National Library of Energy BETA

Sample records for dhabi future energy

  1. Masdar Abu Dhabi Future Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Abu Dhabi- based subsidiary created to manage the implementation of renewable and alternative energy initiatives. References: Masdar Abu Dhabi Future Energy Company1 This...

  2. Abu Dhabi, United Arab Emirates: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dhabi, United Arab Emirates: Energy Resources Jump to: navigation, search Name Abu Dhabi, United Arab Emirates Equivalent URI DBpedia GeoNames ID 292968 Coordinates 24.46667,...

  3. Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United Arab Emirates | Department of Energy Second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates April 1, 2011 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu will attend the second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates, on April 6-7, 2011. The Clean Energy Ministerial, launched by Secretary Chu in Washington, D.C., on July 19-20, 2010, is a forum

  4. Abu Dhabi National Oil Company | Open Energy Information

    Open Energy Info (EERE)

    oil companies in the world. Abu Dhabi National Oil Company oversees many phases of oil and gas exploration and production, as well as other business activities. References...

  5. Abu Dhabi Supreme Petroleum Council | Open Energy Information

    Open Energy Info (EERE)

    Council Name: Supreme Petroleum Council Place: Abu Dhabi Country: United Arab Emirates Website: www.abudhabi.aeegovPoolPortal Coordinates: 24.4615061518, 54.3242812157...

  6. UAE Ministry of Energy and U.S. Department of Energy Co-Sponsor Workshop on Carbon Utilization during the World Future Energy Summit

    Broader source: Energy.gov [DOE]

    The UAE Ministry of Energy and the U.S. Department of Energy (DOE) co-sponsored a workshop today to examine technological and economic factors for carbon dioxide (CO2) utilization to recover oil and water in the Gulf Region. The workshop took place at the Abu Dhabi National Exhibition Center during the World Future Energy Summit and Abu Dhabi Sustainability Week.

  7. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy for the Future

  8. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect (OSTI)

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  9. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    Future Energies Jump to: navigation, search Name: GDF Future Energies Place: France Product: Clean energy subsidiary of Gaz de France. References: GDF Future Energies1 This...

  10. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  11. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  12. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  13. Future Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Future Energy Solutions Place: Didcot, United Kingdom Zip: OX11 0QR Product: Future Energy Solutions is a sustainable energy...

  14. Energy for our Future

    Office of Environmental Management (EM)

    for our Future Standards, Goals and Energy Planning Dave PM TCC Rural Energy Coordinator Dave.pm@tananachiefs.org "Stronger Together for the Next 100 Years" Tanana Chiefs Conference Tanana Chiefs Conference is a Tribal Consortium with 42 Members, representing 39 villages and 37 federally recognized tribes. MISSION: "Tanana Chiefs Conference provides a unified voice in advancing sovereign tribal governments through the promotion of physical and mental wellness, education,

  15. Hydrogen & Our Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery

  16. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    Assets LP Jump to: navigation, search Name: Future Energy Assets LP Place: Austin, Texas Zip: 78701 Product: String representation "Future Energy A ... S and in China." is too...

  17. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  18. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  19. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  20. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  1. Future Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pty Ltd Jump to: navigation, search Name: Future Energy Pty Ltd Place: Victoria, Australia Zip: 3121 Sector: Wind energy Product: Victoria based community wind project developer....

  2. Prompt-Month Energy Futures

    Gasoline and Diesel Fuel Update (EIA)

    Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate

  3. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 to 100 times more energy than the amount of laser energy required to initiate the fusion reaction. The nuclear power plants in use around the world today use fission, or...

  4. Bioenergy: America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy: America's Energy Future Bioenergy: America's Energy Future Addthis Description Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. Text Version Below is the text version for the Bioenergy:

  5. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Growing America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensuring American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in

  6. Future Energy Yorkshire | Open Energy Information

    Open Energy Info (EERE)

    Yorkshire Jump to: navigation, search Name: Future Energy Yorkshire Place: Leeds, United Kingdom Zip: LS11 5AE Sector: Services Product: Leeds-based, wholly owned subsidiary of...

  7. Future Energy Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Jump to: navigation, search Name: Future Energy Enterprises Place: Wilmette, IL Website: futureenergyenterprises.biz References: Partnership for Advanced Residential...

  8. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphic_tef_icon Transportation Energy Futures Project The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany the U.S. Department of Energy Office of

  9. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  10. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Office of Environmental Management (EM)

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

  11. Al Tayyar Energy | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Al Tayyar Energy Place: Abu Dhabi, United Arab Emirates Sector: Renewable Energy Product: Provides development capital and equity investments...

  12. Drivers of Future Energy Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption Transportation

  13. UAE-Abu Dhabi: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that production expansion projects remain the focus in Abu Dhabi, with increased drilling operations underway both on and offshore. Only Abu Dhabi Co. for Onshore Operations (Adco) and Abu Dhabi Marine Operating Co. (Adma-Opco) provide any information about activity in the Emirate. Plans call for boosting productive capacity by 1 million bpd to near 3 million bpd. Present sustainable capacity is estimated at 1.8 million bpd by the CIA. This rate has been exceeded recently (it reached over 2 million bpd) to take advantage of higher prices in late 1990 and to make up for the shortfall due to loss of Iraqi and Kuwaiti exports. However, it does not appear higher rates can be sustained for a long period of time. By year-end 1992, sustainable output has been projected to reach 2.3 million bpd.

  14. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  15. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  16. Secretary Bodman Highlights Alternative Energy Cooperation in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arab Emirates | Department of Energy Alternative Energy Cooperation in the United Arab Emirates Secretary Bodman Highlights Alternative Energy Cooperation in the United Arab Emirates January 21, 2008 - 10:38am Addthis ABU DHABI, UAE - U.S. Secretary of Energy Samuel W. Bodman today visited the United Arab Emirates (UAE) where he delivered keynote remarks at the Masdar World Future Energy Summit 2008 emphasizing the importance of innovation in securing safe, reliable, affordable, and diverse

  17. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  18. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  19. NREL: Energy Analysis - Renewable Electricity Futures Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a dynamic map that is animated to display power flow in 2010 through 2050 The National Renewable Energy Laboratory's (NREL) Renewable Electricity Futures Study (RE Futures) is...

  20. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  1. Secure and Sustainable Energy Future Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  2. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  3. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Future Use Facility or infrastructure reuse could avoid costs associated with demolition and disposal. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their future use vision. PPPO works with GDP communities as they identify their future use vision. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their

  4. FutureWorld Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: FutureWorld Energy Inc Place: Florida Zip: 33701 Product: Florida-based marine energy project developer. References: FutureWorld Energy Inc1 This article is a...

  5. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. PDF icon Accomplishments Report: Water Power for a Clean Energy Future More Documents & Publications Water Power for a Clean Energy Future (Fact Sheet), Wind and Water

  6. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  7. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy (EERE) | Department of Energy Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy. PDF icon 51111.pdf More Documents & Publications EERE Program Management Guide - Chapter 1 Office of the

  8. 25 x 25 America s Energy Future | Open Energy Information

    Open Energy Info (EERE)

    x 25 America s Energy Future Jump to: navigation, search Name: 25 x '25 America's Energy Future Place: Maryland Zip: 21093 Website: www.25x25.org References: 25 x '25 America's...

  9. "The Future of Geothermal Energy" and Its Challenges | Open Energy...

    Open Energy Info (EERE)

    "The Future of Geothermal Energy" and Its Challenges Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: "The Future of Geothermal Energy" and Its...

  10. Future Energy Zone Private Ltd FEZ | Open Energy Information

    Open Energy Info (EERE)

    Zone Private Ltd FEZ Jump to: navigation, search Name: Future Energy Zone Private Ltd (FEZ) Place: Chennai, Tamil Nadu, India Sector: Renewable Energy Product: Focused on building...

  11. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The piles operated at Eanford for the synthesis of plutonium produce energy in amounts comparable to that of the largest hydro- electric plants. The energy that is produced in the ...

  12. A Cornerstone of Our Energy Future: Women | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Cornerstone of Our Energy Future: Women A Cornerstone of Our Energy Future: Women March 19, 2014 - 1:47pm Addthis Secretary of Energy Ernest Moniz with The Honorable Dot Harris, Director of the Energy Department's Office of Economic Impact and Diversity (far left), and Sandra Guzman, award winning multimedia journalist, at the Minorities in Energy launch event. | Photo by the Energy Department. Secretary of Energy Ernest Moniz with The Honorable Dot Harris, Director of the Energy Department's

  13. A Renewable Energy Future: Innovation and Beyond | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Energy Future: Innovation and Beyond A Renewable Energy Future: Innovation and Beyond This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is

  14. The Future of Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Geothermal Energy The Future of Geothermal Energy The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise was formed to conduct the study beginning in September 2005. The work evaluated three major areas of Enhanced Geothermal Systems (EGS): Magnitude and distribution of the EGS resource Status and remaining requirements of EGS technology needed

  15. IM Future | Open Energy Information

    Open Energy Info (EERE)

    Sector: Services, Wind energy Product: Spain-based firm that provides operation and maintenance services for wind farms owned by Babcock & Brown Wind Partners and FCC. References:...

  16. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  17. A Global Sustainable Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Global Sustainable Energy Future A Global Sustainable Energy Future April 19, 2013 - 10:56am Addthis World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African Energy Minister Dipuo Peters; U.S. Energy Secretary Steven Chu; Deputy Chairman of Indian Planning Commission Montek Singh Ahluwalia. World energy leaders at the ribbon cutting for the CEM Innovation Showcase

  18. Driving Home to a Clean Energy Future | Department of Energy

    Office of Environmental Management (EM)

    Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Working here at the Department of Energy, I hear a lot about the latest efforts to design and build vehicles for a more energy-efficient future. The clean energy innovations in vehicle technologies that DOE and its partners are advancing will help American families save money at the pump-or even

  19. Investing in our Energy Future | Department of Energy

    Office of Environmental Management (EM)

    Investing in our Energy Future Investing in our Energy Future A report on the ways in which the recovery act is promoting a clean energy economy. PDF icon Investing in our Energy Future More Documents & Publications Microsoft PowerPoint - CHU_Grid Week 9-21-09 final.ppt WHAT THE SMART GRID MEANS TO AMERICANS Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011 Update

  20. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  1. Building Our Energy Future: Teaching Students the Significance of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2, 2015 - 4:39pm Addthis Students at St. Agnus Catholic School in Arlington, Va., measure weatherstripping to place around doors and windows Students at St. Agnus Catholic School in Arlington, Va., measure weatherstripping to place around doors and windows Holly Ravesloot Lead Energy

  2. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  3. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  4. Growing Americas Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensur- ing American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in decreasing green- house gas emissions,

  5. NREL: Speeches - Nation's Energy Future at Risk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy Laboratory said today. Otherwise, he said, the nation could face supply shortages and fall behind foreign competitors. Truly, speaking at the National Press Club's Newsmakers program, said that U.S.

  6. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  7. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  8. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  9. Geothermal Energy in Hawaii: Present and Future | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy in Hawaii: Present and Future Abstract Discussed the development of...

  10. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  11. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Futures (TEF) National Renewable Energy Laboratory Build 241 search keywords clear search show bibliography show instructions ^(sprawl|density|population density|census|ppsm|metro area|single-family|weighted density|population center|populations?|mix|american housing survey|schools?|population-serving|density gradient|metropolitan|msas?|psas?|urban|blocks?)$ ^(co2|emissions?|rates?|transient|smooth|driving|gallons per mile|g/mile|average speed|speeds?|moves|miles per

  12. Brainstorming Apps for a Clean Energy Future | Department of Energy

    Energy Savers [EERE]

    Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future July 20, 2012 - 1:03pm Addthis Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Nick Sinai U.S. Deputy Chief Technology Officer, White House Office of Science and Technology Policy Ian Kalin Director of the Energy Data Initiative How can I participate? You can contribute ideas for new products,

  13. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  14. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  15. A First Peek at Our Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    email updates, its RSS feeds, or follow it on Twitter. Addthis Related Articles Natural Gas Production and U.S. Oil Imports A First Peek at Our Energy Future EIA Report Estimates...

  16. Hydrogen & Our Energy Future | Department of Energy

    Energy Savers [EERE]

    & Our Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate PDF icon hydrogenenergyfuture_web.pdf More Documents & Publications Proceedings of the 2000 U.S. DOE Hydrogen Program Review Proceedings of the 1998 U.S. DOE Hydrogen Program Review: April 28-30, 1998 Alexandria, Virginia: Volume II Hydrogen Fuel Cell Engines and Related Technologies Course Manual

  17. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  18. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency ... Energy The SunSmart Program has installed solar power systems at schools designated as ...

  19. Secretary Moniz Addresses Conference on the Caribbean's Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Secretary Moniz Addresses Conference on the Caribbean's Energy Future Secretary Moniz Addresses Conference on the Caribbean's Energy Future December 6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbean’s Energy Future Secretary Moniz joined Inter-American Development Bank President Luis Alberto Moreno in welcoming a group of Caribbean ministers who convened to discuss the region's energy future, climate change, and the roles of energy

  20. Multilateral Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilateral Cooperation Multilateral Cooperation The IFNEC Executive Committee Meeting in Abu Dhabi, October 2013. The IFNEC Executive Committee Meeting in Abu Dhabi, October 2013. The Office of International Nuclear Energy Policy and Cooperation (INEPC) supports the Office of Nuclear Energy's participation in: The Generation IV International Forum (GIF) The International Framework for Nuclear Energy Cooperation (IFNEC) The Nuclear Energy Agency (NEA) The International Atomic Energy Agency

  1. Future Communications Needs | Department of Energy

    Office of Environmental Management (EM)

    Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs PDF icon Future Communications Needs More Documents & Publications Current Communications Needs AT&T, Inc.'s Reply Comments Comments of Utilities Telecom Council

  2. Harvesting Solar Energy for the Future | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Harvesting Solar Energy for the Future Harvesting Solar Energy for the Future In this video, we detail the vision and goals of PARC's research in a broader context.

  3. Secretary Moniz: Biofuels Important to America's Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington,

  4. Revolution Now: The Future Arrives for Four Clean Energy Technologies --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Update | Department of Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies -- 2014 Update Revolution Now: The Future Arrives for Four Clean Energy Technologies -- 2014 Update For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technologies matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." In

  5. Take Action Now: Empower a Secure Energy Future

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future campaign handout.

  6. Take Action Now: Empower a Secure Energy Future 2

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future 2 handout.

  7. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  8. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  9. Status and Future of TRANSCOM | Department of Energy

    Office of Environmental Management (EM)

    and Future of TRANSCOM Status and Future of TRANSCOM Current Program Status Upcoming Changes Glimpse at Future Options DOE Commitments PDF icon Status and Future of TRANSCOM More Documents & Publications Applying Risk Communication to the Transportation of Radioactive Materials Department of Energy Office of Science Transportation Overview NTSF Spring 2010 Final Agenda

  10. Noncommercial Trading in the Energy Futures Market

    Reports and Publications (EIA)

    1996-01-01

    How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

  11. Keynote Address: Future Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Vision Keynote Address: Future Vision May 20, 2014 1:00PM to 1:30PM PDT Pacific Ballroom Tuesday's keynote address by Raffi Garabedian, Chief Technology Officer, First Solar

  12. Portsmouth Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Portsmouth Future Use Portsmouth Site current state Portsmouth Site current state Portsmouth Site future conceptual illustration Portsmouth Site future conceptual illustration Integrated Approach Through a multifaceted community outreach program at Portsmouth, DOE worked diligently with stakeholders to understand the community's end-state vision for the Portsmouth site. With the assistance of the PORTSFuture Project and interaction with the Portsmouth Site Specific Advisory Board,

  13. Accelerating Materials Development for a Clean Energy Future | Department

    Energy Savers [EERE]

    of Energy Materials Development for a Clean Energy Future Accelerating Materials Development for a Clean Energy Future February 24, 2016 - 2:30pm Addthis Accelerating Materials Development for a Clean Energy Future Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation Megan Brewster Senior Policy Advisor for Advanced Manufacturing at the White House Office of Science and Technology Policy Lloyd Whitman Assistant Director for Nanotechnology and Advanced Materials at the

  14. Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy Growing the Future Bioeconomy Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Growing the Future Bioeconomy Joel Velasco, Senior Vice President, Amyris, Inc PDF icon velasco_biomass_2014 More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Sustainable Alternative Jet Fuels

  15. Capturing the Sun, Creating a Clean Energy Future (Brochure)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean ...

  16. NREL Launches Interactive Tool for Developing a Cleaner Energy Future -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Launches Interactive Tool for Developing a Cleaner Energy Future January 9, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has created an energy analysis tool to help individuals and educators experiment with future energy use scenarios. The interactive Buildings, Industry, Transportation, Electricity, and Transportation Scenarios (BITES) allows users to explore how changes in energy demand and supply can impact carbon dioxide

  17. Geothermal Power - the Future is Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power - the Future is Now Geothermal Power - the Future is Now September 25, 2012 - 1:11pm Addthis The United States Department of Energy is breaking the sound barrier, delivering...

  18. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy...

  19. Forming the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forming the Future Forming the Future This feature article from the April 2014 edition of the Fabricating and Forming Journal (FFJournal) describes how Ford Motor Co.'s sheet metal freeforming technology accelerates prototyping, taking stamping tool costs and lead time out of the equation. Reprinted with permission of FFJournal PDF icon Forming the Future, FFJournal (April 2014) More Documents & Publications Rapid Freeform Sheet Metal Forming CX-010510: Categorical Exclusion Determination

  20. Innovation: Enabling a Sustainable Energy Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy's SunShot Initiative-to make large-scale solar energy systems cost- competitive with other energy sources by 2020. 3 Energy Market Dynamics Global...

  1. NYMEX Coal Futures - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    providing companies in the electric power industry with secure and reliable risk management tools by creating a series of electricity futures contracts fashioned to meet the...

  2. Buildings of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings of the Future Buildings of the Future Imagine buildings of the future. What will they look like and how will they interact with us-their occupants-to improve our lives and the Earth? Click to view the fact sheet. Click to view the fact sheet. Future Buildings: A Call for Collaboration, Vision Click to view the fact sheet. Lead Performer: Pacific Northwest National Laboratory - Richland, WA
 DOE Funding: $200,000 Project Term: 10/1/2014 - 9/30/2015 Project Website:

  3. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  4. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

  5. The Future of Housing-Today | Department of Energy

    Energy Savers [EERE]

    The Future of Housing-Today The Future of Housing-Today Every Zero Energy Ready Home offers a cost-effective, high performance package of energy savings, comfort, health, and durability unparalleled in today's marketplace. PDF icon zero_energy_home_brochure_052014.pdf More Documents & Publications DOE Challenge Home: Zero Net-Energy Ready Training DOE ZERO ENERGY READY HOME NEWSLETTER DECEMBER 2015 ZERH Trainer Partnership Agreement

  6. Internships Help Future Energy Leaders Gain Hands-On Experience |

    Office of Environmental Management (EM)

    Department of Energy Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience August 23, 2013 - 10:19am Addthis EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Rebecca

  7. Revolution Now: The Future Arrives for Five Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies-2015 Update | Department of Energy Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update An illustrated infographic showing the falling costs for clean energy technologies including wind, solar, buildings, and lightin For decades, America has anticipated the transformational impact of clean energy technologies. As the federal government and industry made long-term

  8. Energy futures: Trading opportunities for the 1990s

    SciTech Connect (OSTI)

    Treat, J.E.

    1990-01-01

    This volume contains an edited collection of views from practitioners in the rapidly growing area of energy futures and options trading, a major element of risk management. Four chapters are devoted to Trading Theories and Strategies. This section is aimed at the specialist in energy, rather than finance. The complexities of options trading are described in another chapter. The remaining sections of this book present a variety of topics in this field including Natural Gas Trading and Futures, Energy Futures and Options Trading, and Accounting, Taxation and Internal Control. The book is a good introduction and reference to the mechanics and institutions of energy futures contracts and trading.

  9. Energy Department Selects Global Laser Enrichment for Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site Pamela Thompson is retiring from her 37-year federal career. Retiring Procurement Official ...

  10. FutureGen 2.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with a new cooperative agreement between the FutureGen Industrial Alliance and the Department of Energy for an innovative carbon capture and storage (CCS) project in Illinois. ...

  11. Securing America's Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  12. Securing America's Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  13. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  14. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Critics often said a clean energy future would "always be five years away." In 2013, the DOE ... These technologies are changing the nature of our energy system. Solar and wind power ...

  15. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  16. Chu at COP-16: Building a Sustainable Energy Future

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Steven Chu addresses the U.S. Center in Cancun on the need to build a sustainable energy future as part of the United Nations Climate Change Conference, COP-16. In his...

  17. Rethinking the Future Grid: Integrated Nuclear Renewable Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems Preprint S.M. Bragg-Sitton ... In the 2011 State of the Union Address, President Obama set a clean energy goal ...

  18. State and Local Resources for a Clean Energy Future Brochure

    Broader source: Energy.gov [DOE]

    The State and Local Resources for a Clean Energy Future brochure explains how to best use state and local resources to meet your community's clean energy goals. View the infographic above or...

  19. Paducah Site Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Paducah Site Future Use Paducah C-333 Process Building Paducah C-333 Process Building DOE has been actively pursuing the environmental cleanup goals at the Paducah site since 1988. After environmental cleanup activities are completed, the sites will be available for reuse with a range of uses up to and including heavy industry. Mission & End State Today, DOE's site missions include environmental cleanup, waste disposition, depleted uranium conversion, decontamination and

  20. FutureGen Project Launched | Department of Energy

    Energy Savers [EERE]

    Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with

  1. Transportation Energy Futures Study Reveals Potential for Deep Cuts to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Use and Carbon Emissions - News Releases | NREL Transportation Energy Futures Study Reveals Potential for Deep Cuts to Petroleum Use and Carbon Emissions Collaborative NREL and ANL project reveals opportunities for 80% reductions by 2050 March 15, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach

  2. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Energy Savers [EERE]

    Department of Energy You are here Home » About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste

  3. Supercomputers, Semi Trucks and America's Clean Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation,

  4. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste (e.g. biosolids).

  5. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Environmental Management (EM)

    Department of Energy Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility

  6. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  7. Revolution Now: The Future Arrives for Four Clean Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies Editor's note: This report was updated in October 2014. To read the most up-to-date version, visit the Revolution Now 2014 page. This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial

  8. Energy Department Selects Global Laser Enrichment for Future Operations at

    Energy Savers [EERE]

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  9. Vehicle Education Efforts Fuel Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many

  10. Better Buildings Case Competition Helps Develop Future Clean Energy Leaders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Case Competition Helps Develop Future Clean Energy Leaders Better Buildings Case Competition Helps Develop Future Clean Energy Leaders March 7, 2013 - 10:30am Addthis Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher Jones and

  11. Resources for the Future | Open Energy Information

    Open Energy Info (EERE)

    organization that conducts independent research - rooted primarily in economics and other social sciences - on environmental, energy, natural resource and public health issues....

  12. Innovation: Enabling a Sustainable Energy Future

    Broader source: Energy.gov [DOE]

    These slides correspond to a presentation given by National Renewable Energy Laboratory (NREL) Director Dr. Dan Arvizu at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA....

  13. Rising to the Challenge: Innovating toward our Clean Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rising to the Challenge: Innovating toward our Clean Energy Future Rising to the Challenge: Innovating toward our Clean Energy Future February 9, 2011 - 9:52am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What does this mean for me? Hundreds of companies around the country are figuring ways to power our economy -- like 1366, which is helping make solar power 50% cheaper. The Chinese are on pace to get nearly 20% of

  14. Energy Department Releases New Wind Report, Examines Future of Industry |

    Energy Savers [EERE]

    Department of Energy Wind Report, Examines Future of Industry Energy Department Releases New Wind Report, Examines Future of Industry March 12, 2015 - 11:51am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov Present Day to 2050, Report Quantifies the Economic and Social Benefits of Robust Wind Energy Growth WASHINGTON - In support of the President's all-of-the-above energy strategy to diversify our nation's power supplies, the Energy Department today released a new report looking

  15. USVI Energy Road Map: Charting the Course to a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands | Department of Energy USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the

  16. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future-as an: Environmental Solution (significantly reducing CO2 emissions through greater energy efficiency),

  17. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events » Conferences » Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports

  18. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Securing America's Clean Energy Future The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, reduce dependence on foreign oil, and protect the environment. EERE leverages partnerships with the private sector, state and local governments, DOE national laboratories, and universities to transform the nation's economic engine to one powered by clean energy. EERE Programs 2011 Budget (in $ millions) EERE operates with $1.8

  19. Water Power For a Clean Energy Future Cover Photo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Image icon Water Power For a Clean Energy Future Cover.JPG More Documents & Publications 2014 Water Power Peer Review Report Cover NOWEGIS Report Cover 2013 Wind Technologies Market Report Cover

  20. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  1. New Feedstocks and Replacement Fuels - Future Energy for Mobility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  2. The Road to a Sustainable Energy Future | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2015, 9:30am to 11:00am Science On Saturday MBG Auditorium The Road to a Sustainable Energy Future Professor Emily Carter, Department of Engineering; Director of the Andlinger...

  3. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. ...

  4. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon trading, giving benefits to low carbon footprint industries, while making higher emitting industries purchase carbon allowances. There have been an increasing number of countries and states adopting the trade and cap systems.

  5. Transportation Energy Futures Series: Projected Biomass Utilization for

    Office of Scientific and Technical Information (OSTI)

    Fuels and Power in a Mature Market (Technical Report) | SciTech Connect Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this

  6. U.S. Department of Energy and Masdar Collaborate In Testing Cutting-Edge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV Coating Technologies | Department of Energy Masdar Collaborate In Testing Cutting-Edge Solar PV Coating Technologies U.S. Department of Energy and Masdar Collaborate In Testing Cutting-Edge Solar PV Coating Technologies February 28, 2011 - 12:00am Addthis Abu Dhabi-UAE: The U.S. Department of Energy (DOE) and Masdar, Abu Dhabi's multifaceted renewable energy initiative, announced that they will collaborate to test the performance of specially coated solar photovoltaic modules

  7. New Feedstocks and Replacement Fuels - Future Energy for Mobility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuels - Future Energy for Mobility New Feedstocks and Replacement Fuels - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_simnick.pdf More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Cross-cutting Technologies for Advanced Biofuels Well-to-Wheels Analysis of

  8. Investing in Our Energy Future: The Story of General Compression |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Investing in Our Energy Future: The Story of General Compression Investing in Our Energy Future: The Story of General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to a small clean energy startup? In the case of many ARPA-E awardees and small businesses across the country, it means being able to secure the private capital necessary to bring their

  9. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Agenda Biomass 2014: Growing the Future Bioeconomy Agenda Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:20 a.m. Welcome and Introduction Jonathan Male, Director, Bioenergy Technologies Office, U.S. Department of Energy 8:20 a.m.-9:00 a.m. Morning Keynotes David Danielson, Assistant Secretary for Energy Efficiency & Renewable Energy, U.S. Department of Energy Byron Paez, Deputy Director for Deputy Assistant

  10. Fossil fuels in a sustainable energy future

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  11. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  12. ONLY HERE...Will You Define the Future of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ONLY HERE...Will You Define the Future of Energy Application deadline: December 21, 2015 The Mickey Leland Energy Fellowship (MLEF) Program provides college students with an opportunity to gain and develop research skills with the Department of Energy's Office of Fossil Energy. The program was created in 1995 with the goal of improving opportunities for under-represented students in the STEM fields. All eligible candidates are encouraged to apply. For 10 weeks over the summer, participants will:

  13. Armstrong Teasdale Future Energy Group | Open Energy Information

    Open Energy Info (EERE)

    St. Louis, Missouri Zip: 63105 Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Renewable energy, Services, Solar,...

  14. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  15. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the

  16. Kutscher Elected Future Chair of American Solar Energy Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kutscher Elected Future Chair of American Solar Energy Society For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 14, 1998 — Dr. Chuck Kutscher of the National Renewable Energy Laboratory (NREL) was elected future chair of the American Solar Energy Society. Starting this month, he will serve as vice-chair/chair-elect for two years and then serve a two-year term as chair beginning January 2000. "I'm excited to have the opportunity to be chair at the turn of the

  17. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  18. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Energy Savers [EERE]

    2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must

  19. New Research Facility Holds Promise For Nation's Energy Future - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL New Research Facility Holds Promise For Nation's Energy Future Leaders Praise Innovative Design For NREL's First Major Expansion In Decade July 27, 2004 Golden, Colo. - Ground was broken today on a new facility at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), designed to increase collaboration among researchers and speed the time it takes for new technologies to move from the laboratory bench to commercial manufacturing. Speaking at a

  20. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy July 14, 2014 - 11:16am Addthis Leslie Ovard Bioenergy Policy Specialist, Bioenergy Technologies Office Bioenergy has the potential to be a major source of renewable energy for the nation, powering homes, businesses, vehicles, and planes using diverse and sustainable fuels such as algae and agricultural waste. To grow America's bioenergy economy and reduce our dependence on oil imports, industry, academia,

  1. Metals at Albany: Past, Present, and Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals at Albany: Past, Present, and Future Metals at Albany: Past, Present, and Future January 4, 2016 - 2:31pm Addthis Specialty Metals Exhibit at the Albany Regional Museum in Albany, OR. Specialty Metals Exhibit at the Albany Regional Museum in Albany, OR. Reactive metals, rare metals, specialty metals - all these terms refer to a set of elements that include titanium, hafnium, niobium, and zirconium. The processing of these metals has a very close link with the Office of Fossil Energy's

  2. A Safe, Secure Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future June 8, 2011 - 12:00pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I am in Russia meeting with business, government and scientific leaders about opportunities for partnership between our two countries. One of the most important areas where we need to work together is on nuclear power and nuclear security. In a speech I delivered earlier today, I mentioned a letter that Albert Einstein wrote to President Roosevelt in

  3. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  4. Using Maps to Predict Solar Futures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Maps to Predict Solar Futures Using Maps to Predict Solar Futures June 19, 2015 - 1:43pm Addthis Using Maps to Predict Solar Futures Dr. Lidija Sekaric Dr. Lidija Sekaric Acting Director for the SunShot Technology to Market Program When first exploring the possibility of going solar, many consumers have questions: How many panels will I need for my rooftop? What is this going to cost me? How much will I save on my electricity bills? Awardees of the Energy Department's SunShot Initiative

  5. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus PDF icon deer11_blaxill.pdf More Documents & Publications Next-generation Ultra-Lean Burn Powertrain Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

  6. AgFuture Energy LLC AFE | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC (AFE) Place: Texas Product: The Texas A&M University System has formed a joint venture with a Pennsylvania-based advisory firm to commercialise energy research...

  7. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  8. Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Yesterday, Energy Secretary Ernest Moniz toured the National Energy Technology Laboratory (NETL) West Virginia campus and spoke with employees about their work developing the cleaner and more efficient energy technology that's helping power the nation. He was also on hand to dedicate the

  9. Bright Young Minds for a Clean Energy Future | Department of Energy

    Energy Savers [EERE]

    Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future August 16, 2011 - 12:11pm Addthis Bright Young Minds for a Clean Energy Future Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Registration begins August 15 and ends on October 7, 2011. Students are encouraged to register with their teachers by September 30, 2011 to take advantage of the full energy savings period. It's that time again: Back to school

  10. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  11. Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Future Print Information about the future expansion of research fields for synchrotrons and the growing number of light sources, including free electron lasers (FELs) will be posted here shortly.

  12. Future Lighting Systems: The Path to Optimized Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Northwest National Laboratory Future Lighting Systems: The Path to Optimized Energy Performance Lightfair May 5-7, 2015 2 SSL technology is re-defining the role of lighting devices * SSL is the most energy efficient, flexible, controllable lighting technology in history - Spectral power distribution, light output (e.g. luminous flux, intensity, distribution), color characteristics (e.g. CCT, CRI, Duv) - System architecture, partitioning, and power conversion * SSL is blurring the

  13. Renewable Energy in Indian Country Handbook: Past, Present and Future

    Energy Savers [EERE]

    In Indian Country The Handbook: Past, Present and Future Douglas C. MacCourt, Ater Wynne LLP Chair Member and Former Chair Indian Law Group Executive Committee Ater Wynne LLP Indian Law Section dcm@aterwynne.com Oregon State Bar Association Tribal Energy Program United States Department of Energy Annual Program Review May 4-7, 2015 Denver, Colorado Overview of Presentation * Overview of the Handbook - Origins - Goals - Details * Trends * Blueprint for a New Handbook Origins * In 2007, TEP

  14. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Little, Mark (GE Global Research)

    2012-03-14

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  15. Energy Department Charting New Future for Wastewater Treatment

    Broader source: Energy.gov [DOE]

    It will cost about $600 billion over the next 20 years to continue reliably transporting and treating wastewater, according to the Environmental Protection Agency (EPA). Find out how the Department of Energy collaborated with the National Science Foundation and EPA to explore a smarter future for water treatment.

  16. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  17. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  18. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  19. Smart Federal Partnerships Build Our Biofuels Future | Department of Energy

    Energy Savers [EERE]

    Smart Federal Partnerships Build Our Biofuels Future Smart Federal Partnerships Build Our Biofuels Future April 13, 2015 - 10:30am Addthis The Energy Department’s Bioenergy Technologies Office engages with the U.S. Department of Agriculture on many projects, including guidance on the proper removal of corn stover (non-edible corn husks, stalks, and leaves) from the field when it is used for cellulosic ethanol and other advanced biofuel production. A corn stover bale is pictured here. The

  20. The U.S.-UAE Strategic Energy Dialogue | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S.-UAE Strategic Energy Dialogue The U.S.-UAE Strategic Energy Dialogue July 14, 2014 - 11:06am Addthis Deputy Secretary Poneman traveled to Abu Dhabi, UAE, to join Energy Minister Suhail Al Mazrouei in launching the U.S.-UAE Strategic Energy Dialogue on June 23. Deputy Secretary Poneman traveled to Abu Dhabi, UAE, to join Energy Minister Suhail Al Mazrouei in launching the U.S.-UAE Strategic Energy Dialogue on June 23. The U.S.-UAE Strategic Energy Dialogue The U.S.-UAE Strategic Energy

  1. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  2. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  3. Open Data for a Clean, Secure Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Open Data for a Clean, Secure Energy Future Open Data for a Clean, Secure Energy Future July 12, 2012 - 2:35pm Addthis Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Todd Park U.S. Chief Technology Officer and Assistant to the President David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy Richard Kauffman Richard Kauffman Senior

  4. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Project LIBERTY cellulosic ethanol biorefinery in Emmetsburg, Iowa, was made possible with $100 million in BETO cost-shared funding. Photo courtesy POET-DSM. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost- competitive biofuels and bioproducts in the United States from non-food biomass resources. The potential exists to sustainably

  5. Seneca Nation of Indians - Strategic Energy Resource Plan: Energy Framework for the Future

    Energy Savers [EERE]

    "Strategic Energy Resource Plan" Energy Framework for the Future Gina Paradis October 18, 2005 Denver, Colorado SNI Energy Plan Project Location Project Overview Project Participants Objectives Outcomes Future Plans Project Location Seneca Nation Overview Seneca Nation is one of the original Five Nations of the Haudenosaunee, aka Iroquois Confederacy Approximately 7800 enrolled members Four Main Territories in WNY Allegany - 31,000 acres; City Of Salamanca leases 10,000 acres; 7350

  6. Video: Training Clean Energy Leaders of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Clean Energy Leaders of the Future Video: Training Clean Energy Leaders of the Future October 22, 2013 - 10:26am Addthis Watch our latest video for highlights from this year's Solar Decathlon and insights into how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene

  7. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  8. Search for a bridge to the energy future: Proceedings

    SciTech Connect (OSTI)

    Saluja, S.S.

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  9. The Future of Energy at the ARPA-E Summit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future blogs by email. Subscribe to all future posts Who Todd Wetzel What Energy Aero-Thermal & Mechanical Systems Employee Events Thermal Sciences Why Powering Subscribe...

  10. U.S. Department of Energy Fuel Cell Activities: Progress and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directions: Total Energy USA 2012 | Department of Energy S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Presentation by Sunita Satyapal at Total Energy USA 2012 in Houston, Texas, on November 27, 2012. PDF icon U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions More Documents & Publications National Fuel

  11. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology The Future is Here - Smart Home Technology Better Buildings Residential Network Peer Exchange Call Series: The Future is Here - Smart...

  12. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    DOE R&D Accomplishments [OSTI]

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  13. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  14. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  15. Chu at COP-16: Building a Sustainable Energy Future | Department of Energy

    Energy Savers [EERE]

    at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future December 7, 2010 - 11:16pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu addressed the U.S. Center in Cancun, Mexico, as part of the United Nations Climate Change Conference (COP-16) that has been taking place there over the past week. His speech focused the essential role that international collaborations must play in finding

  16. Supercomputing Our Way to a Clean Energy Future | Department of Energy

    Energy Savers [EERE]

    Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck

  17. Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) | Department of Energy Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies

  18. Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions

    SciTech Connect (OSTI)

    Al-Alili, A.; Hwang, Y.; Radermacher, R.; Kubo, I.

    2010-12-15

    In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

  19. DOE/Sandia Tribal Energy Internship Program: Immersion of Future Leaders into Renewable Energy

    Office of Environmental Management (EM)

    Fall 2011 Sandra Begay-Campbell skbegay@sandia.gov DOE / SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM Immersion of future leaders into renewable energy 2 | Tribal Energy Program eere.energy.gov/tribalenergy Intern Gathering at Southwest RE Conference, Flagstaff, AZ Pictured: Suzanne Singer, Gepetta Billie, Sandra Begay- Campbell, Carson Pete, Terry Battiest, Prestene Garnenez Overview: 2002 - 2010 Statistics Type of Work for Past Interns Tribal related work Non-tribal Engr/ Science work Seeking

  20. DOE/Sandia Tribal Energy Internship Program: Immersion of Future Leaders into Renewable Energy

    Office of Environmental Management (EM)

    2 Update Sandra Begay-Campbell skbegay@sandia.gov DOE / SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM Immersion of future leaders into renewable energy 2 | Tribal Energy Program eere.energy.gov/tribalenergy Intern Gathering at Southwest RE Conference, Flagstaff, AZ Pictured: Suzanne Singer, Gepetta Billie, Sandra Begay- Campbell, Carson Pete, Terry Battiest, Prestene Garnenez Overview: 2002 - 2012 Statistics Type of Work for Former Interns Tribal related work Non-tribal Engr/ Science work Seeking

  1. Roadmap for the Future of Commercial Energy Codes

    SciTech Connect (OSTI)

    Rosenberg, Michael I.; Hart, Philip R.; Zhang, Jian; Athalye, Rahul A.

    2015-01-26

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. For commercial building energy codes to continue to progress as they have over the last 40 years, the next generation of building codes will need to provide a path that is led by energy performance, ensuring a measurable trajectory toward net zero energy buildings. This report outlines a vision to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building-specific prescriptive packages that are designed both to be cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target, as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages. This review of the possible code formats (further described in Section 2.1) arrives at the following conclusions: • Predictive performance with energy use index (EUI) targets falls short as a code mechanism, since it is difficult to match individual building use to broad EUI targets. • Outcome-based codes–while an essential approach that should be applied to all buildings–are not a substitute for design and construction energy codes that focus on compliance at occupancy. • For a design and construction code, a differential predictive performance method with a stable and independent baseline provides the best accuracy and potential for a highly automated approach that could eventually be applied to most buildings. • Current performance codes that have a dependent and time-variable baseline should be replaced by a differential predictive performance method with a stable and independent baseline. • At some point in the future, tools that demonstrate predictive performance compliance may become so simple that there will no longer be a need for any prescriptive path. • As a bridge, prescriptive packages can provide a transition from the current component prescriptive approach to a performance only code, while providing flexibility and improved energy equivalency.

  2. The great ``retail wheeling`` illusion, and more productive energy futures

    SciTech Connect (OSTI)

    Cavanagh, R.

    1994-12-31

    This paper sets out the reasons why many environmental and public interest organizations oppose retail wheeling. Cavanagh argues that retail wheeling would destroy incentives for energy efficiency improvements and renewable energy generation--benefits that reduce long-term energy service costs to society as a whole. The current debate over the competitive restructuring of the electric power industry is critical from both economic and environmental perspectives. All attempts to introduce broad-scale retail wheeling in the United States have failed; instead, state regulators are choosing a path that emphasizes competition and choice, but acknowledges fundamental differences between wholesale and retail markets. Given the physical laws governing the movement of power over centrally controlled grids, the choice offered to customers through retail wheeling of electricity is a fiction -- a re-allocation of costs is all that is really possible. Everyone wants to be able to claim the cheapest electricity on the system; unfortunately, there is not enough to go around. By endorsing the fiction of retail wheeling for certain types of customers, regulators would be recasting the retail electricity business as a kind of commodity exchange. That would reward suppliers who could minimize near-term unit costs of electricity while simultaneously destroying incentives for many investments, including cost-effective energy efficiency improvements and renewable energy generation, that reduce long-term energy service costs to society as a whole. This result, which has been analogized unpersuasively to trends in telecommunications and natural gas regulation, is neither desirable nor inevitable. States should go on saying no to retail wheeling in order to be able to create something better: regulatory reforms that align utility and societal interests in pursuing a least-cost energy future. An appendix contains notes on some recent Retail Wheeling Campaigns.

  3. PARC: Harvesting Solar Energy for the Future (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Other: PARC: Harvesting Solar Energy for the Future Citation Details In-Document Search Title: PARC: Harvesting Solar Energy for the Future You are accessing a document from the...

  4. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Energy Savers [EERE]

    for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet ...

  5. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy Gamma-Ray Sky Survey:...

  6. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  7. Sun Rises on Tribal Energy Future in Nevada | Department of Energy

    Energy Savers [EERE]

    Sun Rises on Tribal Energy Future in Nevada Sun Rises on Tribal Energy Future in Nevada March 24, 2014 - 3:04pm Addthis 1 of 4 On March 21, 2014, tribal leaders and community members of the Moapa Band of Paiute in Nevada celebrated the groundbreaking of the 250-megawatt Moapa Southern Paiute Solar Project, making it the first utility-scale solar project on tribal land. Tribal leaders balanced the tribe's high energy costs with preserving the Moapa land and cultural heritage. Image: Jim Laurie. 2

  8. FutureGen Industrial Alliance Inc | Open Energy Information

    Open Energy Info (EERE)

    FutureGen Industrial Alliance Inc Jump to: navigation, search Name: FutureGen Industrial Alliance Inc Place: Washington, Washington, DC Zip: 20006 Product: The FutureGen Industrial...

  9. Revolution Now: The Future Arrives for Five Clean EnergyTechnologies...

    Office of Environmental Management (EM)

    Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update Revolution Now: The ... energy technologies including wind, solar, buildings, and lightin For decades, ...

  10. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements ...

  11. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Department of Energy and FutureGen Alliance Discuss Next Steps for

    Energy Savers [EERE]

    FutureGen 2.0 in Illinois | Department of Energy FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 19, 2010 - 12:00am Addthis Washington, DC - At a meeting today in Chicago, officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture

  14. Department of Energy and FutureGen Alliance Discuss Next Steps for

    Office of Environmental Management (EM)

    FutureGen 2.0 in Illinois | Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 20, 2010 - 1:00pm Addthis Washington, DC - Officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in

  15. Future Home Tech: 8 Energy-Saving Solutions on the Horizon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Home Tech: 8 Energy-Saving Solutions on the Horizon Future Home Tech: 8 Energy-Saving Solutions on the Horizon December 18, 2015 - 12:37pm Addthis Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan explains how efficiency standards and advances in technology are helping consumers save energy and previews the energy-saving home technologies of tomorrow. | Video by Jeremy Kahn, Office of Energy Efficiency and Renewable Energy. Paul Lester Paul Lester Digital

  16. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  17. Late Quaternary paleodune deposits in Abu Dhabi Emirate, UAF: Paleoclimatic implications

    SciTech Connect (OSTI)

    Brouwers, E.M.; Bown, T.M. (Geological Survey, Denver, CO (United States)); Hadley, D.G. (Geological Survey, Reston, VA (United States))

    1993-04-01

    Remnants of late Quaternary paleodunes are exposed near the coast of the Arabian Gulf and in large inland playas and interdunal areas in central and western Abu Dhabi Emirate over a distance of >45 km normal to the coast. Paleodunes occur south of Madinat Zayed (lat. 23[degree]35 N), which marks the northern limit of a modern dune field that grades into the mega-dune sand sea of the ar Rub al Khali, Saudi Arabia. Coastal paleodunes are composed of weakly cemented millolid foraminifers, ooids, and rounded biogenic grains, whereas inland and southward the paleodunes show a progressive increase in the proportion of eolian quartz sand. The paleodunes exhibit large-scale trough foresets in remnant exposures 0.5 to 10 m thick, indicating paleowind directions from 65[degree] to 184[degree] (dominantly southeast transport). Scattered paleoplaya remnants provide paleodune scale. Paleoplaya deposits form buttes 30--50 m high. If coeval with the Paleodunes, large-scale paleodune fields are implied (100+ m high), comparable to star dunes and sand mountains at the northwestern edge of the ar Rub al Khali. Based on U-Th isotopic analyses, the carbonate paleodune sands are >160ka and probably >250ka. The carbonate source was a shallow, nearly dry Arabian Gulf at a time when large areas were exposed during a low sea-level stand. Paleowind direction indicates that Pleistocene prevailing winds were northwesterly, the direction of the dominant (winter shamal) wind today. The geographic extend and implied magnitude of the paleodunes suggest large-scale eolian transport of carbonate sand during the Pleistocene disiccation, and admixed quartz sand identifies a youthful stage of contemporaneous evolution of the ar Rub al Khali. Wave-eroded paleodunes probably floor much of the present-day Gulf and extend beneath the modern dunes and sand mountains.

  18. Vision of the Future Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless, cost-effective electricity

  19. Hydrogen and the materials of a sustainable energy future

    SciTech Connect (OSTI)

    Zalbowitz, M.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  20. Shell Future Fuels and CO2 | Open Energy Information

    Open Energy Info (EERE)

    Shell Future Fuels and CO2 Jump to: navigation, search Name: Shell Future Fuels and CO2 Place: Glasgow, Scotland, United Kingdom Zip: G1 9BG Sector: Hydro, Hydrogen Product:...

  1. Biomass 2009: Fueling Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09: Fueling Our Future Biomass 2009: Fueling Our Future We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success. Biomass 2009: Fueling Our Future was held on March 17 and 18, 2009, at the Gaylord National Harbor in National Harbor, Maryland. More than 600 participants from industry, finance, government, and academia were in attendance, including several large and

  2. Making a Difference: Hydropower and Our Clean Energy Future | Department of

    Office of Environmental Management (EM)

    Energy Hydropower and Our Clean Energy Future Making a Difference: Hydropower and Our Clean Energy Future November 5, 2015 - 9:52am Addthis Making a Difference: Hydropower and Our Clean Energy Future Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Not much beats stepping outside and taking a deep breath of fresh air. Guess what-you can thank hydropower for contributing to that! Since hydropower is fueled by water, it is a climate-friendly

  3. Better Buildings for a Brighter Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings for a Brighter Future Better Buildings for a Brighter Future This program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's accomplishments/progress to date. PDF icon Better Buildings for a Brighter Future More Documents & Publications The BetterBuildings View BetterBuildings for Michigan: Residential Program The Better Buildings Neighborhood View - September 2012

  4. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The vision of the VW group for the future of diesel engines and future fuels is presented. PDF icon deer10_sjohnson.pdf More Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts EPA's Recent Advance Notice on Greenhouse Gases

  5. #WomenInSTEM: Making a Cleaner Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #WomenInSTEM: Making a Cleaner Future #WomenInSTEM: Making a Cleaner Future Addthis Duration 1:44 Topic Energy Sector Jobs Solar Wind Science Education

  6. Idaho Save Energy Now Industries of the Future

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Idaho.

  7. STATE AND LOCAL RESOURCES FOR A CLEAN ENERGY FUTURE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For more information on these efforts, visit http:energy.goveereslscespc BENCHMARKING ... Benchmarking building energy use is the foundation of smart energy management and a best ...

  8. Powertrain Trends and Future Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Trends and Future Potential Powertrain Trends and Future Potential Gasoline and clean diesel engines have the potential to reduce CO2 further as technology for both types of engines continues to evolve PDF icon deer09_rueger.pdf More Documents & Publications SCR Technologies for NOx Reduction Injection System and Engine Strategies for Advanced Emission Standards Advanced Diesel Common Rail Injection System for Future Emission Legislation

  9. Biodiesel ASTM Update and Future Technical Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel ASTM Update and Future Technical Needs Biodiesel ASTM Update and Future Technical Needs Latest ASTM fuel specifications on biodiesel blends are summarized as well as future needs for improved fuel quality, process quality controls, and new performance testing procedures. PDF icon deer08_howell.pdf More Documents & Publications Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Recent Research to Address Technical Barriers to Increased Use of Biodiesel Biodiesel

  10. Stewards of Affordable Housing for the Future | Department of Energy

    Energy Savers [EERE]

    Stewards of Affordable Housing for the Future Stewards of Affordable Housing for the Future Better Buildings Multifamily Peer Exchange Call Featuring: Stewards of Affordable Housing for the Future, call slides and discussion summary, April 7, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Finance Peer Exchange Kickoff Call Better Buildings Working with Utilities Peer Exchange Call: Kick-off Shared Space vs. In-Unit Upgrades in Multifamily Buildings

  11. The Future of Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Home Heating The Future of Home Heating Huber presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the future of home heating PDF icon pyrolysis_huber.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends Biofuels Report Final

  12. Better Buildings for a Brighter Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's accomplishmentsprogress to date. Better Buildings for a Brighter Future More...

  13. Ensuring the Resiliency of Our Future Water and Energy Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy the Resiliency of Our Future Water and Energy Systems Ensuring the Resiliency of Our Future Water and Energy Systems June 18, 2014 - 12:00pm Addthis Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Infographic by Sarah Gerrity, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Learn More Read the full Water-Energy Nexus report. Visit the Water-Energy Tech Team website to learn more about the water-energy nexus.

  14. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  15. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  16. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  17. Future Fuels: Issues and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels: Issues and Opportunities Future Fuels: Issues and Opportunities 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_beard.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Effect of GTL Diesel Fuels on Emissions and Engine Performance Application of Synthetic Diesel Fuels

  18. The Future of Bioenergy Feedstock Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production The Future of Bioenergy Feedstock Production This presentation was given by John Ferrell at the Symbiosis Conference PDF icon symbiosis_conference_ferrell.pdf More Documents & Publications 2015 Peer Review Presentations-Terrestrial Feedstocks Symbiosis: Addressing Biomass Production Challenges and Climate Change Bioenergy Technologies Office Overview

  19. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  20. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research interests of Mark Wise span particle physics, cosmology and nuclear physics. His recent work has centered on extensions of the standard model where baryon number and lepton number are gauged and extensions of the standard model that have novel sources of baryon number violation and new sources of charged lepton flavor violation

  1. Multi-Path Transportation Futures Study- Lessons for the Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  2. Moving Toward a Peaceful Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear

  3. New Diesel Feedstocks and Future Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks and Future Fuels New Diesel Feedstocks and Future Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_beard.pdf More Documents & Publications Renewable Diesel Renewable Diesel Fuels: Status of Technology and R&D Needs Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard

  4. BATT Program- Summary and Future Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BATT Program- Summary and Future Plans BATT Program- Summary and Future Plans 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_42_srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Development of Electrolytes for Lithium-ion Batteries Development of Electrolytes for Lithium-ion Batteries

  5. Moving Toward a Peaceful Nuclear Future | Department of Energy

    Office of Environmental Management (EM)

    Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear

  6. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  7. Moving Towards a More Reliable Clean Energy Future in the Pacific Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Moving Towards a More Reliable Clean Energy Future in the Pacific Northwest Moving Towards a More Reliable Clean Energy Future in the Pacific Northwest September 10, 2015 - 12:41pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability One of the nation's largest and most comprehensive smart grid demonstration projects recently concluded, offering up valuable results and lessons learned. The

  8. California's Clean Energy Future - Where do we go from here? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Clean Energy Future - Where do we go from here? California's Clean Energy Future - Where do we go from here? Slides presented as part of the Joint Plenary session of the 2011 Annual Merit Review. PDF icon pl001_eggert_joint_plenary_2011_o.pdf More Documents & Publications Microsoft Word - GSP_Charter.doc Solar Energy Development in the Southwest QER - Comment of Canadian Hydropower Association

  9. Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation

    Office of Environmental Management (EM)

    Collaboration Following Russian Delegation Visit to the United States | Department of Energy Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and

  10. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Broader source: Energy.gov (indexed) [DOE]

    Water Power for a Clean Energy Future Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most

  11. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (WWPP) | Department of Energy Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. PDF icon 51315.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet 47688.pdf Before the House Science and Technology

  12. Goal, Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China National Energy Research Center of Liquid Bio-fuel National Energy R&D Center for Biomass Huiyong Zhuang Research Professor National Energy Research Center of Liquid Biofuel National Energy R&D Center for Biomass Energy Research Center of the Investment Association of China National Bio Energy Group 2014.7.29-30 Washington Content 1.Background and goal 2.Exploration and experience

  13. RevolutionƒNow The Future Arrives for Five Clean Energy Technologies…2015 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY Revolution...Now The Future Arrives for Five Clean Energy Technologies - 2015 Update November 2015 ii Contributors Luke Bassett, DOE Office of Energy Policy & Systems Analysis and Office of Energy Efficiency & Renewable Energy James Brodrick, DOE Building Technologies Office Steve Capanna, DOE Office of Energy Efficiency & Renewable Energy Jonathan Castellano, DOE Vehicle Technologies Office Christy Cooper, DOE Vehicle Technologies Office Paul Donohoo-Vallett,

  14. Photo of the Week: Alaska's Future in Renewable Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alaska's Future in Renewable Energy Photo of the Week: Alaska's Future in Renewable Energy August 13, 2013 - 12:53pm Addthis In Alaska's rural villages, many families struggle with the impact of high energy costs -- often times, almost half of a family's income is spent on fuel to power a home. To face this, the Department of Energy's Office of Indian Energy works closely with tribal nations, state government, NGOs and the private sector to help tribes develop the energy resources

  15. Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles

    SciTech Connect (OSTI)

    Berry, G; Daily III, W

    2004-06-03

    This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

  16. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  17. Transportation Energy Futures Study: The Key Results and Conclusions...

    Open Energy Info (EERE)

    activities related to renewable energy and energy efficiency technologies. Austin Brown, Ph.D., is a senior analyst in the Washington, D.C. office of the National Renewable...

  18. Critical Materials for a Clean Energy Future | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For this purpose, "criticality" was a measure that combined importance to the clean energy economy and the risk of supply disruption. With the world on the cusp of a clean energy ...

  19. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  20. The Future is Now for Advanced Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Now for Advanced Vehicles The Future is Now for Advanced Vehicles January 23, 2015 - 10:56am Addthis Moniz Delivers Keynote Remarks 1 of 10 Moniz Delivers Keynote Remarks Secretary Moniz touted the Department's investments in advanced vehicle technologies, infrastructure and manufacturing. Photo by Sarah Gerrity Date taken: 2015-01-22 04:33 Secretary Moniz Announces More than $55M in Fuel-Efficient Vehicle Funding 2 of 10 Secretary Moniz Announces More than $55M in Fuel-Efficient

  1. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  2. The Drive for Energy Independence and Fuels of the Future | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Independence and Fuels of the Future The Drive for Energy Independence and Fuels of the Future Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_warnecke.pdf More Documents & Publications The Drive for Energy Independence and Fuels of the Future Automotive Fuels - The

  3. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future directions in engines and fuels, powertrains and vehicle system review. PDF icon deer10_tatur.pdf More Documents & Publications A View from the Bridge Boosting Small Engines to High Performance - Boosting Systems and Combustion Development Methodology Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV

  4. #WomenInSTEM: Advancing Our Energy Future with STEM Mentorships |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advancing Our Energy Future with STEM Mentorships #WomenInSTEM: Advancing Our Energy Future with STEM Mentorships October 17, 2014 - 1:23pm Addthis Watch the video above to meet Karen Lefkowitz, the the latest profile in Energy.gov's #WomenInSTEM video series. | Video by Matty Greene, Energy Department. Dr. Elizabeth Sherwood-Randall Dr. Elizabeth Sherwood-Randall Deputy Secretary of Energy Matty Greene Matty Greene Former Videographer #WomenInSTEM Our #WomenInSTEM video

  5. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  6. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  7. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Thermal Solar Thermal Return to Search NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date SkyFuel Inc. CO License Cooperative Research (CRADA) August 3, 2009 Video NREL Success Stories - SkyFuel Partnership Reflects Bright Future Summary Huge parabolic mirrors catching the sun's rays could crisscross America's deserts soon, thanks to a

  8. DOE Science Showcase - Energy Plants of the Future | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information DOE Science Showcase - Energy Plants of the Future Advanced Integrated Gasification Combined Cycle Power Plants Advanced IGCC is a flexible technology for generating low-cost electricity while meeting all future environment requirements Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification

  9. The Role of the Internal Combustion Engine in our Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Internal Combustion Engine in our Energy Future The Role of the Internal Combustion Engine in our Energy Future Reviews heavy-duty vehicle market, alternatives to internal combustion engines, and pathways to increasing diesel engine efficiency PDF icon deer11_greszler.pdf More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine View from the Bridge: Commercial Vehicle Perspective Impact of Vehicle Efficiency Improvements on Powertrain Design

  10. Department of Energy Takes Another Step Forward on FutureGen Project in

    Office of Environmental Management (EM)

    Mattoon, Illinois | Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, Illinois Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, Illinois July 14, 2009 - 1:00pm Addthis Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's

  11. Technology: How to build a low-energy future

    Broader source: Energy.gov [DOE]

    Advanced construction technologies promise huge energy savings, says Philip Farese. Investment is needed to bring them to market and to encourage their use.

  12. Idaho Save Energy Now - Industries of the Future | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Develop an industrial refrigeration energy saving assessment (ESA) protocol and analysis ... three, developing an industrial refrigeration ESA protocol, which sought to identify ...

  13. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  14. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMAND Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors TRANSPORTATION ENERGY FUTURES SERIES: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  15. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    SciTech Connect (OSTI)

    NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

    2012-03-26

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

  16. Secretary Chu Announces FutureGen 2.0 | Department of Energy

    Energy Savers [EERE]

    FutureGen 2.0 Secretary Chu Announces FutureGen 2.0 August 5, 2010 - 1:00pm Addthis Washington, DC - Today, U.S. Energy Secretary Steven Chu and U.S. Senator Dick Durbin announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners estimate the program will

  17. Future EfficientDynamics with Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EfficientDynamics with Heat Recovery Future EfficientDynamics with Heat Recovery A 15% increase in engine performance could be demonstrated with a Dual-Loop-Rankine and 10% increase in engine performance could result from a Single-Loop-Rankine PDF icon deer09_obieglo.pdf More Documents & Publications Efficient and Dynamic … The BMW Group Roadmap for the Application of Thermoelectric Generators Efficient and Dynamic … The BMW Group Roadmap for the Application of Thermoelectric Generators

  18. State and Local Resources for a Clean Energy Future

    Broader source: Energy.gov [DOE]

    The State and Local Solution Center provides resources to advance successful, high impact clean energy policies, programs, and projects for states and local governments across the country. By championing state and local leadership, addressing specific market barriers, and promoting standardized approaches, the State and Local Solution Center aims to help states and local governments take clean energy to scale in their communities.

  19. The future of energy efficiency in the steel industry

    SciTech Connect (OSTI)

    Lakshminarayana, B.

    1997-07-01

    Steel is present in every aspect of life, in all industrial, transportation sectors as well as in households in US. The American steel industry today can be counted among the most productive, efficient and technologically advanced in the world. Steel combines low cost with attractive engineering properties and is the most recycled of all materials. Despite these appealing characteristics of steel, the steel industry has confronted significant challenges from other competitive materials. To keep abreast with the competition it faces, pursuit of research and development activities is an absolute necessity. This competition has forced the steel industry to address many issues that here to fore were deemed unimportant. One of these areas is energy efficiency. Steelmaking energy costs comprise over 15 percent of the manufacturing cost of steel. This compares to less than five percent for most other manufacturing industries. The US steel industry, which accounts for about nine percent (1.8 quads/year) of the US industrial energy use, has made considerable progress in the area of energy efficiency. Over the past 20 years, the US steel industry has reduced its energy intensity by 43 percent. The impact of energy usage on environmental and the results of government regulations have made the industry concentrate more and more on the issues of energy efficiency. In addition, a possible energy shortage could become a global phenomenon in the 21st century if steps to conserve energy are not taken. The risk in researching and adapting new technologies is greater in the steel industry than in many other manufacturing industries. Steelmaking is capital intensive in both equipment and processes. Government/industry partnerships can help reduce such risks. The Department of Energy's Office of Industrial Technologies (DOE/OIT) has been supporting energy efficient research relevant to the steel industry. Salient features of some of the projects will be explored in this paper. These endeavors bring together the collective resources not only of the government and the industry, but also of national laboratories, universities and advanced technology companies. Such efforts continued into 21st century will make the US steel industry more environmentally friendly, energy efficient and globally competitive.

  20. ITP Glass: Glass Industry of the Future: Energy and Environmental Profile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Glass Industry; April, 2002 | Department of Energy Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 PDF icon glass2002profile.pdf More Documents & Publications ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass: Glass Industry

  1. U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol at U.S.-China Strategic Economic Dialogue | Department of Energy Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue December 15, 2006 - 9:46am Addthis BEIJING, CHINA - The United States and China today announced that China will join the Government Steering Committee of the FutureGen project making

  2. Capturing the Sun, Creating a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  3. Capturing the Sun, Creating a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-07-20

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  4. Keynote Remarks to the MASDAR/World Future Energy Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... I don't want to sound too alarmist, but what we are really talking about is reducing the world's energy insecurity. That's the crux of the issue. Now comes the hard part: what do ...

  5. The Future of Renewable Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to power us for centuries going forward. While wind and solar will continue to be vital sources of renewable energy for us, geothermal is not constrained by weather variations or...

  6. Wisconsin Tribal Leaders Work Towards a Clean Energy Future ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Related Articles Julia Bovey, First Wind; Tracey LeBeau; Neil Kiely, First Wind; and Bob Springer (NREL) at First Wind's new Rollins project near Lincoln, Maine. Tackling Energy ...

  7. Star Power on Earth: Path to Clean Energy Future

    ScienceCinema (OSTI)

    Ed Moses

    2010-09-01

    Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

  8. Massachusetts is Winding the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of ...

  9. VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bill Gates and Secretary Chu Chat on the Future of Energy VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy March 5, 2012 - 1:24pm Addthis Secretary Chu sits down with Microsoft Founder and Chairman Bill Gates at the 2012 ARPA-E Energy Innovation Summit. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last week, attendees at the 2012 ARPA-E Energy Innovation Summit heard from a variety of leaders from across the

  10. Energy for a sustainable future. Summary report and recommendations

    SciTech Connect (OSTI)

    Not Available

    2010-04-15

    This year, in September, world leaders will meet at the United Nations to assess progress on the Millennium Development Goals and to chart a course of action for the period leading up to the agreed MDG deadline of 2015. Later in the year, government delegations will gather in Mexico to continue the process of working towards a comprehensive, robust and ambitious climate change agreement. Energy lies at the heart of both of these efforts. The decisions we take today on how we produce, consume and distribute energy will profoundly influence our ability to eradicate poverty and respond effectively to climate change. Addressing these challenges is beyond the reach of governments alone. It will take the active engagement of all sectors of society: the private sector; local communities and civil society; international organizations and the world of academia and research. To that end, in 2009 a high-level Advisory Group on Energy and Climate Change was established, chaired by Kandeh Yumkella, Director-General of the United Nations Industrial Development Organization (UNIDO). Comprising representatives from business, the United Nations system and research institutions, its mandate was to provide recommendations on energy issues in the context of climate change and sustainable development. The Group also examined the role the United Nations system could play in achieving internationally-agreed climate goals. The Advisory Group has identified two priorities - improving energy access and strengthening energy efficiency - as key areas for enhanced effort and international cooperation. Expanding access to affordable, clean energy is critical for realizing the MDGs and enabling sustainable development across much of the globe. Improving energy efficiency is paramount if we are to reduce greenhouse gas emissions. It can also support market competitiveness and green innovation. (LN)

  11. U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions Total Energy USA Houston, Texas Dr. Sunita Satyapal 11/27/2012 Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Overview Fuel Cells - An Emerging Global Industry United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

  12. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  13. Dark energy properties from large future galaxy surveys

    SciTech Connect (OSTI)

    Basse, Tobias; Bjlde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (?(w{sub p})?(w{sub a})){sup ?1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ?CDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup ?6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2? significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1? precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1? sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and finite temperature effects can be probed with 1? precision for the first time.

  14. Laying the Foundation for a More Energy-Secure Future in Rural...

    Broader source: Energy.gov (indexed) [DOE]

    to seek follow-on support through DOE technical assistance, funding, and other related future opportunities. In rural Alaska, energy is just one of a host of challenges Native...

  15. The Future of Offshore Wind Energy and Transmission in New Jersey...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 11, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium The Future of Offshore Wind Energy and Transmission in New Jersey Kris Ohleth The Atlantic Wind Connection Offshore...

  16. Affordable comfort 95 - investing in our energy future

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  17. Future of the Beam Energy Scan program at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of themore » QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.« less

  18. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  19. Future of the Beam Energy Scan program at RHIC

    SciTech Connect (OSTI)

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the ?sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow ?sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at ?sNN from 20 to 7 GeV in collider mode, and from ?sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  20. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A SMART GRID MEANS TO OUR NATION'S FUTURE. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and

  1. What the Smart Grid Means to America's Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What the Smart Grid Means to America's Future What the Smart Grid Means to America's Future The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and

  2. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of

    Office of Scientific and Technical Information (OSTI)

    Secondary Gamma Rays (Journal Article) | SciTech Connect Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Authors: Inoue, Yoshiyuki ; /KIPAC, Menlo Park /Stanford U., Physics Dept. /SLAC ; Kalashev, Oleg E. ; /Moscow, INR ; Kusenko, Alexander ; /UCLA /Tokyo U., KIPMU ; , Publication Date: 2013-12-18 OSTI Identifier: 1111379 Report

  3. HOW THE SMART GRID PROMOTES A GREENER FUTURE. | Department of Energy

    Energy Savers [EERE]

    HOW THE SMART GRID PROMOTES A GREENER FUTURE. HOW THE SMART GRID PROMOTES A GREENER FUTURE. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and

  4. Interview with ARPA-E: The Future of Semiconductors | Department of Energy

    Office of Environmental Management (EM)

    Interview with ARPA-E: The Future of Semiconductors Interview with ARPA-E: The Future of Semiconductors February 4, 2014 - 10:56am Addthis Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department. Mark D. Mitchell Communications Support Contractor to ARPA-E What are the key facts? ARPA-E's SWITCHES program is focused on making the transmission of electricity more efficient by exploring wide

  5. The New Energy Future in Indian Country: Confronting Climate Change, Creating Jobs, and Conserving Nature

    Energy Savers [EERE]

    NEW ENERGY FUTURE IN INDIAN COUNTRY: Confr onting Climate Change, Cr eating J obs, and Conser ving Natur e N A T I O N A L W I L D L I F E F E D E R A T I O N 2 0 1 0 * On average, Tribal households pay significantly more in home energy expenses than other Americans. Most utilities are solely owned and operated by non-Tribal entities, so the money paid to energy providers immediately leaves tribal communities. THE NEW ENERGY FUTURE IN INDIAN COUNTRY * The infrastructure and revenue streams

  6. The New Energy Future in Indian Country: Confronting Climate Change, Creating Jobs, and Conserving Nature

    Energy Savers [EERE]

    THE NEW ENERGY FUTURE IN INDIAN COUNTRY: Confronting Climate Change, Creating Jobs, and Conserving Nature N A T I O N A L W I L D L I F E F E D E R A T I O N 2 0 1 0 * On average, Tribal households pay significantly more in home energy expenses than other Americans. Most utilities are solely owned and operated by non-Tribal entities, so the money paid to energy providers immediately leaves tribal communities. THE NEW ENERGY FUTURE IN INDIAN COUNTRY * The infrastructure and revenue streams

  7. No Small Task: How Small Businesses are Critical to our Energy Future |

    Office of Environmental Management (EM)

    Department of Energy No Small Task: How Small Businesses are Critical to our Energy Future No Small Task: How Small Businesses are Critical to our Energy Future July 3, 2012 - 1:25pm Addthis Shelton Clark, President of Eberline Services, receives the Small Business of the Year award from Dot Harris, Director of the Office of Economic Impact and Diversity. Eberline Services, a New Mexico-based small business, gets 90% of their business from the Energy Department. They specialize in

  8. Inertial fusion: an energy-production option for the future

    SciTech Connect (OSTI)

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  9. Energy from garbage loses promise as wave of future

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    A front-page article in The Wall Street Journal (June 16, 1988) reports on the rising troubles of waste-to-energy projects. The garbage crisis has promoted the construction of 73 waste-to-energy plants around the country, with hundreds more planned at a combined cost of more than $18 billion, writes Bill Richards. Critics profess to feel an eerie sense of deja vu in the trend toward burning. In the 1990s, they say, this could become for municipalities what the nuclear plant building binge was to electric utilities in the 1970s. It plunged many into an economic and environmental swamp in which a few are still mired, their huge cost over-runs unrecoverable from customers, their shareholder dividends shrunken or ended.

  10. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  11. Empowering Indian Country to Energize Future Generations (Fact Sheet), Office of Indian Energy (OIE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shared Path Toward a Sustainable Energy Future The DOE Offce of Indian Energy's approach is, frst and foremost, a collaborative one. Led by Director Tracey A. LeBeau (Cheyenne River Sioux), the offce works with tribal nations, federal agencies, state governments, nongovernmental organizations, and the private sector to develop the considerable energy resources that exist on Indian lands. To guide the strategic planning and implementation of the department's tribal energy programs and policies,

  12. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  13. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema (OSTI)

    Gerry Stokes; Jim Misewich

    2013-07-19

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  14. Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future

    Broader source: Energy.gov [DOE]

    From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

  15. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

  16. The Right Connections: Seeing the Future of Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Right Connections: Seeing the Future of Energy Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Right Connections: Seeing the Future of Energy Chief Technology Officer and head of GE's Global Research organization Vic Abate spoke at the 2016 ARPA-e Energy Innovation Summit in Washington, D.C. He spoke about the work

  17. Smart Grid: Powering Our Way to a Greener Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: Powering Our Way to a Greener Future Smart Grid: Powering Our Way to a Greener Future April 25, 2013 - 9:28am Addthis Eric Lightner Eric Lightner Director of the Federal Smart Grid Task Force in the Office of Electricity Delivery and Energy Reliability Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money

  18. New Interactive Map Shows Big Potential for America's Wind Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Interactive Map Shows Big Potential for America's Wind Energy Future New Interactive Map Shows Big Potential for America's Wind Energy Future March 31, 2015 - 11:50am Addthis Wind Vision See the projected growth of the wind industry over the next 35 years. Select a Year 2000 2010 2013 2020 2030 2050 All units are in gigawatts (GW). Only states with total capacity over 0.1 GW are included per year. Find out more about the data by reading the Wind Vision Report. You can

  19. Laying the Foundation for a More Energy-Secure Future in Rural Alaska |

    Office of Environmental Management (EM)

    Department of Energy Laying the Foundation for a More Energy-Secure Future in Rural Alaska Laying the Foundation for a More Energy-Secure Future in Rural Alaska September 22, 2014 - 9:25am Addthis A 900-kW Native-owned wind farm generates 10% of Nome's electricity, reducing dependence on diesel fuel. Photo from Bering Straits Native Corp., NREL 16298 A 900-kW Native-owned wind farm generates 10% of Nome's electricity, reducing dependence on diesel fuel. Photo from Bering Straits Native

  20. Lab Game-Changers in Our Past and Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future March 20, 2012 - 1:17pm Addthis A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form scientific partnerships designed to hurdle an energy barrier with transformative technology. | Photo

  1. Wind Vision: New Report Highlights a Robust Wind Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vision: New Report Highlights a Robust Wind Energy Future Wind Vision: New Report Highlights a Robust Wind Energy Future March 12, 2015 - 11:40am Addthis The <a href="/node/778491">Wind Vision Report</a> describes potential wind industry scenarios for 2020, 2030, and 2050. The Wind Vision Report describes potential wind industry scenarios for 2020, 2030, and 2050. Jose Zayas Jose Zayas Office Director, Wind and Water Power Technologies Office MORE ON WIND

  2. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect (OSTI)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  3. Accelerating the Transition to Clean Energy Technologies | Department of

    Energy Savers [EERE]

    Energy the Transition to Clean Energy Technologies Accelerating the Transition to Clean Energy Technologies April 5, 2011 - 2:40pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Editor's Note: Join the conversation surrounding this year's Clean Energy Ministerial on Twitter via #CEM2. I've just arrived in Abu Dhabi, United Arab Emirates, for the second Clean Energy Ministerial. I'm excited to be

  4. Fuel Cells: Just a Dream - or Future Reality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells: Just a Dream - or Future Reality Fuel Cells: Just a Dream - or Future Reality Presentation about tuning activity and stability of precious metal catalysts for the oxygen reduction reaction, presented by Nenad Markovic, Argonne National Laboratory, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia. PDF icon 3_cwg_may2012_markovic.pdf More Documents & Publications Advanced

  5. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002_deer_eberhardt.pdf More Documents & Publications Final Report - Hydrogen Delivery Infrastructure Options Analysis FreedomCAR and Fuel Partnership 2009 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments

  6. Strengthening Tribal Communities, Sustaining Future Generations (Brochure), U.S. Department of Energy (DOE), Office of Indian Energy (OIE)

    Energy Savers [EERE]

    Office of Indian Energy Policy and Programs Strengthening Tribal Communities, Sustaining Future Generations OUR MISSION To maximize the development and deployment of energy solutions for the benefit of American Indians and Alaska Natives. OUR VISION To be the premier federal office for providing tribal communities and Alaska Native villages with the knowledge, skills, and resources needed to implement successful strategic energy solutions. "Within every challenge lie the seeds of

  7. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  8. Helping to Finance the Future of Clean Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping to Finance the Future of Clean Coal Helping to Finance the Future of Clean Coal August 21, 2014 - 10:30am Addthis Helping to Finance the Future of Clean Coal Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) This week I delivered a keynote address at Coal-Gen, an annual conference of more than 2,000 coal industry professionals. I shared an experience not from my time at the Department of Energy, but rather from my time as an entrepreneur in

  9. Helping to Finance the Future of Clean Coal | Department of Energy

    Energy Savers [EERE]

    Helping to Finance the Future of Clean Coal Helping to Finance the Future of Clean Coal August 21, 2014 - 10:30am Addthis Helping to Finance the Future of Clean Coal Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) This week I delivered a keynote address at Coal-Gen, an annual conference of more than 2,000 coal industry professionals. I shared an experience not from my time at the Department of Energy, but rather from my time as an entrepreneur in

  10. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  11. Prospects for future very high-energy gamma-ray sky survey: impact of

    Office of Scientific and Technical Information (OSTI)

    secondary gamma rays (Journal Article) | SciTech Connect future very high-energy gamma-ray sky survey: impact of secondary gamma rays Citation Details In-Document Search Title: Prospects for future very high-energy gamma-ray sky survey: impact of secondary gamma rays Authors: Inoue, Yoshiyuki Publication Date: 2014-05-05 OSTI Identifier: 1131468 Report Number(s): SLAC-PUB-15865 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: arXiv:1308.5710

  12. DOE Looks to the Future of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looks to the Future of Offshore Wind DOE Looks to the Future of Offshore Wind September 10, 2015 - 6:11pm Addthis Turning the page on the largely successful 2011 joint offshore wind strategy developed in partnership with the U.S. Department of the Interior, the U.S. Department of Energy (DOE) Wind Program is now reaching ahead to develop a new offshore wind strategy that builds on the original. The objectives of the 2011 strategy were to reduce both the cost of offshore wind energy and the

  13. Future U.S. water consumption : The role of energy production.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  14. 35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

  15. A Century of Physics—The Future of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Century of Physics—The Future of Renewable Energy For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 7, 1999 — The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will take an active role in events marking the 100th anniversary of the American Physical Society (APS) and the role of physics in the 20th century. Advancements in physics and related fields of scientific research have led to many breakthroughs in renewable energy technologies that, in

  16. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  17. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    SciTech Connect (OSTI)

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  18. Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

  19. Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy Future

    Broader source: Energy.gov [DOE]

    Today more than 150 of Americas entrepreneurs, software developers, energy experts, and policy makers are coming together for an Energy Datapalooza.

  20. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  1. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect (OSTI)

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  2. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy ... Way for Grid Interconnection Almost 1,500 solar water heating and PV systems have popped ...

  3. The Energy Challenge: The Current and Future Role of Solar Energy

    SciTech Connect (OSTI)

    Darling, Seth

    2011-08-10

    This talk begins by framing the outlook for global energy supply and demand over the next 40 years, examining the potential energy mix from a feasibility and sustainability perspective. In this context, the promise and challenges of solar energy utilization are discussed. An overview of solar energy research programs at Argonne is provided, and focuses specifically on research in Seth Darling's group in the areas of organic and hybrid organic/inorganic photovoltaics.

  4. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  5. Walking the Walk to a Brighter Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    There are all kinds of ways to get young people excited about saving energy. Recently, on the Energy Savers Blog, we've been pointing elementary and high school teachers and students to America's Home Energy Education Challenge. This nationwide initiative engages students at schools across the country to learn more about how energy works in their homes and communities; it also encourages them to work with their parents to take simple steps that can save them energy and money. But there are a

  6. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Homeland security: safeguarding America's future with energy efficiency and renewable energy technologies

    SciTech Connect (OSTI)

    None, None

    2002-08-01

    The State Energy Advisory Board (STEAB) presents this 10th annual report following the one-year anniversary of the September 11, 2001 terrorist attacks on the World Trade Center and the Pentagon. This event has had profound impacts on all segments of American society, not the least of which is this countrys energy sector. Long before September 11, a number of energy issues grabbed the nations attention, including opening the Arctic National Wildlife Refuge to oil and natural gas exploration, the power crisis in California, nationwide natural gas and gasoline price increases, and the administrations May 2001 National Energy Policy. However, the events of September 11 refocused attention on the prominent role energy plays in the countrys homeland security. For the most part, the energy aspects of homeland security have focused on the physical security of critical energy emergency planning and energy infrastructure, such as power plants, refineries, and power and fuel transmission systems. While STEAB recognizes the importance of protecting our existing energy infrastructure, this should not be the sole focus of homeland security as it relates to energy.

  9. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  10. Brighter Future: A Study on Solar in U.S. Schools | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Brighter Future: A Study on Solar in U.S. Schools In a first-of-its-kind report tracking the use of solar energy at K-12 schools in the United States, The Solar Foundation has developed the most comprehensive understanding to date of how schools are using and financing solar energy and the potential for still more schools to benefit from the technology. According to the report, there are currently 3,752 K-12 schools with solar installations, meaning nearly 2.7 million students attend schools

  11. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    SciTech Connect (OSTI)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  12. USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones.

  13. December News Blast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference on Biofuels: Fuels of the Future 2014; January 20-21, 2014; Berlin, Germany * World Future Energy Summit; January 20-22, 2014; Abu Dhabi, United Arab Emirates...

  14. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect (OSTI)

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  15. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    SciTech Connect (OSTI)

    Kubert, C.; Sinclair, M.

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  16. State Support for Clean Energy Deployment. Lessons Learned for Potential Future Policy

    SciTech Connect (OSTI)

    Kubert, Charles; Sinclair, Mark

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  17. Energy security in the post-Cold War era: Identifying future courses for crises

    SciTech Connect (OSTI)

    Freund, M.T.; Wise, J.A.; Ulibarri, C.A.; Shaw, B.R.; Seely, H.E.; Roop, J.M.

    1994-11-01

    This paper addresses US energy security in the post-Cold War era for a conference on energy security jointly sponsored by the Department of Energy and the National Defense University. It examines the evolving nature of energy security based on analysis of past crisis-inducing events and-discusses potentially important geopolitical, environmental, regulatory, and economic developments during the next twenty-five years. The paper steps beyond the traditional economic focus of energy security issues to examine the interplay between fundamental economic and technical drivers on the one hand, and political, environmental, and perceptual phenomena, on the other hand, that can combine to create crises where none were expected. The paper expands on the premise that the recent demise of the Soviet Union and other changing world conditions have created a new set of energy dynamics, and that it is imperative that the United States revise its energy security perspective accordingly. It proceeds by reviewing key factors that comprise the concepts of ``energy security`` and ``energy crisis`` and how they may fit into the new world energy security equation. The study also presents a series of crisis scenarios that could develop during the next twenty-five years, paying particular attention to mechanisms and linked crisis causes and responses. It concludes with a discussion of factors that may serve to warn analysts and decision makers of impending future crises conditions. The crisis scenarios contained in this report should be viewed only as a representative sample of the types of situations that could occur. They serve to illustrate the variety of factors that can coalesce to produce a ``crisis.``

  18. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  19. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect (OSTI)

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

  20. Red Lake Band of Chippewa Indians - First Steps Toward an Energy Efficient Future and MAP Biomass Project

    Energy Savers [EERE]

    OVERVIEW To develop the capacity to conduct energy audits Implement energy efficiency measures into Tribal homes Develop a Tribally administered Energy Efficiency Program and business PROJECT PARTICIPANTS Red Lake Housing Employees Energy Cents Coalition Staff Red Lake Band Members RELEVANT BACKGROUND INFORMATION The Red Lake Band of Chippewa Indians recognizes the need to develop a more sustainable, affordable and autonomous energy future for Tribal members Nearly 60% of the 1,621 housing units

  1. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    SciTech Connect (OSTI)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  2. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure modernization. The energy efficiency benefits of CHP offer significant, realistic solutions to near- and long-term energy issues facing the Nation. With growing demand for energy, tight supply options, and increasing environmental constraints, extracting the maximum output from primary fuel sources through efficiency is critical to sustained economic development and environmental stewardship. Investment in CHP would stimulate the creation of new 'green-collar' jobs, modernize aging energy infrastructure, and protect and enhance the competitiveness of US manufacturing industries. The complementary roles of energy efficiency, renewable energy, and responsible use of traditional energy supplies must be recognized. CHP's proven performance and potential for wider use are evidence of its near-term applicability and, with technological improvements and further elimination of market barriers, of its longer term promise to address the country's most important energy and environmental needs. A strategic approach is needed to encourage CHP where it can be applied today and address the regulatory and technical challenges preventing its long-term viability. Experience in the United States and other countries shows that a balanced set of policies, incentives, business models, and investments can stimulate sustained CHP growth and allow all stakeholders to reap its many well-documented benefits.

  3. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  4. CABS: Green Energy for Our Nation's Future (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Jan Jaworski (Director, Center for Advanced Biofuel Systems); Sayre, Richard T. (previous Director); CABS Staff

    2011-11-03

    'CABS: Green Energy for our Nation's Future' was submitted by the Center for Advanced Biofuel Systems (CABS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Quantifying the impact of future Sandage-Loeb test data on dark energy constraints

    SciTech Connect (OSTI)

    Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn

    2014-07-01

    The Sandage-Loeb (SL) test is a unique method to probe dark energy in the ''redshift desert'' of 2∼energy probes. Therefore, it is of great importance to quantify how the future SL test data impact on the dark energy constraints. To avoid the potential inconsistency in data, we use the best-fitting model based on the other geometric measurements as the fiducial model to produce 30 mock SL test data. The 10-yr, 20-yr, and 30-yr observations of SL test are analyzed and compared in detail. We show that compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraint on Ω{sub m} by about 80% and the constraint on w by about 25%. Furthermore, the SL test can also improve the measurement of the possible direct interaction between dark energy and dark matter. We show that the SL test 30-yr data could improve the constraint on γ by about 30% and 10% for the Q = γHρ{sub c} and Q = γHρ{sub de} models, respectively.

  6. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

  7. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Climate Science for a Sustainable Energy Future Test Bed and Data Infrastructure Final Report

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I.; Van Dam, Kerstin Kleese; Shipman, G.

    2014-05-04

    The collaborative Climate Science for a Sustainable Energy Future (CSSEF) project started in July 2011 with the goal of accelerating the development of climate model components (i.e., atmosphere, ocean and sea ice, and land surface) and enhancing their predictive capabilities while incorporating uncertainty quantification (UQ). This effort required accessing and converting observational data sets into specialized model testing and verification data sets and building a model development test bed, where model components and sub-models can be rapidly evaluated. CSSEFs prototype test bed demonstrated, how an integrated testbed could eliminate tedious activities associated with model development and evaluation, by providing the capability to constantly compare model outputwhere scientists store, acquire, reformat, regrid, and analyze data sets one-by-oneto observational measurements in a controlled test bed.

  10. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  11. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. Vision of the Future Grid Workshop (November 2011) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision of the Future Grid Workshop (November 2011) Vision of the Future Grid Workshop (November 2011) On November 15-16, 2011, the GTT introduced itself and its vision of the future grid to a diverse group of stakeholders at its Vision of the Future Grid Workshop. The GTT sought feedback and input to further develop its vision and inform future GTT activities. Workshop documents are available below. Return to GTT Activities PDF icon 2011 GTT Vision of the Future Grid Workshop - Agenda PDF icon

  15. Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from CDKN-Zimbabwe-Terms of Reference for Future LEDS) Jump to: navigation, search Name Zimbabwe-Terms of Reference for Future LEDS AgencyCompany Organization Climate...

  16. Department of Energy and FutureGen Alliance Discuss Next Steps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in Illinois. The project remains on track for...

  17. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    SciTech Connect (OSTI)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N.; Ohi, J.

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

  18. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  19. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  20. U.S. and China Announce Cooperation on FutureGen and Sign Energy...

    Broader source: Energy.gov (indexed) [DOE]

    developing new energy technologies including clean coal and renewable energy will enhance our nations' energy security, provide for economic growth, and reduce harmful pollutants." ...

  1. DOE Announces Webinars on an Energy Design Guide for Grocery Stores and Buildings of the Future

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce.

  2. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  3. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through...

  4. Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Zimbabwe-Terms of Reference for Future LEDS AgencyCompany Organization Climate and Development Knowledge Network (CDKN), United Kingdom...

  5. Secretary of Energy Advisory Board (SEAB) Task Force on the Future...

    Broader source: Energy.gov (indexed) [DOE]

    the Future of Nuclear Power is composed of SEAB members and independent experts. Nuclear ... costs with other countries such as China, France, India, Japan, Russia, and South Korea ...

  6. High Field Magnets for a Future High Energy Proton-proton Collider...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brief review of current progress, the talk will describe the key issues facing future development and present a roadmap for moving high field accelerator magnet technology forward...

  7. Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011

    Broader source: Energy.gov [DOE]

    Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

  8. Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy

    SciTech Connect (OSTI)

    2012-01-01

    Preamble The Blue Ribbon Commission on America’s Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners are Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr. John Rowe, and Rep. Phil Sharp. The Commission and its subcommittees met more than two dozen times between March 2010 and January 2012 to hear testimony from experts and stakeholders, to visit nuclear waste management facilities in the United States and abroad, and to discuss the issues identified in its Charter. Additionally, in September and October 2011, the Commission held five public meetings, in different regions of the country, to hear feedback on its draft report. A wide variety of organizations, interest groups, and individuals provided input to the Commission at these meetings and through the submission of written materials. Copies of all of these submissions, along with records and transcripts of past meetings, are available at the BRC website (www.brc.gov). This report highlights the Commission’s findings and conclusions and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.

  9. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect (OSTI)

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  10. Changing the Climate: Looking Towards a More Cost Effective, Energy Efficient Future

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Environmental Protection Agency and U.S. Department of Energy are helping states lead the way in an effort to promote low cost energy efficiency. More than 60 energy,...

  11. What Do You Think of Electric 'Cars of the Future'? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars

  12. #WomenInSTEM: Making a Cleaner Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making a Cleaner Future #WomenInSTEM: Making a Cleaner Future September 9, 2014 - 9:40am Addthis Watch our latest #WomenInSTEM profile of Mallory Lindgren to learn how her career in science and engineering is making a cleaner future for her son and how she is inspiring young girls to pursue STEM careers. | Video by Matty Greene. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Former Videographer Meet Mallory Lindgren, a

  13. Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1

    SciTech Connect (OSTI)

    Wu, K.

    1994-07-01

    The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

  14. Science Alliance Reveals STEM Pathways to the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Alliance Reveals STEM Pathways to the Future Science Alliance Reveals STEM Pathways to the Future October 26, 2015 - 12:54pm Addthis Students try their hands at arranging items in glove boxes during the Sixth Annual Science Alliance at the DOE Portsmouth Site in Piketon, Ohio. The three-day event included several contests for hundreds of attendees while providing an immersive learning experience. Students try their hands at arranging items in glove boxes during the Sixth Annual Science

  15. Future Trends for DPFƒSCR On-Filter (SCRF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends for DPFƒSCR On-Filter (SCRF) Future Trends for DPFƒSCR On-Filter (SCRF) Fundamental and application-relevant test data gathered on SCRF filters , along with coating distribution, NOx conversion, pressure drop data, and engine tests, will be discussed. PDF icon p-28_malanga.pdf More Documents & Publications Tailored Acicular Mullite Substrates for Multifunctional Diesel Particulate Filters Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel

  16. EcoCAR 2 Plugging into the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Plugging into the Future EcoCAR 2 Plugging into the Future 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti013_delarosa_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Collegiate Programs: Advanced Vehicle Technology Competitions (AVTC), Graduate Research Assistants (GRAs), and Clean Cities University Workforce Development Program (CCUWDP) EcoCAR the Next Generatio

  17. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  18. U.S. and UAE Sign Agreement to Strengthen Cooperation on Clean Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sign Agreement to Strengthen Cooperation on Clean Energy U.S. and UAE Sign Agreement to Strengthen Cooperation on Clean Energy April 26, 2010 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) and Masdar, Abu Dhabi's multifaceted renewable energy initiative, today signed a Memorandum of Understanding (MoU) to promote collaboration on clean and sustainable energy technologies. The agreement, signed at DOE by U.S. Deputy Secretary of Energy Daniel

  19. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  20. Strengthening America’s Energy Future through Education and Workforce Development

    Broader source: Energy.gov [DOE]

    To have a strong clean energy revolution we need a strong energy workforce. Learn more about what the Department has done to learn about potential skill shortages and some of the programs to combat that barrier.

  1. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy across an array of forward-looking studies and scenarios. It also highlights high-level market variables that have influenced wind energy costs in the past and are expected...

  2. Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Cory, Karlynn

    2015-08-10

    As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater value to utilities and their consumers. This presentation explores the different kinds of future directions the power industry could consider to create, discussing key components necessary for success. It will also discuss the practical application and possible strategies for utilities and innovators to implement smart technologies that will enable an ultimate ‘intelligent’ grid capable of two-way communication, interoperability, and greater efficiency and system resiliency.

  3. Chipping Away at Emissions Toward a Green Future | Department of Energy

    Office of Environmental Management (EM)

    Chipping Away at Emissions Toward a Green Future Chipping Away at Emissions Toward a Green Future December 6, 2009 - 3:24pm Addthis Joshua DeLung What are the key facts? A CHP system allows facility to run independently from the grid, while improving efficiency by roughly 25 percent, reducing emissions by 5 percent annually and relieving an overburdened power grid in the Northeast region. A few months ago, the primary electric feed to the Frito-Lay facility in Killingly, Conn., went down. It was

  4. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  5. U.S. Energy Secretary Bodman Visits U.A.E. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bodman Visits U.A.E. U.S. Energy Secretary Bodman Visits U.A.E. November 12, 2005 - 2:24pm Addthis ABU DHABI, U.A.E. -Secretary of Energy Samuel W. Bodman today visited the United Arab Emirates (U.A.E.), the first stop in his four-nation swing through the Middle East. Secretary Bodman expressed his gratitude, on behalf of the United States, to the U.A.E. for their support and contributions to those affected by the hurricanes that hit the Gulf of Mexico region earlier this year, and their

  6. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Anna; Hampson, Anne; Hedman, Bruce; Garland, Patti; Bautista, Paul

    2008-12-01

    This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future—as an: environmental solution, significantly reducing CO2 emissions through greater energy efficiency; competitive business solution, increasing efficiency, reducing business costs, and creating green-collar jobs; local energy solution, deployable throughout the United States; and infrastructure modernization solution, relieving grid congestion and improving energy security.

  7. Building a New Energy Future with Wind Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's wind power research activities.

  8. Department of Energy Takes Another Step Forward on FutureGen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Chu. "This step forward demonstrates the Administration's commitment to developing clean energy technologies, creating jobs, and reducing emissions of greenhouse gases." ...

  9. Secretary Chu Announces FutureGen 2.0 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Resources, Babcock & Wilcox, and Air Liquide Process & Costruction, Inc. to ... jobs while reducing greenhouse gas pollution," said Secretary Chu. "This investment ...

  10. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    SciTech Connect (OSTI)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  11. Ensuring cleaner, more efficient, and more economical energy for our nation`s future

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Department of Energy`s Fossil Energy Program consists of four major elements: advanced technology development; strategic petroleum reserve program; naval petroleum and oil shale reserves program; and regulatory programs. Under advanced technology development, research, development, and demonstration programs are carried in three areas: advanced power systems; natural gas and liquid fuels supplies; and crosscutting research and development. The Strategic Petroleum Reserve is an emergency supply of crude oil stored in huge underground salt caverns along the coast line of the Gulf of Mexico. The Naval Petroleum and Oil Shale Reserve consist of three oil fields and three oil shale reserves in the Western United States. Regulatory programs carried out by the Office of Fossil Energy are required by statue, Executive, and Secretarial orders. These regulatory programs seek to foster the freest possible international trade in natural gas and electricity, consistent with national needs for energy security and environmental protection. This publication discusses the programs under these four major areas.

  12. FutureGen.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erik Turner Summer 2004 Technical Career Intern Program The Pennsylvania State University FutureGen And the importance of project management Outline * FutureGen technologies * Project Management history * Project Management today: Microsoft Project TM FutureGen * Growing need for clean affordable energy * Vast domestic coal reserves * Need to environmentally produce H 2 § Present chemical processes § Future of a Hydrogen Economy FutureGen - Layout FutureGen - IGCC * Integrated Gasification

  13. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the world's most powerful technology without consuming excessive energy or creating waste? January 30, 2014 Active stewardship: sustainable future What if you could power your life using pond scum? Los Alamos researchers are creating many innovations to support a sustainable future. Energy sustainability is a daunting task:

  14. Think and Do: Mapping a Sustainable Future for Energy in North Carolina

    Broader source: Energy.gov [DOE]

    This forum on energy issues in North Carolina features more than 90 speakers and poster presenters; 25 sessions in five tracks; networking options for sponsors, exhibitors, speakers, and students;...

  15. Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 500 metric tons of weapons-origin HEU was downblended from dismantled ... Rosatom and the Department of Energy are in the process of extending the Russian-origin ...

  16. High Energy Physics: Report of research accomplishments and future goals, FY 1988

    SciTech Connect (OSTI)

    Barish, B C; Stone, E C; Ames, C A

    1987-07-10

    This report discusses high energy physics research in the following areas: Research in elementary particle physics; QCD phenomenology; lattice gauge theory; Mark III; MARK J and Mark II/SLC.

  17. SXSW Eco 2012: Eric Toone on the Future of Energy Production

    ScienceCinema (OSTI)

    Toone, Eric (Principal Deputy Director at ARPA-E)

    2014-04-11

    Eric Toone, Principal Deputy Director at ARPA-E, speaks at SXSW Eco 2012 about emerging technologies that may radically transform and disrupt the way we use and produce energy [excerpt].

  18. SXSW Eco 2012: Eric Toone on the Future of Energy Production

    SciTech Connect (OSTI)

    Toone, Eric (Principal Deputy Director at ARPA-E) [Principal Deputy Director at ARPA-E

    2012-11-07

    Eric Toone, Principal Deputy Director at ARPA-E, speaks at SXSW Eco 2012 about emerging technologies that may radically transform and disrupt the way we use and produce energy [excerpt].

  19. U.S. and UAE Bolster Cooperation in the Area of Nuclear Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nonproliferation | Department of Energy Bolster Cooperation in the Area of Nuclear Energy and Nonproliferation U.S. and UAE Bolster Cooperation in the Area of Nuclear Energy and Nonproliferation February 24, 2010 - 12:00am Addthis ABU DHABI - As part of a trip to strengthen partnerships in the Middle East, today U.S. Energy Secretary Steven Chu signed an Implementing Arrangement on peaceful uses of nuclear energy with the United Arab Emirates' Minister of State for Foreign Affairs, Dr. Anwar

  20. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (This page intentionally left blank) National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy

  1. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West Executive Summary David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency &

  2. Economics of Future Growth in Photovoltaics Manufacturing; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Basore, Paul; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade’s record of growth in the photovoltaic manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.

  3. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  4. Biomass energy: State of the technology present obstacles and future potential

    SciTech Connect (OSTI)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  5. The Value of Energy Performance and Green Attributes in Buildings: A Review of Existing Literature and Recommendations for Future Research

    SciTech Connect (OSTI)

    Stuart, Elizabeth

    2011-09-07

    Labels, certifications, and rating systems for energy efficiency performance and green attributes of buildings have been available in the U.S. for over 10 years, and used extensively in the European Union and Australia for longer. Such certifications and ratings can make energy efficiency more visible, and could help spur demand for energy efficiency if these designations are shown to have a positive impact on sales or rental prices. This policy brief discusses the findings and methodologies from recent studies on this topic, and suggests recommendations for future research. Although there have been just a handful of studies within the last 10 years that have investigated these effects, a few key findings emerge: To maximize sales price impact, label or rating information must be disclosed early and visibly in the sales process; The approach to evaluating energy efficiency labels (e.g., ENERGY STAR) and general green certifications (e.g., LEED or GreenPoint Rated) may need to be different, depending on the type, vintage and market penetration of the label; Collaborative efforts to promote label adoption and build a large dataset of labeled buildings will be required to produce reliable study results.

  6. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect (OSTI)

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  7. Detector Noise Susceptibility Issues for the Future Generation of High Energy Physics Experiments

    SciTech Connect (OSTI)

    Arteche, F.; Esteban, C.; Iglesias, M.; Rivetta, C.; Arcega, F.J.; /Zaragoza U.

    2011-11-22

    The front-end electronics (FEE) noise characterization to electromagnetic interference and the compatibility of the different subsystems are important topics to consider for the LHC calorimeter upgrades. A new power distribution scheme based on switching power converters is under study and will define a noticeable noise source very close to the detector's FEE. Knowledge and experience with both FFE noise and electromagnetic compatibility (EMC) issues from previous detectors are important conditions to guarantee the design goals and the good functionality of the upgraded LHC detectors. This paper shows an overview of the noise susceptibility studies performed in different CMS subdetectors. The impact of different FEE topologies in the final sensitivity to electromagnetic interference of the subsystem is analyzed and design recommendations are presented to increase the EMC of the detectors to the future challenging power distribution topologies.

  8. Automated Energy Distribution and Reliability System: Validation Integration - Results of Future Architecture Implementation

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-06-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  9. High Energy Physics: Report of research accomplishments and future goals, FY 1992

    SciTech Connect (OSTI)

    1991-09-05

    This report discusses high energy physics research in the following areas: Research in theoretical physics; phenomenology; experimental computer facility at Caltech; Beijing BES; MACRO; CLEO II; SLD; L3 at LEP; the B Factory R & D Program; SSC GEM Detector; and a high resolution barium fluoride calorimeter for the SSC.

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Revolution…Now The Future Arrives for Five Clean Energy Technologies – 2015 Update

    SciTech Connect (OSTI)

    2015-11-01

    In 2013, the U.S. Department of Energy (DOE) released the Revolution Now report, highlighting four transformational technologies: land-based wind power, silicon photovoltaic (PV) solar modules, light-emitting diodes (LEDs), and electric vehicles (EVs). That study and its 2014 update showed how dramatic reductions in cost are driving a surge in consumer, industrial, and commercial adoption for these clean energy technologies—as well as yearly progress. In addition to presenting the continued progress made over the last year in these areas, this year’s update goes further. Two separate sections now cover large, central, utility-scale PV plants and smaller, rooftop, distributed PV systems to highlight how both have achieved significant deployment nationwide, and have done so through different innovations, such as easier access to capital for utility-scale PV and reductions of non-hardware costs and third-party ownership for distributed PV. Along with these core technologies

  14. Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site

    Broader source: Energy.gov [DOE]

    Washington, D.C. The U.S. Department of Energy announced today that it will open negotiations with Global Laser Enrichment (GLE) for the sale of the depleted uranium hexafluoride inventory. The Department determined that GLE offered the greatest benefit to the government among those who responded to a Request for Offers (RFO) released earlier this year. Through the RFO review process, the Department also decided to enter into negotiations with AREVA for the off-specification uranium hexafluoride inventory.

  15. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  16. What is the Future of U.S. Diesel Production? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Upcoming challenges for diesel fuel use include the Renewable Fuels Standard 2 from the Energy Independence and Security Act of 2007, the Low Carbon Fuel Standard(s), and other carbon reduction requirements PDF icon deer09_leister.pdf More Documents & Publications Fungible and Compatible Biofuels Drop In Fuels: Where the Road Leads Quarterly Biomass Program/Clean Cities State Web Conference: May 6, 2010

  17. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  18. The Westinghouse solid oxide fuel cell program: Clean, efficient energy for the future

    SciTech Connect (OSTI)

    Gockley, G.B.

    1992-01-01

    This paper provides an overview of the Westinghouse tubular SOFC technology and field testing program. The development program for the field testing was initiated in 1986 with a 400 W unit. This program has progressed to the installation and start-up in early 1992 of the 25 kill field unit at Rokko Island in Japan. In mid-1992 the second 25 kill field unit, a cogeneration system producing both ac electric power and intermediate pressure steam, will be delivered to the Joint Gas Utilities, a consortium of the Tokyo Gas Company and the Osaka Gas Company. This will be followed by the 20 kill SOFC unit to be supplied to Southern California Edison in early 1993. Future plans include the 100 kill Cogeneration Proof-of-Concept unit for the Southern California Gas Company which is scheduled for delivery in late 1993. Applications for SOFC technology range from on-site power generation for commercial second small industrial applications to dispersed generating plants and central station electric power generation. The design studies have included integrated coal gasification SOFC-steam turbine power plants. Installed capital costs of a 250 MW plant of this configuration compares favorably with the integrated coal gasification combined cycle plants.

  19. The Westinghouse solid oxide fuel cell program: Clean, efficient energy for the future

    SciTech Connect (OSTI)

    Gockley, G.B.

    1992-12-01

    This paper provides an overview of the Westinghouse tubular SOFC technology and field testing program. The development program for the field testing was initiated in 1986 with a 400 W unit. This program has progressed to the installation and start-up in early 1992 of the 25 kill field unit at Rokko Island in Japan. In mid-1992 the second 25 kill field unit, a cogeneration system producing both ac electric power and intermediate pressure steam, will be delivered to the Joint Gas Utilities, a consortium of the Tokyo Gas Company and the Osaka Gas Company. This will be followed by the 20 kill SOFC unit to be supplied to Southern California Edison in early 1993. Future plans include the 100 kill Cogeneration Proof-of-Concept unit for the Southern California Gas Company which is scheduled for delivery in late 1993. Applications for SOFC technology range from on-site power generation for commercial second small industrial applications to dispersed generating plants and central station electric power generation. The design studies have included integrated coal gasification SOFC-steam turbine power plants. Installed capital costs of a 250 MW plant of this configuration compares favorably with the integrated coal gasification combined cycle plants.

  20. Future is new focus at energy department`s Rocky Flats facility

    SciTech Connect (OSTI)

    Lobsenz, G.

    1993-11-12

    After several years of intensive effort to address radioactive pollution threatening nearby communities, officials at the Energy Department`s Rocky Flats plant now are turning their attention to the site`s plutonium buildings and finding a cleanup challenge of equally daunting proportions. Containing and mopping up off-site soil and water contamination remains the first priority at the Colorado facility, but site environmental managers say the huge volumes of plutonium and associated radioactive waste stored in Rocky Flats` aging building pose increasingly urgent safety concerns.

  1. Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to Native Alaska Energy Challenges

    Broader source: Energy.gov [DOE]

    Between 2010 and 2013, Chaninik Wind Group (CWG) implemented a multi-village wind heat smart grid in the Alaska Native villages of Kongiganak, Kwigillingok, and Tuntutuliak, integrating heating systems and a grid installed with partial funding through the DOE Tribal Energy Program with the five existing 95-kW wind turbines CWG had installed in each community. Each system produces wind capacity in excess of 200% of the peak load and uses an on-site wind-diesel smart grid control system to maximize efficiency.

  2. Dolphin Energy | Open Energy Information

    Open Energy Info (EERE)

    Trade Center Building Place: Abu Dhabi, United Arab Emirates Sector: Oil and Gas Product: Natural Gas Year Founded: 1999 Phone Number: +971 2 6995500 Website: www.dolphinenergy.com...

  3. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  4. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    SciTech Connect (OSTI)

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ?10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the H? luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ?1% of the total haul of Euclid lenses, this sample has ?100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.

  5. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  6. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  7. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  8. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  9. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How our Not-so-ordinary Workers Keep LANL Green How many times can LANL reuse water? Google Earth Tour: Water Reuse

  10. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  11. Thorium Energy Futures

    SciTech Connect (OSTI)

    Peggs, Stephen; Roser, Thomas; Parks, G; Lindroos, Mats; Seviour, Rebecca; Henderson, Stuart; Barlow, R; Cywinski, R; Biarrote, J -L; Norlin, A; Ashley, V; Ashworth, R; Hutton, Andrew; Owen, H; McIntyre, Peter

    2012-07-01

    The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options - liquid or solid, with or without an accelerator - can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice.

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  13. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. Los

  14. Multi-Path Transportation Futures Study - Lessons for the Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study Multi-Path Transportation Futures Study - Lessons for the Transportation Energy ...

  15. June 2, 2011 Dear SEP Grantees, Investing in America's clean energy future and creating good jobs for the nation's workers-that

    Office of Environmental Management (EM)

    June 2, 2011 Dear SEP Grantees, Investing in America's clean energy future and creating good jobs for the nation's workers-that is the shared mission of all who contribute to the success of the State Energy Program (SEP). The program has now transitioned from the Recovery Act award phase to implementation phase, but that does not mean that we should stop searching for ways to improve our effectiveness. The U.S. Department of Energy (DOE) continues to analyze lessons learned to ensure that SEP

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  17. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary

    SciTech Connect (OSTI)

    Hurlbut, D. J.; McLaren, J.; Gelman, R.

    2013-08-01

    This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

  18. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect (OSTI)

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  19. 2006 U.S. Department of Energy Strategic Plan: Discovering the Solutions to Power and Secure Americas Future

    SciTech Connect (OSTI)

    None,

    2006-10-11

    The Department of Energy Organization Act, which created DOE, was enacted in 1977 and DOE officially came into existence in October of that year. That law brought together for the first time, not only most of the governments energy programs, but also science and technology programs and defense responsibilities that included the design, construction, and testing of nuclear weapons. Over its history, DOE has shifted its emphasis and focus as the energy and security needs of the Nation have changed. Today, DOE stands at the forefront of helping the Nation meet our energy, scientific, environmental, and national security goals. These include developing and deploying new energy technologies, reducing our dependence on foreign energy sources, protecting our nuclear weapons stockpile, and ensuring that America remains competitive in the global marketplace. To help achieve these goals, President Bush has launched two key initiatives: the American Competitiveness Initiative (ACI) and the Advanced Energy Initiative (AEI). The President launched these initiatives recognizing that science, technology, and engineering hold the answers to many of the critical challenges our world faces. These new initiatives to spur scientific innovation and technology development expand DOEs continuing support for the competitive energy markets, both domestically and internationally, and of policies that facilitate continued private investment in the energy sector. In addition, DOE supports the demonstration and deployment of energy technologies through collaborative efforts with the private sector and public sector entities.

  20. Blue Ribbon Commission on America's Nuclear Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blue Ribbon Commission on America's Nuclear Future Draft Report to the Secretary of Energy ... The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed by the Secretary ...

  1. Greater Caribbean Energy and Environment Future. Ad hoc working group report, Key Biscayne, Florida, October 26-28, 1980

    SciTech Connect (OSTI)

    Thorhaug, A.

    1980-01-01

    This report of Workshop I (presented in outline form) by the Greater Caribbean Energy and Environment Foundation begin an intensive focus on the energy problems of the Caribbean. The process by which environmental assessments by tropical experts can be successfully integrated into energy decisions is by: (1) international loan institutions requiring or strongly recommending excellent assessments; (2) engineering awareness of total effects of energy projects; (3) governmental environmental consciousness-raising with regard to natural resource value and potential inadvertent and unnecessary resource losses during energy development; and (4) media participation. Section headings in the outline are: preamble; introduction; research tasks: today and twenty years hence; needed research, demonstration and information dissemination projects to get knowledge about Caribbean energy-environment used; summary; recommendations; generalized conclusions; and background literature. (JGB)

  2. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  3. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  4. Plastic Solar Cells See Bright Future | ANSER Center | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Solar Cells See Bright Future Home > News & Events > Plastic Solar Cells See Bright Future Plastic Solar Cells See Bright Future Evanston, Ill---Energy consumption is ...

  5. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Conference on Electric Roads & Vehicles February 10, 2015 Park City, Utah NREL/PR-5400-63758 2 Regional Road Usage * 1% of roads are used for 25% of the vehicle miles traveled * Extensive overlap in road usage apparent across regional vehicle population * Overlap occurs on high capacity roads Transportation Secure Data Center Vehicle GPS samples 3 In-Motion Power

  6. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  7. Water: May be the Best Near-Term Benefit and Driver of a Robust Wind Energy Future (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Reategui, S.

    2009-05-01

    Water may be the most critical natural resource variable that affects the selection of generation options in the next decade. Extended drought in the western United States and more recently in the Southeast has moved water management and policy to the forefront of the energy options discussions. Recent climate change studies indicate that rising ambient temperatures could increase evapotranspiration by more than 25% to 30% in large regions of the country. Increasing demand for electricity, and especially from homegrown sources, inevitably will increase our thermal fleet, which consumes 400 to 700 gal/MWh for cooling. Recovering the vast oil shale resources in the West (one of the energy options discussed) is water intensive and threatens scarce water supplies. Irrigation for the growing corn ethanol industry requires 1,000 to 2,000 gallons of water for 1 gallon of production. Municipalities continue to grow and drive water demands and emerging constrained market prices upward. As illustrated by the 20% Wind Energy by 2030 analysis, wind offers an important mitigation opportunity: a 4-trillion-gallon water savings. This poster highlights the emerging constrained water situation in the United States and presents the case for wind energy as one of the very few means to ameliorate the emerging water wars in various U.S. regions.

  8. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect (OSTI)

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  9. Clean Cities Now, Vol. 18, No. 2, Winter 2014/2015: Past, Present, Future: Propane Proves Dependable Over the Long Term (Newsletter), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    2 Winter 2014/2015 Inside: 2013: One Year-One Billion and Beyond Northern Colorado Cements Success With Partnerships Braun's Express Celebrates Petroleum Reduction Past, Present, Future: Propane proves dependable over the long term Carl Lisek, left, South Shore Clean Cities Coor- dinator, and Lorrie Lisek, Wisconsin Clean Cities Coordinator, were selected by the Society of Innovators of Northwest Indiana as the September 2014 innovators of the month. In This Issue Events Spur EV Adoption in

  10. best simulation techniques to optimize future scramjets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation techniques to optimize future scramjets - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  11. Future land use plan

    SciTech Connect (OSTI)

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  12. 2013 Domenici Public Policy Conference: The Future of American...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domenici Public Policy Conference: The Future of American Energy, Las Cruces, NM, September 18-19 - ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  13. "Applications and future trends in polymer materials for green energy systems: from energy generation and storage, to CO2 capture and transportaion"

    SciTech Connect (OSTI)

    George Zafiris

    2010-08-24

    Presentation describes United Technologies Research Center's recent work in green energy systems, including APRA-E project content to create a synthetic analogue of the carbonic anhydrase enzyme and incorporate it into a membrane for CO2 separation from the flue gas of a coal power plant.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  15. Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a tree's natural setting to study what happens inside a tree as it dies. Lab Actions to Save Energy Saving Water at Los Alamos National Laboratory 3:02 Saving Water at Los Alamos...

  16. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  17. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  18. Intermediate future forecasting system

    SciTech Connect (OSTI)

    Gass, S.I.; Murphy, F.H.; Shaw, S.H.

    1983-12-01

    The purposes of the Symposium on the Department of Energy's Intermediate Future Forecasting System (IFFS) were: (1) to present to the energy community details of DOE's new energy market model IFFS; and (2) to have an open forum in which IFFS and its major elements could be reviewed and critiqued by external experts. DOE speakers discussed the total system, its software design, and the modeling aspects of oil and gas supply, refineries, electric utilities, coal, and the energy economy. Invited experts critiqued each of these topics and offered suggestions for modifications and improvement. This volume documents the proceedings (papers and discussion) of the Symposium. Separate abstracts have been prepared for each presentation for inclusion in the Energy Data Base.

  19. Argonne OutLoud: The Future of Transportation (June 20, 2013...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Transportation (June 20, 2013) Share Topic Energy Energy efficiency Vehicles Don Hillebrand...

  20. The Future of Geothermal Energy

    Broader source: Energy.gov [DOE]

    The objective of the workshop, the first in the series, was to gain insight from the MIT analysis to start the evaluation of EGS technology pathways. Special emphasis was placed on leveraging...

  1. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  2. Future Heating | Open Energy Information

    Open Energy Info (EERE)

    London, England, United Kingdom Sector: Solar Product: Designs and installs solar passive water heating systems. Coordinates: 51.506325, -0.127144 Show Map Loading map......

  3. RHIC progress and future

    SciTech Connect (OSTI)

    Montag,C.

    2009-05-04

    The talk reviews RHIC performance, including unprecedented manipulations of polarized beams and recent low energy operations. Achievements and limiting factors of RHIC operation are discussed, such as intrabeam scattering, electron cloud, beam-beam effects, magnet vibrations, and the efficiency of novel countermeasures such as bunched beam stochastic cooling, beam scrubbing and chamber coatings. Future upgrade plans and the pertinent R&D program will also be presented.

  4. Energy Literacy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov Energy Literacy I want to talk about building a sustainable energy future.... The United States is committed to taking action to meet the energy and climate challenge. ...

  5. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels for the future-Seth Snyder Share Description Argonne researcher Seth Snyder talks about the innovations in biofuel technology. Topic Energy Energy sources Renewable energy ...

  6. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle East. Long-time Middle East exporters, Oman and Abu Dhabi in the United Arab Emirates, have sent and continue to send most of their gas to Asia-Pacific customers, a...

  7. Shiny quantum dots brighten future of solar cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shiny quantum dots brighten future of solar cells Shiny quantum dots brighten future of solar ... dots can be applied in solar energy by helping more efficiently harvest sunlight. ...

  8. Energy Transition Initiative | Department of Energy

    Energy Savers [EERE]

    Energy Transition Initiative Energy Transition Initiative Blog: Progress Toward a Sustainable Future in the U.S. Virgin Islands Blog: Progress Toward a Sustainable Future in the...

  9. Future Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    NREL Yes Partnership Type Other Relationship Partnering Center within NREL National Bioenergy Center Partnership Year 1998 Link to project description http:www.nrel.govnews...

  10. Sandia Energy - Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas...

  11. Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  12. electric energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric energy storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  13. CP-1: The Past, Present, and Future

    SciTech Connect (OSTI)

    Dr. Alan Schriesheim; Dr. Mark Peters; Dr. Robert Rosner

    2013-01-28

    Lecture presented by C2ST and Argonne National Laboratory on CP1 and the current and future state of nuclear energy.

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Travel to the Future with Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy

  15. The future of methane

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  16. New Jersey Transit FutureGrid MOU Signing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jersey Transit FutureGrid MOU Signing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  17. The house of the future

    ScienceCinema (OSTI)

    None

    2010-09-01

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  18. OSCARS-Future-Tech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers...

  19. Nuclear and Particle Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures Nuclear and Particle Futures The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar ...

  20. Choices for a Brighter Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices for a Brighter Future For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Nov. 12, 1999 - More and more Americans are getting the power to choose electricity suppliers as the utility industry is deregulated and reorganized. Those energy choices can affect health and well-being for many decades to come. Renewable energy sources—solar, wind, biomass, geothermal and hydropower—can provide reliable electricity while reducing environmental