National Library of Energy BETA

Sample records for diagnostic analyses ecmwfdiag

  1. ARM - Campaign Instrument - ecmwfdiag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Campaign Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models Campaigns...

  2. ARM - Instrument - ecmwfdiag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-888-ARM-DATA. Send Instrument : European Centre for Medium Range Weather Forecasts Diagnostic Analyses (ECMWFDIAG) Instrument Categories Derived Quantities and Models General...

  3. Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Bylaws Executive Board NIF Calendar Target Shot Metrics Call for Proposals 2014 ... Target diagnostics capability continues to grow on NIF annually as we add new ...

  4. Plasma diagnostic reflectometry

    SciTech Connect (OSTI)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-02-26

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements.

  5. MJO Simulation Diagnostics

    SciTech Connect (OSTI)

    Waliser, D; Sperber, K; Hendon, H; Kim, D; Maloney, E; Wheeler, M; Weickmann, K; Zhang, C; Donner, L; Gottschalck, J; Higgins, W; Kang, I; Legler, D; Moncrieff, M; Schubert, S; Stern, W; Vitart, F; Wang, B; Wang, W; Woolnough, S

    2008-06-02

    The Madden-Julian Oscillation (MJO) interacts with, and influences, a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, mid-latitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in our climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multi-model comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, due to the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the US CLIVAR MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation, to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life-cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.

  6. Mode Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mode Analyses of Gyrokinetic Simulations of Plasma Microturbulence by David R. Hatch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at The University of Wisconsin - Madison 2010 c Copyright by David R. Hatch 2010 All Rights Reserved i For Jen and Owen ii ACKNOWLEDGEMENTS I would like to thank my advisor, Paul Terry, who provided me with a research topic which I have found engaging and challenging, and has also offered an ideal

  7. Particle Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  8. Diagnostic compositions

    SciTech Connect (OSTI)

    Burch, W.M.

    1981-07-28

    The invention discloses diagnostic compositions for use in obtaining images of a patient's lungs. The basic components of the composition of the invention are sodium pertechnetate which is radioactive and ethanol. This composition may be combusted and the resulting products cooled or alternatively the composition may be inserted into a pressure vessel with an aerosol. In both cases a gas like mixture results. A particular advantage is that a patient is able to breath the mixture of the invention in a normal way and does not need to undergo any training in inhalation.

  9. On-line diagnostic system for power generators

    SciTech Connect (OSTI)

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  10. Cable Diagnostic Focused Initiative

    SciTech Connect (OSTI)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  11. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  12. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  13. Diagnostics Implemented on NIF - Optical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPIE. 8850, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion II, ... SPIE. 8850, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion II, ...

  14. Chemical Diagnostics and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, applied and basic energy sciences, threat reduction, public health, the environment, and space exploration. Contact Us Group Leader Peter Stark Deputy Group Leader Tom Yoshida Group Office (505) 667-5740 X-Ray Photoelectron Spectroscopy X-Ray Photoelectron Spectroscopy The Chemical Diagnostics and Engineering (C-CDE) Group combines engineering design with routine analytical services and state-of-the-art

  15. Proceedings: Substation equipment diagnostics conference

    SciTech Connect (OSTI)

    Lyons, K.L.

    1994-07-01

    This Substation Equipment Diagnostics Conference held November 3--5, 1993, in New Orleans, Louisiana, reviewed the status of EPRI research on transmission substation diagnostics as well as that of universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under four categories of diagnostics: Transformers, Circuit Breakers, Other Substation Equipment, and Diagnostic Systems.

  16. Precision Diagnostic System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pds Precision Diagnostic System For NIF to reach the goal of ignition, it needs to produce highly shaped pulses that are precisely controlled. NIF's precision diagnostic system (PDS) examines all the properties of a NIF beam to verify performance. It has the same final optics configuration as installed in the NIF target chamber but with the hardware for only one beam in order to measure beam characteristics. These false color images of NIF 2ω (green, left) and 3ω (blue, right) laser beams

  17. Heterodyne laser diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  18. BEAM SIMULATIONS USING VIRTUAL DIAGNOSTICS FOR THE DRIVER LINAC

    SciTech Connect (OSTI)

    R. C. York; X. Wu; Q. Zhao

    2011-12-21

    End-to-end beam simulations for the driver linac have shown that the design meets the necessary performance requirements including having adequate transverse and longitudinal acceptances. However, to achieve reliable operational performance, the development of appropriate beam diagnostic systems and control room procedures are crucial. With limited R&D funding, beam simulations provide a cost effective tool to evaluate candidate beam diagnostic systems and to provide a critical basis for developing early commissioning and later operational activities. We propose to perform beam dynamic studies and engineering analyses to define the requisite diagnostic systems of the driver linac and through simulation to develop and test commissioning and operational procedures.

  19. DIAGNOSTICS OF BNL ERL

    SciTech Connect (OSTI)

    POZDEYEV,E.; BEN-ZVI, I.; CAMERON, P.; GASSNER, D.; KAYRAN, D.; ET AL.

    2007-06-25

    The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlines requirements on the ERL diagnostics and describes its setup and modes of operation.

  20. On-board Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On-board Diagnostics for Big Data J. Zurawski ⇤ , S. Balasubramanian ⇤ , A. Brown ‡ , E. Kissel † , A. Lake ⇤ , M. Swany † , B. Tierney ⇤ and M. Zekauskas ‡ ⇤ Energy Sciences Network (ESnet) Lawrence Berkeley National Laboratory, Berkeley, CA, USA Email: {zurawski, sowmya, andy, bltierney}@es.net † Indiana University School of Informatics and Computing, Bloomington, IN, USA Email: {ezkissel, swany}@indiana.edu ‡ Internet2 Ann Arbor, MI, USA Email: {aaron,

  1. Gas-Phase Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Diagnostics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. ITER Diagnostic First Wal

    SciTech Connect (OSTI)

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  3. Nuclear Diagnostics of ICF

    SciTech Connect (OSTI)

    Izumi, N; Ierche, R A; Moran, M J; Phillips, T W; Sangster, T C; Schmid, G J; Stoyer, M A; Disdier, L; Bourgade, J L; Rouyer, A; Fisher, R K; Gerggren, R R; Caldwen, S E; Faulkner, J R; Mack, J M; Oertel, J A; Young, C S; Glebov, V Y; Jaanimagi, P A; Meyerhofer, D D; Soures, J M; Stockel, C; Frenje, J A; Li, C K; Petrasso, R D

    2001-10-18

    In inertial confinement fusion (ICF), a high temperature and high density plasma is produced by the spherical implosion of a small capsule. A spherical target capsule is irradiated uniformly by a laser beam (direct irradiation) or x-rays from a high Z enclosure (hohlraum) that is irradiated by laser or ion beams (indirect irradiation). Then high-pressure ablation of the surface causes the fuel to be accelerated inward. Thermonuclear fusion reactions begin in the center region of the capsule as it is heated to sufficient temperature (10 keV) by the converging shocks (hot spot formation). During the stagnation of the imploded shell, the fuel in the shell region is compressed to high density ({approx} 10{sup 3} times solid density in fuel region). When these conditions are established, energy released by the initial nuclear reactions in center ''hot-spot'' region can heat up the cold ''fuel'' region and cause ignition. They are developing advanced nuclear diagnostics for imploding plasmas of the ignition campaign on the National Ignition Facility (NIF). The NIF is a 1.8MJ, 192-beam glass laser system that is under construction at Lawrence Livermore National Laboratory. One objective of the NIF is to demonstrate ignition and gain in an inertial confinement fusion plasma. Extreme physical conditions characterize the imploded plasmas on the NIF. First, the thickness of the plasma, expressed by areal density (plasma density times radius), is large, up to {approx} 1 g/cm{sup 2}. Highly penetrating probes such as energetic neutrons, hard x-rays, or {gamma} rays are required to see deep inside the plasma. Second, the implosion time is quite short. The implosion process takes {approx} 20 ns and the duration of the fusion reaction is on the order of 100 picoseconds. To observe the time history of the nuclear reactions, time resolution better than 10 ps is required. Third, the size of the imploded plasma is quite small ({approx} 100 {micro}m). To see the shape of burning region

  4. Instrumentation and diagnostics

    SciTech Connect (OSTI)

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  5. NIO1 diagnostics

    SciTech Connect (OSTI)

    Zaniol, B. Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cavenago, M.; De Muri, M.; Mimo, A.

    2015-04-08

    The radio frequency ion source NIO1, jointly developed by Consorzio RFX and INFN-LNL, will generate a 60kV-135mA hydrogen negative ion beam, composed of 9 beamlets over an area of about 40 × 40 mm{sup 2}. This experiment will operate in continuous mode and in conditions similar to those foreseen for the larger ion sources of the Neutral Beam Injectors for ITER. The modular design of NIO1 is convenient to address the several still open important issues related to beam extraction, optics, and performance optimization. To this purpose a set of diagnostics is being implemented. Electric and water cooling plant related measurements will allow monitoring current, pressure, flow, and temperature. The plasma in the source will be characterized by emission spectroscopy, cavity ring-down and laser absorption spectroscopy. The accelerated beam will be analyzed with a fast emittance scanner, its intensity profile and divergence with beam emission spectroscopy and visible tomography. The power distribution of the beam on the calorimeter will be monitored by thermocouples and by an infrared camera. This contribution presents the implementation and initial operation of some of these diagnostics in the commissioning phase of the experiment, in particular the cooling water calorimetry and emission spectroscopy.

  6. Diagnostics Implemented on NIF - X-ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPIE. 8505, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion, ... Proc. SPIE. 8144, Penetrating Radiation Systems and Applications XII, 81440N. (September ...

  7. Sandia Energy - Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Optical Diagnostics Home CRF Permalink Gallery CRF Article Chosen by The Journal of Chemical Physics to Commemorate 80th Anniversary CRF, Energy, Facilities, News, News & Events,...

  8. Control and Diagnostics for RTUs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control and Diagnostics for RTUs 2014 Building Technologies Office Peer Review Jim Braun, ... RTUs Audience: RTU manufacturers; control, monitoring, and service companies 2 ...

  9. Diagnostics Implemented on NIF - Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert M. Malone et al., "Overview of the gamma reaction history diagnostic for the National Ignition Facility (NIF)." Proc. SPIE. 7652, International Optical Design Conference ...

  10. Diagnostic Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Diagnostic Studies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon...

  11. Diagnostics and Microelectronics

    SciTech Connect (OSTI)

    Balch, J.W.

    1993-03-01

    This report discusses activities of the Diagnostics and Microelectronics thrust area which conducts activities in semiconductor devices and semiconductor fabrication technology for programs at Lawrence Livermore National Laboratory. Our multidisciplinary engineering and scientific staff use modern computational tools and semi-conductor microfabrication equipment to develop high-performance devices. Our work concentrates on three broad technologies of semiconductor microdevices: (1) silicon on III-V semiconductor microeletronics, (2) lithium niobate-based and III-V semiconductor-based photonics, and (3) silicon-based micromaching for application to microstructures and microinstruments. In FY-92, we worked on projects in seven areas, described in this report: novel photonic detectors; a wideband phase modulator; an optoelectronic terahertz beam system; the fabrication of microelectrode electrochemical sensors; diamond heatsinks; advanced micromachining technologies; and electrophoresis using silicon microchannels.

  12. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  13. Energy Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Clean Coal » Crosscutting Research » Energy Analyses Energy Analyses The Office of Fossil Energy conducts energy analyses to assess the economics of advanced process concepts in support of near-zero emissions power plants. Environmental Activities. These analyses include potential environmental impacts (e.g., on water quality, air emissions, solid waste disposal, climate change) of fossil fuel use and large-scale deployment of different generations of CCS. Of

  14. Utility programs for substation diagnostics development

    SciTech Connect (OSTI)

    1996-03-01

    This article is a brief overview of the opening remarks of the utility panel. These remarks developed a number of interesting substation diagnostic activities and concepts in which the electric utilities are engaged and outlined the considerations which must accompany development of diagnostic sensors and systems. These area include transformer diagnostics, circuit breaker diagnostics, and testing/cost of diagnostic systems.

  15. Magnetic diagnostics for equilibrium reconstructions with eddy...

    Office of Scientific and Technical Information (OSTI)

    Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experimenta) Citation Details In-Document Search Title: Magnetic diagnostics for...

  16. Electrochemistry Diagnostics at LBNL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemistry Diagnostics at LBNL Electrochemistry Diagnostics at LBNL 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June...

  17. Market Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Market Analyses Market Analyses Need information on the market potential for combined heat and power (CHP) in the U.S.? These assessments and analyses cover a wide range of markets including commercial and institutional buildings and facilities, district energy, and industrial sites. The market potential for CHP at federal sites and in selected states/regions is also examined. Commercial CHP and Bioenergy Systems for Landfills and Wastewater Treatment

  18. Analysing

    Office of Scientific and Technical Information (OSTI)

    Varying Alpha Theory Debaprasad Maity 1, 2 and Pisin Chen 1, 2, 3 1 Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 10617,...

  19. Diagnostics Implemented on NIF - X-ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray Diagnostics Diagnostic acronym Diangostic Port location Built and commisioned by Description of function Published references ARIANE Active Readout in a Neutron Environment (gated x-ray imager) 90-89 (but uses DIM) LLNL ARIANE is a gated x-ray detector measuring x-ray output at yields up to ~1E16 neutrons from TCC. ARIANE uses gated MCP technology adapted to operate in this neutron regime by moving the detector to a position just outside of the target chamber wall. ARIANE is typically used

  20. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  1. Drive Diagnostic Filter Wheel Control

    Energy Science and Technology Software Center (OSTI)

    2007-07-17

    DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.

  2. Axial diagnostic package for Z

    SciTech Connect (OSTI)

    Nash, T.J.; Derzon, M.S.; Chandler, G.

    1998-06-01

    The authors have developed and fielded an axial diagnostic package for the 20 MA, 100 ns, z-pinch driver Z. The package is used to diagnose dynamic hohlraum experiments which require an axial line of sight. The heart of the package is a reentrant cone originally used to diagnose ion-beam-driven hohlraums on PBFA-H. It has one diagnostic line of sight at 0 degrees, 4 at 6 degrees, and 4 at 9 degrees. In addition it has a number of viewing, alignment, and vacuum feedthrough ports. The front of the package sits approximately 5 feet from the pinch. This allows much closer proximity to the pinch, with inherently better resolution and signal, than is presently possible in viewing the pinch from the side. Debris that is preferentially directed along the axis is mitigated by two apertures for each line of sight, and by fast valves and imaging pinholes or cross slits for each diagnostic. In the initial run with this package they fielded a time resolved pinhole camera, a five-channel pinhole-apertured x-ray diode array, a bolometer, a spatially resolved time-integrated crystal spectrometer, and a spatially and temporally resolved crystal spectrometer. They present data obtained from these diagnostics in the dynamic hohlraum research conducted on Z.

  3. R&D ERL: Diagnostics

    SciTech Connect (OSTI)

    Gassner, D.

    2010-01-01

    The Energy Recovery Linac (ERL) prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This report outlines requirements on the ERL diagnostics and describes its setup and modes of operation. The BNL Prototype ERL is an R&D effort aimed at reducing risks and costs associated with the proposed RHIC II electron cooler and eRHIC collider. The ERL will serve as a test bed for developing and testing instrumentation and studying physics and technological issues relevant to very high current ERL's. The prototype ERL, mated to a high current SRF gun, is expected to demonstrate production and energy recovery of high intensity, low emittance beams with a current of up to a few hundred milliamps. To successfully accomplish this task the ERL will include beam diagnostics required to characterize and tune beam parameters, as well as for machine protection. A preliminary diagnostics plan was presented in earlier publications. In this report, we describe the diagnostics presently planned to provide the data needed to meet these goals.

  4. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect (OSTI)

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  5. Diagnostics - Rotating Wall Machine - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics UW Madison Line Tied Reconnection Experiment Diagnostics LTRX HomeResearch MissionLTRX DevicePhysics TopicsDiagnosticsLTRX GalleryLTRX People CPLA Home Directory Publications Links University of Wisconsin Physics Department Department of Energy National Science Foundation As the UW-LTRX was designed with the goal of employing a rotating solid wall along the boundary of the experimental volume, diagnostic access is necessarily much more constrained than in comparable devices. With the

  6. Spall diagnostic development for convergent geometries using...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: ... English Subject: 47 OTHER INSTRUMENTATION; DETECTION; DEFECTS; DIAGNOSTIC TECHNIQUES

  7. Diagnostic techniques used in AVLIS

    SciTech Connect (OSTI)

    Heestand, G.M.; Beeler, R.G.

    1992-12-01

    This is the second part of a general overview talk on the atomic vapor laser isotope separation (AVLIS) process. In this presentation the authors will discuss the diagnostic techniques used to measure key parameters in their atomic vapor including densities, temperature, velocities charge exchange rates and background ionization levels. Although these techniques have been extensively applied to their uranium program they do have applicability to other systems. Relevant data demonstrating these techniques will be shown.

  8. Diagnostics Implemented on NIF - Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Diagnostic acronym Diangostic Port location Built and commisioned by Description of function Published references EMP Electromagnetic Power 102-84 LLNL EMP measures the electromagnetic frequency spectrum in the target chamber. C. G. Brown et al., "Analysis of Electromagnetic Pulse (EMP) Measurements in the National Ingition Facility's Target Bay and Chamber." International Fusion Science and Applications (IFSA) Bordeaux, France, September 12, 2011, LLNL-PROC-512731 GRH Time and

  9. Diagnostics Implemented on NIF - Optical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Diagnostic acronym Diangostic Port location Built and commisioned by Description of function Published references FABS Q31B FABS Q36B Full Aperture Backscatter Station 150-236 130-185 LLNL For coherent light sources, most of the light leaving the target is back or forward scattered by stimulated Brillouin or Raman scattering. Particularly for hohlraum targets, the laser energy that is not absorbed comes back into the wedge focus lenses (WFLs) and is measured by FABS on two representative

  10. Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  11. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  12. Proceedings: Substation Equipment Diagnostics Conference IX

    SciTech Connect (OSTI)

    2001-09-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  13. Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference

    SciTech Connect (OSTI)

    2002-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  14. Proceedings: Substation Equipment Diagnostics Conference VIII

    SciTech Connect (OSTI)

    2000-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  15. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect (OSTI)

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  16. Support for Cost Analyses on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    35 Hartwell Ave Lexington, MA 02421 Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles Final Report to: Department of Energy Order DE-DT0000951 Report prepared by TIAX LLC Reference D0535 February 22, 2011 Matt Kromer (Principal Investigator) Kurt Roth Rosalind Takata Paul Chin Copyright 2011, TIAX LLC Notice: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government

  17. Laser diagnostics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser diagnostics Subscribe to RSS - Laser diagnostics The Multi-Point Thomson Scattering (MPTS) diagnostic system has been providing time dependent Te and ne profile measurements on NSTX for ten years. COLLOQUIUM: Controlling the Production and Performance of Materials at the Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability The Matter-Radiation Interactions in Extremes (MaRIE) project will provide capability that will address the control of performance and production

  18. Automated diagnostic kiosk for diagnosing diseases (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    contained within a collection vial into the apparatus for automated diagnostic services. ... Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote ...

  19. SQUID Instrumentation for Early Cancer Diagnostics: Combining...

    Office of Scientific and Technical Information (OSTI)

    Conference: SQUID Instrumentation for Early Cancer Diagnostics: Combining SQUID-Based ... Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: LDRD Country of ...

  20. Parabola Alignment Diagnostic - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parabola Alignment Diagnostic - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the ...

  1. Status of TMX upgrade diagnostics construction

    SciTech Connect (OSTI)

    Hornady, R.S.; Davis, J.C.; Simonen, T.C.

    1981-07-20

    This report describes the status of the initial TMX Upgrade diagnostics and the state of development of additional diagnostics being prepared for later TMX Upgrade experiments. The initial diagnostic instrument set has been described in the TMX Upgrade Proposal. This set is required to get TMX Upgrade operational and to evaluate its initial performance. Additional diagnostic instruments are needed to then carry out the more detailed experiments outlined by the TMX Upgrade program milestones. The relation of these new measurements to the physics program is described in The TMX Upgrade Program Plan.

  2. SQUID Instrumentation for Early Cancer Diagnostics: Combining...

    Office of Scientific and Technical Information (OSTI)

    Cancer Diagnostics: Combining SQUID-Based Ultra-Low Field MRI and Superparamagnetic Relaxometry Citation Details In-Document Search Title: SQUID Instrumentation for Early Cancer ...

  3. Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape...

    Open Energy Info (EERE)

    ARCGIS Shape File, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape File, all Countries...

  4. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  5. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  6. Pawnee Nation Energy Option Analyses

    SciTech Connect (OSTI)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  7. Proceedings: Substation equipment diagnostics conference III. Proceedings

    SciTech Connect (OSTI)

    1996-03-01

    This Substation Equipment Diagnostics Conference III was held to review the status of transmission substation diagnostics by EPRI, as well as that of the universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under three categories of diagnostics: Transformers, Miscellaneous Equipment, and Systems. A reception on the evening of the first day of the Conference provided an opportunity for the researchers, utilities and manufacturers to display their equipment for the attendees. Separate abstracts have been indexed into the database for articles from this conference.

  8. Proceedings: Substation equipment diagnostics conference 6

    SciTech Connect (OSTI)

    Traub, T.P.

    1998-09-01

    Substation Equipment Diagnostics Conference 6 was held to assemble, assess and communicate information on the latest diagnostic techniques, test devices, and systems for substation equipment. It focused on the latest in diagnostic equipment and techniques being developed by EPRI and others in research programs, as well as the equipment and programs now available and in service by electric utilities. The conference brought together the views of researchers, manufacturers and users. The papers presented were organized under three categories: Transformers, Circuit Breakers and Other Substation Equipment, and Communications/Data Management/System Integration. Exhibit booths were provided for attendees to obtain detailed information about vendor products or services.

  9. Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review Presenter: Jim Braun, Purdue University (The ...

  10. Diagnostics for the biased electrode experiment on NSTX (Journal...

    Office of Scientific and Technical Information (OSTI)

    Diagnostics for the biased electrode experiment on NSTX Citation Details In-Document Search Title: Diagnostics for the biased electrode experiment on NSTX A linear array of four ...

  11. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Broader source: Energy.gov (indexed) [DOE]

    es124gering2012o.pdf More Documents & Publications Diagnostic Testing and Analysis Toward Understanding Aging Mechanisms and Related Path Dependence Diagnostic Testing and ...

  12. Ultrafast laser diagnostics for studies of shock initiation in...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast laser diagnostics for studies of shock initiation in energetic materials. Citation Details In-Document Search Title: Ultrafast laser diagnostics for studies of shock ...

  13. In-situ characterization and diagnostics of mechanical degradation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-situ characterization and diagnostics of mechanical degradation in electrodes In-situ characterization and diagnostics of mechanical degradation in electrodes 2011 DOE Hydrogen ...

  14. Applying Diagnostics to Enhance Cable System Reliability (Cable...

    Office of Scientific and Technical Information (OSTI)

    Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different ...

  15. Princeton Plasma Physics Lab - Laser diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-resolution-diagnostic-system-national-ignition-facility

  16. Diagnostics on Demand | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The "Diagnostics on Demand" Infectious Disease Test Kit Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  17. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24

  18. Plasma diagnostics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diagnostics Subscribe to RSS - Plasma diagnostics The tools used by researchers to assess the characteristics of superheated and electrically charged gases known as plasmas. PPPL intern creates software for snapshot of plasma in NSTX-U When most of today's college interns were still in kindergarten, Max Wallace was working for more than a decade as a programmer for various companies, founding a hackerspace in Charlotte, North Carolina, and writing code for start-ups in Silicon Valley. Read more

  19. Development of fluorescence lifetime diagnostic. Project accomplishments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    summary (Attachment 1), Revision 1 (Technical Report) | SciTech Connect Technical Report: Development of fluorescence lifetime diagnostic. Project accomplishments summary (Attachment 1), Revision 1 Citation Details In-Document Search Title: Development of fluorescence lifetime diagnostic. Project accomplishments summary (Attachment 1), Revision 1 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  20. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    SciTech Connect (OSTI)

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh; Hernandez, JC; Elledge, Stacy; del Valle, Yamille; Grimaldo, Jose; Deku, Kodzo

    2015-07-25

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  1. ORISE: Statistical Analyses of Worker Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Analyses Statistical analyses at the Oak Ridge Institute for Science and Education (ORISE) support ongoing programs involving medical surveillance of workers and other populations, as well as occupational epidemiology and research. ORISE emphasizes insightful and accurate analysis, practical interpretation of results and clear, easily read reports. All analyses are preceded by extensive data scrubbing and verification. ORISE's approach relies on applying appropriate methods of

  2. Structural and Evolutionary Analyses Show Unique Stabilization...

    Office of Scientific and Technical Information (OSTI)

    Title: Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile Authors: Piepenbrink, Kurt H. ; Maldarelli, Grace A. ; ...

  3. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  4. Lifecycle Assessments and Sustainability Analyses | Open Energy...

    Open Energy Info (EERE)

    to our research and development efforts. They provide an understanding of the economic, technical, and even global impacts of renewable technologies. These analyses also...

  5. FAQS Job Task Analyses- Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  6. FAQS Job Task Analyses- Environmental Restoration

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  7. FAQS Job Task Analyses- Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  8. FAQS Job Task Analyses- Facility Representative

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  9. FAQS Job Task Analyses- Technical Program Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. FAQS Job Task Analyses- General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. FAQS Job Task Analyses- Weapons Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  13. FAQS Job Task Analyses- Environmental Compliance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Deactivation and Decommissioning

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Occupational Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Emergency Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- Technical Training

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- DOE Aviation Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. Functional Area Qualification Standard Job Task Analyses

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Safeguards and Security

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Job Task Analyses- Chemical Processing

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  2. FAQS Job Task Analyses- Construction Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  3. FAQS Job Task Analyses- Industrial Hygiene

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  4. FAQS Job Task Analyses- Criticality Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  5. Technical Report: Rayleigh Scattering Combustion Diagnostic

    SciTech Connect (OSTI)

    Adams, Wyatt; Hecht, Ethan

    2015-07-29

    A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO2 consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.

  6. The year book of diagnostic radiology 1981

    SciTech Connect (OSTI)

    Whitehouse, W.M.; Adams, D.F.; Bookstein, J.J.; Gabrielsen, T.O.; Holt, J.F.; Martel, W.; Silver, T.M.; Thornbury, J.R.

    1981-01-01

    The 1981 edition of the Year Book of Diagnostic Radiology fulfills the standards of excellence established by previous volumes in this series. The abstracts were carefully chosen, are concise, and are well illustrated. The book is recommended for all practicing radiologists: for the resident it is a good source from which to select articles to be carefully studied, and as review source before board examinations; for the subspecialist it provides a means to maintain contact with all areas of diagnostic radiology; and for the general radiologist, it is a convenient and reliable guide to new developments in the specialty.

  7. Dichroic beamsplitter for high energy laser diagnostics

    DOE Patents [OSTI]

    LaFortune, Kai N; Hurd, Randall; Fochs, Scott N; Rotter, Mark D; Hackel, Lloyd

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  8. Diagnostic techniques for magnetically confined high-temperature plasmas. II. Magnetic and electric measurements, charge-exchange diagnostics, particle-beam diagnostics, and fusion-product measurements

    SciTech Connect (OSTI)

    Goldston, R.J.

    1982-07-01

    A general overview of the four diagnostic techniques is given. Prospects for each technique are discussed. (MOW)

  9. SCM Forcing Data Derived from NWP Analyses

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.

  10. High bandwidth vapor density diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  11. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  12. The neutron imaging diagnostic at NIF (invited)

    SciTech Connect (OSTI)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Bower, D.; Dzenitis, J. M.; and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  13. Method and apparatus for holographic wavefront diagnostics

    DOE Patents [OSTI]

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  14. Method and apparatus for holographic wavefront diagnostics

    DOE Patents [OSTI]

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  15. Substation evaluation using Diagnostic Logic System (DIALOG)

    SciTech Connect (OSTI)

    Andre, W.L.

    1989-08-01

    This project investigated the feasibility of applying a Diagnostic Logic System (DIAGLOG) to evaluate substation operation. The purpose was to see if a determination can be made as to whether the equipment in a substation operated correctly or not when an operating event occurred. The work was directed toward modifying an already proven diagnostic system to create a simplified procedure for describing the operation of substation equipment. Special operating tables or modules of logic were identified for describing relay and breaker operations. The resulting model composed of all the modules connected together is used to evaluate the actual observations available at the substation, and to compare them with what the substation should have produced. The report covers the diagnostic approach used, information on how to construct the modules and examples of diagnosis. Also covered are discussions on the special features of substations that offer a challenge to performing diagnostics. Included in the report are the results of modeling a typical substation and several notes are provided along with an initial library of typical modules which were developed in modeling one of the substations belonging to the Pacific Gas and Electric Company. This substation served as a feasibility demonstrator. 15 figs.

  16. Engineer Russ Feder leads development of diagnostic tools for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave ... Feder leads PPPL's development of all diagnostic tools for US ITER, which manages U.S. ...

  17. Development of a High-Temperature Diagnostics-While-Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the ...

  18. Main challenges for ITER optical diagnostics

    SciTech Connect (OSTI)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-21

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  19. Optical mixing as a plasma diagnostic

    SciTech Connect (OSTI)

    Forman, P.R.; Riesenfeld, W.

    1980-03-01

    The nonlinear interaction of electromagnetic waves in a plasma are examined as the basis for a new and useful diagnostic tool. In particular, we consider the Raman-Induced Kerr Effect (RIKE) in a magnetic field-free plasma, and evaluate the characteristics of various laser sources and detecting equipment necessary for the implementation of a sensitive RIKE scattering system. Our conclusion is that the present state of technology permits the design of promising diagnostics systems of this type. Finally, we express reasonable conjectures on the generalization of the effect to magnetoplasmas, in which the measurement could lead to the determination not only of density, but also of the magnitude and direction of the imbedded magnetic field.

  20. Improved optical diagnostics for the NOVA laser

    SciTech Connect (OSTI)

    Fernandez, J.C.; Berggren, R.R.; Bradley, K.S.; Hsing, W.W.; Gomez, C.C.; Cobble, J.A.

    1994-07-01

    This paper describes three diagnostics for detecting optical scatter from NOVA laser targets. Detecting such scatter can help not only the authors` understanding of plasma instabilities in laser plasmas, but also their efforts at plasma characterization, particularly hohlraum plasmas. These diagnostics are: the Full Aperture Backscatter Station (FABS), presently being built; the Oblique Scatter Array (OSA), just starting operation; and the Axial Imager, also just starting operation. FABS will allow imaging at high resolution of Brillouin and Raman backscatter. The OSA allows a quantitative measurement of Brillouin and Raman scatter in many directions (assuming the target allows the scatter to escape). The axial imager allows high-resolution imaging of Brillouin, Two-Plasmon Decay and Raman scatter emitted towards the East direction, which is along the symmetry axis of the NOVA laser beams.

  1. Improved optical diagnostics for the NOVA laser

    SciTech Connect (OSTI)

    Fernandez, J.C.; Berggren, R.R.; Bradley, K.S.; Hsing, W.W.; Gomez, C.C.; Cobble, J.A.; Wilke, M.D. )

    1995-01-01

    This paper describes three diagnostics detecting optical scatter from NOVA laser targets. Detecting such scatter can help to understand instabilities in laser plasmas and to characterize such plasmas, particularly hohlraum plasmas. These diagnostics are the full aperture backscatter station (FABS), presently being built; the oblique scatter array (OSA), just starting operation; and the axial imager, also just starting operation. FABS will allow imaging at high resolution of Brillouin and Raman backscatter. The OSA provides a quantitative measurement of Brillouin and Raman scatter in many directions. The axial imager allows high-resolution imaging of Brillouin, two-plasmon decay and Raman scatter emitted toward the direction of the symmetry axis of the NOVA laser beams.

  2. Automated diagnostic kiosk for diagnosing diseases

    SciTech Connect (OSTI)

    Regan, John Frederick; Birch, James Michael

    2014-02-11

    An automated and autonomous diagnostic apparatus that is capable of dispensing collection vials and collections kits to users interesting in collecting a biological sample and submitting their collected sample contained within a collection vial into the apparatus for automated diagnostic services. The user communicates with the apparatus through a touch-screen monitor. A user is able to enter personnel information into the apparatus including medical history, insurance information, co-payment, and answer a series of questions regarding their illness, which is used to determine the assay most likely to yield a positive result. Remotely-located physicians can communicate with users of the apparatus using video tele-medicine and request specific assays to be performed. The apparatus archives submitted samples for additional testing. Users may receive their assay results electronically. Users may allow the uploading of their diagnoses into a central databank for disease surveillance purposes.

  3. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Gayeski, N.

    2012-04-01

    The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energys Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of automated fault de4tection and diagnostic (AFDD) tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction, and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: 1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, 2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and 3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations.

  4. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics presentation at the April 2013 peer review meeting held in Denver, Colorado. tang_peer2013.pdf (1.14 MB) More Documents & Publications Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics Use of Tracers to Characterize Fractures in Engineered Geothermal

  5. Diagnostics - Plasma Couette Experiment - Cary Forest Group - UW Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Diagnostics UW Madison Plasma Couette Experiment Diagnostics PCX HomeResearch MissionPhysics TopicsDeviceDiagnosticsContacts LinksPCX People CPLA Home Directory Publications Links University of Wisconsin Physics Department Department of Energy National Science Foundation Diagnostics A combination Langmuir/Mach probe is radially scanned approximately 2.5" above the bottom endcap set of magnet & electrode rings. Electron temperature and plasma density is measured using a

  6. Diagnostics from a 1-D atmospheric column

    SciTech Connect (OSTI)

    Flatley, J.M.; Mace, G.

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  7. Building Systems Diagnostics and Predictive Maintenance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Pratt, Robert G.; Braun, J.

    2001-01-01

    There has been an increasing interest in the development of methods and tools for automated fault detection and diagnostics (FDD) of building systems and components in the 1990s. This chapter, written for the CRC Handbook for HVAC&R Engineering, will describe the status of these methods and and methodologies as applied to HVAC&R and building systems and present certain illustrative case studies.

  8. Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms.

    SciTech Connect (OSTI)

    Abraham, D. P.; Dees, D. W.; Knuth, J.; Reynolds, E.; Gerald, R.; Hyung,Y.-E.; Belharouak, I.; Stoll, M.; Sammann, E.; MacLaren, S.; Haasch, R.; Twesten,R.; Sardela, M.; Battaglia, V.; Cairns, E.; Kerr, J.; Kerlau, M.; Kostecki, R.; Lei,J.; McCarthy, K.; McLarnon, F.; Reimer, J.; Richardson, T.; Ross, P.; Sloop,S.; Song, X.; Zhuang, V.; Balasubramanian, M.; McBreen, J.; Chung, K.-Y.; Yang, X.Q.; Yoon, W.-S.; Norin, L.

    2005-07-15

    The Advanced Technology Development (ATD) Program is a multilaboratory effort to assist industrial developers of high-power lithium-ion batteries overcome the barriers of cost, calendar life, abuse tolerance, and low-temperature performance so that this technology may be rendered practical for use in hybrid electric vehicles (HEVs). Included in the ATD Program is a comprehensive diagnostics effort conducted by researchers at Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Lawrence Berkeley National Laboratory (LBNL). The goals of this effort are to identify and characterize processes that limit lithium-ion battery performance and calendar life, and ultimately to describe the specific mechanisms that cause performance degradation. This report is a compilation of the diagnostics effort conducted since spring 2001 to characterize Generation 2 ATD cells and cell components. The report is divided into a main body and appendices. Information on the diagnostic approach, details from individual diagnostic techniques, and details on the phenomenological model used to link the diagnostic data to the loss of 18650-cell electrochemical performance are included in the appendices. The main body of the report includes an overview of the 18650-cell test data, summarizes diagnostic data and modeling information contained in the appendices, and provides an assessment of the various mechanisms that have been postulated to explain performance degradation of the 18650 cells during accelerated aging. This report is intended to serve as a ready reference on ATD Generation 2 18650-cell performance and provide information on the tools for diagnostic examination and relevance of the acquired data. A comprehensive account of our experimental procedures and resulting data may be obtained by consulting the various references listed in the text. We hope that this report will serve as a roadmap for the diagnostic analyses of other lithium-ion technologies being

  9. Longitudinal Diagnostics for Short Electron Beam Bunches

    SciTech Connect (OSTI)

    Loos, H.; ,

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  10. Reliability of chemical analyses of water samples

    SciTech Connect (OSTI)

    Beardon, R.

    1989-11-01

    Ground-water quality investigations require reliable chemical analyses of water samples. Unfortunately, laboratory analytical results are often unreliable. The Uranium Mill Tailings Remedial Action (UMTRA) Project`s solution to this problem was to establish a two phase quality assurance program for the analysis of water samples. In the first phase, eight laboratories analyzed three solutions of known composition. The analytical accuracy of each laboratory was ranked and three laboratories were awarded contracts. The second phase consists of on-going monitoring of the reliability of the selected laboratories. The following conclusions are based on two years experience with the UMTRA Project`s Quality Assurance Program. The reliability of laboratory analyses should not be taken for granted. Analytical reliability may be independent of the prices charged by laboratories. Quality assurance programs benefit both the customer and the laboratory.

  11. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  12. Non-traditional ion beam analyses

    SciTech Connect (OSTI)

    Doyle, B.L.; Knapp, J.A.; Banks, J.C.; Barbour, J.C.; Walsh, D.S.

    1993-02-01

    Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.

  13. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect (OSTI)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  14. TEDANN: Turbine engine diagnostic artificial neural network

    SciTech Connect (OSTI)

    Kangas, L.J.; Greitzer, F.L.; Illi, O.J. Jr.

    1994-03-17

    The initial focus of TEDANN is on AGT-1500 fuel flow dynamics: that is, fuel flow faults detectable in the signals from the Electronic Control Unit`s (ECU) diagnostic connector. These voltage signals represent the status of the Electro-Mechanical Fuel System (EMFS) in response to ECU commands. The EMFS is a fuel metering device that delivers fuel to the turbine engine under the management of the ECU. The ECU is an analog computer whose fuel flow algorithm is dependent upon throttle position, ambient air and turbine inlet temperatures, and compressor and turbine speeds. Each of these variables has a representative voltage signal available at the ECU`s J1 diagnostic connector, which is accessed via the Automatic Breakout Box (ABOB). The ABOB is a firmware program capable of converting 128 separate analog data signals into digital format. The ECU`s J1 diagnostic connector provides 32 analog signals to the ABOB. The ABOB contains a 128 to 1 multiplexer and an analog-to-digital converter, CP both operated by an 8-bit embedded controller. The Army Research Laboratory (ARL) developed and published the hardware specifications as well as the micro-code for the ABOB Intel EPROM processor and the internal code for the multiplexer driver subroutine. Once the ECU analog readings are converted into a digital format, the data stream will be input directly into TEDANN via the serial RS-232 port of the Contact Test Set (CTS) computer. The CTS computer is an IBM compatible personal computer designed and constructed for tactical use on the battlefield. The CTS has a 50MHz 32-bit Intel 80486DX processor. It has a 200MB hard drive and 8MB RAM. The CTS also has serial, parallel and SCSI interface ports. The CTS will also host a frame-based expert system for diagnosing turbine engine faults (referred to as TED; not shown in Figure 1).

  15. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  16. Web100-based Network Diagnostic Tool

    Energy Science and Technology Software Center (OSTI)

    2003-03-20

    NDT is a client/server based network diagnostic tool developed to aid in finding network performance and configuration problems. The tool measures data transfer rates between two internet hosts (client and server). It also gathers detailed TCP statistical variable counters supplied by the Web100 modified server and uses these TCP variables to compute the theoretical performance rate between the two internet hosts. It then compares these analytical results with the measured results to determine if performancemore » or configuration problems exist and translates these results into plain text messages to aid users and network operators in resolving reported problems.« less

  17. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  18. Modular initiator with integrated optical diagnostic

    DOE Patents [OSTI]

    Alam, M. Kathleen; Schmitt, Randal L.; Welle, Eric J.; Madden, Sean P.

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  19. FAQS Job Task Analyses Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form FAQS Job Task Analyses Form Step 1, Identify and evaluate tasks; Step 2, Identify and evaluate competencies; and Step 3, Evaluate linkage between tasks and competencies. FAQS Job Task Analyses Form (18.57 KB) More Documents & Publications FAQS Job Task Analyses - Emergency Management FAQS Job Task Analyses - Environmental Compliance FAQS Job Task Analyses - Chemical Processing

  20. Stable isotopic analyses in paleoclimatic reconstruction

    SciTech Connect (OSTI)

    Wigand, P.E.

    1995-09-01

    Most traditional paleoclimatic proxy data have inherent time lags between climatic input and system response that constrain their use in accurate reconstruction of paleoclimate chronology, scaling of its variability, and the elucidation of the processes that determine its impact on the biotic and abiotic environment. With the exception of dendroclimatology, and studies of short-lived organisms and pollen recovered from annually varved lacustrine sediments, significant periods of time ranging from years, to centuries, to millennia may intervene between climate change and its first manifestation in paleoclimatic proxy data records. Reconstruction of past climate through changes in plant community composition derived from pollen sequences and plant remains from ancient woodrat middens, wet environments and dry caves all suffer from these lags. However, stable isotopic analyses can provide more immediate indication of biotic response to climate change. Evidence of past physiological response of organisms to changes in effective precipitation as climate varies can be provided by analyses of the stable isotopic content of plant macrofossils from various contexts. These analyses consider variation in the stable isotopic (hydrogen, oxygen and carbon) content of plant tissues as it reflects (1) past global or local temperature through changes in meteoric (rainfall) water chemistry in the case of the first two isotopes, and (2) plant stress through changes in plant respiration/transpiration processes under differing water availability, and varying atmospheric CO, composition (which itself may actually be a net result of biotic response to climate change). Studies currently being conducted in the Intermountain West indicate both long- and short-term responses that when calibrated with modem analogue studies have the potential of revealing not only the timing of climate events, but their direction, magnitude and rapidity.

  1. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect (OSTI)

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  2. Diagnostics Beamline for the SRF Gun Project

    SciTech Connect (OSTI)

    T. Kamps; V. Durr; K. Goldammer; D. Kramer; P. Kuske; J. Kuszynski; D. Lipka; F. Marhauser; T. Quast; D. Richter; U. Lehnert; P. Michel; J. Teichert; P. Evtushenko; I. Will

    2005-08-22

    A superconducting radio-frequency photo electron injector (SRF gun) is currently under construction by a collaboration of BESSY, DESY, FZR and MBI. The project aims at the design and setup of a CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 ps and 50 ps, two schemes using electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with a 180-degree spectrometer.

  3. Diagnostic system for exhaust gas recirculation device

    SciTech Connect (OSTI)

    Tsurusaki, S.

    1988-12-27

    A diagnostic system of an exhaust gas recirculation device is described having an exhaust gas recirculation control valve which is arranged in an exhaust gas recirculation passage interconnecting an exhaust passage to an intake passage of an internal combustion engine, the diagnostic system comprising: determining whether the engine is operating in a state at which the recirculation of exhaust gas is to be carried out; detecting a temperature in the exhaust gas recirculation passage downstream of the exhaust gas recirculation control valve; having a count value which is variable between a predetermined first value and a predetermined second value, the count value being changed from the first value toward the second value when the engine is operating in a state where the recirculation of exhaust is to be carried out; means for storing a first temperature detected by the detecting means when the count value is equal to the first value; and second determining means for obtaining a difference between the first temperature and second temperature detected by the detecting means when the count value becomes equal to the second value, to thereby determine that a malfunction has occurred in the exhaust gas recirculation device when the difference is lower than a predetermined value.

  4. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, and boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also

  5. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  6. Fuel Cycle Assessment: Evaluation and Analyses using ORION for...

    Office of Scientific and Technical Information (OSTI)

    Fuel Cycle Assessment: Evaluation and Analyses using ORION for US Fuel Cycle Options Citation Details In-Document Search Title: Fuel Cycle Assessment: Evaluation and Analyses using ...

  7. FAQS Job Task Analyses - Safeguards and Security General Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a...

  8. FAQS Job Task Analyses - Fire Protection Engineering | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection Engineering FAQS Job Task Analyses - Fire Protection Engineering FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job ...

  9. Godiva and Juliet Diagnostics CED-1 (IER-176)

    SciTech Connect (OSTI)

    Scorby, J C

    2011-12-21

    A suite of diagnostics are being proposed for use in the Juliet experiment (IER-128). In order to calibrate and test the diagnostics prior to use, the LLNL calibration facility and Godiva pulsed reactor will be used to provide intense sources of neutrons and gammas. Due to the similarities of the Godiva and Juliet radiation fields, the diagnostics being developed and tested for Juliet can also play an on-going role in diagnostics for Godiva as well as, perhaps, other critical assembly experiments. Similar work is also being conducted for IER-147 for the purpose of characterizing the Godiva radiation field in support of an upcoming international nuclear accident dosimetry exercise. Diagnostics developed and fielded under IER-147 can provide valuable data with respect to the neutron and gamma energy spectrums in the vicinity of Godiva which is relevant to the calibration of Juliet diagnostics.

  10. Parametric Adaptive Model Based Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Adaptive Model Based Diagnostics Parametric Adaptive Model Based Diagnostics A model-based adaptive, robust technology is presented for on-board diagnostics of failure of diesel engine emission control devices and ethanol estimation of flex-fuel vehicles. p-06_franchek.pdf (256.08 KB) More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System

  11. 2010-12-1-DICE-Diagnostic-Service-Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Editor: Joe Metzger Status: DRAFT (v1.0) Date: 2010-12-1 1 General Service Description for DICE Network Diagnostic Services The DICE collaboration network diagnostic service will simplify the process of debugging, isolating, and correcting multi-domain network performance problems. The diagnostic service will allow users to measure network characteristics across multi-domain network paths. The service is designed to support network engineers in situations where a customer is experiencing

  12. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  13. Diagnostic Studies to Improve Abuse Tolerance and the Synthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Synthesis of New Electrolyte Materials Diagnostic Studies to Improve Abuse Tolerance and the Synthesis of New Electrolyte Materials 2009 DOE Hydrogen Program and Vehicle ...

  14. LANL spinoff receives NIH grant for respiratory disease diagnostic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL spinoff receives NIH grant LANL spinoff receives NIH grant for respiratory disease diagnostic device Mesa Tech has been awarded a grant to develop an inexpensive, ...

  15. COLLOQUIUM: ITER and its Diagnostics - Rising to the Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: ITER and its Diagnostics - Rising to the Challenge Dr. Mike Walsh ITER The ITER project is now well underway with many teams completing various aspects ...

  16. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during ...

  17. Development of Multifunctional Electrode Arrays for Medical Diagnostic...

    Office of Scientific and Technical Information (OSTI)

    and Environmental Monitoring. Citation Details In-Document Search Title: Development of Multifunctional Electrode Arrays for Medical Diagnostics and Environmental Monitoring. ...

  18. Target diagnostic system for the national ignition facility (invited)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A.; Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E.; Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D.K.; Knauer, J.; Petrasso, R.D.; Li, C.K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

  19. Hydrogen transport diagnostics by atomic and molecular emission...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device Citation Details In-Document Search Title: Hydrogen ...

  20. Application of dynamic displacement current for diagnostics of...

    Office of Scientific and Technical Information (OSTI)

    current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a...

  1. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based ...

  2. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover ... Real-time Monitoring With Online Algal Reflectance Monitor System Researchers have ...

  3. Ultrafast Laser Diagnostics for Studies of Shock Initiation in...

    Office of Scientific and Technical Information (OSTI)

    Studies of Shock Initiation in Energetic Materials. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Studies of Shock Initiation in Energetic Materials. ...

  4. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Broader source: Energy.gov (indexed) [DOE]

    Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Diagnostic studies on Li-battery cells and cell components Cell Fabrication Facility Team Production and ...

  5. Shielded flashback-resistant diffusion flame burner for combustion diagnostics

    SciTech Connect (OSTI)

    Krupa, R.J.; Zizak, G.; Winefordner, J.D.

    1986-10-15

    A burner design is presented which is of general utility for combustion diagnostics of high temperature, high burning velocity flames. (AIP)

  6. PSU CBEI: VOLTTRON Compatible and Cost-Effective Fault Diagnostic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for AHU-VAV and AHU-CAV Systems 2014 Building Technologies Office Peer Review Dr. ... Project Goal: Develop and demonstrate a library of diagnostics decision support tools ...

  7. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented. Sandia...

  8. Laser Integration Line target diagnostics first results (invited...

    Office of Scientific and Technical Information (OSTI)

    and high resolution spectrometers have been fabricated in the frame of a unique industrial contract. Optical pointers are used to align the diagnostics to the target. The...

  9. Dental diagnostics using optical coherence techniques

    SciTech Connect (OSTI)

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  10. RHIC electron lens test bench diagnostics

    SciTech Connect (OSTI)

    Gassner, D.; Beebe, E.; Fischer, W.; Gu, X.; Hamdi, K.; Hock, J.; Liu, C.; Miller, T.; Pikin, A.; Thieberger, P.

    2011-05-16

    An Electron Lens (E-Lens) system will be installed in RHIC to increase luminosity by counteracting the head-on beam-beam interaction. The proton beam collisions at the RHIC experimental locations will introduce a tune spread due to a difference of tune shifts between small and large amplitude particles. A low energy electron beam will be used to improve luminosity and lifetime of the colliding beams by reducing the betatron tune shift and spread. In preparation for the Electron Lens installation next year, a test bench facility will be used to gain experience with many sub-systems. This paper will discuss the diagnostics related to measuring the electron beam parameters.

  11. Diagnostics Challenges for FACET-II

    SciTech Connect (OSTI)

    Clarke, Christine

    2015-10-07

    FACET-II is a prospective user facility at SLAC National Accelerator Laboratory. The facility will focus on high-energy, high-brightness beams and their interaction with plasma and lasers. The accelerator is designed for high-energy-density electron beams with peak currents of approximately 50 kA (potentially 100 kA) that are focused down to below 10x10 micron transverse spot size at an energy of 10 GeV. Subsequent phases of the facility will provide positron beams above 10 kA peak current to the experiment station. Experiments will require well characterised beams; however, the high peak current of the electron beam can lead to material failure in wirescanners, optical transition radiation screens and other instruments critical for measurement or delivery. The radiation environment and space constraints also put additional pressure on diagnostic design.

  12. 3D Diagnostic Of Complex Plasma

    SciTech Connect (OSTI)

    Hall, Edward; Samsonov, Dmitry

    2011-11-29

    This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

  13. Seismic Soil-Structure Interaction Analyses of a Deeply Embedded Model Reactor – SASSI Analyses

    SciTech Connect (OSTI)

    Nie J.; Braverman J.; Costantino, M.

    2013-10-31

    This report summarizes the SASSI analyses of a deeply embedded reactor model performed by BNL and CJC and Associates, as part of the seismic soil-structure interaction (SSI) simulation capability project for the NEAMS (Nuclear Energy Advanced Modeling and Simulation) Program of the Department of Energy. The SASSI analyses included three cases: 0.2 g, 0.5 g, and 0.9g, all of which refer to nominal peak accelerations at the top of the bedrock. The analyses utilized the modified subtraction method (MSM) for performing the seismic SSI evaluations. Each case consisted of two analyses: input motion in one horizontal direction (X) and input motion in the vertical direction (Z), both of which utilized the same in-column input motion. Besides providing SASSI results for use in comparison with the time domain SSI results obtained using the DIABLO computer code, this study also leads to the recognition that the frequency-domain method should be modernized so that it can better serve its mission-critical role for analysis and design of nuclear power plants.

  14. Interim Basis for PCB Sampling and Analyses

    SciTech Connect (OSTI)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposal approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).

  15. Interim Basis for PCB Sampling and Analyses

    SciTech Connect (OSTI)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposal approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).

  16. PRECLOSURE CONSEQUENCE ANALYSES FOR LICENSE APPLICATION

    SciTech Connect (OSTI)

    S. Tsai

    2005-01-12

    Radiological consequence analyses are performed for potential releases from normal operations in surface and subsurface facilities and from Category 1 and Category 2 event sequences during the preclosure period. Surface releases from normal repository operations are primarily from radionuclides released from opening a transportation cask during dry transfer operations of spent nuclear fuel (SNF) in Dry Transfer Facility 1 (DTF 1), Dry Transfer Facility 2 (DTF 2), the Canister Handling facility (CHF), or the Fuel Handling Facility (FHF). Subsurface releases from normal repository operations are from resuspension of waste package surface contamination and neutron activation of ventilated air and silica dust from host rock in the emplacement drifts. The purpose of this calculation is to demonstrate that the preclosure performance objectives, specified in 10 CFR 63.111(a) and 10 CFR 63.111(b), have been met for the proposed design and operations in the geologic repository operations area. Preclosure performance objectives are discussed in Section 6.2.3 and are summarized in Tables 1 and 2.

  17. Activation analyses for different fusion structural alloys

    SciTech Connect (OSTI)

    Attaya, H.; Smith, D.

    1991-12-31

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m{sup 2} respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys` FW activation. 2 refs., 7 figs.

  18. Activation analyses for different fusion structural alloys

    SciTech Connect (OSTI)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m{sup 2} respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs.

  19. Ultrasensitive microanalytical diagnostic methods for rickettsial pathogens

    SciTech Connect (OSTI)

    Hatch, A. V.

    2012-03-01

    A strategic CRADA was established between Sandia National Laboratories (SNL) and the University of Texas Medical Branch (UTMB) at Galveston to address pressing needs for US protection against biological weapons of mass destruction (WMD) and emerging infectious diseases. The combination of unique expertise and facilities at UTMB and SNL enabled interdisciplinary research efforts in the development of rapid and accurate diagnostic methods for early detection of trace priority pathogen levels. Outstanding postdoctoral students were also trained at both institutions to help enable the next generation of scientists to tackle the challenging interdisciplinary problems in the area of biodefense and emerging infectious diseases. Novel approaches to diagnostics were developed and the both the speed of assays as well as the detection sensitivity were improved by over an order of magnitude compared to traditional methods. This is a significant step toward more timely and specific detection of dangerous infections. We developed in situ polymerized porous polymer monoliths that can be used as (1) size exclusion elements for capture and processing of rickettsial infected cells from a sample, (2) photopatternable framework for grafting high densities of functionalized antibodies/fluorescent particles using novel monolith chemistry. Grafting affinity reagents specific to rickettsial particles enables rapid, ultra-sensitive assays by overcoming transport limitations of traditional planar assay approaches. We have selectively trapped particles and bacteria at the cell trap and have also detected picomolar mouse IL-6 captured with only 20 minutes total incubation times using the densely patterned monolith framework. As predicted, the monolith exhibits >10x improvements in both capture speed and capture density compared to traditional planar approaches. The most significant advancements as part of this CRADA is the optimization of techniques allowing the detection of <10 rickettsial

  20. Genome-Facilitated Analyses of Geomicrobial Processes

    SciTech Connect (OSTI)

    Kenneth H. Nealson

    2012-05-02

    that makes up chitin, virtually all of the strains were in fact capable. This led to the discovery of a great many new genes involved with chitin and NAG metabolism (7). In a similar vein, a detailed study of the sugar utilization pathway revealed a major new insight into the regulation of sugar metabolism in this genus (19). Systems Biology and Comparative Genomics of the shewanellae: Several publications were put together describing the use of comparative genomics for analyses of the group Shewanella, and these were a logical culmination of our genomic-driven research (10,15,18). Eight graduate students received their Ph.D. degrees doing part of the work described here, and four postdoctoral fellows were supported. In addition, approximately 20 undergraduates took part in projects during the grant period.

  1. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect (OSTI)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  2. Range of Neutronic Parameters for Repository Criticality Analyses

    SciTech Connect (OSTI)

    W.J. Anderson

    1999-09-28

    The ''Range of Neutronic Parameters for Repository Criticality Analyses'' technical report contains a summary of the benchmark criticality analyses (including the laboratory critical experiment [LCEs] and the commercial reactor criticals [CRCs]) used to support the validation of the criticality evaluation methods. This report also documents the development of the Critical Limits (CLs) for the repository criticality analyses.

  3. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect (OSTI)

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv/hr but

  4. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004 Diesel ...

  5. Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals

    DOE Patents [OSTI]

    Katti, Kattesh V.; Singh, Prahlad R.; Reddy, V. Sreenivasa; Katti, Kavita K.; Volkert, Wynn A.; Ketring, Alan R.

    1999-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand.

  6. A fast spectroscopic diagnostic for the measurement of plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diagnostic for the measurement of plasma impurity ion dynamics D. J. Den Hat-tog ... from two different chordal views of the plasma can be made simultaneously via two ...

  7. Fusion diagnostic developed at PPPL sheds light on plasma behavior...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion diagnostic developed at PPPL sheds light on plasma behavior at EAST By Kitta ... (PPPL) has enabled a research team at a fusion energy experiment in China to observe--in ...

  8. Mach-Zehnder Fiber-Optic Links for ICF Diagnostics

    SciTech Connect (OSTI)

    Miller, E. K., Hermann, H. W.

    2012-11-01

    This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.

  9. Plasma density diagnostic for capillary-discharge based plasma...

    Office of Scientific and Technical Information (OSTI)

    Plasma density diagnostic for capillary-discharge based plasma channels Authors: Daniels, J. 1 Search SciTech Connect for author "Daniels, J." Search SciTech Connect for...

  10. Control and Diagnostics for Rooftop Units- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Jim Braun, Purdue University (The Pennsylvania State University Consortium for Building Energy Innovation) This project aims to develop and validate cost-effective methods for rooftop air conditioning unit (RTU) coordination and diagnostics in small commercial buildings.

  11. Compatible and Cost-Effective Fault Diagnostic Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel University The goal of this project is to develop and demonstrate a library of diagnostics decision-support ...

  12. Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals

    DOE Patents [OSTI]

    Katti, K.V.; Singh, P.R.; Reddy, V.S.; Katti, K.K.; Volkert, W.A.; Ketring, A.R.

    1999-03-02

    This research discloses a compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand. 16 figs.

  13. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  14. Engineer Russ Feder leads development of diagnostic tools for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shifts to part-time work By John Greenwald March 16, 2015 ... diagnostic system behind them. (Photo by Elle StarkmanPPPL ... to be part of our strong team," Feder said. "I also ...

  15. Advanced Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    2007-06-01

    This factsheet describes a research project whose objective is to develop and implement technologies that address advanced combustion diagnostics and rapid Btu measurements of fuels. These are the fundamental weaknesses associated with the combustion processes of a furnace.

  16. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.; Shekhawat, Dushyant; VanEssendelft, Dirk T.; Means, Nicholas C.

    2015-04-23

    in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.

  17. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-01-01

    Laser photodetachment can be used on high current, high energy H{sup {minus}} beams to carry out a wide variety of beam diagnostic measurements parasitically during normal operation, without having to operate the facility at either reduced current or duty cycle. Suitable Q-switched laser systems are small, inexpensive, and can be mounted on or near the beamline. Most of the proposed laser-based diagnostics techniques have already been demonstrated.

  18. Spectral diagnostics of laser wakefield in capillary tubes

    SciTech Connect (OSTI)

    Andreev, N.E.; Chegotov, M.V.; Cros, B.; Mora, P.; Vieux, G.

    2006-05-15

    The modification of the spectrum of a probe pulse traveling in a linear plasma wave created in the wake of a pump pulse guided inside a capillary tube is analyzed for the cases of narrow or broad chirped probe spectra. It is shown that in both cases the measurement of the spectrum can be used as a diagnostic for the amplitude of the plasma wave. The results of full-scale numerical modeling confirm the developed analytical theory of wake-field diagnostics.

  19. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine Research 2002_deer_choi.pdf (954.08 KB) More Documents & Publications Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines 3-D Combustion Simulation

  20. 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab May 16, 2010, 9:00am to May 20, 2010, 5:00pm Conference Wildwood, New Jersey 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) The 18th Topical Conference on High-Temperature Plasma Diagnostics will be held May 16-20, 2010 in Wildwood, New Jersey. This biennial conference brings together plasma physicists from a variety of fields including magnetic confinement fusion, inertial confinement fusion, space plasmas, astrophysics, and industrial

  1. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    SciTech Connect (OSTI)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performance of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.

  2. Visible bremsstrahlung tomographic diagnostic for the pulsed high density field-reversed configuration experiment

    SciTech Connect (OSTI)

    Gota, H.; Andreason, S. P.; Votroubek, G. R.; Pihl, C. J.; Slough, J. T.

    2006-10-15

    A diagnostic suite for the source section of the pulsed high density field-reversed configuration (FRC) experiment has been constructed to investigate the equilibrium and stability of FRC plasmas. In particular, a visible bremsstrahlung tomographic system has been designed and implemented. Three types of tomographic analyses for FRCs are performed: a Fourier fit method (Cormack-Granetz), a maximum entropy method, and a minimum Fisher method utilizing code developed for the TCV tokamak experiment in Switzerland [Anton et al., Plasma Phys. Controled Fusion 38, 1849 (1996)]. Results from the different methods and end-on imaging from the fast-framing camera are compared showing relative agreement of FRC internal structures between all measurements.

  3. Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from LM Monitoring Wells | Department of Energy Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells AS&T Ancillary Work Plan (AWP) Final Well Redevelopment Evaluation Report Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells (3.25 MB) More Documents & Publications Analysis and Geochemical Modeling

  4. FAQS Job Task Analyses - Instrument and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instrument and Controls FAQS Job Task Analyses - Instrument and Controls FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Instrument and

  5. EIA- Energy Efficiency Related Links: EIA Reports and Analyses

    U.S. Energy Information Administration (EIA) Indexed Site

    Reports Energy-Efficiency Related: EIA Reports and Analyses Released Release Date: October 1999 Last Updated: August 2010 End Users: Commercial Buildings Manufacturing ...

  6. Ch. III, Interpretation of water sample analyses Waunita Hot...

    Open Energy Info (EERE)

    of water sample analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  7. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    SciTech Connect (OSTI)

    Flach, G.

    2014-10-28

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  8. Interpretation of chemical analyses of waters collected from...

    Open Energy Info (EERE)

    chemical analyses of waters collected from two geothermal wells at Coso, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. Chemical and Radiochemical Analyses of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    This document corresponds to Appendix C: Analysis Integrated Summary Report of the Technical Assessment Team Report. Chemical and Radiochemical Analyses of Waste Isolation Pilot ...

  10. 11th Topical conference high-temperature plasma diagnostics. Book of abstracts

    SciTech Connect (OSTI)

    1996-06-01

    This report contains abstracts from the 11th topical conference on high-temperature plasma diagnostics.

  11. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  12. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect (OSTI)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  13. FAQS Job Task Analyses- NNSA Package Certification Engineer

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Electrical Systems and Safety Oversight

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Confinement Ventilation and Process Gas Treatment

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- DOE Aviation Safety Officer

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- Civil/Structural Engineering

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. FAQS Job Task Analyses- Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Safeguards and Security General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. Fluorescence-based video profile beam diagnostics: Theory and experience

    SciTech Connect (OSTI)

    Sandoval, D.; Gilpatrick, D.; Shinas, M.; Garcia, R.; Yuan, V.; Zander, M.

    1994-05-01

    Inelastic collisions between accelerated particles and residual gas in the accelerator vessel can cause the residual gas to fluoresce. The gas fluorescence intensity is proportional to the current density of the particle beam. This process provides the foundation for a video diagnostic system to measure the profile and position of accelerated particle beams. This, in fact, has proven to be a useful diagnostic at several installations. This paper describes the light production process resulting from beam -- residual gas interactions and gives formulas for estimating the beam radiance for various conditions. Ground Test Accelerator (GTA) radiance calculations will be used as an example. In addition, measurement experiences with the GTA video diagnostics system will be discussed.

  2. Fluorescence-based video profile beam diagnostics: Theory and experience

    SciTech Connect (OSTI)

    Sandoval, D.P.; Garcia, R.C.; Gilpatrick, J.D.; Shinas, M.A.; Wright, R.; Yuan, V.; Zander, M.E. )

    1994-10-10

    Inelastic collisions between accelerated particles and residual gas in the accelerator vessel can cause the residual gas to fluoresce. The gas fluorescence intensity is proportional to the current density of the particle beam. This process provides the foundation for a video diagnostics system to measure the profile and position of accelerated particle beams. This, in fact, has proven to be a useful diagnostic at several installations. This paper describes the light production process resulting from beam-residual gas interactions and gives formulas for estimating the beam radiance for various conditions. Ground Test Accelerator (GTA) radiance calculations will be used as an example. In addition, measurement experiences with the GTA video diagnostics system will be discussed.

  3. Nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Murphy, Thomas J.; Barnes, Cris W.; Berggren, R. R.; Bradley, P.; Caldwell, S. E.; Chrien, R. E.; Faulkner, J. R.; Gobby, P. L.; Hoffman, N.; Jimerson, J. L.

    2001-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, will provide unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments. The completed facility will provide 2 MJ of laser energy for driving targets, compared to the approximately 40 kJ that was available on Nova and the approximately 30 kJ available on Omega. Ignited NIF targets are anticipated to produce up to 10{sup 19} DT neutrons. In addition to a basic set of nuclear diagnostics based on previous experience, these higher NIF yields are expected to allow innovative nuclear diagnostic techniques to be utilized, such as neutron imaging, recoil proton techniques, and gamma-ray-based reaction history measurements.

  4. Optomechanical design of a prompt gamma reaction history diagnostic

    SciTech Connect (OSTI)

    Hermann, Hans W; Kaufman, Morris I; Malone, Robert M; Frogget, Brent C; Tunnell, Thomas W; Cox, Brian; Frayer, Daniel K; Ali, Zaheer; Stoeffl, Wolfgang

    2009-01-01

    The National Ignition Facility and the Omega Laser Facility both have a need for measuring prompt gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic using off-axis-parabolic mirrors has been built. Some new techniques were used in the design, construction, and tolerancing of this gamma ray diagnostic. Because of the wavelength requirement (250-700 nm), the optical element surface finishes were a key design consideration. The optical enclosure had to satisfy pressure safety concerns and shielding against electromagnetic interference induced by gammas and neutrons. Structural finite element analysis was needed to meet rigorous optical and safety requirements. The optomechanical design is presented. Alignment issues are also discussed.

  5. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect (OSTI)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  6. STELLOPT Modeling of the 3D Diagnostic Response in ITER

    SciTech Connect (OSTI)

    Lazerson, Samuel A

    2013-05-07

    The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

  7. ARM - Evaluation Product - ARM Diagnostics for Climate Model Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsARM Diagnostics for Climate Model Evaluation ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ARM Diagnostics for Climate Model Evaluation [ ARM research - evaluation data product ] This data products include two types of data sets: 1. Observational data: we use long-term continuous forcing data

  8. High density harp or wire scanner for particle beam diagnostics

    DOE Patents [OSTI]

    Fritsche, C.T.; Krogh, M.L.

    1996-05-21

    Disclosed is a diagnostic detector head harp used to detect and characterize high energy particle beams using an array of closely spaced detector wires, typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit formed on a ceramic substrate. A method to fabricate harps to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit disposed on the ceramic substrate connects electrically between the detector wires and diagnostic equipment which analyzes pulses generated in the detector wires by the high energy particle beams. 6 figs.

  9. High density harp or wire scanner for particle beam diagnostics

    DOE Patents [OSTI]

    Fritsche, Craig T.; Krogh, Michael L.

    1996-05-21

    A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.

  10. Diagnostics for studies of novel laser ion acceleration mechanisms

    SciTech Connect (OSTI)

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  11. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect (OSTI)

    Haque, Aeraj Ul [Argonne National Laboratory (ANL)

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  12. The heavy ion beam diagnostic for the tokamak ISTTOK

    SciTech Connect (OSTI)

    Cabral, J.A.C.; Malaquias, A.; Praxedes, A.; Toledo, W. van; Varandas, C.A.F. )

    1994-08-01

    In this paper the authors describe the heavy ion beam diagnostic for the tokamak ISTTOK, which has been designed to determine the temporal evolution of the plasma density, poloidal magnetic field and plasma potential profiles. This diagnostic makes use of a new type of high density caesium plasma source, a multiple cell detector and a fast data acquisition system. The authors describe the numerical code for trajectory and beam attenuation simulations, a method for the experimental determination of the poloidal field profile, the ion gun and the detection, control and data acquisition systems. Calibration tests and the first experimental results are presented.

  13. Computation of Electron Cloud Diagnostics and Mitigation in the Main

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injector | Argonne Leadership Computing Facility Computation of Electron Cloud Diagnostics and Mitigation in the Main Injector Authors: Veitzer, S.A., LeBrun, P., Cary, J.R., Spentzouris, P., Stoltz, P.H., Amundson, J.F. High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron

  14. ARM - PI Product - SCM Forcing Data Derived from NWP Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsSCM Forcing Data Derived from NWP Analyses ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : SCM Forcing Data Derived from NWP Analyses Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru. Data Details

  15. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    SciTech Connect (OSTI)

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  16. Status of the design of the ITER ECE diagnostic

    SciTech Connect (OSTI)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; Pandya, H. K. B.; Roman, C.; Rowan, W. L.; Udintsev, V.; Vayakis, G.; Walsh, M.; Kubo, S.

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.

  17. Status of the design of the ITER ECE diagnostic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Ellis, R. F.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; et al

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation inmore » the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.« less

  18. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect (OSTI)

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  19. Electrically heated particulate filter diagnostic systems and methods

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  20. Multifunctional ligand for use as a diagnostic or therapeutic pharmaceutical

    DOE Patents [OSTI]

    Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

    1996-05-14

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical are revealed. The ligand comprises either a phosphorous or germanium core and at least two hydrazine groups forming a ligand for bonding to a metal extending from the phosphorous or germanium core.

  1. Diagnostic indicators for integrated assessment models of climate policy

    SciTech Connect (OSTI)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Mejean, Aurelie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.

  2. Modernized active spectroscopic diagnostics (CXRS) of the T-10 tokamak

    SciTech Connect (OSTI)

    Krupin, V. A. Klyuchnikov, L. A. Korobov, K. V. Nemets, A. R. Nurgaliev, M. R.; Gorbunov, A. V.; Naumenko, N. N.; Troynov, V. I.; Tugarinov, S. N.; Fomin, F. V.

    2015-12-15

    This work presents the results of modernization of the CXRS (charge exchange recombination spectroscopy) diagnostics [1] at the T-10 tokamak. The relevance of this work is due to the importance of measurements of the ion temperature and nuclei density of the working gas and impurities for analysis of transport processes in the plasma ion component. Measurements of radial profiles of the ion temperature are extremely important for investigating the geodesic acoustic mode behavior which is conducted at the T-10 [2]. The modernized scheme of CXRS measurements, as well as the design and operational features of the spectrometer created for the new diagnostics, is described. Principles of data recording and further processing are considered in detail; attention is given to the problem of calibration of the whole complex of equipment. The performed changes in diagnostics allow the measurements to be taken simultaneously in three spectral intervals: in the region of the beam line H{sub α}, the CXRS line of carbon ion C{sup 5+}, and the CXRS line of one of the hydrogen-like ions: He{sup 1+}, Li{sup 2+}, N{sup 6+}, O{sup 7+} or Ne{sup 9+}. This makes it possible to measure the density profiles of two plasma impurities simultaneously, as well as the ion temperature from CXRS lines of different elements. The modernized diagnostics significantly broadens the possibilities of studying the physics of transport processes and quasi-coherent modes of plasma oscillations at the T-10.

  3. Multifunctional ligand for use as a diagnostic or therapeutic pharmaceutical

    DOE Patents [OSTI]

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.

    1996-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises either a phosphorous or germanium core and at least two hydrazine groups forming a ligand for bonding to a metal extending from the phosphorous or germanium core.

  4. May 20, 2015 Webinar - Guidance for Conducting Technical Analyses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - May 20, 2015 - Guidance for Conducting Technical Analyses for 10 CFR Part 61 by Mr. Chris Grossman (NRC) ...

  5. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses Citation Details In-Document Search Title: Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid

  6. Overview of DOE-Supported Infrastructure Analyses Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-Supported Infrastructure Analyses Webinar U.S. Department of Energy Fuel Cell Technologies Office July 24, 2013 2 | Fuel Cell Technologies Office eere.energy.gov * Introduction and webinar objectives * Analyses and Models * Examples * Component-level Models * Market Penetration * Transition Scenarios * Financial Models * Impact of Policies * Regional Models * Model enhancements * Next steps Agenda 3 | Fuel Cell Technologies Office eere.energy.gov H 2 USA is being formed as a public/private

  7. Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressor | Department of Energy Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_sun.pdf (999.91 KB) More Documents & Publications Advanced boost system development for diesel HCCI/LTC applications Optimization of a

  8. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  9. Forensics of Soot: C5-Related Nanostructure as a Diagnostic of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry Changes ...

  10. X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes for the National Ignition Facility Citation Details In-Document Search Title: X-Ray Line-Shape Diagnostics and ...

  11. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating ...

  12. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect (OSTI)

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  13. Dynamics analyses of space power systems using the salt code

    SciTech Connect (OSTI)

    Geyer, H.K.; Bhattacharyya, S.K.; Hanan, N.A.; Livingston, J.M.; Westinghouse Electric Corp., Pittsburgh, PA )

    1989-01-01

    The dynamic behavior of large space power systems has been identified as a significant technical issue. To date several analyses of reactor kinetics have been reported in the literature, but there have been few (if any) studies of the dynamic response of the entire space power system. The problem is complex and required analytical methods are not generally available. Furthermore, given the conceptual state of current MMW space power systems designs, dynamic models of components are not generally available. We have used the SALT code to perform preliminary analyses of the startup and shutdown transients of several proposed MMW system designs. In this paper we will provide a description of the code methodology and present results of the analyses performed for the NERVA derivative reactor (NDR) system. 3 refs., 3 figs.

  14. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  15. Development of nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Roberts, S.; Barrera, C. A.; Celeste, J. R.; Cerjan, C. J.; Dauffy, L. S.; Eder, D. C.; Griffith, R. L.; Haan, S. W.; Hammel, B. A.; Hatchett, S. P.; Izumi, N.; Kimbrough, J. R.; Koch, J. A.; Landen, O. L.; Lerche, R. A.; MacGowan, B. J.

    2006-10-15

    The National Ignition Facility (NIF) will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 10{sup 19} DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.

  16. Optical diagnostics integrated with laser spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  17. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect (OSTI)

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  18. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect (OSTI)

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  19. U-135: HP WBEM Discloses Diagnostic Data to Remote and Local Users

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in HP WBEM. A remote or local user can gain access to diagnostic data.

  20. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    SciTech Connect (OSTI)

    Lawrie, Scott R.; Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  1. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  2. Diffraction effects in the coherent transition radiation bunch length diagnostics

    SciTech Connect (OSTI)

    Kazakevich, G.; Lebedev, V.; Nagaitsev, S.; /Fermilab

    2007-08-01

    Diffraction effects in the Coherent Transition Radiation (CTR) bunch length diagnostics are considered for the A0 Photoinjector and the New Muon Laboratory (NML) injection module. The effects can cause a noticeable distortion of the measured CTR spectra depending on the experimental setup and the bunch parameters and resulting in errors of the bunch length measurements. Presented calculations show possible systematic errors in the bunch length in measurements based on the CTR spectra at A0 Photo injector and the NML injection module.

  3. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics Principal Investigator : Yongchun Tang Presenter: John Ma Power Environmental Energy Research Institute DE-EE0003032 Project Officer: John Ma Total Project Funding: $2,300,000 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Objective: Develop a matrix of the smart geothermal tracer and

  4. Lagrangian Diagnostics of Tropical Cirrus over TWP CART Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagrangian Diagnostics of Tropical Cirrus over TWP CART Sites Horvath, Akos University of Miami Soden, Brian UM/RSMAS Category: Cloud Properties Cirrus clouds associated with tropical deep convection play an important role in regulating Earth's climate by influencing the radiative and moisture budgets of the upper troposphere. In this study, we sought to better understand the evolution of such clouds using geostationary satellite observations coupled with ground-based radar and lidar

  5. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    Energy Science and Technology Software Center (OSTI)

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  6. Diagnostic applications of millimeter waves in coal conversion systems

    SciTech Connect (OSTI)

    Gopalsami, N.; Raptis, A.C.

    1985-01-01

    The feasibility of millimeter-wave (MMW) techniques is discussed for in-situ diagnostics of particulate-laden multiphase streams in coal conversion and combustion systems. The techniques investigated include MMW spectroscopy for determination of molecular species and gas-phase temperature, MMW radiometry for particle temperature measurement, and MMW scattering for particle characterization. The theoretical feasibility of each technique is presented together with the applicable range of measurement/system parameters. 3 refs.

  7. LANL spinoff receives NIH grant for respiratory disease diagnostic device

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL spinoff receives NIH grant LANL spinoff receives NIH grant for respiratory disease diagnostic device Mesa Tech has been awarded a grant to develop an inexpensive, instrument-free, nucleic-acid testing device to diagnose various respiratory diseases in record time. October 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  8. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOE Patents [OSTI]

    Thakur, Mathew L.

    1994-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  9. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOE Patents [OSTI]

    Thakur, Mathew L.

    1991-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  10. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover from pond crashes Algal Pond Crash Detection Sandia National Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to large-scale algae cultivation for biofuels. Because of the way algae is grown and produced in most algal ponds, they are prone to attack by fungi, rotifers, viruses or other

  11. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  12. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-12-01

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4{times}10{sup {minus}17}cm{sup 2} at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. {copyright} {ital 1998 American Institute of Physics.}

  13. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-05-05

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4 {times} 10{sup {minus}17} cm{sup 2} at 1.5 eV, a 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10-ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  14. Laser diagnostic for high current H{sup -} beams

    SciTech Connect (OSTI)

    Shafer, Robert E.

    1998-12-10

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup -} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4x10{sup -17} cm{sup 2} at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup -} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup -} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup -} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  15. Development of a new virtual diagnostic for V3FIT

    SciTech Connect (OSTI)

    Trevisan, G. L. Terranova, D.; Cianciosa, M. R.; Hanson, J. D.

    2014-12-15

    The determination of plasma equilibria from diagnostic information is a fundamental issue. V3FIT is a fully three-dimensional reconstruction code capable of solving the inverse problem using both magnetic and kinetic measurements. It uses VMEC as core equilibrium solver and supports both free- and fixed-boundary reconstruction approaches. In fixed-boundary mode VMEC does not use explicit information about currents in external coils, even though it has important effects on the shape of the safety factor profile. Indeed, the edge safety factor influences the reversal position in RFP plasmas, which then determines the position of the m = 0 island chain and the edge transport properties. In order to exploit such information a new virtual diagnostic has been developed, that thanks to Ampère's law relates the external current through the center of the torus to the circulation of the toroidal magnetic field on the outermost flux surface. The reconstructions that exploit the new diagnostic are indeed found to better interpret the experimental data with respect to edge physics.

  16. Charge exchange spectroscopy as a fast ion diagnostic on TEXTOR

    SciTech Connect (OSTI)

    Delabie, E.; Jaspers, R. J. E.; Hellermann, M. G. von; Nielsen, S. K.; Marchuk, O.

    2008-10-15

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the D{sub {alpha}} spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion D{sub {alpha}} spectrum obtained with the new diagnostic is discussed.

  17. Correlation ECE diagnostic in Alcator C-Mod

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sung, C.; White, A. E.; Howard, N. T.; Mikkelsen, D.; Irby, J.; Leccacorvi, R.; Vieira, R.; Oi, C.; Rice, J.; Reinke, M.; et al

    2015-03-12

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-modemore » plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.« less

  18. PERFORMANCE OF THE DIAGNOSTICS FOR NSLS-II LINAC COMMISSIONING

    SciTech Connect (OSTI)

    Fliller III, R.; Padrazo, D.; Wang, G.M.; Heese, R.; Hseuh H.-C.; Johanson, M.; Kosciuk, B.N.; Pinayev, I.; Rose, J.; Shaftan, T.; Singh, O.

    2011-03-28

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The transfer lines not only provide a means to deliver the beam from one machine to another, they also provide a suite of diagnostics and utilities to measure the properties of the beam to be delivered. In this paper we discuss the suite of diagnostics that will be used to commission the NSLS-II linac and measure the beam properties. The linac to booster transfer line can measure the linac emittance with a three screens measurement or a quadrupole scan. Energy and energy spread are measured in a dispersive section. Total charge and charge uniformity are measured with wall current monitors in the linac and transformers in the transfer line. We show that the performance of the diagnostics in the transfer line will be sufficient to ensure the linac meets its specifications and provides a means of trouble shooting and studying the linac in future operation.

  19. Correlation ECE diagnostic in Alcator C-Mod

    SciTech Connect (OSTI)

    Sung, C.; White, A. E.; Howard, N. T.; Mikkelsen, D.; Irby, J.; Leccacorvi, R.; Vieira, R.; Oi, C.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Walk, J.; Hughes, J.; Hubbard, A.; Greenwald, M.

    2015-03-12

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.

  20. THz time-domain spectroscopy for tokamak plasma diagnostics

    SciTech Connect (OSTI)

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  1. Error field and magnetic diagnostic modeling for W7-X

    SciTech Connect (OSTI)

    Lazerson, Sam A.; Gates, David A.; NEILSON, GEORGE H.; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.

    2014-07-01

    The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (Β = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  2. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; et al

    2016-01-06

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by themore » function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Lastly, recommendations for future diagnostics on the NIF are discussed.« less

  3. Diagnostic and Prognostic Analysis of Battery Performance & Aging based on

    Broader source: Energy.gov (indexed) [DOE]

    Kinetic and Thermodynamic Principles | Department of Energy es124_gering_2012_o.pdf (9.13 MB) More Documents & Publications Diagnostic Testing and Analysis Toward Understanding Aging Mechanisms and Related Path Dependence Diagnostic Testing and Analysis Toward Understanding Aging Mechanisms and Related Path Dependence Diagnostic Testing and Analysis Toward Understanding Aging Mechanisms and Related Path Dependence

  4. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST) Multi-Zone Non-Airflow In-Depth Diagnostic Cases: MZ320 -- MZ360

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Alexander, D.; Felsmann, C.; Strachan, P.; Wijsman, A.

    2008-09-01

    This report documents a set of diagnostic test cases for multi-zone heat transfer models. The methodology combines empirical validation, analytical verification, and comparative analysis techniques.

  5. Analyses of Selected Provisions of Proposed Energy Legislation: 2003

    Reports and Publications (EIA)

    2003-01-01

    This study responds to a July 31, 2003 request from Senator Byron L. Dorgan. The study is based primarily on analyses the Energy Information Administration has previously done for studies requested by Congress. It includes analysis of the Renewable Portfolio Standard, Renewable Fuels Standard, production in the Alaskan National Wildlife Refuge, the construction of an Alaskan Natural Gas pipeline, and various tax provisions.

  6. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  7. Neutronics analyses in support of rotating target developments at SNS

    SciTech Connect (OSTI)

    Gallmeier, Franz X.

    2010-03-08

    A second target station (STS) for Spallation Neutron Souce (SNS) very likely being operated in long-pulse mode is in the early design phase, will complement the ORNL neutron sources, which presently consist of a short-pulse spallation source and the HFIR research reactor. As an alternative to the stationary liquid metal target, a rotating target is being considered. Neutronics studies in support of a 3MW power 20 Hz repetition rate rotating target feasibility study funded through the laboratory LDRD program, was extended towards a 1.5 MW STS design. The scope of work included in-operation heat deposition rates in target structures for thermal and structural analyses, target radionuclide inventory for decay heat and safety analyses, lifetime estimations due to radiation-driven material damage of target and moderator components, moderator neutron performance and moderator cryogenic heatloads.

  8. Electrical signature analysis applications for non-intrusive automotive alternator diagnostics

    SciTech Connect (OSTI)

    Ayers, C.W.

    1996-03-01

    Automotive alternators are designed to supply power for automobile engine ignition systems as well as charge the storage battery. This product is used in a large market where consumers are concerned with acoustic noise and vibration that comes from the unit. as well as overall quality and dependability. Alternators and generators in general are used in industries other than automotive, such as transportation and airline industries and in military applications. Their manufacturers are interested in pursuing state-of-the-art methods to achieve higher quality and reduced costs. Preliminary investigations of non-intrusive diagnostic techniques utilizing the inherent voltage signals of alternators have been performed with promising results. These techniques are based on time and frequency domain analyses of specially conditioned signals taken from several alternators under various test conditions. This paper discusses investigations that show correlations of the alternator output voltage to airborne noise production. In addition these signals provide insight into internal magnetic characteristics that relate to design and/or assembly problems.

  9. Radiochemical Analyses of Water Samples from Selected Streams

    Office of Legacy Management (LM)

    > : , - ' and Precipitation Collected in - Connection with Calibration-Test Flaring of Gas From Test Well, - I August 15-October 13, 197,0,, Project Rulison-8, 197 1 HGS 9 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal center, Denver, Colorado 80225 RADIOCHEMICAL ANALYSES OF WATER SAMPLES FROM SELECTED STREAMS AND PRECIPITATION

  10. Panel 2, H2 Grid Integration: Tools and Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H 2 Grid Integration: Tools and Analyses Hydrogen Energy Storage Workshop Josh Eichman, PhD 5/14/2014 2 Wind to Hydrogen Project * Xcel Energy, DOE and NREL collaboration * Can explore the role of H 2 for... *Renewable Integration *Responsive loads (demand response) *Energy Storage *Multiple outputs streams o Electricity o Transportation fuel o Industrial gas 3 Electricity market requirements * Important operational characteristics o Power capacity How much can you provide in response? o Energy

  11. Summary of On-Board Storage Models and Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Storage Models and Analyses R.K. Ahluwalia, T. Q. Hua and J-K Peng Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc) 1. On-Board System Configuration 2. Dehydrogenation Reactor Dehydrogenation kinetics Trickle bed hydrodynamics Dehydrogenation reactor model Reactor

  12. Finite element analyses for seismic shear wall international standard problem

    SciTech Connect (OSTI)

    Park, Y.J.; Hofmayer, C.H.

    1998-04-01

    Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.

  13. PPPL's dynamic diagnostic duo | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL's dynamic diagnostic duo By John Greenwald July 14, 2014 Tweet Widget Google Plus One Share on Facebook Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study laser-produced plasmas. The vertically mounted silicon crystal has a thickness of 100 microns, about the average diameter of a human hair. (Photo by Elle Starkman/Princeton Office of Communications ) Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study

  14. Polarizer design for millimeter-wave plasma diagnostics

    SciTech Connect (OSTI)

    Leipold, F.; Salewski, M.; Jacobsen, A. S.; Jessen, M.; Korsholm, S. B.; Michelsen, P. K.; Nielsen, S. K.; Stejner, M.

    2013-08-15

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  15. Improvement of the edge rotation diagnostic spectrum analysis via simulation

    SciTech Connect (OSTI)

    Luo, J.; Zhuang, G. Cheng, Z. F.; Zhang, X. L.; Hou, S. Y.; Cheng, C.

    2014-11-15

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  16. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    SciTech Connect (OSTI)

    Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  17. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect (OSTI)

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  18. Electron kinetic effects on optical diagnostics in fusion plasmas

    SciTech Connect (OSTI)

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E.; Brower, D. L. Ding, W. X.

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  19. Reactor protection system with automatic self-testing and diagnostic

    DOE Patents [OSTI]

    Gaubatz, Donald C.

    1996-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.

  20. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  1. Augmenting epidemiological models with point-of-care diagnostics data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.; Ozmen, Ozgur

    2016-04-20

    Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less

  2. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    SciTech Connect (OSTI)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-11-28

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs.

  3. Photon counting spectroscopy as done with a Thomson scattering diagnostic

    SciTech Connect (OSTI)

    Den Hartog, D.J.; Ruppert, D.E.

    1993-11-01

    The measurement and reduction of photon counting spectral data is demonstrated within the context of a Thomson scattering diagnostic. This diagnostic contains a microchannel plate (MCP) photomultiplier tube (PMT) as the photon sensing device. The MCP PMT is not an ideal photon sensor, the loss of photoelectrons at the MCP input and the broad charge pulse distribution at the output add to the uncertainty in recorded data. Computer simulations are used to demonstrate an approach to quantification of this added uncertainty and to develop an understanding of its source; the methodology may be applicable to the development of an understanding of photon detectors other than an MCP PMT. Emphasis is placed on the Poisson statistical character of the data, because the assumption that a Gaussian probability distribution is a reasonable statistical description of photon counting data is often questionable. When the count rate is low, the product the possible number of photon counts and the probability of measurement of a single photon is usually not sufficiently large to justify Gaussian statistics. Rather, because probabilities of measurement are so low, the Poisson probability distribution best quantifies the inherent statistical fluctuations in such counting measurements. The method of maximum likelihood is applied to derive the Poisson statistics equivalent of {sub X}{sup 2}. A Poisson statistics based data fitting code is implemented using the Newton-Raphson method of multi-dimensional root finding; we also demonstrate an algorithm to estimate the uncertainties in derived quantities.

  4. Diagnostic resonant cavity for a charged particle accelerator

    DOE Patents [OSTI]

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  5. Reactor protection system with automatic self-testing and diagnostic

    DOE Patents [OSTI]

    Gaubatz, D.C.

    1996-12-17

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.

  6. Analyses of Hydrogen Storage Materials and On-Board Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Analyses of Hydrogen Storage Materials and On Storage Materials and On - - Board Systems Board Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268 © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8, 2007 Stephen Lasher Kurtis McKenney Yong Yang Bob Rancatore Stefan Unnasch Matt Hooks This presentation does not contain any proprietary or confidential information Overview 1 SL/042007/D0268 ST32_Lasher_H2

  7. Doppler spectroscopy and D-alpha emission diagnostics for the C-2 FRC plasma

    SciTech Connect (OSTI)

    Gupta, Deepak K.; Paganini, E.; Bonelli, L.; Deng, B. H.; Gornostaeva, O.; Hayashi, R.; Knapp, K.; McKenzie, M.; Pousa-Hijos, R.; Primavera, S.; Schroeder, J.; Tuszewski, M.; Balvis, A.; Giammanco, F.; Marsili, P.

    2010-10-15

    Two Doppler spectroscopy diagnostics with complementary capabilities are developed to measure the ion temperatures and velocities of FRC plasmas in the C-2 device. First, the multichord ion doppler diagnostic can simultaneously measure 15 chords of the plasma using an image intensified camera. Second, a single-chord fast-response ion Doppler diagnostic provides much higher faster time response by using a 16-channel photo-multiplier tube array. To study the neutral density of deuterium under different wall and plasma conditions, a highly sensitive eight-channel D-alpha diagnostic has been developed and calibrated for absolute radiance measurements. These spectroscopic diagnostics capabilities, combined with other plasma diagnostics, are helping to understand and improve the field reversed configuration plasmas in the C-2 device.

  8. Improved global sea surface temperature analyses using optimum interpolation

    SciTech Connect (OSTI)

    Reynolds, R.W.; Smith, T.M. )

    1994-06-01

    The new NOAA operational global sea surface temperature (SST) analysis is described. The analyses use 7 days of in situ (ship and buoy) and satellite SST. These analyses are produced weekly and daily using optimum interpolation (OI) on a 1[degrees] grid. The OI technique requires the specification of data and analysis error statistics. These statistics are derived and show that the SST rms data errors from ships are almost twice as large as the data errors from buoys or satellites. In addition, the average e-folding spatial error scales have been found to be 850 km in the zonal direction and 615 km in the meridional direction. The analysis also includes a preliminary step that corrects any satellite biases relative to the in situ data using Poisson's equation. The importance of this correction is demonstrated using recent data following the 1991 eruptions of Mt. Pinatubo. The OI analysis has been computed using the in situ and bias-corrected satellite data for the period 1985 to present. 20 refs., 19 figs., 3 tabs.

  9. Preparation of environmental analyses for synfuel and unconventional gas technologies

    SciTech Connect (OSTI)

    Reed, R.M.

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  10. Finite element analyses of tool stresses in metal cutting processes

    SciTech Connect (OSTI)

    Kistler, B.L.

    1997-01-01

    In this report, we analytically predict and examine stresses in tool tips used in high speed orthogonal machining operations. Specifically, one analysis was compared to an existing experimental measurement of stresses in a sapphire tool tip cutting 1020 steel at slow speeds. In addition, two analyses were done of a carbide tool tip in a machining process at higher cutting speeds, in order to compare to experimental results produced as part of this study. The metal being cut was simulated using a Sandia developed damage plasticity material model, which allowed the cutting to occur analytically without prespecifying the line of cutting/failure. The latter analyses incorporated temperature effects on the tool tip. Calculated tool forces and peak stresses matched experimental data to within 20%. Stress contours generally agreed between analysis and experiment. This work could be extended to investigate/predict failures in the tool tip, which would be of great interest to machining shops in understanding how to optimize cost/retooling time.

  11. Guide to good practices for teamwork training and diagnostic skills development

    SciTech Connect (OSTI)

    1997-06-01

    This guide provides assistance in the development, implementation, and improvement of training on teamwork and diagnostics. DOE and contractor representatives identified the need for teamwork and diagnostics training guidance. This need was based on the increasing emphasis of properly applying knowledge and skills to complete assigned tasks. Teamwork and diagnostic skills have become a focal point because of the impact they have on effective facility operation and safety.

  12. Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes June 3, 2011 - 2:04pm Addthis Novartis Diagnostics scientist Cleo Salisbury and Biological Nanostructures Facility director Ron Zuckermann discuss their collaboration to discover new therapies for Alzheimer's. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Researchers have developed new

  13. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect (OSTI)

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  14. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocating Engine PM Emissions | Department of Energy Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions 2002 DEER Conference Presentation: Sandia National Laboratories 2002_deer_witze.pdf (3.85 MB) More Documents & Publications High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter TG-1: Portable Instrument

  15. Fuel Injection and Spray Research Using X-Ray Diagnostics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Injection and Spray Research Using X-Ray Diagnostics Low-Temperature Diesel Combustion Cross-Cut Research Vehicle Technologies Office Merit ...

  16. Contemporary Instrumentation and Application of Charge Exchange Neutral Particle Diagnostics in Magnetic Fusion Experiments

    SciTech Connect (OSTI)

    Medley, S. S.; Donn, A. J.H.; Kaita, R.; Kislyakov, A. I.; Petrov, M. P.; Roquemore, A. L.

    2007-07-21

    An overview of the developments post-circa 1980's of the instrumentation and application of charge exchange neutral particle diagnostics on Magnetic Fusion Energy experiments is presented.

  17. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Patents [OSTI]

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  18. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Patents [OSTI]

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  19. T-590: HP Diagnostics Input Validation Hole Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    A potential security vulnerability has been identified in HP Diagnostics. The vulnerability could be exploited remotely resulting in cross site scripting (XSS).

  20. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    SciTech Connect (OSTI)

    Fryer, Chris L. Even, Wesley; Grefenstette, Brian W.; Wong, Tsing-Wai; Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138

    2014-04-15

    Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  1. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying...

    Office of Scientific and Technical Information (OSTI)

    Laser Ablation Citation Details In-Document Search Title: A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation ...

  2. Optical interconnect loop-back switch for in-situ diagnostics...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 47 OTHER INSTRUMENTATION; DIAGNOSTIC TECHNIQUES; ...

  3. Electrical probe diagnostics for the laminar flame quenching distance

    SciTech Connect (OSTI)

    Karrer, Maxime; Makarov, Maxime; Bellenoue, Marc; Labuda, Sergei; Sotton, Julien

    2010-02-15

    A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

  4. Radiation damage in diagnostic window materials for the TFTR

    SciTech Connect (OSTI)

    Primak, W.

    1981-07-01

    The general problem of evaluating diagnostic window materials for the TFTR at the tank wall location is described. Specific evaluations are presented for several materials: vitreous silica, crystal quartz, sapphire, zinc selenide, and several fluorides: lithium fluoride, magnesium fluoride, and calcium fluoride; and seal glasses are discussed. The effects of the neutrons will be minimal. The major problems arise from the high flux of ionizing radiation, mainly the soft x rays which are absorbed near the surface of the materials. Additionally, this large energy deposition causes a significant thermal pulse with attendant thermal stresses. It is thus desirable to protect the windows with cover slips where this is feasible or to reduce the incident radiation by mounting the windows on long pipes. A more detailed summary is given at the end of this report.

  5. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect (OSTI)

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  6. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  7. Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials.

    SciTech Connect (OSTI)

    Farrow, Darcie; Jilek, Brook Anton; Kohl, Ian Thomas; Kearney, Sean Patrick

    2013-08-01

    We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

  8. Smart preamplifier for real-time turbine meter diagnostics

    SciTech Connect (OSTI)

    Breter, J.C.

    1995-12-31

    A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

  9. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  10. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect (OSTI)

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  11. Development of polymer 'chips' used in medical diagnostics

    SciTech Connect (OSTI)

    Brush, Zachary G; Schultz, Laura M; Vanness, Justin W; Farinholt, Kevin M; Sarles, Stephen; Leo, Donald

    2011-01-26

    In recent years, there has been growing interest in creating bio-inspired devices that feature artificial bilayer lipid membranes (BLM), or lipid bilayers. These membranes can be tailored to mimic the structure and transport properties of cellular walls and can be used to selectively transport ions and other species between aqueous volumes. One application of this research is the formation of a standardized BLM contained within a portable and disposable housing for use in medical diagnostics. This concept utilizes a flexible polymer 'chip' that has internal compartments for housing both an organic solvent and an aqueous solution, which contains phospholipid molecules, proteins, and specific analyte molecules. The formation of a BLM within the chip enables integration of the chip into an electronic reader to perform diagnostic measurements of the sample. A key element of the bilayer formation process requires a single aqueous volume to first be separated into multiple volumes such that it can then be reattached to form a bilayer at the interface. This process, called the regulated attachment method, relies on the geometry of the deformable 'chip' to separate and reattach the aqueous contents held inside by opening and closing an aperture that divides adjacent compartments through the application of mechanical force. The purpose of this research is to develop an optimized chip that provides a controllable method for initially separating the aqueous phase via dynamic excitation. This study focuses on two specific aspects: designing an efficient excitation method for separating the aqueous volume, and optimizing the geometry of the chip to decrease the required input energy and better target the location and duration of the separation. Finite Element (FE) models are used to optimize the chip geometry and to identify suitable excitation signals. A series of experimental studies are also presented to validate the FE models.

  12. Development of polymer 'chips' used in medical diagnostics

    SciTech Connect (OSTI)

    Brush, Zachary G; Schultz, Laura M; Vanness, Justin W; Farinholt, Kevin M; Sarles, Stephen; Leo, Donald

    2010-11-03

    In recent years, there has been growing interest in creating bio-inspired devices that feature artificial bilayer lipid membranes (BLM), or lipid bilayers. These membranes can be tailored to mimic the structure and transport properties of cellular walls and can be used to selectively transport ions and other species between aqueous volumes. One application of this research is the formation of a standardized BLM contained within a portable and disposable housing for use in medical diagnostics. This concept utilizes a flexible polymer 'chip' that has internal compartments for housing both an organic solvent and an aqueous solution, which contains phospholipid molecules, proteins, and specific analyte molecules. The formation of a BLM within the chip enables integration of the chip into an electronic reader to perform diagnostic measurements of the sample. A key element of the bilayer formation process requires a single aqueous volume to first be separated into multiple volumes such that it can then be reattached to form a bilayer at the interface. This process, called the regulated attachment method, relies on the geometry of the deformable 'chip' to separate and reattach the aqueous contents held inside by opening and closing an aperture that divides adjacent compartments through the application of mechanical force. The purpose of this research is to develop an optimized chip that provides a controllable method for initially separating the aqueous phase via dynamic excitation. This study focuses on two specific aspects: designing an efficient excitation method for separating the aqueous volume, and optimizing the geometry of the chip to decrease the required input energy and better target the location and duration of the separation. Finite Element (FE) models are used to optimize the chip geometry and to identify suitable excitation signals. A series of experimental studies are also presented to validate the FE models.

  13. DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING

    SciTech Connect (OSTI)

    Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

    2011-03-28

    A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

  14. RBMK-LOCA-Analyses with the ATHLET-Code

    SciTech Connect (OSTI)

    Petry, A.; Domoradov, A.; Finjakin, A.

    1995-09-01

    The scientific technical cooperation between Germany and Russia includes the area of adaptation of several German codes for the Russian-designed RBMK-reactor. One point of this cooperation is the adaptation of the Thermal-Hydraulic code ATHLET (Analyses of the Thermal-Hydraulics of LEaks and Transients), for RBMK-specific safety problems. This paper contains a short description of a RBMK-1000 reactor circuit. Furthermore, the main features of the thermal-hydraulic code ATHLET are presented. The main assumptions for the ATHLET-RBMK model are discussed. As an example for the application, the results of test calculations concerning a guillotine type rupture of a distribution group header are presented and discussed, and the general analysis conditions are described. A comparison with corresponding RELAP-calculations is given. This paper gives an overview on some problems posed and experience by application of Western best-estimate codes for RBMK-calculations.

  15. Thermal-Hydraulic Analyses Of The LS-VHTR

    SciTech Connect (OSTI)

    Cliff B. Davis; Grant L. Hawkes

    2006-06-01

    Thermal-hydraulic analyses were performed to evaluate the safety characteristics of the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). A one-dimensional model of the LS-VHTR was developed using the RELAP5-3D computer program. The thermal calculations from the one-dimensional model of a fuel block were benchmarked against a multi-dimensional finite element model. The RELAP5-3D model was used to simulate a transient initiated by loss of forced convection in which the Reactor Vessel Auxiliary Cooling System (RVACS) passively removed decay heat. Parametric calculations were performed to investigate the effects of various parameters, including bypass flow fraction, coolant channel diameter, and the coolant outlet temperature. Additional parametric calculations investigated the effects of an enhanced RVACS design, failure to scram, and radial/axial conduction in the core.

  16. Uncertainty quantification and validation of combined hydrological and macroeconomic analyses.

    SciTech Connect (OSTI)

    Hernandez, Jacquelynne; Parks, Mancel Jordan; Jennings, Barbara Joan; Kaplan, Paul Garry; Brown, Theresa Jean; Conrad, Stephen Hamilton

    2010-09-01

    Changes in climate can lead to instabilities in physical and economic systems, particularly in regions with marginal resources. Global climate models indicate increasing global mean temperatures over the decades to come and uncertainty in the local to national impacts means perceived risks will drive planning decisions. Agent-based models provide one of the few ways to evaluate the potential changes in behavior in coupled social-physical systems and to quantify and compare risks. The current generation of climate impact analyses provides estimates of the economic cost of climate change for a limited set of climate scenarios that account for a small subset of the dynamics and uncertainties. To better understand the risk to national security, the next generation of risk assessment models must represent global stresses, population vulnerability to those stresses, and the uncertainty in population responses and outcomes that could have a significant impact on U.S. national security.

  17. Experiment-specific analyses in support of code development

    SciTech Connect (OSTI)

    Ott, L.J.

    1990-01-01

    Experiment-specific models have been developed since 1986 by Oak Ridge National Laboratory Boiling Water Reactor (BWR) severe accident analysis programs for the purpose of BWR experimental planning and optimum interpretation of experimental results. These experiment-specific models have been applied to large integral tests (ergo, experiments) which start from an initial undamaged core state. The tests performed to date in BWR geometry have had significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the ACRR DF-4 and KfK CORA-16 experiments are discussed and significant findings from the experimental analyses are presented. 32 refs., 16 figs.

  18. Correlations of πN partial waves for multireaction analyses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results.more » Lastly, the influence of systematic errors is also considered.« less

  19. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    SciTech Connect (OSTI)

    Guidoni, S. E.; Plowman, J. E.

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  20. Use of the target diagnostic control system in the National Ignition Facility

    SciTech Connect (OSTI)

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  1. A reduced model for the ICF gamma-ray reaction history diagnostic

    SciTech Connect (OSTI)

    Schmitt, Mark J; Wilson, Douglas C; Hoffman, Nelson M; Langenbrunner, Jamie R; Hermann, H W; Kim, Y H; Young, C S; Evans, S C; Cerjan, C J; Stoeffl, Wolfgang; Munro, D H; Dauffy, L S; Miller, K M; Horsfield, C J; Rubery, M S

    2009-01-01

    An analytic model for the gamma reaction history (GRH) diagnostic to be fielded on the National Ignition Facility is described. The application of the GRH diagnostic for the measurement of capsule rho-R during burn using 4.4 MeV carbon gamma rays is demonstrated by simulation.

  2. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    SciTech Connect (OSTI)

    Du, Qiang

    2014-11-12

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next

  3. Comparison of 2D and 3D gamma analyses

    SciTech Connect (OSTI)

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; ODaniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (evaluated dose distributions) and Monte Carlo-recalculated (reference dose distributions) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted

  4. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect (OSTI)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

  5. Design of a correlation electron cyclotron emission diagnostic for Alcator C-Mod

    SciTech Connect (OSTI)

    Sung, C.; White, A. E.; Irby, J. H.; Leccacorvi, R.; Vieira, R.; Oi, C. Y.; Peebles, W. A.; Nguyen, X.

    2012-10-15

    A correlation electron cyclotron emission (CECE) diagnostic has been installed in Alcator C-Mod. In order to measure electron temperature fluctuations, this diagnostic uses a spectral decorrelation technique. Constraints obtained with nonlinear gyrokinetic simulations guided the design of the optical system and receiver. The CECE diagnostic is designed to measure temperature fluctuations which have k{sub {theta}}{<=} 4.8 cm{sup -1} (k{sub {theta}}{rho}{sub s} < 0.5) using a well-focused beam pattern. Because the CECE diagnostic is a dedicated turbulence diagnostic, the optical system is also flexible, which allows for various collimating lenses and antenna to be used. The system overview and the demonstration of its operability as designed are presented in this paper.

  6. Godiva IV and Juliet Diagnostics CED-1, Rev. 1 (IER-176)

    SciTech Connect (OSTI)

    Scorby, J C; Myers, W L

    2012-04-11

    The Juliet experiment is currently in preliminary design (IER-128). This experiment will utilize a suite of diagnostics to measure the physical state of the device (temperature, surface motion, stress, etc.) and the total and time rate of change of neutron and gamma fluxes. A variety of potential diagnostics has been proposed in this CED-1 report. Based on schedule and funding, a subset of diagnostics will be selected for testing using the Godiva IV pulsed reactor as a source of neutrons and gammas. The diagnostics development and testing will occur over a two year period (FY12-13) culminating in a final set of diagnostics to be fielded for he Juliet experiment currently proposed for execution in FY15.

  7. Human factors issues in qualitative and quantitative safety analyses

    SciTech Connect (OSTI)

    Hahn, H.A.

    1993-10-01

    Humans are a critical and integral part of any operational system, be it a nuclear reactor, a facility for assembly or disassembling hazardous components, or a transportation network. In our concern over the safety of these systems, we often focus our attention on the hardware engineering components of such systems. However, experience has repeatedly demonstrated that it is often the human component that is the primary determinant of overall system safety. Both the nuclear reactor accidents at Chernobyl and Three Mile Island and shipping disasters such as the Exxon Valdez and the Herald of Free Enterprise accidents are attributable to human error. Concern over human contributions to system safety prompts us to include reviews of human factors issues in our safety analyses. In the conduct of Probabilistic Risk Assessments (PRAs), human factors issues are addressed using a quantitative method called Human Reliability Analysis (HRA). HRAs typically begin with the identification of potential sources of human error in accident sequences of interest. Human error analysis often employs plant and/or procedures walk-downs in which the analyst considers the ``goodness`` of procedures, training, and human-machine interfaces concerning their potential contribution to human error. Interviews with expert task performers may also be conducted. In the application of HRA, once candidate sources of human error have been identified, error probabilities are developed.

  8. Gene set analyses for interpreting microarray experiments on prokaryotic organisms.

    SciTech Connect (OSTI)

    Tintle, Nathan; Best, Aaron; Dejongh, Matthew; VanBruggen, Dirk; Heffron, Fred; Porwollik, Steffen; Taylor, Ronald C.

    2008-11-05

    Background: Recent advances in microarray technology have brought with them the need for enhanced methods of biologically interpreting gene expression data. Recently, methods like Gene Set Enrichment Analysis (GSEA) and variants of Fisher’s exact test have been proposed which utilize a priori biological information. Typically, these methods are demonstrated with a priori biological information from the Gene Ontology. Results: Alternative gene set definitions are presented based on gene sets inferred from the SEED: open-source software environment for comparative genome annotation and analysis of microbial organisms. Many of these gene sets are then shown to provide consistent expression across a series of experiments involving Salmonella Typhimurium. Implementation of the gene sets in an analysis of microarray data is then presented for the Salmonella Typhimurium data. Conclusions: SEED inferred gene sets can be naturally defined based on subsystems in the SEED. The consistent expression values of these SEED inferred gene sets suggest their utility for statistical analyses of gene expression data based on a priori biological information

  9. Thermal Shock Structural Analyses of a Positron Target

    SciTech Connect (OSTI)

    Stein, W; Sunwoo, A; Schultz, D C; Sheppard, J C

    2001-06-07

    In the positron source of the Stanford Linear Collider (SLC), the electron beam collides with a tungsten-rhenium target. As the beam passes into the material, thermal energy is created that heats the material to several hundred degrees centigrade on a time scale of nanoseconds. The heating of the material results in thermal stresses that may be large enough to cause material failure. The analyses calculate the thermal shock pressure and stress pulses as they move throughout the material due to the rapid energy deposition. Failure of the target occurred after three years of operation with an elevated power deposition toward the end of the three years. The calculations were made with the LLNL coupled heat transfer and dynamic solid mechanics analysis codes, TOPAZ3D and DYNA3D, and the thermal energy deposition was calculated with the SLAC Electron Gamma Shower (EGS) code simulating the electron-induced cascade. Material fatigue strength, experimentally measured properties for the non-irradiated and irradiated material, as well as the calculated stress state are evaluated in assessing the cause for the target failure.

  10. Thermal Shock Structural Analyses of a Positron Target

    SciTech Connect (OSTI)

    Bharadwaj, Vinod

    2002-08-20

    In the positron source of the Stanford Linear Collider (SLC), the electron beam collides with a tungsten-rhenium target. As the beam passes into the material, thermal energy is created that heats the material to several hundred degrees centigrade on a time scale of nanoseconds. The heating of the material results in thermal stresses that may be large enough to cause material failure. The analyses calculate the thermal shock pressure and stress pulses as they move throughout the material due to the rapid energy deposition. Failure of the target occurred after three years of operation with an elevated power deposition toward the end of the three years. The calculations were made with the LLNL coupled heat transfer and dynamic solid mechanics analysis codes, TOPAZ3D and DYNA3D, and the thermal energy deposition was calculated with the SLAC Electron Gamma Shower (EGS) code simulating the electron-induced cascade. Material fatigue strength, experimentally measured properties for the non-irradiated and irradiated material, as well as the calculated stress state are evaluated in assessing the cause for the target failure.

  11. Alu repeats as markers for forensic DNA analyses

    SciTech Connect (OSTI)

    Batzer, M.A.; Alegria-Hartman, M.; Kass, D.H.

    1994-01-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 98.9% nucleotide identity with the HS subfamily consensus sequence, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 inch and 3 inch unique flanking DNA sequences from each HS Alu that allow the locus to be assayed for the presence or absence of the Alu repeat. The dimorphic HS Alu sequences probably inserted in the human genome after the radiation of modem humans (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project. HS Alu family member insertions differ from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) in that polymorphisms due to Alu insertions arise as a result of a unique event which has occurred only one time in the human population and spread through the population from that point. Therefore, individuals that share HS Alu repeats inherited these elements from a common ancestor. Most VNTR and RFLP polymorphisms may arise multiple times in parallel within a population.

  12. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  13. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    SciTech Connect (OSTI)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed

  14. Mesons in strong magnetic fields: (I) General analyses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-03-21

    Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number ofmore » meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less

  15. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-07-01

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride

  16. Neutronics Analyses of the Minimum Original HEU TREAT Core

    SciTech Connect (OSTI)

    Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.; Wright, A.

    2014-04-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumed to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.

  17. Sensitivity and optimization analyses of the ``ACOGAS`` gas conditioning plant

    SciTech Connect (OSTI)

    Ochoa, D.; Cardenas, A.R.

    1995-11-01

    ACOGAS is a gas dew point control plant (water and hydrocarbons), operated by Lagoven S.A., a subsidiary of Petroleos de Venezuela S.A. (PDVSA). The ACOGAS plant located in Jusepin, Eastern Venezuela, produces stabilized condensate from an inlet gas stream which is a mixture of different gravity gases obtained by separation and compression from various oil production fields in the area. Sensitivity and optimization analyses of the plant and the stabilizer tower were carried out to evaluate the effects of: plant capacity reductions during shutdowns of some unspared systems of the plant; composition changes from original design basis; segregation of the lean gas currents from the inlet gas stream, reducing total flow but increasing GPM (C{sub 3}{sup +}) content; and incorporating condensate from the upstream compression processes in the inlet gas stream. It is shown that significant increases of stabilized condensate production could be obtained, while maintaining the quality for the condensate and lean residual gas within specifications, by various low cost modifications to the upstream processes and the stabilizer tower. Additionally, a change of the stabilizer tower valves could lower the minimum acceptable inlet flow, thereby increasing flexibility during shutdowns and low feed gas flows.

  18. Nonlinear buckling analyses of a small-radius carbon nanotube

    SciTech Connect (OSTI)

    Liu, Ning Li, Min; Jia, Jiao; Wang, Yong-Gang

    2014-04-21

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  19. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  20. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  1. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect (OSTI)

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  2. INITIAL OPERATION OF THE LEDA BEAM-INDUCED FLUORESCENCE DIAGNOSTIC

    SciTech Connect (OSTI)

    J. KAMPERSCHROER; ET AL

    2000-06-01

    A diagnostic based on beam-induced fluorescence has been developed and used to examine the expanded beam in the High-Energy Beam Transport (HEBT) section of the Low Energy Demonstration Accelerator (LEDA). The system consists of a camera, a gas injector, a spectrometer, and a control system. Gas is injected to provide a medium for the beam to excite, the camera captures the resulting image of the fluorescing gas, and the spectrometer measures the spectrum of the emitted light. EPICS was used to control the camera and acquire and store images. Data analysis is presently being performed offline. A Kodak DCS420m professional CCD camera is the primary component of the optical system. InterScience, Inc. modified the camera with the addition of a gain of 4000 image intensifier, thereby producing an intensified camera with a sensitivity of {approximately}0.5 milli-lux. Light is gathered with a 1 inch format, 16-160 mm, Computar zoom lens. This lens is attached to the camera via a Century Precision Optics relay lens. Images obtained using only hydrogen from the beam stop exhibited features not yet understood. Images with good signal-to-noise ratio were obtained with the injection of sufficient nitrogen to raise the HEBT pressure to 2-8x10{sup {minus}6} torr. Two strong nitrogen lines, believed to be of the first negative group of N{sub 2}{sup +}, were identified at 391 and 428 nm.

  3. Fusion proton diagnostic for the C-2 field reversed configuration

    SciTech Connect (OSTI)

    Magee, R. M. Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-15

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50?cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (?100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  4. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  5. Multichannel optical diagnostic system for field-reversed configuration plasmas

    SciTech Connect (OSTI)

    Takahashi, Tsutomu; Gota, Hiroshi; Fujino, Toshiyuki; Okada, Masanori; Asai, Tomohiko; Fujimoto, Kayoko; Ohkuma, Yasunori; Nogi, Yasuyuki

    2004-12-01

    A constructed diagnostic system consisting of a 60-channel set of optical detectors with flexible viewing configurations is realized to investigate three-dimensional magnetohydrodynamic (MHD) motions and the internal structure of a field-reversed configuration (FRC) plasma. The system can detect radiation from the plasma in the wavelength range of 420-820 nm. Optical filters are used to select the wavelength ranges required in the experiment. The sensitivities of all the optical detectors are calibrated using radiation from the FRC plasma at a quiescent phase. Radiation profiles measured by orthogonal viewing configuration of the detectors are shown at three toroidal cross sections. From these profiles, the time evolution of the three-dimensional MHD motion of the plasma is depicted. The radiation profile measured by a one-dimensional viewing configuration yields not only an electron density profile inside the separatrix but also the width of an edge-layer plasma. A bright halo around the edge-layer plasma is observed using a Balmer-{alpha} line filter. The orthogonal viewing configuration can also be used to analyze the internal structure of the FRC. The deviated position of the major axis is estimated from the comparison between the measured radiation profiles and the nonconcentric density profile based on the rigid rotor profile model.

  6. PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION

    SciTech Connect (OSTI)

    Landi, E.; Reale, F.

    2013-07-20

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  7. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect (OSTI)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  8. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  9. System diagnostics using qualitative analysis and component functional classification

    DOE Patents [OSTI]

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  10. System diagnostics using qualitative analysis and component functional classification

    DOE Patents [OSTI]

    Reifman, Jaques; Wei, Thomas Y. C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  11. Diagnostic and Prognostic Models for Generator Step-Up Transformers

    SciTech Connect (OSTI)

    Vivek Agarwal; Nancy J. Lybeck; Binh T. Pham

    2014-09-01

    In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute’s (EPRI’s) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of fault signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.

  12. The National Ignition Facility (NIF) Diagnostic Set at the Completion of the National Ignition Campaign (NIC) September 2013

    SciTech Connect (OSTI)

    Kilkenny, J.; Bell, P. E.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W.; Kalantar, H.; Kauffman, R.; Moody, J. D.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Yeamans, C. B.; Batha, S. H.; Grim, G. P.; Herrmann, H. W.; Merrill, F. E.; Leeper, R. J.; Sangster, T. C.; Edgell, D. H.; Glebov, V. Y.; Regan, S. P.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Rindernecht, H. G.; Zylstra, A. B.; Cooper, G. W.; Ruiz, C.

    2015-01-05

    At the completion of the National Ignition Campaign NIF had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole US ICF community. A plan for a limited of NIF Diagnostics was documented by the Joint Central Diagnostic Team in the NIF Conceptual Design Report in 1994. These diagnostics and many more were installed diagnostics by two decades later. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely target drive, target response and target assembly, stagnation and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova’s in 1999. NIF diagnostics have a much greater degree of automation and rigor than Nova’s and the NIF diagnostic suite incorporates some scientific innovation compared to Nova and OMEGA namely one much higher speed x-ray imager. Directions for future NIF diagnostics are discussed.

  13. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  14. Analyses of palladium cathodes used for heavy water electrolysis

    SciTech Connect (OSTI)

    Kumar, K.; Dauwalter, C.R.; Stecyk, A. )

    1991-01-01

    This paper reports on the sporadic nature of the excess heat reported from heavy water electrolysis which has attributed to variability among the different palladium cathodes used. Experimental repeatability should, therefore, be enhanced if the microstructure of the palladium can be controlled. Toward this end, palladium rod samples from two heavy water electrolysis experiments were compared to a sample representative of the as-installed condition. The samples examined showed equiaxed grains and significant abnormal grain growth. The rod axes had strong textures, which were attributed to their prior thermomechanical history. The postelectrolysis palladium rods were sampled at two locations that were suspected to have operated at different average current densities. The suspected higher current density regions consisted of single-phase Pd-D{sub 0.7} microstructures. Surface-originated cracks were seen along the grain boundaries in one of two such specimens. Cracks were absent in samples from the suspected lower current density regions, which showed two-phase microstructures with Pd-D{sub 0.7} as the dominant phase. The minor phase, indexed as palladium in the X-ray pattern, was dispersed nonuniformly, mostly in the form of stringers, across the grain boundaries. It is concluded that high current densities resulted in high deuterium loadings in palladium. Smoothing effects from the electrolytic process, resulting in preferential material removal from the grain boundaries, were seen on the cathode surface. A number of high-mass impurities were seen to have deposited on the exposed surface. An initial secondary ion mass spectrometry examination of the specimen interior indicated a significant presence of mass 2 species and considerably lower concentrations of mass 3 and 4 species. Repeat analyses failed to confirm the presence of the mass 3 and 4 species.

  15. Exergetic, thermal, and externalities analyses of a cogeneration plant

    SciTech Connect (OSTI)

    Bailey, M.B.; Curtiss, P.; Blanton, P.H.; McBrayer, T.B.

    2006-02-15

    A thermodynamic study of an 88.4 MW cogeneration plant located in the United States is presented in this paper. The feedstock for this actual plant is culm, the waste left from anthracite coal mining. Before combustion in circulating fluidized bed boilers, the usable carbon within the culm is separated from the indigenous rock. The rock and ash waste from the combustion process fill adjacent land previously scared by strip mining. Trees and grass are planted in these areas as part of a land reclamation program. Analyses based on the first and second laws of thermodynamics using actual operating data are first presented to acquaint the reader with the plant's components and operation. Using emission and other relevant environmental data from the plant, all externalities study is outlined that estimates the plant's effect on the local population. The results show that the plant's cycle performs with a coefficient of utilization of 29% and all approximate exergetic efficiency of 34.5%. In order to increase these values, recommended improvements to the plant are noted. In addition, the externality costs associated with the estimated SO{sub 2} and NOx discharge from the culm fed plant are lower (85-95%) than those associated with a similarly sized coal fed plant. The plant's cycle efficiencies are lower than those associated with more modern technologies; such as all integrated gas turbine combined cycle. However, given the abundant, inexpensive supply of feedstock located adjacent to the plant and the environmental benefit of removing culm banks, the plant's existing operation is unique from an economical and environmental viewpoint.

  16. Validation of HELIOS for ATR Core Follow Analyses

    SciTech Connect (OSTI)

    Bays, Samuel E.; Swain, Emily T.; Crawford, Douglas S.; Nigg, David W.

    2015-03-01

    This work summarizes the validation analyses for the HELIOS code to support core design and safety assurance calculations of the Advanced Test Reactor (ATR). Past and current core safety assurance is performed by the PDQ-7 diffusion code; a state of the art reactor physics simulation tool from the nuclear industry’s earlier days. Over the past twenty years, improvements in computational speed have enabled the use of modern neutron transport methodologies to replace the role of diffusion theory for simulation of complex systems, such as the ATR. More exact methodologies have enabled a paradigm-shift away from highly tuned codes that force compliance with a bounding safety envelope, and towards codes regularly validated against routine measurements. To validate HELIOS, the 16 ATR operational cycles from late-2009 to present were modeled. The computed power distribution was compared against data collected by the ATR’s on-line power surveillance system. It was found that the ATR’s lobe-powers could be determined with ±10% accuracy. Also, the ATR’s cold startup shim configuration for each of these 16 cycles was estimated and compared against the reported critical position from the reactor log-book. HELIOS successfully predicted criticality within the tolerance set by the ATR startup procedure for 13 out of the 16 cycles. This is compared to 12 times for PDQ (without empirical adjustment). These findings, as well as other insights discussed in this report, suggest that HELIOS is highly suited for replacing PDQ for core safety assurance of the ATR. Furthermore, a modern verification and validation framework has been established that allows reactor and fuel performance data to be computed with a known degree of accuracy and stated uncertainty.

  17. Robotic calibration of the motional Stark effect diagnostic on Alcator C-Mod

    SciTech Connect (OSTI)

    Mumgaard, Robert T.; Scott, Steven D.; Ko, Jinseok

    2014-05-15

    The capability to calibrate diagnostics, such as the Motional Stark Effect (MSE) diagnostic, without using plasma or beam-into-gas discharges will become increasingly important on next step fusion facilities due to machine availability and operational constraints. A robotic calibration system consisting of a motorized three-axis positioning system and a polarization light source capable of generating arbitrary polarization states with a linear polarization angle accuracy of <0.05° has been constructed and has been used to calibrate the MSE diagnostic deployed on Alcator C-Mod. The polarization response of the complex diagnostic is shown to be fully captured using a Fourier expansion of the detector signals in terms of even harmonics of the input polarization angle. The system's high precision robotic control of position and orientation allow it to be used also to calibrate the geometry of the instrument's view. Combined with careful measurements of the narrow bandpass spectral filters, this system fully calibrates the diagnostic without any plasma discharges. The system's high repeatability, flexibility, and speed has been exploited to quantify several systematics in the MSE diagnostic response, providing a more complete understanding of the diagnostic performance.

  18. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    SciTech Connect (OSTI)

    Landoas, Olivier; Rosse, Bertrand; Briat, Michelle; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc; Glebov, Vladimir Yu; Sangster, Thomas C.; Duffy, Tim; Disdier, Laurent

    2011-07-15

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat a l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  19. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    SciTech Connect (OSTI)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  20. Studies of RF sheaths and diagnostics on IShTAR

    SciTech Connect (OSTI)

    Crombé, K.; D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R.; Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T.

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  1. Advances in Performance of Microchannel Plate Detectors for HEDP Diagnostics

    SciTech Connect (OSTI)

    Ming Wu, Craig Kruschwitz, Ken Moy, Greg Rochau

    2009-10-01

    In recent years, a team from NSTec and SNL has built a unique capability to develop microchannel plate (MCP)?based framing x-ray cameras for HEDP diagnostics. At the SNL Z facility, multistrip MCP detectors to record up to eight channels are employed in 2-D, sub-nanosecond time-resolved imaging and time- and space-resolved spectroscopy diagnostics. Progressively more stringent technical temporal resolution and response uniformity requirements have necessitated a systematic design approach based on iterative modeling of the MCP using inputs from electrical circuit characterization. An inherently large exponential dependence in MCP gain, V{sup 11.5}, has mandated a firm understanding of the applied voltage pulse shape propagating across the strip. We pioneered direct measurements of the propagating waveform using a Picoprobe{reg_sign} and developed a Monte Carlo code to simulate MCP response to compare against test measurements. This scheme is shown in Figure 1. The simulation detailed a physical model of the cascade and amplification process of the MCP that includes energy conservation for the secondary electrons, the effects of elastic scattering of low-energy electrons from the channel wall, and gain saturation mechanisms from wall charging and space charge. Our model can simulate MCP response for both static and pulsed voltage waveforms. Using this design approach, we began to characterize the newly developed second-generation detector (H-CA-65) by using a Manson x-ray source to evaluate the following DC characteristics: MCP sensitivity as a function of bias voltage, flat-field uniformity and spatial resolution, and variation of spatial resolution and sensitivity as a function of phosphor bias voltage. Dynamic performance and temporal response were obtained by using an NSTec short-pulse laser to measure optical gate profiles, saturation, and dynamic range. These data were processed and combined to obtain the gain variation and gate profiles for any position along

  2. Diagnostic of laser-accelerated ion beams for the ELIMED project

    SciTech Connect (OSTI)

    Torrisi, L.; INFN-Laboratori Nazionali del Sud, V. S. Sofia 64, 95123 Catania ; Cutroneo, M.; Cavallaro, S.; Andò, L.; Calcagno, L.; Musumeci, P.

    2013-07-26

    The laser-generated plasma, in non equilibrium conditions, has peculiar properties depending strongly on the laser parameters, on the target composition and on the target geometry. Different fast diagnostic techniques can be employed for the plasma characterization in terms of particles and photons emission, plasma temperature and density, ion energy distribution, angular emission, yield and electric field acceleration. Particular attention is devoted to the proton emission from hydrogenated targets and to the proton diagnostics by using time of flight techniques and Thomson parabola spectrometry. The diagnostic techniques will be presented and discussed on the base of the development of the ELIMED project.

  3. Integrated Program of Experimental Diagnostics at the NNSS. An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability

    SciTech Connect (OSTI)

    None, None

    2010-09-01

    This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories’ (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3-year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

  4. Support for Cost Analyses on Solar-Driven High Temperature Thermochemi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report summarizes the application of chemical process flowsheet analyses and cash flow analyses using DOE's H2A methodology to develop near-term (2015) and longer-term (2025) ...

  5. Data Collection and Analyses of the CHP System at Eastern Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical ...

  6. Diagnostics and required R and D for control of DEMO grade plasmas

    SciTech Connect (OSTI)

    Park, Hyeon K.

    2014-08-21

    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability.

  7. Dam safety exemplfied by bed diagnostics for the Boguchany HPP currently under construction

    SciTech Connect (OSTI)

    Kalustyan, E. S.

    2011-11-15

    Reliability and safety of water-development works can be ensured by diagnostics of the status of a structure while under construction or in service from results of analysis of data derived from field observations.

  8. Building America Expert Meeting: Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment

    Broader source: Energy.gov [DOE]

    The Building Science Consortium held an Expert Meeting on Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment on April 26,l 2010 on the NIST campus in Gaithersburg, Maryland.

  9. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  10. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  11. A New Correlation ECE Diagnostic for C-Mod and Progress on Transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2:00pm to 3:30pm Colloquia MBG Auditorium A New Correlation ECE Diagnostic for C-Mod and Progress on Transport Model Validation Professor Anne White Massachusetts Institute of...

  12. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    2000-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  13. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    1999-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  14. Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance

    SciTech Connect (OSTI)

    Bond, Leonard J.

    2011-02-01

    For both existing and new plant designs there are increasing opportunities and needs for the application of advanced online surveillance, diagnostic and prognostic techniques. These methods can continuously monitor and assess the health of nuclear power plant systems and components. The added effectiveness of such programs has the potential to enable holistic plant management, and minimize exposure to future and unknown risks. The 'NDE & On-line Monitoring' activities within the Advanced Instrumentation, Information and Control Systems (II&CS) Pathway are developing R&D to establish advanced condition monitoring and prognostics technologies to understand and predict future phenomena, derived from plant aging in systems, structures, and components (SSC). This research includes utilization of the enhanced functionality and system condition awareness that becomes available through the application of digital technologies at existing nuclear power plants for online monitoring and prognostics. The current state-of-the-art for on-line monitoring applied to active components (eg pumps, valves, motors) and passive structure (eg core internals, primary piping, pressure vessel, concrete, cables, buried pipes) is being reviewed. This includes looking at the current deployment of systems that monitor reactor noise, acoustic signals and vibration in various forms, leak monitoring, and now increasingly condition-based maintenance (CBM) for active components. The NDE and on-line monitoring projects are designed to look beyond locally monitored CBM. Current trends include centralized plant monitoring of SSC, potential fleet-based CBM and technology that will enable operation and maintenance to be performed with limited on-site staff. Attention is also moving to systems that use online monitoring to permit longer term operation (LTO), including a prognostic or predictive element that estimates a remaining useful life (RUL). Many, if not all, active components (pumps, valves, motors

  15. Los Alamos contribution to target diagnostics on the National Ignition Facility

    SciTech Connect (OSTI)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  16. The Status of USITER Diagnostic Port Plug Neutronics Analysis Using Attila

    SciTech Connect (OSTI)

    Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan

    2013-11-01

    USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons from escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.

  17. Engineering aspects of design and integration of ECE diagnostic in ITER

    SciTech Connect (OSTI)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A; Vacas, C.; Vayakis, G.; Walsh, M. J.; Kubo, S.

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  18. The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images

    SciTech Connect (OSTI)

    Pereira, T. M. D.; Leenaarts, J.; De Pontieu, B.; Carlsson, M.; Uitenbroek, H. E-mail: jorritl@astro.uio.no E-mail: mats.carlsson@astro.uio.no

    2013-12-01

    The Mg II h and k lines are the prime chromospheric diagnostics of NASA's Interface Region Imaging Spectrograph (IRIS). In the previous papers of this series, we used a realistic three-dimensional radiative magnetohydrodynamics model to calculate the h and k lines in detail and investigated how their spectral features relate to the underlying atmosphere. In this work, we employ the same approach to investigate how the h and k diagnostics fare when taking into account the finite resolution of IRIS and different noise levels. In addition, we investigate the diagnostic potential of several other photospheric lines and near-continuum regions present in the near-ultraviolet (NUV) window of IRIS and study the formation of the NUV slit-jaw images. We find that the instrumental resolution of IRIS has a small effect on the quality of the h and k diagnostics; the relations between the spectral features and atmospheric properties are mostly unchanged. The peak separation is the most affected diagnostic, but mainly due to limitations of the simulation. The effects of noise start to be noticeable at a signal-to-noise ratio (S/N) of 20, but we show that with noise filtering one can obtain reliable diagnostics at least down to a S/N of 5. The many photospheric lines present in the NUV window provide velocity information for at least eight distinct photospheric heights. Using line-free regions in the h and k far wings, we derive good estimates of photospheric temperature for at least three heights. Both of these diagnostics, in particular the latter, can be obtained even at S/Ns as low as 5.

  19. Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

  20. CARS diagnostics of the burning of H{sub 2} - O{sub 2} and CH{sub 4} - O{sub 2} mixtures at high temperatures and pressures

    SciTech Connect (OSTI)

    Vereshchagin, K A; Smirnov, Valery V; Stel'makh, O M; Fabelinskii, V I

    2012-01-31

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to determine the parameters of gaseous combustion products of hydrogen and hydrocarbon fuels with oxygen at high temperatures and pressures. The methodical aspects of CARS thermometry, which are related to the optimal choice of molecules (diagnostic references) and specific features of their spectra, dependent on temperature and pressure, are analysed. Burning is modelled under the conditions similar to those of real spacecraft propulsion systems using a specially designed laboratory combustion chamber, operating in the pulse-periodic regime at high temperatures (to 3500 K) and pressures (to 20 MPa) of combustion products. (nonlinear optical phenomena)

  1. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    SciTech Connect (OSTI)

    Paulson, E

    2014-06-15

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  2. Summary of On-Board Storage Models and Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Storage Models and Analyses Summary of On-Board Storage Models and Analyses Presentation by R.K. Ahluwalia at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_ahluwalia.pdf (547.73 KB) More Documents & Publications Potential Carriers and Approaches for Hydrogen Delivery Analyses of Hydrogen Storage Materials and On-Board Systems Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

  3. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; et al

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  4. On the use of Extreme Value Theory in analyses of continuum gamma decay

    SciTech Connect (OSTI)

    Garcia-Ruiz, R. F.; Cristancho, F.

    2010-08-04

    Extreme Value theory seems to be a promising tool for analysing experimental continuum gamma decay spectra in order to obtain physical parameters at high excitation energy.

  5. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    II: Scale-awareness and application to single-column model experiments Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: ...

  6. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    I: Methodology and evaluation Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology ...

  7. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment Neutronics Analysis using the ATTILA Discrete Ordinates Code

    SciTech Connect (OSTI)

    Russell Feder and Mahmoud Z. Yousef

    2009-05-29

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv

  8. The role of risk management in the design of diagnostics for fusion reactors

    SciTech Connect (OSTI)

    Ingesson, L. C.; Collaboration: F4E Diagnostic Project Team

    2014-08-21

    A project-oriented approach is beneficial for the selection and design of viable diagnostics for fusion reactors because of the associated complex physical and organizational environment. The project-oriented approach includes rigorous risk management. The nature and impact of risks related to technical, organizational and commercial aspects in relation to the development of ITER diagnostics under EU responsibility are analyzed. The majority of risks are related to organizational aspects and technical feasibility issues. The experience with ITER is extrapolated to DEMO and beyond. It should not be taken for granted that technical solutions will be found, while a risk analysis of various diagnostic techniques with quantitative assessments undertaken early in the design of DEMO would be beneficial.

  9. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    SciTech Connect (OSTI)

    Agostini, M. Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A.

    2015-12-15

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of n{sub e} and T{sub e} are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  10. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    SciTech Connect (OSTI)

    Stutman, Dan

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  11. Application of diagnostics to determine motor-operated valve operational readiness

    SciTech Connect (OSTI)

    Eissenberg, D.M.

    1986-01-01

    ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor curent signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment.

  12. LLNL flash x-ray radiography machine (FXR) double-pulse upgrade diagnostics

    SciTech Connect (OSTI)

    Ong, M.; Avalee, C.; Richardson, R.; Zentler, J.

    1997-06-26

    When the FXR machine was first tuned on the 1980`s, a minimal amount of diagnostics was available and consisted mostly of power monitors. During the recent accelerator upgrade, additional beam diagnostics were added. The sensor upgrades included beam bugs (resistive wall beam motion sensors) and high-frequency B-dot. Even with this suite of measurement tools, tuning was difficult. For the current Double- Pulse Upgrade, beam transport is a more complex problem--the beam characteristics must be measured better. Streak and framing cameras, which measure beam size and motions, are being added. Characterization of the beam along the entire accelerator is expected and other techniques will be evaluated also. Each sensor has limitations and only provides a piece of the puzzle. Besides providing more beam data, the set of diagnostics used should be broad enough so results can be cross validated. Results will also be compared to theoretical calculations and computer models, and successes and difficulties will be reported.

  13. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T.; Elmer; John W.; Palmer, Todd A.

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  14. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect (OSTI)

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  15. Analyses | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACAnalyses content top Western Gulf Coast Analysis Posted by Admin on Mar 7, 2012 in | Comments 0 comments One focus area for NISAC is the importance of local and regional infrastructures-understanding their interactions and importance to our overall national economic health. In 2004 and 2005, NISAC evaluated the western Gulf Coast region. NISAC developed a National Petroleum System Simulator to evaluate the potential short-term effects of disruptions in the western Gulf Coast petroleum

  16. Field Testing and Demonstration of the Smart Monitoring and Diagnostic System (SMDS) for Packaged Air-Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Brambley, Michael R.; Huang, Yunzhi; Lutes, Robert G.; Gilbride, Spencer P.

    2015-05-29

    This documents results of a project focused on testing and demonstrating both the hardware and software versions of the smart monitoring and diagnostic system (SMDS) under field conditions.

  17. New Optical Diagnostics for Equation of State Experiments on the Janus Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEW OPTICAL DIAGNOSTICS FOR EQUATION OF STATE EXPERIMENTS ON THE JANUS LASER D. K. Spaulding 1 , D. G. Hicks 2 , R. F. Smith 2 , J. H. Eggert 2 , R. S. McWilliams 1,2 , G. W. Collins 2 , and R. Jeanloz 1 1 Department of Earth and Planetary Science , University of California, Berkeley, CA 94720-4767 2 Lawrence Livermore National Laboratory, Livermore, CA 94550 Abstract. We describe the configuration of two new optical diagnostics for laser-driven dynamic- compression experiments to multi-Mbar

  18. Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review | Department of Energy Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel

  19. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    SciTech Connect (OSTI)

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng

    2014-04-15

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  20. Engineer Russ Feder leads development of diagnostic tools for US ITER as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physicist Dave Johnson shifts to part-time work | Princeton Plasma Physics Lab Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work By John Greenwald March 16, 2015 Tweet Widget Google Plus One Share on Facebook Dave Johnson, left, and Russ Feder with design for component of a diagnostic system behind them. (Photo by Elle Starkman/PPPL Office of Communications) Dave Johnson, left, and Russ Feder with design for component of

  1. Engineer Russ Feder leads development of diagnostic tools for US ITER as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physicist Dave Johnson shifts to part-time work | Princeton Plasma Physics Lab Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work By John Greenwald March 16, 2015 Tweet Widget Google Plus One Share on Facebook Dave Johnson, left, and Russ Feder with design for component of a diagnostic system behind them. (Photo by Elle Starkman/PPPL Office of Communications) Dave Johnson, left, and Russ Feder with design for component of

  2. Laser machined plastic laminates: Towards portable diagnostic devices for use in low resource environments

    SciTech Connect (OSTI)

    Harper, Jason C.; Carson, Bryan D.; Bachand, George D.; Arndt, William D.; Finley, Melissa R.; Brinker, C. Jeffrey; Edwards, Thayne L.

    2015-07-14

    Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. Thus, in this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.

  3. Laser machined plastic laminates. Towards portable diagnostic devices for use in low resource environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harper, Jason C.; Carson, Bryan D.; Bachand, George D.; Arndt, William D.; Finley, Melissa R.; Brinker, C. Jeffrey; Edwards, Thayne L.

    2015-07-14

    Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. Thus, in this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.

  4. National Ignition Facility, subsystem design requirements beam control {ampersand} laser diagnostics SSDR 1.7

    SciTech Connect (OSTI)

    Bliss, E.

    1996-11-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control & Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs.

  5. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  6. Development of a High-Temperature Diagnostics-While-Drilling Tool

    SciTech Connect (OSTI)

    Blankenship, Douglas; Chavira, David; Henfling, Joseph; Hetmaniak, Chris; Huey, David; Jacobson, Ron; King, Dennis; Knudsen, Steve; Mansure, A. J.; Polsky, Yarom

    2009-01-01

    This report documents work performed in the second phase of the Diagnostics While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided.

  7. The ITER 3D Magnetic Diagnostic Response to Applied n=3 and n=4 RMP's

    SciTech Connect (OSTI)

    Lazerson, S A

    2014-09-01

    The ITER magnetic diagnostic response to applied n=3 and n=4 RMPs has been calculated for the 15MA scenario. The VMEC code was utilized to calculate free boundary 3D ideal MHD equilibria, where the non-stellarator symmetric terms were included in the calculation. This allows an assessment to be made of the possible boundary displacements due to RMP application in ITER. As the VMEC code assumes a continuous set of nested flux surface, the possibility of island and stochastic region formation is ignored. At the start of the current at-top (L-Mode) application of n = 4 RMP's indicates approximately 1 cm peak-to-peak displacements on the low field side of the plasma while later in the shot (H-mode) perturbations as large as 3 cm are present. Forward modeling of the ITER magnetic diagnostics indicates significant non-axisymmetric plasma response, exceeding 10% the axisymmetric signal in many of the flux loops. Magnetic field probes seem to indicate a greater robustness to 3D effects but still indicate large sensitivities to 3D effects in a number of sensors. Forward modeling of the diagnostics response to 3D equilibria allows assessment of diagnostics design and control scenarios.

  8. Chromatic-aberration diagnostic based on a spectrally resolved lateral-shearing interferometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bahk, Seung -Whan; Dorrer, Christopher; Roides, Rick G.; Bromage, Jake

    2016-03-18

    Here, a simple diagnostic characterizing one-dimensional chromatic aberrations in a broadband beam is introduced. A Ronchi grating placed in front of a spectrometer entrance slit provides spectrally coupled spatial phase information. The radial-group delay of a refractive system and the pulse-front delay of a wedged glass plate have been characterized accurately in a demonstration experiment.

  9. Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor

    DOE Patents [OSTI]

    Smith, Desmond J.; Rubin, Edward M.

    2000-01-01

    A a diagnostic test useful for prenatal identification of Down syndrome and mental retardation. A method for gene therapy for correction and treatment of Down syndrome. DYRK gene involved in the ability to learn. A method for diagnosing Down's syndrome and mental retardation and an assay therefor. A pharmaceutical composition for treatment of Down's syndrome mental retardation.

  10. Updating of Safety Criteria for Basic Diagnostic Indicators of Dam at the Sayano-Shushenskaya HPP

    SciTech Connect (OSTI)

    Gordon, L. A.; Skvortsova, A. E.

    2013-09-15

    Values of diagnostic indicators [K]-limitations placed on radial displacements and turn angles of horizontal sections of the dam - which are permitted for each upper-pool level within the range from 520 to 539 m are determined and proposed for inclusion in the Declaration of Safety. Empirical relationships used to develop safety criteria K1 and K2 are modified.

  11. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup ?4}10{sup ?3} mbar and 4001000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 10{sup 10} cm{sup ?3} to 3.8 10{sup 11} cm{sup ?3} and 414 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  12. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, K.V.; Berning, D.E.; Volkert, W.A.; Ketring, A.R.

    1998-12-01

    A complex and method for making a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids. 20 figs.

  13. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.

    1998-01-01

    A complex and method for making same for use as a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids.

  14. Development of lithium beam emission spectroscopy as an edge fluctuation diagnostic for DIII-D

    SciTech Connect (OSTI)

    Thomas, D.M.

    1994-05-01

    As part of the DIII-D diagnostic complement designed to address L-H transition physics issues, we have developed and commissioned a diagnostic neutral lithium beam and multichannel fluorescence detection system to investigate the edge plasma density and its associated fluctuations. The use of lithium offers several advantages for tokamak edge beam emission spectroscopy (BES) studies, including large excitation cross sections which are relatively insensitive to temperature variation, the availability of the 670.8 nm resonance line well separated from most plasma line emission, and the suitability of modest beam energies and currents to probe even dense H-mode plasmas. These features permit measurements of collisionally induced fluctuations to be obtained with good spatial (<1 cm) and temporal (<10 {mu}s) resolution. The improvements over previous lithium beam diagnostics which were required to successfully make these measurements in a large, remotely controlled machine environment will be discussed, a long with the present state of the diagnostic system and our plans for future improvements of this technique.

  15. Development of a High-Temperature Diagnostics-While-Drilling Tool

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided.

  16. Development of nuclear power plant noise diagnostics into a processmeasuring method

    SciTech Connect (OSTI)

    Hessel, G.; Koppen, H.E.; Liewers, P.; Schumann, P.; Weib, F.P.

    1985-01-01

    Until now, the fact that specialists were necessary for performing noise diagnostic measurements as well as for interpreting the results has been the main impediment to a large-scale routine application of noise diagnostics to pressurized water reactors (PWRs). In order to develop noise diagnostics into a process-measuring method that can also be used by the operating crew, a higher degree of automation based on objective measuring and processing procedures is especially needed. At a working nuclear power plant with a PWR, a noise diagnostics system is being tested that largely meets these requirements. Well-known disturbances capable of causing damage to critical plant components are carefully tracked by automated devices, so-called monitors. Such disturbances are, e.g., occurrence of loose parts in the primary circuit, anomalously working coolant pumps, or impacting of control rods. An overall surveillance not dedicated to special processes and therefore with a lower degree of sensitivity is performed by means of pattern recognition methods on a computer.

  17. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    SciTech Connect (OSTI)

    Gerhardt, Stefan P.; Erickson, Keith; Kaita, Robert; Lawson, John; Mozulay, Robert; Mueller, Dennis; Que, Weiguo; Rahman, Nabidur; Schneider, Hans; Smalley, Gustav; Tresemer, Kelsey

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  18. Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER

    SciTech Connect (OSTI)

    Zaniol, B.; Pasqualotto, R.; Barbisan, M.

    2012-04-15

    A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, according to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.

  19. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, K.V.; Karra, S.R.; Berning, D.E.; Smith, C.J.; Volkert, W.A.; Ketring, A.R.

    1999-01-05

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand. 21 figs.

  20. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    SciTech Connect (OSTI)

    Howard M. Matt

    2007-02-15

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  1. May 20, 2015 Webinar - Guidance for Conducting Technical Analyses for 10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFR Part 61 | Department of Energy 20, 2015 Webinar - Guidance for Conducting Technical Analyses for 10 CFR Part 61 May 20, 2015 Webinar - Guidance for Conducting Technical Analyses for 10 CFR Part 61 Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - May 20, 2015 - Guidance for Conducting Technical Analyses for 10 CFR Part 61 by Mr. Chris Grossman (NRC) Agenda - May 20, 2015 - P&RA CoP Webinar (52.52 KB) Presentation - Guidance for Conducting Technical

  2. The diagnostic capability of x-ray scattering parameters for the characterization of breast cancer

    SciTech Connect (OSTI)

    Elshemey, Wael M.; Desouky, Omar S.; Fekry, Mostafa M.; Talaat, Sahar M.; Elsayed, Anwar A.

    2010-08-15

    Purpose: The evaluation of the diagnostic capability of easy to measure x-ray scattering profile characterization parameters for the detection of breast cancer in excised samples. The selected parameters are the full width at half maximum (FWHM) and area under the x-ray scattering profile of breast tissue in addition to the ratio of scattering intensities (I{sub 2}/I{sub 1}%) at 1.6 nm{sup -1} to that at 1.1 nm{sup -1} (corresponding to scattering from soft and adipose tissues, respectively). Methods: A histopathologist is asked to classify 36 excised breast tissue samples into healthy or malignant. A conventional x-ray diffractometer is used to acquire the scattering profiles of the investigated samples. The values of three profile characterization parameters are calculated and the diagnostic capability of each is evaluated by determining the optimal cutoffs of scatter diagrams, calculating the diagnostic indices, and plotting the receiver operating characteristic (ROC) curves. Results: At the calculated optimal cutoff for each of the examined parameters, the sensitivity ranged from 78% (for area under curve) up to 94% (for FWHM), the specificity ranged from 94%[for I{sub 2}/I{sub 1}% and area under curve] up to 100% (for FWHM), and the diagnostic accuracy ranged from 86% (for area under curve) up to 97% (for FWHM). The area under the ROC curves is greater than 0.95 for all of the investigated parameters, reflecting a highly accurate diagnostic performance. Conclusions: The discussed tests offered a means to quantitatively evaluate the performance of the suggested breast tissue x-ray scattering characterization parameters. The performance results are promising, indicating that the evaluated parameters would be considered a tool for fast, on spot probing of breast cancer in excised tissue samples.

  3. Analysing the Effect on CMB in a Parity and Charge Parity Violating...

    Office of Scientific and Technical Information (OSTI)

    Varying Alpha Theory Citation Details In-Document Search Title: Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory In this paper we ...

  4. February 23, 2016 Webinar- Multi-Criteria Decisional Analyses: Methodology and Case Studies

    Broader source: Energy.gov [DOE]

    Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - February 23, 2016 - Multi-Criteria Decisional Analyses: Methodology and Case Studies (Dr. Igor Linkov and Mr. Matthew Bates, U.S. Army Corps of Engineers).

  5. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    II: Scale-awareness and application to single-column model experiments Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale ...

  6. Parametric Analyses of Single-zone Thorium-fueled Molten Salt...

    Office of Scientific and Technical Information (OSTI)

    Title: Parametric Analyses of Single-zone Thorium-fueled Molten Salt Reactor Fuel Cycle Options Authors: Powers, Jeffrey J 1 ; Worrall, Andrew 1 ; Gehin, Jess C 1 ; Harrison, ...

  7. Support for Cost Analyses on Solar-Driven High Temperature Thermochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Splitting Cycles | Department of Energy Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles While hydrogen and fuel cells represent a promising pathway to reduce the environmental footprint of the United States transportation on road transportation system, in order to fully achieve these benefits, the hydrogen needs to be sourced through

  8. Analyses of Compressed Hydrogen On-Board Storage Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Compressed Hydrogen On-Board Storage Systems Analyses of Compressed Hydrogen On-Board Storage Systems Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. compressed_hydrogen2011_3_rosenfeld.pdf (701.48 KB) More Documents & Publications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Analyses of Hydrogen Storage Materials and On-Board

  9. GAO-14-369, NATIONAL ENVIRONMENTAL POLICY ACT: Little Information Exists on NEPA Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NATIONAL ENVIRONMENTAL POLICY ACT Little Information Exists on NEPA Analyses Report to Congressional Requesters April 2014 GAO-14-369 United States Government Accountability Office United States Government Accountability Office Highlights of GAO-14-369, a report to congressional requesters April 2014 NATIONAL ENVIRONMENTAL POLICY ACT Little Information Exists On NEPA Analyses Why GAO Did This Study NEPA requires all federal agencies to evaluate the potential environmental effects of proposed

  10. HEFA and Fischer-Tropsch Jet Fuel Cost Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEFA and Fischer-Tropsch Jet Fuel Cost Analyses HEFA and Fischer-Tropsch Jet Fuel Cost Analyses This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Robert Malina, MIT. malina_caafi_workshop.pdf (23.86 MB) More Documents & Publications February GBTL Webinar Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Application of Synthetic Diesel Fuels

  11. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    SciTech Connect (OSTI)

    Hendrich, W.R.

    1995-08-01

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods.

  12. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect (OSTI)

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  13. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect (OSTI)

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  14. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    SciTech Connect (OSTI)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  15. Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)

    SciTech Connect (OSTI)

    Kim, Yong Ho; Evans, Scott C; Herrmann, Hans W; Mack, Joseph M; Young, Carl S; Malone, Robert M; Cox, Brian C; Frogget, Brent C; Kaufman, Morris I; Tunnell, Thomas W; Tibbitts, Aric; Palagi, Martin J

    2010-01-01

    The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

  16. Diagnostic control, data acquisition and data processing at MFTF-B (Mirror Fusion Test Facility)

    SciTech Connect (OSTI)

    Preckshot, G.G.

    1986-01-01

    Diagnostic instruments at the Mirror Fusion Test Facility (MFTF-B) are operated by a distributed computer system which provides an integrated control, data acquisition and data processing interface. Instrument control settings, operator inputs and lists of data to be acquired are combined with data acquired by instrument data recorders, to be used downstream by data processing codes; data processing programs are automatically informed of operator control and setpoint actions without operator intervention. The combined diagnostic control and results presentation interface is presented to experimentalist users by a network of high-resolution graphics workstations. Control coordination, data processing and database management are handled by a shared-memory network of 32-bit super minicomputers. Direct instrument control, data acquisition, data packaging and instrument status monitoring are performed by a network of dedicated local control microcomputers.

  17. High energy Coulomb-scattered electrons for relativistic particle beams and diagnostics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thieberger, P.; Altinbas, Z.; Carlson, C.; Chasman, C.; Costanzo, M.; Degen, C.; Drees, K. A.; Fischer, W.; Gassner, D.; Gu, X.; et al

    2016-03-29

    A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Lastly, some possiblemore » future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.« less

  18. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    SciTech Connect (OSTI)

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data.

  19. Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experiment

    SciTech Connect (OSTI)

    Schmitt, J. C. Lazerson, S.; Majeski, R.; Bialek, J.

    2014-11-15

    The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnostic signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and the equilibrium reconstruction are presented.

  20. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    SciTech Connect (OSTI)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives.

  1. Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building

  2. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RTU Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged

  3. Diagnostic studies on Li-battery cells and cell components | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp_02_abraham.pdf (2.83 MB) More Documents & Publications Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report Diagnostic Studies on Li-Battery Cells and Cell Components Mitigating Performance Degradation of High-Energy Lithium-Ion Cells

  4. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    DOE Patents [OSTI]

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed

    2006-08-29

    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  5. Meeting Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment Expert Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report on the Expert Meeting for DIAGNOSTIC AND PERFORMANCE FEEDBACK FOR RESIDENTIAL SPACE CONDITIONING SYSTEM EQUIPMENT Building Science Corporation Industry Team 15 July 2010 Work Performed Under Funding Opportunity Number: DE-FC26-08NT00601 Submitted By: Building Science Corporation 30 Forest Street Somerville, MA 02143 Principal Investigators: Joseph W. Lstiburek, Ph.D., P.Eng. ASHRAE Fellow Betsy Pettit, FAIA Phone Number: 978-589-5100 Fax Number: 978-589-5103 E-Mail:

  6. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    SciTech Connect (OSTI)

    Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank; Morin-Ducote, Garnetta; Hudson, Kathleen B.

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.

  7. INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect (OSTI)

    Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan [Lockheed Martin Solar and Astrophysics Laboratory, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo; Carlsson, Mats, E-mail: ptesta@cfa.harvard.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2012-10-10

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

  8. TESTING DIAGNOSTICS OF NUCLEAR ACTIVITY AND STAR FORMATION IN GALAXIES AT z > 1

    SciTech Connect (OSTI)

    Trump, Jonathan R.; Barro, Guillermo; Koo, David C.; Faber, S. M.; Kocevski, Dale D.; Yan, Renbin; Juneau, Stephanie; McLean, Ian S.; Perez-Gonzalez, Pablo G.; Villar, Victor

    2013-01-20

    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z {approx} 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/H{beta} ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/H{beta} versus [N II]/H{alpha} and [S II]/H{alpha}) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that 'composite' galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly {approx}2/3 of the z {approx} 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

  9. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    SciTech Connect (OSTI)

    Cirrone, G. A. P.; Schillaci, F.; Carpinelli, M.; Maggiore, M.; Ter-Avetisyan, S.; Tramontana, A.; Velyhan, A.

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  10. Preliminary Results of Ancillary Safety Analyses Supporting TREAT LEU Conversion Activities

    SciTech Connect (OSTI)

    Brunett, A. J.; Fei, T.; Strons, P. S.; Papadias, D. D.; Hoffman, E. A.; Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.

    2015-10-01

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort is to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis

  11. Diagnostic Studies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Bubble diagnostics

    DOE Patents [OSTI]

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  13. Review of radionuclide source terms used for performance-assessment analyses; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barnard, R.W.

    1993-06-01

    Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ``uranium`` and 4n+3 ``actinium`` decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides.

  14. Evaluating radiographers' diagnostic accuracy in screen-reading mammograms: what constitutes a quality study?

    SciTech Connect (OSTI)

    Debono, Josephine C; Poulos, Ann E

    2015-03-15

    The aim of this study was to first evaluate the quality of studies investigating the diagnostic accuracy of radiographers as mammogram screen-readers and then to develop an adapted tool for determining the quality of screen-reading studies. A literature search was used to identify relevant studies and a quality evaluation tool constructed by combining the criteria for quality of Whiting, Rutjes, Dinnes et al. and Brealey and Westwood. This constructed tool was then applied to the studies and subsequently adapted specifically for use in evaluating quality in studies investigating diagnostic accuracy of screen-readers. Eleven studies were identified and the constructed tool applied to evaluate quality. This evaluation resulted in the identification of quality issues with the studies such as potential for bias, applicability of results, study conduct, reporting of the study and observer characteristics. An assessment of the applicability and relevance of the tool for this area of research resulted in adaptations to the criteria and the development of a tool specifically for evaluating diagnostic accuracy in screen-reading. This tool, with further refinement and rigorous validation can make a significant contribution to promoting well-designed studies in this important area of research and practice.

  15. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    SciTech Connect (OSTI)

    OVERLY, TIMOTHY G.; PARK, GYUHAE; FARRAR, CHARLES R.

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  16. First results from the Thomson scattering diagnostic on Proto-MPEX

    SciTech Connect (OSTI)

    Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.

  17. Feasibility of millimeter wave diagnostics for coal conversion and combustion systems

    SciTech Connect (OSTI)

    Gopalsami, N.; Raptis, A.C.

    1986-06-01

    The millimeter wave portion (30-300 GHz) of the electromagnetic spectrum, lying between the microwave and infrared regions, holds great potential for process diagnostics. In this report, the feasibility of millimeter wave (MMW) techniques is discussed for in-situ diagnostics of particulate-laden multiphase streams in coal conversion and combustion reactors/vessels. The techniques investigated include MMW spectroscopy for determination of molecular species and gas-phase temperature, MMW radiometry for particle-temperature measurement, and MMW scattering for particle characterization. each technique is scopes from the standpoint of its applicability to coal utilization systems. Parameters effecting the feasibility of millimeter wave diagnostics are clearly identified, and their ranges of applicability discussed. The assessment of feasibility is based on data obtained from the literature, handbooks, etc., theoretical calculations and estimates made using available theory, or on the development of simple models. The determination of some majority molecular species and gas-phase temperature using MMW spectroscopy appears marginally feasible in atmospheric-pressure combustors. The particle-temperature measurement using MMW radiometry appears very feasible in the reactors of coal conversion and combustion system. In order for the millimeter waves to penetrate the entire thickness of particulates in a reactor vessel, the particle concentration must be somewhat low (10/sup 8/ to 10/sup 9/ particles/m/sup 3/ of 100..mu.. size). Particle characterization - determining particle size, size distribution, and concentration - also appears feasible if the particle concentration is low. 28 refs., 12 figs., 4 tabs.

  18. Diagnostic techniques for measuring temperature transients and stress transients in the first wall of an ICF reactor

    SciTech Connect (OSTI)

    Melamed, N.T.; Taylor, L.H.

    1983-01-01

    The primary challenge in the design of an Inertial Confinement Fusion (ICF) power reactor is to make the first wall survive the frequent explosions of the pellets. Westinghouse has proposed a dry wall design consisting of steel tubes coated with tantalum. This report describes the design of a test chamber and two diagnostic procedures for experimentally determining the reliability of the Westinghouse design. The test chamber simulates the x-ray and ion pulse irradiation of the wall due to a pellet explosion. The diagnostics consist of remote temperature sensing and surface deformation measurements. The chamber and diagnostics can also be used to test other first-wall designs.

  19. A time-resolved spectroscopic diagnostic based on fast scintillator and optical fiber array for z-pinch plasmas

    SciTech Connect (OSTI)

    Ye Fan; Qin Yi; Jiang Shuqing; Xue Feibiao; Li Zhenghong; Yang Jianlun; Xu Rongkun; Anan'ev, S. S.; Dan'ko, S. A.; Kalinin, Yu. G.

    2009-10-15

    We report a specially designed type of temporal resolved x-ray spectroscopic diagnostic using a spherically bent quartz crystal for z-pinch plasmas. Registration of time-resolved spectra was accomplished by coupling fast plastic scintillator, an optical fiber array, an optical streak camera, and a charge coupled device as the recording medium of this diagnostic. The diagnostic has been tested in imploding wire array experiments on S-300 pulsed power facility. Time-resolved K-shell lines were successfully obtained for aluminum wire array implosion plasmas.

  20. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  1. Particle Image Velocimetery (PIV) Diagnostics for Wind Energy and Energy Security Research

    SciTech Connect (OSTI)

    Pol, Suhas Uddhav

    2012-06-04

    Particle Image Velocimetery (PIV) is a laser based technique that involves correlation analysis of tracer particle images to estimate the velocity field in a fluid. High resolution velocity measurement capability and non-intrusive nature of PIV make it desirable for understanding complex fluid flow phenomena occurring in various scenarios. This presentation briefly describes the development of novel PIV diagnostics that forward Wind Energy research and advance scaling models to solve expensive maintenance issues of the Strategic Petroleum Reserves (SPR). Two new diagnostic implementations of Particle Image Velocimetry (PIV) are being developed at Los Alamos National Laboratory (LANL) to facilitate understanding of wind turbine aerodynamics in unprecedented detail. It has been demonstrated that a Large-Field PIV (LF-PIV) diagnostic capable of measuring large scale flow fields of up to 4.3m x 2.8m per camera has been developed. This diagnostic, which represents a significant leap in the field of view of existing centimeter scale PIV systems, allows the measurement of velocity fields at multiple points with high accuracy for large scale flows, such as, flows around wind turbines. Further, to characterize the near blade boundary layer of wind turbines a rotating PIV system (R-PIV) is also under development at LANL (patent application in progress). Design considerations and results of bench top tests that confirm the reliability of PIV measurements obtained using the above diagnostics will be presented in this talk. PIV along with conductivity and temperature probe data has been useful to develop models that simulate the evolution of the layered structure of crude oil stored in the subterranean caverns of the Strategic Petroleum Reserves (SPR). Understanding the evolution of stratified layers of crude oil that are subjected to geothermal forcing is crucial in improving the efficiency of maintenance procedures carried out for the SPR and hence ensure Energy Security of

  2. Data Collection and Analyses of the CHP System at Eastern Maine Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center - Final Report, June 2008 | Department of Energy Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 This 2008 report describes the Eastern Maine Medical Center's installation of a Centaur 50 gas turbine and performance data for one year from December 2006 to November 2007. The turbine has a nameplate rating of 4,570 kW and can

  3. Proposed Testing to Assess the Accuracy of Glass-To-Metal Seal Stress Analyses.

    SciTech Connect (OSTI)

    Chambers, Robert S.; Emery, John M; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.; Gibson, Cory S; Bencoe, Denise N.

    2014-09-01

    The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.

  4. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying

    Office of Scientific and Technical Information (OSTI)

    Alpha Theory (Journal Article) | SciTech Connect Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory Citation Details In-Document Search Title: Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster

  5. Vehicle Technologies Office Merit Review 2015: ANL IC3P Research Focus on Diagnostic Studies at BNL

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ANL IC3P research focus on diagnostic...

  6. En Route to the Clinic: Diagnostic Sequencing Applications Using the Ion Torrent ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Muzny, Donna [Baylor College of Medicine

    2013-03-22

    Donna Muzny on "En route to the clinic: Diagnostic sequencing applications using the Ion Torrent" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  7. MELCOR 1.8.2 Analyses in Support of ITER’s RPrS

    SciTech Connect (OSTI)

    Brad J Merrill

    2008-01-01

    The International Thermonuclear Experimental Reactor (ITER) Program is performing accident analyses for ITER’s “Rapport Préliminaire de Sûreté” (Report Preliminary on Safety - RPrS) with a modified version of the MELCOR 1.8.2 code. The RPrS is an ITER safety document required in the ITER licensing process to obtain a “Décret Autorisation de Construction” (a Decree Authorizing Construction - DAC) for the ITER device. This report documents the accident analyses performed by the US with the MELCOR 1.8.2 code in support of the ITER RPrS effort. This work was funded through an ITER Task Agreement for MELCOR Quality Assurance and Safety Analyses. Under this agreement, the US was tasked with performing analyses for three accident scenarios in the ITER facility. Contained within the text of this report are discussions that identify the cause of these accidents, descriptions of how these accidents are likely to proceed, the method used to analyze the consequences of these accidents, and discussions of the transient thermal hydraulic and radiological release results for these accidents.

  8. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    2014-03-10

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  9. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor

    SciTech Connect (OSTI)

    Marland, S.

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  10. SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages

    SciTech Connect (OSTI)

    Russel, E.

    1997-11-01

    This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.

  11. Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT

    SciTech Connect (OSTI)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.; Wright, A. E.

    2015-10-01

    Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the power coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.

  12. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  13. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    SciTech Connect (OSTI)

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  14. FY01 Supplemental Science and Performance Analysis: Volume 1,Scientific Bases and Analyses

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Dobson, David

    2001-05-30

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for development as a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S&ER) (DOE 2001 [DIRS 153849]), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. A decision to recommend the site has not been made: the DOE has provided the S&ER and its supporting documents as an aid to the public in formulating comments on the possible recommendation. When the S&ER (DOE 2001 [DIRS 153849]) was released, the DOE acknowledged that technical and scientific analyses of the site were ongoing. Therefore, the DOE noted in the Federal Register Notice accompanying the report (66 FR 23013 [DIRS 155009], p. 2) that additional technical information would be released before the dates, locations, and times for public hearings on the possible recommendation were announced. This information includes: (1) the results of additional technical studies of a potential repository at Yucca Mountain, contained in this FY01 Supplemental Science and Performance Analyses: Vol. 1, Scientific Bases and Analyses; and FY01 Supplemental Science and Performance Analyses: Vol. 2, Performance Analyses (McNeish 2001 [DIRS 155023]) (collectively referred to as the SSPA) and (2) a preliminary evaluation of the Yucca Mountain site's preclosure and postclosure performance against the DOE's proposed site suitability guidelines (10 CFR Part 963 [64 FR 67054 [DIRS 124754

  15. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Robinson, Gene

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  16. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Robinson, Gene

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect (OSTI)

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  18. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    SciTech Connect (OSTI)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  19. Assessment of Tools and Data for System-Level Dynamic Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg

    2011-06-01

    The only fuel cycle for which dynamic analyses and assessments are not needed is the null fuel cycle - no nuclear power. For every other concept, dynamic analyses are needed and can influence relative desirability of options. Dynamic analyses show how a fuel cycle might work during transitions from today's partial fuel cycle to something more complete, impact of technology deployments, location of choke points, the key time lags, when benefits can manifest, and how well parts of fuel cycles work together. This report summarizes the readiness of existing Fuel Cycle Technology (FCT) tools and data for conducting dynamic analyses on the range of options. VISION is the primary dynamic analysis tool. Not only does it model mass flows, as do other dynamic system analysis models, but it allows users to explore various potential constraints. The only fuel cycle for which constraints are not important are those in concept advocates PowerPoint presentations; in contrast, comparative analyses of fuel cycles must address what constraints exist and how they could impact performance. The most immediate tool need is extending VISION to the thorium/U233 fuel cycle. Depending on further clarification of waste management strategies in general and for specific fuel cycle candidates, waste management sub-models in VISION may need enhancement, e.g., more on 'co-flows' of non-fuel materials, constraints in waste streams, or automatic classification of waste streams on the basis of user-specified rules. VISION originally had an economic sub-model. The economic calculations were deemed unnecessary in later versions so it was retired. Eventually, the program will need to restore and improve the economics sub-model of VISION to at least the cash flow stage and possibly to incorporating cost constraints and feedbacks. There are multiple sources of data that dynamic analyses can draw on. In this report, 'data' means experimental data, data from more detailed theoretical or empirical

  20. Site-Specific Analyses for Demonstrating Compliance with 10 CFR 61 Performance Objectives - 12179

    SciTech Connect (OSTI)

    Grossman, C.J.; Esh, D.W.; Yadav, P.; Carrera, A.G.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) is proposing to amend its regulations at 10 CFR Part 61 to require low-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance with the performance objectives in Subpart C. The amendments would require licensees to conduct site-specific analyses for protection of the public and inadvertent intruders as well as analyses for long-lived waste. The amendments would ensure protection of public health and safety, while providing flexibility to demonstrate compliance with the performance objectives, for current and potential future waste streams. NRC staff intends to submit proposed rule language and associated regulatory basis to the Commission for its approval in early 2012. The NRC staff also intends to develop associated guidance to accompany any proposed amendments. The guidance is intended to supplement existing low-level radioactive waste guidance on issues pertinent to conducting site-specific analyses to demonstrate compliance with the performance objectives. The guidance will facilitate implementation of the proposed amendments by licensees and assist competent regulatory authorities in reviewing the site-specific analyses. Specifically, the guidance provides staff recommendations on general considerations for the site-specific analyses, modeling issues for assessments to demonstrate compliance with the performance objectives including the performance assessment, intruder assessment, stability assessment, and analyses for long-lived waste. This paper describes the technical basis for changes to the rule language and the proposed guidance associated with implementation of the rule language. The NRC staff, per Commission direction, intends to propose amendments to 10 CFR Part 61 to require licensees to conduct site-specific analyses to demonstrate compliance with performance objectives for the protection of public health and the environment. The amendments would require a