha, E. M.; Lombardi, E. B.

    2013-12-14

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0 μ{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33 meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  13. Vacancy induced structural changes in diamond.

    SciTech Connect (OSTI)

    Barnard, A.; Sternberg, M.; Univ. of Melbourne

    2008-01-01

    Although optically active defects in nanodiamond are being considered as candidates for optical labeling in biomedical applications, development in this area is being hindered the fact that suitable defects are rarely seen in diamond nanoparticles in the size regime required. These defects usually form as a complex with an impurity and a neutral of charged vacancy, so a measurable concentration of vacancy point defects is also necessary. Presented here are results of density functional tight binding computer simulations investigating the stability of vacancies in diamond nanoparticles with different surface structures. The results indicate that both neutral and charged vacancies alter the structure of as-grown diamond nanoparticles and are likely to diffuse out of the particle during synthesis or irradiation. We also find that suitable passivation of the particle may alleviate this problem, and hence facilitate the formation of defect complexes.

  14. STATUS OF DIAMOND SECONDARY EMISSION ENHANCED PHOTOCATHODE

    SciTech Connect (OSTI)

    RAO,T.; BEN-ZVI, I.; CHANG, X.; GRIMES, J.; GROVER, R.; ISAKOVIC, A.; SMEDLEY, J.; TODD, R.; WARREN, J.; WU, Q.

    2007-05-25

    The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.

  15. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  16. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  17. Diamond Shaving of Contaminated Concrete Surfaces

    SciTech Connect (OSTI)

    Mullen, Lisa K.

    2008-01-15

    Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to

  18. Workshop on diamond and diamond-like-carbon films for the transportation industry

    SciTech Connect (OSTI)

    Nichols, F.A.; Moores, D.K.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  19. Stability of polarized states for diamond valleytronics

    SciTech Connect (OSTI)

    Hammersberg, J.; Majdi, S.; Kovi, K. K.; Suntornwipat, N.; Gabrysch, M.; Isberg, J.; Twitchen, D. J.

    2014-06-09

    The stability of valley polarized electron states is crucial for the development of valleytronics. A long relaxation time of the valley polarization is required to enable operations to be performed on the polarized states. Here, we investigate the stability of valley polarized states in diamond, expressed as relaxation time. We have found that the stability of the states can be extremely long when we consider the electron-phonon scattering processes allowed by symmetry considerations. We determine electron-phonon coupling constants by Time-of-Flight measurements and Monte Carlo simulations and use these data to map out the relaxation time temperature dependency. The relaxation time for diamond can be microseconds or longer below 100 K and 100 V/cm due to the strong covalent bond, which is highly encouraging for future use in valleytronic applications.

  20. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  1. Measurement of tool forces in diamond turning

    SciTech Connect (OSTI)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  2. Precision diamond grinding of ceramics and glass

    SciTech Connect (OSTI)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  3. Method to fabricate micro and nano diamond devices

    DOE Patents [OSTI]

    Morales, Alfredo M; Anderson, Richard J; Yang, Nancy Y. C.; Skinner, Jack L; Rye, Michael J

    2014-10-07

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  4. Argonne researchers develop two new diamond inventions | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory researchers develop two new diamond inventions By Jared Sagoff * October 10, 2014 Tweet EmailPrint ARGONNE, IL - Researchers at the US Department of Energy's Argonne National Laboratory have continued their research into advanced ultrananocrystalline diamond technologies and have developed two new applications for this special material. Ultrananocrystalline diamond (UNCD) thin films have shown a great deal of promise in the semiconductor and microelectromechanical systems (MEMS)

  5. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Diamond Green Diesel Facility in Norco, LA EA-1795: Diamond Green Diesel Facility in Norco, LA April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond Green Diesel, LLC for Construction of the Diamond Green Diesel Facility in Norco, Louisiana April 18, 2011 EA-1795: Finding of No Significant Impact Loan Guarantee to Diamond Green Diesel for Construction of the Diamond Green Diesel Facility in Norco, Louisiana

  6. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  7. Diamond Bar, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Diamond Bar, California US South Coast Air Quality Management District SCAQMD References US Census Bureau Incorporated place...

  8. USES OF HYPERTHERMAL ATOMIC BEAM FOR LOW TEMPERATURE DIAMOND...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality of the film. An example is growing diamond films with large micrometer sized grains below 100 C. Reducing the growth temperature requires finding ways of selectively...

  9. Diamond Plates Create Nanostructures through Pressure, Not Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plates Create Nanostructures through Pressure, Not Chemistry - Sandia Energy Energy Search ... Diamond Plates Create Nanostructures through Pressure, Not Chemistry HomeAdvanced ...

  10. Fabrication and current optical performance of a large diamond...

    Office of Scientific and Technical Information (OSTI)

    Fabrication and current optical performance of a large diamond-machined ZnSe immersion grating Citation Details In-Document Search Title: Fabrication and current optical ...

  11. Thin Sheet of Diamond Has Worlds of Uses

    DOE R&D Accomplishments [OSTI]

    Sagoff, Jared

    2011-04-01

    A new technique from Argonne National Laboratory creates thin diamond films that are helping industry save energy and could even be used in heart and eye implants.

  12. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOE Patents [OSTI]

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  13. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Diamond Green Diesel project is a joint venture between Valero Energy Corporation and Darling International Inc. Valero Energy Corporation will direct the design, construction ...

  14. The Best of Both Worlds: Bulk Diamond Properties Realized at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a level of crystallographic and electronic ordering in purified HPHT nanodiamonds that matches fundamental properties of bulk diamond to the nanoscale while retaining its...

  15. New Superhard Form of Carbon Dents Diamond | U.S. DOE Office...

    Office of Science (SC) Website

    New Superhard Form of Carbon Dents Diamond Advanced Scientific Computing Research (ASCR) ... New Superhard Form of Carbon Dents Diamond Squeezing creates new class of material built ...

  16. Panel 2 - properties of diamond and diamond-like-carbon films

    SciTech Connect (OSTI)

    Blau, P.J.; Clausing, R.E.; Ajayi, O.O.; Liu, Y.Y.; Purohit, A.; Bartelt, P.F.; Baughman, R.H.; Bhushan, B.; Cooper, C.V.; Dugger, M.T.; Freedman, A.; Larsen-Basse, J.; McGuire, N.R.; Messier, R.F.; Noble, G.L.; Ostrowki, M.H.; Sartwell, B.D.; Wei, R.

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  17. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOE Patents [OSTI]

    Gruen, Dieter M.; Busmann, Hans-Gerd; Meyer, Eva-Maria; Auciello, Orlando; Krauss, Alan R.; Krauss, Julie R.

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  18. Diamond/diamond-like thin film growth in a butane plasma on unetched, unheated, N-type Si(100) substrates

    SciTech Connect (OSTI)

    Williams, E.S.; Richardson, J.S. Jr.; Anderson, D.; Starkey, K.

    1995-06-01

    Deposition of diamond/diamond-like thin films on unetched, unheated, n-type Si(100) substrates in a butane plasma is reported. An interconnection between values of index of refraction, hydrogen flow rate, butane flow rate and Rf power was determined. The H{sub 2} and C{sub 4}H{sub 10} molecules are disassociated by Rf energy to create a plasma. Carbon from the butane forms a thin diamond/diamond-like film on a suitable substrate, which in the current investigation, is n-type Si(100).

  19. Analyzing the performance of diamond-coated micro end mills.

    SciTech Connect (OSTI)

    Torres, C. D.; Heaney, P. J.; Sumant, A. V.; Hamilton, M. A.; Carpick, R. W.; Pfefferkorn, F. E.; Univ. of Wisconsin at Madison; Univ. of Pennsylvania

    2009-06-01

    A method is presented to improve the tool life and cutting performance of 300 {micro}m diameter tungsten carbide (WC) micro end mills by applying thin (<300 nm) fine-grained diamond (FGD) and nanocrystalline diamond (NCD) coatings using the hot-filament chemical vapor deposition (HF-CVD) process. The performance of the diamond-coated tools has been evaluated by comparing their performance in dry slot milling of 6061-T6 aluminum against uncoated WC micro end mills. Tool wear, coating integrity, and chip morphology were characterized using SEM and white light interferometry. The initial test results show a dramatic improvement in the tool integrity (i.e., corners not breaking off), a lower wear rate, no observable adhesion of aluminum to the diamond-coated tool, and a significant reduction in the cutting forces (>50%). Reduction of the cutting forces is attributed to the low friction and adhesion of the diamond coating. However, approximately 80% of the tools coated with the larger FGD coatings failed during testing due to delamination. Additional machining benefits were attained for the NCD films, which was obtained by using a higher nucleation density seeding process for diamond growth. This process allowed for thinner, smaller grained diamond coatings to be deposited on the micro end mills, and enabled continued operation of the tool even after the integrity of the diamond coating had been compromised. As opposed to the FGD-coated end mills, only 40% of the NCD-tools experienced delamination issues.

  20. Diamond-cBN alloy: A universal cutting material

    SciTech Connect (OSTI)

    Wang, Pei; He, Duanwei Kou, Zili; Li, Yong; Hu, Qiwei; Xu, Chao; Lei, Li; Wang, Qiming; Wang, Liping; Zhao, Yusheng; Xiong, Lun; Liu, Jing

    2015-09-07

    Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis and characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.

  1. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect (OSTI)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  2. Method and apparatus for diamond wire cutting of metal structures

    DOE Patents [OSTI]

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  3. Diamond Shamrock nears completion of major expansions

    SciTech Connect (OSTI)

    True, W.R.

    1993-05-24

    With completion later this year of a second refined products line into Colorado, Diamond Shamrock Inc., San Antonio, will have added more than 600 miles of product and crude-oil pipeline on its system and expanded charge and production capacities at its two state-of-the-art refineries, all within 30 months. The projects aim at improving the company's ability to serve markets in the U.S. Southwest and increasing capacities and flexibility at its two refineries. The paper describes these projects under the following headings: new products service; another new line; and refineries, crude pipelines; Three Rivers expansion and Supplies for McKee.

  4. Diamond machine tool face lapping machine

    DOE Patents [OSTI]

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  5. Tensile properties of amorphous diamond films

    SciTech Connect (OSTI)

    Lavan, D.A.; Hohlfelder, R.J.; Sullivan, J.P.; Friedmann, T.A.; Mitchell, M.A.; Ashby, C.I.

    1999-12-02

    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter.

  6. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect (OSTI)

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko; Saguy, Cecile; Kalish, Rafi; Djerdj, Igor; Tonejc, Andelka; Gamulin, Ozren

    2008-08-01

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  7. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  8. Optical excitation of paramagnetic nitrogen in chemical vapor deposited diamond

    SciTech Connect (OSTI)

    Graeff, C.F.; Rohrer, E.; Nebel, C.E.; Stutzmann, M.; Guettler, H.; Zachai, R.

    1996-11-01

    Investigations of polycrystalline chemical vapor deposited diamond films by electron-spin-resonance (ESR), light-induced (L)ESR, and the constant photoconductivity method have identified dispersed substitutional nitrogen (P1 center) as the main paramagnetic form of N incorporated in the CVD diamond. The density of N-related paramagnetic states is strongly affected by illumination and heat treatment. It is found that the P1 center in CVD diamond gives rise to a deep donor state about 1.5 eV below the conduction band. {copyright} {ital 1996 American Institute of Physics.}

  9. Printable, flexible and stretchable diamond for thermal management

    DOE Patents [OSTI]

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  10. EIS-0070: Mining, Construction and Operation for a Full-size Module at the Anvil Points Oil Shale Facility, Rifle, Garfield County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy prepared this environmental impact statement to assess the environmental and socioeconomic implications of its proposal to mine 11 million tons of oil shale from the Naval Oil Shale Reserves (NOSR) at Anvil Points, Colorado; to construct an experimental full-size shale retort module on a 365-acre lease tract having a 4700 bbl/day production capacity; and to consider extension, modification or new leasing of the facility. This project was cancelled after the DEIS was issued.

  11. A Method for Selecting Software for Dynamic Event Analysis II: the Taylor Anvil and Dynamic Brazilian Tests

    SciTech Connect (OSTI)

    W. D. Richins; J. M. Lacy; T. K. Larson; S. R. Novascone

    2008-05-01

    fracture at the center of the specimen that propagates toward the loading points until the cylinder is split. To generate a dynamic load, different methods such as a drop-weight or a split Hopkinson pressure bar are employed. The Taylor anvil and dynamic Brazilian test analyses are presented, including discussion of the analysis approach for each of the five subject software packages; comparison of results both among the codes and to physical test results; and conclusions as to the applicability of the subject codes to these two problems. Studies of the remaining three benchmark problems and overall conclusions will be presented in future reports.

  12. Plasma-assisted conversion of solid hydrocarbon to diamond

    DOE Patents [OSTI]

    Valone, Steven M.; Pattillo, Stevan G.; Trkula, Mitchell; Coates, Don M.; Shah, S. Ismat

    1996-01-01

    A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

  13. Slip sliding away: Graphene and diamonds prove a slippery combination...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slip sliding away: Graphene and diamonds prove a slippery combination By Jared Sagoff * May 22, 2015 Tweet EmailPrint Scientists at the U.S. Department of Energy's Argonne National...

  14. Blue Diamond, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Diamond is a census-designated place in Clark County, Nevada.1 References US...

  15. Ramp Compression of Diamond to 5 TPa: Experiments Taking Carbon...

    Office of Scientific and Technical Information (OSTI)

    Title: Ramp Compression of Diamond to 5 TPa: Experiments Taking Carbon to the Thomas-Fermi-Dirac Regime Authors: Smith, R F ; Eggert, J H ; Jeanloz, R ; Duffy, T S ; Braun, D G ; ...

  16. Engineering shallow spins in diamond with nitrogen delta-doping...

    Office of Scientific and Technical Information (OSTI)

    Title: Engineering shallow spins in diamond with nitrogen delta-doping We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of ...

  17. Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2005-09-15

    The inclusion of dopants (such as nitrogen) in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Although most commercial diamond nanoparticles contain a small fraction of nitrogen, it is still unclear whether it is located within the core or at the surface of the nanoparticle. Presented here are density functional tight binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional nitrogen in nanodiamond and bucky-diamond particles. The results predict that nitrogen is likely to be positioned at the surface of both hydrogenated nanodiamond and (dehydrogenated) bucky-diamond, and that the coordination of the dopants within the particles is dependent upon the surface structure.

  18. Black Diamond, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Black Diamond is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  19. Diamonds are an Electronic Device’s Best Friend

    Broader source: Energy.gov [DOE]

    Researchers at Argonne National Lab recently devised a way to use diamonds to brighten the performance of electronic devices, which could put a bit more sparkle in everyone’s day.

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... High-pressure generation using double stage micro-paired diamond anvils shaped by focused ... ; Asakawa, Takayuki ; et al Micron-sized diamond anvils with a 3 m culet were ...

  1. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  2. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  3. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect (OSTI)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  4. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W.; Roybal, Herman E.

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  5. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  6. BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS

    Office of Legacy Management (LM)

    BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO October 27, 1989 Prepared for: U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Prepared by: R.F. Weston/Office of Technical Services BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO INTRODUCTION The Department of Energy (DOE) is conducting a program to identify and examine the radiological conditions at sites used in the early years of nuclear

  7. Modeling electron emission and surface effects from diamond cathodes

    SciTech Connect (OSTI)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  8. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  9. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan; Muller, Erik

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  10. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  11. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect (OSTI)

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  12. The 'Crazy Diamond' (and other blazars)

    SciTech Connect (OSTI)

    Vercellone, S.; Giuliani, A.

    2009-04-08

    During the first year of observations, AGILE detected several blazars at high significance: 3 C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3 C 273, MKN 421, and W Comae. We obtained long-term coverage of the Crazy Diamond 3 C 454.3, for more than 100 days at energies above 100 MeV. 3 C 273 was the first blazar detected simultaneously by the AGILE gamma-ray imaging detector and by its hard X-ray monitor. S5 0716+714, an intermediate BL Lac object, exhibited a very fast and intense gamma-ray transient event during an optical high-state phase, while MKN 421 and W Comae where detected during an AGILE target of opportunity (ToO) repointing. Thanks to the rapid dissemination of our alerts, we were able to obtain multi-wavelength ToO data from other observatories such as Spitzer, Swift, INTEGRAL, RXTE, Suzaku, MAGIC, VERITAS, as well as optical coverage by means of the WEBT Consortium and REM.

  13. Graphene diamond-like carbon films heterostructure

    SciTech Connect (OSTI)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ?25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  14. Fabrication and testing of diamond-machined gratings in ZnSe...

    Office of Scientific and Technical Information (OSTI)

    Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of ...

  15. Two- and three-dimensional ultrananocrystalline diamond (UNCD) structures for a high resolution diamond-based MEMS technology.

    SciTech Connect (OSTI)

    Auciello, O.; Krauss, A. R.; Gruen, D. M.; Busmann, H. G.; Meyer, E. M.; Tucek, J.; Sumant, A.; Jayatissa, A.; Moldovan, N.; Mancini, D. C.; Gardos, M. N.

    2000-01-17

    Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO{sub 2} layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. The authors demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C{sub 60}-Ar or CH{sub 4}-Ar gas mixtures, which result in films that have 3--5 nm grain size, are 10--20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.

  16. Effects of hydrogen atoms on surface conductivity of diamond film

    SciTech Connect (OSTI)

    Liu, Fengbin Cui, Yan; Qu, Min; Di, Jiejian

    2015-04-15

    To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100) orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3H{sub bc}-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  17. Heavy-ion irradiation induced diamond formation in carbonaceous materials.

    SciTech Connect (OSTI)

    Daulton, T. L.

    1999-01-08

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond.

  18. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  19. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    SciTech Connect (OSTI)

    Klyui, N. I. Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N.; Fomovskii, F. V.; Han, Wei

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  20. Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release

    SciTech Connect (OSTI)

    Tushar K Ghosh

    2008-10-13

    The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.

  1. Capacitively coupled RF diamond-like-carbon reactor

    DOE Patents [OSTI]

    Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven

    2000-01-01

    A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.

  2. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  3. Smooth diamond films as low friction, long wear surfaces

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Erdemir, Ali; Bindal, Cuma; Zuiker, Christopher D.

    1999-01-01

    An article and method of manufacture of a nanocrystalline diamond film. The nanocrystalline film is prepared by forming a carbonaceous vapor, providing an inert gas containing gas stream and combining the gas stream with the carbonaceous containing vapor. A plasma of the combined vapor and gas stream is formed in a chamber and fragmented carbon species are deposited onto a substrate to form the nanocrystalline diamond film having a root mean square flatness of about 50 nm deviation from flatness in the as deposited state.

  4. Diamond turning of Si and Ge single crystals

    SciTech Connect (OSTI)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  5. Simplified models of growth, defect formation, and thermal conductivity in diamond chemical vapor deposition

    SciTech Connect (OSTI)

    Coltrin, M.E.; Dandy, D.S.

    1996-04-01

    A simplified surface reaction mechanism is presented for the CVD of diamond thin films. The mechanism also accounts for formation of point defects in the diamond lattice, an alternate, undesirable reaction pathway. Both methyl radicals and atomic C are considered as growth precursors. While not rigorous in all details, the mechanism is useful in describing the CVD diamond process over a wide range of reaction conditions. It should find utility in reactor modeling studies, for example in optimizing diamond growth rate while minimizing defect formation. This report also presents a simple model relating the diamond point-defect density to the thermal conductivity of the material.

  6. Microwave-induced thermogenetic activation of single cells

    SciTech Connect (OSTI)

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  7. Large piezoresistive effect in surface conductive nanocrystalline diamond

    SciTech Connect (OSTI)

    Janssens, S. D. Haenen, K.; Drijkoningen, S.

    2014-09-08

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350 nm thick, with a diameter of 656 μm and a sheet resistance of 1.45 MΩ/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  8. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  9. Diamond Wire Saw for Precision Machining of Laser Target Components

    SciTech Connect (OSTI)

    Bono, M J; Bennett, D W

    2005-08-08

    The fabrication of precision laser targets requires a wide variety of specialized mesoscale manufacturing techniques. The diamond wire saw developed in this study provides the capability to precisely section meso-scale workpieces mounted on the assembly stations used by the Target Fabrication Group. This new capability greatly simplifies the fabrication of many types of targets and reduces the time and cost required to build the targets. A variety of materials are used to fabricate targets, including metals, plastics with custom designed chemical formulas, and aerogels of various densities. The materials are usually provided in the form of small pieces or cast rods that must be machined to the required shape. Many of these materials, such as metals and some plastics, can be trimmed using a parting tool on a diamond turning machine. However, other materials, such as aerogels and brittle materials, cannot be adequately cut with a parting tool. In addition, the geometry of the parts often requires that the workpieces be held in a special assembly station, which excludes the use of a parting tool. In the past, these materials were sectioned using a small, handheld coping saw that used a diamond-impregnated wire as a blade. This miniature coping saw was effective, but it required several hours to cut through certain materials. Furthermore, the saw was guided by hand and often caused significant damage to fragile aerogels. To solve these problems, the diamond wire saw shown in Figure 1 was developed. The diamond wire saw is designed to machine through materials that are mounted in the Target Fabrication Group's benchtop assembly stations. These assembly stations are the primary means of aligning and assembling target components, and there is often a need to machine materials while they are mounted in the assembly stations. Unfortunately, commercially available saws are designed for very different applications and are far too large to be used with the assembly stations

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ...3Nb23)O3-xPbTiO (PMN-xPT) solid solutions (x0.2, 0.3, 0.33, 0.35, 0.37, 0.4) in diamond anvil cells up to 20 GPa at 300 K. The Raman spectra show a peak centered at 380 cm- ...

  11. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1999-01-01

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.

  12. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1999-03-30

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  13. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOE Patents [OSTI]

    Holcombe, Jr., Cressie E.; Seals, Roland D.

    1995-01-01

    A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.

  14. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOE Patents [OSTI]

    Holcombe, C.E. Jr.; Seals, R.D.

    1995-09-26

    A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.

  15. Method for producing fluorinated diamond-like carbon films

    DOE Patents [OSTI]

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  16. Adhesion at WC/diamond interfaces - A theoretical study

    SciTech Connect (OSTI)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  17. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  18. Characterization of textured polycrystalline diamond by electron spin resonance spectroscopy

    SciTech Connect (OSTI)

    Graeff, C.F.; Nebel, C.E.; Stutzmann, M.; Floeter, A.; Zachai, R.

    1997-01-01

    Electron spin resonance (ESR) is shown to be a useful and versatile technique for the detection and characterization of preferred orientation effects in polycrystalline diamond films. A nitrogen related center known as P1 is used for this purpose. The ESR signal coming from this center is composed of a central line and hyperfine satellite lines. It is found that crystallite disorientation causes a linewidth broadening of the satellite lines, which can thus be used to quantitatively characterize the diamond film texture. It is shown that the method is able to separate contributions of disorder induced by rotations of the crystallites around the growth direction from other contributions. The general conditions in which the method can be applied, and its applicability to other materials, are discussed. {copyright} {ital 1997 American Institute of Physics.}

  19. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect (OSTI)

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  20. Molecular dynamics simulation of radiation damage cascades in diamond

    SciTech Connect (OSTI)

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  1. High-Current Cold Cathode Employing Diamond and Related Materials

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  2. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOE Patents [OSTI]

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  3. Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Diamond Amplified Photocathode at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of ...

  4. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect (OSTI)

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  5. Amorphous Diamond Flat Panel Displays - Final Report of ER-LTR CRADA project with SI Diamond Technology

    SciTech Connect (OSTI)

    Ager III, Joel W.

    1998-05-08

    The objective of this project was to determine why diamond-based films are unusually efficient electron emitters (field emission cathodes) at room temperature. Efficient cathodes based on diamond are being developed by SI Diamond Technology (SIDT) as components for bright, sunlight-readable, flat panel displays. When the project started, it was known that only a small fraction (<1%) of the cathode area is active in electron emission and that the emission sites themselves are sub-micron in size. The critical challenge of this project was to develop new microcharacterization methods capable of examining known emission sites. The research team used a combination of cathode emission imaging (developed at SIDT), micro-Raman spectroscopy (LBNL), and electron microscopy and spectroscopy (National Center for Electron Microscopy, LBNL) to examine the properties of known emission sites. The most significant accomplishment of the project was the development at LBNL of a very high resolution scanning probe that, for the first time, measured simultaneously the topography and electrical characteristics of single emission sites. The increased understanding of the emission mechanism helped SIDT to develop a new cathode material,''nano-diamond,'' which they have incorporated into their Field Emission Picture Element (FEPix) product. SIDT is developing large-format flat panel displays based on these picture elements that will be brighter and more efficient than existing outdoor displays such as Jumbotrons. The energy saving that will be realized if field emission displays are introduced commercially is in line with the energy conservation mission of DOE. The unique characterization tools developed in this project (particularly the new scanning microscopy method) are being used in ongoing BES-funded basic research.

  6. Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Gaowei, M.; Muller, E. M.; Rumaiz, A. K.; Weiland, C.; Cockayne, E.; Woicik, J. C.; Jordan-Sweet, J.; Smedley, J.

    2012-05-14

    Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

  7. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    SciTech Connect (OSTI)

    Chow, P. Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.

  8. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect (OSTI)

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  9. Method of bonding diamonds in a matrix and articles thus produced

    DOE Patents [OSTI]

    Taylor, G.W.

    1981-01-27

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  10. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.