Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Masdar Abu Dhabi Future Energy Company | Open Energy Information  

Open Energy Info (EERE)

Masdar Abu Dhabi Future Energy Company Masdar Abu Dhabi Future Energy Company Jump to: navigation, search Name Masdar Abu Dhabi Future Energy Company Place Abu Dhabi, United Arab Emirates Sector Renewable Energy Product Abu Dhabi- based subsidiary created to manage the implementation of renewable and alternative energy initiatives. References Masdar Abu Dhabi Future Energy Company[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Masdar Abu Dhabi Future Energy Company is a company located in Abu Dhabi, United Arab Emirates . References ↑ "Masdar Abu Dhabi Future Energy Company" Retrieved from "http://en.openei.org/w/index.php?title=Masdar_Abu_Dhabi_Future_Energy_Company&oldid=348663

2

Sustainable Energy for Masdar City, Abu Dhabi  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy for Masdar City, Abu Dhabi Speaker(s): Jack Whittier Date: March 30, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: James McMahon The Masdar...

3

Abu Dhabi, United Arab Emirates: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dhabi, United Arab Emirates: Energy Resources Dhabi, United Arab Emirates: Energy Resources Jump to: navigation, search Name Abu Dhabi, United Arab Emirates Equivalent URI DBpedia GeoNames ID 292968 Coordinates 24.46667°, 54.36667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.46667,"lon":54.36667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu to Attend Second Clean Energy Ministerial in Abu Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates April 1, 2011 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu will attend the second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates, on April 6-7, 2011. The Clean Energy Ministerial, launched by Secretary Chu in Washington, D.C., on July 19-20, 2010, is a forum for ministers from the world's major economies to work together to transition to clean energy technologies. Participating governments account for 80 percent of global greenhouse gas emissions and more than 70 percent of global gross domestic product. They also fund the vast majority of public research and development in clean

5

Abu Dhabi Supreme Petroleum Council | Open Energy Information  

Open Energy Info (EERE)

Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Jump to: navigation, search Logo: Supreme Petroleum Council Country United Arab Emirates Name Supreme Petroleum Council City Abu Dhabi Website http://www.abudhabi.ae/egovPoo Coordinates 24.4615061518°, 54.3242812157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.4615061518,"lon":54.3242812157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Abu Dhabi National Oil Company | Open Energy Information  

Open Energy Info (EERE)

Oil Company Oil Company Jump to: navigation, search Logo: Abu Dhabi National Oil Company Name Abu Dhabi National Oil Company Place Abu Year founded 1971 Phone number 971-2-6020000 Website http://www.adnoc.ae/default.as Coordinates 24.493064080334°, 54.370239274576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.493064080334,"lon":54.370239274576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

8

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

9

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

10

Securing Our Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Our Energy Securing Our Energy Future Future World Energy Demand Growing Dramatically 12 1400 1200 10 1000 2000 2050 2100 Population of Population of Industrialized Countries Industrialized Countries Wo W rl r d o ld Po P pu p la l ti t on o o u a i n Wo W rl r d E d ne n rg r y o l E e gy Co C ns n um u pt p io i n o s m t on Population (Billions) Energy Consumption (Qbtu / yr) 8 800 6 600 4 400 2 200 0 0 1900 1950 Year U.S. Electricity Generation by Fue U.S. Electricity Generation by Fuel Electric Generation by Fuel 1980 - 2030 (billion kilowatt-hours) 0 1000 2000 3000 4000 5000 6000 1980 1990 2000 2010 2020 2030 Renewables/Other Nuclear Natural Gas Petroleum Coal Source: EIA Annual Energy Outlook 2008 Why Do We Keep Coal in the Mix? Why Do We Keep Coal in the Mix? World Energy Reserves World Energy Reserves Source: Energy Information Administration/ International Reserves Data

11

IM Future | Open Energy Information  

Open Energy Info (EERE)

IM Future Jump to: navigation, search Name IM Future Place Spain Sector Services, Wind energy Product Spain-based firm that provides operation and maintenance services for wind...

12

Future Energy Yorkshire | Open Energy Information  

Open Energy Info (EERE)

Future Energy Yorkshire Jump to: navigation, search Name Future Energy Yorkshire Place Leeds, United Kingdom Zip LS11 5AE Sector Services Product Leeds-based, wholly owned...

13

ENERGY WHITE PAPER Our energy future -  

E-Print Network (OSTI)

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

14

Future Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Pty Ltd Jump to: navigation, search Name Future Energy Pty Ltd Place Victoria, Australia Zip 3121 Sector Wind energy Product Victoria based community wind project developer....

15

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Californias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

16

Transportation Energy Futures  

E-Print Network (OSTI)

solar or nuclear power(from fission or fusion reactors), andand nuclear energy (from breeder reactors or possibly fusion

Sperling, Daniel

1989-01-01T23:59:59.000Z

17

Energy Options for the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Options for the Future * John Sheffield, 1 Stephen Obenschain, 2,12 David Conover, 3 Rita Bajura, 4 David Greene, 5 Marilyn Brown, 6 Eldon Boes, 7 Kathyrn McCarthy, 8 David Christian, 9 Stephen Dean, 10 Gerald Kulcinski, 11 and P.L. Denholm 11 This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geo- thermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion. KEY WORDS: Energy; fuels; nuclear; fusion; efficiency; renewables.

18

Prompt-Month Energy Futures  

Gasoline and Diesel Fuel Update (EIA)

Prompt-Month Energy Futures Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate (WTI) light sweet crude oil delivered to Cushing, Oklahoma More details | Contract specifications New York Mercantile Exchange (Nymex) Gasoline-RBOB ($/gallon) Reformulated gasoline blendstock for oxygenate blending (RBOB) gasoline delivered to New York Harbor More details | Contract specifications Nymex

19

Options for Kentucky's Energy Future  

Science Conference Proceedings (OSTI)

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

20

Toward an energy surety future.  

SciTech Connect

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Multilateral Cooperation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multilateral Cooperation Multilateral Cooperation Multilateral Cooperation The IFNEC Executive Committee Meeting in Abu Dhabi, October 2013. The IFNEC Executive Committee Meeting in Abu Dhabi, October 2013. The Office of International Nuclear Energy Policy and Cooperation (INEPC) supports the Office of Nuclear Energy's participation in: The Generation IV International Forum (GIF) The International Framework for Nuclear Energy Cooperation (IFNEC) The Nuclear Energy Agency (NEA) The International Atomic Energy Agency (IAEA) Generation IV International Forum The Generation IV International Forum (GIF) was chartered in 2001 to lead the collaborative efforts of the world's leading nuclear nations to develop next generation nuclear energy systems to meet future global energy needs. The Office of Nuclear Energy played a key role in reaching a major

22

Investing in our Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in our Energy Future Investing in our Energy Future A report on the ways in which the recovery act is promoting a clean energy economy. Investing in our Energy Future...

23

Moving Towards a More Secure Energy Future  

Nuclear Energy Wind Solar Energy Clean Coal BES related basic research activities. The Presidents Advanced Energy Initiative Accelerating Future ...

24

Coal: Energy for the future  

SciTech Connect

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

1995-05-01T23:59:59.000Z

25

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

26

Future Energy Assets LP | Open Energy Information  

Open Energy Info (EERE)

LP LP Jump to: navigation, search Name Future Energy Assets LP Place Austin, Texas Zip 78701 Product String representation "Future Energy A ... S and in China." is too long. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy...

28

Catalyzing a cleaner Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

11 11 Catalyzing a Cleaner Energy Future When asked about catalysts, most people probably remember a simple definition copied from the chalkboard in an early chemistry class: a substance that accelerates or modifies a chemical reaction without itself being affected. Or certain personalities may spring to mind; the term is routinely borrowed from chemistry to refer, in social and professional contexts, to a person or team whose energetic, efficient work quickly creates change in a given field. Or the first thought may be of the car in one's driveway and its catalytic converter, which chemically grabs some of the worst pollutants from exhaust and makes them harmless before they reach the tailpipe. In a way, continuing work by scientists at the Environmental Molecular

29

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future Secretary Chu and the 'Sputnik Moment' New Orleans and Energy Efficiency Cathy...

30

Secretary Bodman Highlights Alternative Energy Cooperation in the United  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Energy Cooperation in the Alternative Energy Cooperation in the United Arab Emirates Secretary Bodman Highlights Alternative Energy Cooperation in the United Arab Emirates January 21, 2008 - 10:38am Addthis ABU DHABI, UAE - U.S. Secretary of Energy Samuel W. Bodman today visited the United Arab Emirates (UAE) where he delivered keynote remarks at the Masdar World Future Energy Summit 2008 emphasizing the importance of innovation in securing safe, reliable, affordable, and diverse energy supplies. While in Abu Dhabi, the third stop on Secretary Bodman's ten day, six-nation visit to the Middle East and Europe, Secretary Bodman also met with senior government officials as well as U.S. business leaders. "Robust investments in advanced technologies and global cooperation to advance alternative energy sources benefits the international community by

31

Advanced Materials for Our Energy Future - TMS  

Science Conference Proceedings (OSTI)

May 21, 2010 ... TMS has joined forces with four other materials societies to develop Advanced Materials for Our Energy Future, a publication that underscores...

32

National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future  

E-Print Network (OSTI)

benchmark awarded by the U.S. Green Building Council · Expected completion: Summer 2010 #12;NationalNational Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future research objectives for clean energy technologies · Creating a sustainable energy future for not only our

33

Renewable Energy Futures to 2050: Current Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Futures to 2050: Current Perspectives Renewable Energy Futures to 2050: Current Perspectives Speaker(s): Eric Martinot Date: April 4, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The future of renewable energy is fundamentally a choice, not a foregone conclusion given technology and economic trends. The new REN21 Renewables Global Futures Report illuminates that choice by showing the range of credible possibilities for the future of renewable energy. The report is not one scenario or viewpoint, but a synthesis of the contemporary thinking of many, as compiled from 170 interviews with leading experts from around the world, including CEOs and parliamentarians, and from 50 recently published energy scenarios by a range of organizations. Conservative projections show 15-20% global energy shares from renewables in the

34

Energy Implications of Alternative Water Futures  

E-Print Network (OSTI)

Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

Keller, Arturo A.

35

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network (OSTI)

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

36

www.kostic.niu.edu Global Energy and Future:Global Energy and Future  

E-Print Network (OSTI)

Most of BC history Population in millions Time in history www.kostic.niu.edu Earth Energy Balance1 www.kostic.niu.edu Global Energy and Future:Global Energy and Future: Importance of Energy Conservation andImportance of Energy Conservation and Renewable and Alternative Energy Resources

Kostic, Milivoje M.

37

Charting the Future of Energy Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a...

38

The Future of Atomic Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the synthesis of plutonium produce energy in amounts comparable to that of the largest hydro- electric plants. The energy that is produced in the piles built until now, ,...

39

25 x 25 America s Energy Future | Open Energy Information  

Open Energy Info (EERE)

25 America s Energy Future 25 America s Energy Future Jump to: navigation, search Name 25 x '25 America's Energy Future Place Maryland Zip 21093 Website http://www.25x25.org References 25 x '25 America's Energy Future[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. 25 x '25 America's Energy Future is a company located in Maryland . Maryland-based advocacy group lobbying to get 25 percent of American energy from renewable resources by the year 2025, at both the state and federal level. References ↑ "25 x '25 America's Energy Future" Retrieved from "http://en.openei.org/w/index.php?title=25_x_25_America_s_Energy_Future&oldid=353805" Categories: Policy Organizations Non-governmental Organizations Clean Energy Organizations

40

Scenarios for a Clean Energy Future ACKNOWLEDGMENTS  

E-Print Network (OSTI)

was provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE of Policy). Additional funding from the U.S. Environmental Protection Agency's Office of AtmosphericScenarios for a Clean Energy Future xxiii ACKNOWLEDGMENTS Primary funding for this report

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

Zheng, Nina

2012-01-01T23:59:59.000Z

42

Energy sources for the future  

SciTech Connect

The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

Duggan, J.L.; Cloutier, R.J. (eds.)

1977-04-01T23:59:59.000Z

43

FIRST STEPS INTO AN ENERGY EFFECIENT FUTURE  

SciTech Connect

Red Lake Band of Chippewa Indians proposes to develop a more sustainable, affordable and autonomous energy future for Tribal Members. The Band will develop the capacity to conduct energy audits, to implement energy efficiency measures in tribal homes, and to build more energy efficient housing. This will be done by providing direct classroom and on the job training for Tribal members to conduct the energy audits and the installation of insulation.

BARRETT, JANE L.

2009-04-02T23:59:59.000Z

44

Building a Sustainable Energy Future  

E-Print Network (OSTI)

Board provides oversight for, and establishes the policies of, NSF within the framework of applicable national policies set forth by the President and the Congress. In this capacity, the Board identifies issues that are critical to NSFs future, approves NSFs strategic budget directions, approves annual budget submissions to the Office of Management and Budget, approves new programs and major awards, analyzes NSFs budget to ensure progress and consistency along the strategic direction set for NSF, and ensures balance between initiatives and core programs. The Board also serves as an independent policy advisory body to the President

Barry C. Barish; Maxine Linde; Professor Physics; Emeritus Director; Camilla P. Benbow; Rodes Hart; Dean Education; Human Development

2009-01-01T23:59:59.000Z

45

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

46

Energy strategy for the future | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

47

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

48

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

energy use. Chinas Sustainable Energy Future Summary next31 -ii- Chinas Sustainable Energy Future Executive Summarystudy, entitled Chinas Sustainable Energy Future: Scenarios

2004-01-01T23:59:59.000Z

49

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

.eia.doe.gov/emeu/aer/contents.html. Wash- ington, DC: U.S. Department of Energy, Energy Information Administration. Mermoud, A. (1996National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest

50

Future Heating | Open Energy Information  

Open Energy Info (EERE)

Heating Heating Jump to: navigation, search Name Future Heating Place London, England, United Kingdom Sector Solar Product Designs and installs solar passive water heating systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Hydrogen and OUr Energy Future  

DOE Green Energy (OSTI)

In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

Rick Tidball; Stu Knoke

2009-03-01T23:59:59.000Z

52

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

GoC/World Bank/GEF China Renewable Energy Scale-up Programleading investor in renewable energy, China also surpassedEric, 2011, Renewable Energy in China. Available online:

Zheng, Nina

2012-01-01T23:59:59.000Z

53

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

technology in China. Energy 35: 4445-4450. Xinhua News,photovoltaic market in China. Energy Policy 39 (4): 2204-and X. Zhang, 2010, Nuclear energy development in China: A

Zheng, Nina

2012-01-01T23:59:59.000Z

54

Future of Energy SecurityFuture of Energy Security Rajan Gupta  

E-Print Network (OSTI)

Future of Energy SecurityFuture of Energy Security Rajan Gupta Theoretical Division Los Alamos the darkness #12;A mind-boggling global infrastructure (~$15 trillion) provides energy/mobility to ~3.5 billion Hydro Nuclear #12;Fossil fuels and Environment In the 20th century we started to act on pollution

55

THE FUTURE OF GEOTHERMAL ENERGY  

DOE Green Energy (OSTI)

Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

J. L. Renner

2006-11-01T23:59:59.000Z

56

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance: · TransmissionExpansionandRenewableEnergy Zone Planning · IncreasingUseofExistingGrid. Wind Resource Assessment

57

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

58

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Working here at the Department of Energy, I hear a lot about the latest efforts to design and build vehicles for a more energy-efficient future. The clean energy innovations in vehicle technologies that DOE and its partners are advancing will help American families save money at the pump-or even allow them to quit the gas pump altogether. Today, I want to highlight a few of the recent developments that will encourage drivers to be smarter consumers, help industry leaders make the cars and trucks we drive more energy efficient, and allow us to spend less of our hard-earned

59

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

energy through ground source heat pumps and conventionalrapid expansion of ground source heat pump installation from

Zheng, Nina

2012-01-01T23:59:59.000Z

60

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

62

Future Communications Needs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs Future Communications Needs More Documents & Publications...

63

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of Biofuels The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers Secretary Steven Chu Duration 1:46 Topic Biofuels Bioenergy Credit Energy Department Video SECRETARY STEVEN CHU: This is a photograph of a perennial grass called miscanthus. It was grown without irrigation, without fertilizer. And in the autumn, you just shave it off. You use that to convert it to ethanol. The amount of ethanol in this particular plot of land outside the University of Illinois produces 15 times more ethanol than a similar plot of land if you grew corn, and the energy inputs are far less. So we need to develop methods in order to use these grassy, woody substances and also agricultural waste - wheat straw, rice straw, corn

64

A First Peek at Our Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A First Peek at Our Energy Future A First Peek at Our Energy Future A First Peek at Our Energy Future January 23, 2012 - 6:40pm Addthis Source: U.S. Energy Information Administration Source: U.S. Energy Information Administration Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? EIA predicts a decline in U.S. reliance on imported oil, declining to 36% by 2035. On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S. energy markets through 2035, and is fascinating reading for anyone who is interested in the future of the U.S. energy economy. You can find the report's key findings here, and the complete report is available here.

65

A Global Sustainable Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Global Sustainable Energy Future A Global Sustainable Energy Future A Global Sustainable Energy Future April 19, 2013 - 10:56am Addthis World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African Energy Minister Dipuo Peters; U.S. Energy Secretary Steven Chu; Deputy Chairman of Indian Planning Commission Montek Singh Ahluwalia. World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African Energy Minister Dipuo Peters; U.S. Energy Secretary Steven Chu; Deputy Chairman of Indian Planning Commission Montek Singh Ahluwalia. David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for

66

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

energy technologies through 2030, particularly for solar, wind, biomass and nuclear power, Chinas electricity generation mix

Zheng, Nina

2012-01-01T23:59:59.000Z

67

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

renewable energy such as solar and wind, policy support forWind Energy Development In spite of the recent boom of Chinas wind industry following various supporting policiesWind Energy Development . 27 3.5.1 Grid Connection and Integration Challenges .. 28 3.5.2 Technical Challenges to Wind Development 28 3.5.3 Policy

Zheng, Nina

2012-01-01T23:59:59.000Z

68

Multi-building microgrids for a distributed energy future in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-building microgrids for a distributed energy future in Portugal Title Multi-building microgrids for a distributed energy future in Portugal Publication Type Conference...

69

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

70

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future Strengthening U.S. Leadership: NREL/TP-6A0-44261 NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Strengthening U.S. Leadership NREL/TP-6A0-44261 of International Clean Energy December 2008 Cooperation

71

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

72

AgFuture Energy LLC AFE | Open Energy Information  

Open Energy Info (EERE)

a Pennsylvania-based advisory firm to commercialise energy research underway at the schools. References AgFuture Energy LLC (AFE)1 LinkedIn Connections CrunchBase Profile No...

73

Alternative Energy Development and China's Energy Future  

SciTech Connect

In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in Chinas rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine Chinas alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of Chinas potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. Chinas alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of Chinas electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing Chinas energy-related carbon emissions.

Zheng, Nina; Fridley, David

2011-06-15T23:59:59.000Z

74

Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system  

E-Print Network (OSTI)

Risø Energy Report 4 Supply technologies in the future energy system 10 Supply technologies of local and central production and close coupling between supply and end-use. Wind Global wind energy: Energy supply technologies #12;Risø Energy Report 4 Supply technologies in the future energy system4 used

75

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

of thermosiphon solar water heaters. Solar Energy 83: 39-2011e, Shoddy solar water heaters threaten reputation. 54 Outlook of Solar Water Heaters in the Residential

Zheng, Nina

2012-01-01T23:59:59.000Z

76

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

and cost- sharing arrangement mandated in the Renewable Energyenergy cost and greenhouse gas emission by plant in Guangxi." Renewable andrenewable energy utilization. The extremely high upfront investment costs

Zheng, Nina

2012-01-01T23:59:59.000Z

77

Critical Materials for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

78

Critical Materials for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

79

Winning the Biofuel Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Future Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a research team at our BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels: using a microbe to convert plant matter directly into isobutanol. Isobutanol can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. This announcement is yet another sign of the rapid progress we are making in developing the next generation of biofuels that can help reduce our oil

80

Ris Energy Report 7 Future low carbon energy systems  

E-Print Network (OSTI)

Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Abu Dhabi's Masdar project: dazzling? or Just a mirage?  

Science Conference Proceedings (OSTI)

The Masdar project is to build a self-contained economic zone creating 70,000 jobs and eventually housing as many as 40,000 residents in the middle of the desert by 2016. The community, which is envisioned to house a science and technology park and housing, is designed to be carbon neutral and virtually waste-free. Two-thirds of the power is to come from a 10 MW solar farm, and nearly all water is to be recycled and reused. There will be virtually no waste, as all packaging and material are to be recycled, used for power generation or turned into compost. The car-free zone will be served by advanced personal rapid transit (PRT) vehicles that will zip residents around the 6.5-square-kilometer area. The problem with Masdar is not so much what goes inside it, but rather what is outside. Masdar is unlikely to change the image of Abu Dhabi as the most carbon-intensive place on earth.

NONE

2009-06-15T23:59:59.000Z

82

Brainstorming Apps for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future July 20, 2012 - 1:03pm Addthis Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Nick Sinai Senior Advisor to the U.S. Chief Technology Officer, White House Office of Science and Technology Policy Ian Kalin Director of the Energy Data Initiative How can I participate? You can contribute ideas for new products, applications, features, and services that leverage open data by e-mailing DataInnovation@hq.doe.gov. Building off the recent launch of the Energy Data Initiative, fifty technologists, entrepreneurs, and investors joined staff from the White House, Department of Energy, and the Environmental Protection Agency to

83

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

84

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

85

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

86

Local energy conservation programs: past and future  

SciTech Connect

A review of local government energy programs examines specific programs adopted since 1975 which have been successful and identifies lessons from these experiences that will be helpful in the future. Successful programs have a positive effect on economic development and job creation, income equity, environmental and consumer goals, and political goals. The report focuses on three major areas of local programs: building codes, joint programs, and energy management. Other programs in the review are financing arrangements, retrofitting, transportation, etc. While direct benefits lack data for verification, the indirect benefits of aggressive local government programs have had significant value in establishing local programs at the laboratories for trying new ideas. Future local efforts need cooperation and support from the federal government. 56 references, 1 figure.

Lee, H.

1984-01-01T23:59:59.000Z

87

Status and Future of TRANSCOM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Status Upcoming Changes Glimpse at Future Options DOE Commitments Status and Future of TRANSCOM More Documents & Publications Department of Energy Office of Science...

88

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

89

Investing in an Energy Efficient Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in an Energy Efficient Future Investing in an Energy Efficient Future Investing in an Energy Efficient Future The Building Technologies Office (BTO) budget advances the development and adoption of cost-effective, real-world technologies and strategies to improve the energy efficiency, quality, and comfort of residential and commercial buildings. The chart below highlights the budget allocated to each major BTO initiative by fiscal year. Bar graph depicting the annual budget allocated to BTP from FY 2009 to FY 2012. Budget is approximately $140 million in FY 2009, $219 million in FY2010, $207 million in FY 2011, and $219 million in FY 2012. Program Budget Requests FY13 Building Technologies Office Congressional Budget Request FY12 EERE Congressional Budget Request FY11 EERE Congressional Budget Request

90

Armstrong Teasdale Future Energy Group | Open Energy Information  

Open Energy Info (EERE)

Teasdale Future Energy Group Teasdale Future Energy Group Jump to: navigation, search Logo: Armstrong Teasdale Future Energy Group Name Armstrong Teasdale Future Energy Group Address 7700 Forsyth Boulevard, Suite 1800 Place St. Louis, Missouri Zip 63105 Sector Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Renewable energy, Services, Solar, Vehicles, Wind energy Product Legal Services Year founded 1901 Number of employees 201-500 Phone number 314.621.5070 Website http://www.armstrongteasdale.c Coordinates 38.649567°, -90.334562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.649567,"lon":-90.334562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?  

E-Print Network (OSTI)

J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ? Dr. Jef ­ Koninklijke Militaire School Kolloquium Universität Bochum 19 November 2012 #12;J.Ongena Our Energy Future Bochum, 18 November 2012 Why is more energy needed in the world ? Q: Why do we need to produce every year

Gerwert, Klaus

92

Securing America's Future Energy April 8, 2011 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Future Energy an e-mail with attachments of a New York Times article on oil prices. Securing America's Future Energy April 8, 2011 More Documents & Publications Response...

93

Property:FuturePlans | Open Energy Information  

Open Energy Info (EERE)

FuturePlans FuturePlans Jump to: navigation, search Property Name FuturePlans Property Type Text Subproperties This property has the following 3 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Pages using the property "FuturePlans" Showing 3 pages using this property. B Beowawe Hot Springs Geothermal Area + With the award of the $2 million USDOE ARRA grant and the industry match of $4 million, the 1.5 MW binary bottoming-cycle plant is on-line. Once the plant is fully operational it will provide nonproprietary data to the National Geothermal Data System (NGDS) and the Department of Energy Geothermal Technologies Program (DOE GTP) for a minimum of two years. C Chena Geothermal Area + In 2011, Chena Hot Springs was awarded a $900,000 grant from the Fairbanks North Star Borough (FNSB) for the development to help locate and develop high-temperature resources in the Borough. The total cost of the project that is not covered by the grant is $1.25 Million. (Frey, 2011) In the mid 2000's geochemical research indicated that there may be resources in the 200°F range. fP If such resources do exist, the plan will be to expand the capacity of Chena Power. This would allow for the expansion of the resort, and the potential to finally tie Chena into the local power grid. Tying into the grid would provide clean energy to Golden Valley Electric Association and FNSB residents. Chena currently has the required equipment for a 250 kW addition when additional heat is able to be recovered. (Frey, 2011) To help gain public support for geothermal power that utilizes low temperature resources, Chena Power has built a mobile 0.28 MW ORC (organic rankine cycle) system. Chena built the mobile ORC system with the help of United Technologies (UTC) to be an entirely mobile and self contained unit by mounting the ORC system on two 45 foot step deck trailers. The two trailers are placed side by side when operational. Chena Power is currently continuing to deploy the mobile unit state to state to extract energy from the waste water that is rejected from an oil well.

94

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

95

Getting to Know Nuclear Energy: The Past, Present & Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use...

96

Powering the Future: New Energy Opportunities for Materials ...  

Science Conference Proceedings (OSTI)

Oct 26, 2009 ... Achieving a secure and sustainable energy future will require full utilization of ... by Steven Koonin, "Addressing America's Energy Challenges"

97

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

2008-01-01T23:59:59.000Z

98

EIA's Testimony on The Nation's Energy Future: Role of Renewable Energy and Energy Efficiency  

Reports and Publications (EIA)

Statement of Mary J. Hutzler, Department of Energy, Energy Information Administration Before the House Committee on Science United States House of Representatives Hearing on The Nation's Energy Future: Role of Renewable Energy And Energy Efficiency

Information Center

2001-02-01T23:59:59.000Z

99

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

E. (2011). The Cost of Wind Energy. Spanish Wind EnergyTERM TRENDS IN THE COST OF WIND ENERGY by as much as 270%LONG-TERM TRENDS IN THE COST OF WIND ENERGY In the future,

Wiser, Ryan

2013-01-01T23:59:59.000Z

100

Coal: America's energy future. Volume I  

SciTech Connect

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable: A key component of our global energy future  

DOE Green Energy (OSTI)

Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

Hartley, D.

1995-12-31T23:59:59.000Z

102

Noncommercial Trading in the Energy Futures Market  

Reports and Publications (EIA)

How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

Information Center

1996-05-01T23:59:59.000Z

103

Germany's Future Energy Policy - Potential Scope and Areas of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany's Future Energy Policy - Potential Scope and Areas of Action for Rational Energy Use and Renewable Energies Speaker(s): Ole Langniss Date: June 24, 1996 - 12:00pm Location:...

104

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oven Cliff Joining the Obama Administration Energy Matters: Our Energy Independence EcoCAR Challenge: Finish Line EcoCAR Challenge Profile: Virginia Tech Energy 101: Energy...

105

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pledge? Conversation on the Future of the Wind Industry Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Bill Gates and Deputy Secretary Poneman Discuss the...

106

Future scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

107

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for theirstudy was funded by the California Energy Commission and the

2011-01-01T23:59:59.000Z

108

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

to solve the whole energy problem with any given electricitychanging solutions to the energy problem. Most funding forelectricity problem with renewable energy creates extremely

2011-01-01T23:59:59.000Z

109

Energy Efficiency -- Chapter 8: Future Directions  

U.S. Energy Information Administration (EIA)

First attempt to define and measure energy efficiency in the United ... of energy efficiency and on the development of energy-intensity indicators that ...

110

Secretary Moniz Addresses Conference on the Caribbean's Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Addresses Conference on the Caribbean's Energy Secretary Moniz Addresses Conference on the Caribbean's Energy Future Secretary Moniz Addresses Conference on the Caribbean's Energy Future December 6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbean’s Energy Future Secretary Moniz joined Inter-American Development Bank President Luis Alberto Moreno in welcoming a group of Caribbean ministers who convened to discuss the region's energy future, climate change, and the roles of energy efficiency, renewable energy and natural gas. Addthis Related Articles Secretary Chu's Remarks at the 2012 IAEA General Conference -- As Prepared for Delivery Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy Projects Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for

111

Secretary Moniz: Biofuels Important to America's Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington, D.C., Energy Secretary Ernest Moniz spoke about the importance of investing in clean, renewable energy like biofuels to combat the effects of climate change and reduce our dependence on foreign oil. Secretary Moniz highlighted the Energy Department's work to advance biofuels -- from supporting biorefineries to ARPA-E's investment in

112

Secretary Moniz: Biofuels Important to America's Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington, D.C., Energy Secretary Ernest Moniz spoke about the importance of investing in clean, renewable energy like biofuels to combat the effects of climate change and reduce our dependence on foreign oil. Secretary Moniz highlighted the Energy Department's work to advance biofuels -- from supporting biorefineries to ARPA-E's investment in

113

Islands and Our Renewable Energy Future (Presentation)  

DOE Green Energy (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

114

ONLINE LEARNING Managing energy for a sustainable future  

E-Print Network (OSTI)

ONLINE LEARNING Managing energy for a sustainable future The Energy Resource Management Certificate energy management. Pursuing sustainable energy management strategies can be a powerful tool for achieving energy efficiency, cost savings and risk reduction. Explore the entire range of issues involved

California at Davis, University of

115

Agent-based competitive simulation: exploring future retail energy markets  

Science Conference Proceedings (OSTI)

Future sustainable energy systems will need efficient, clean, low-cost, renewable energy sources, as well as market structures that motivate sustainable behaviors on the part of households and businesses. "Smart grid" components can help consumers manage ...

Carsten Block; John Collins; Wolfgang Ketter

2010-08-01T23:59:59.000Z

116

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

DOE Green Energy (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

117

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

118

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

in total energy use. Chinas Sustainable Energy Future31 -ii- Chinas Sustainable Energy Future Executive SummaryC HINA S E NERGY C HALLENGE China has ambitious goals for

2004-01-01T23:59:59.000Z

119

NREL: Energy Analysis - Renewable Electricity Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Futures Study Renewable Electricity Futures Study RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display the transformation of the electric sector in 2010 through 2050 Hourly Operation in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display hourly operation in 2010 through 2050 Power Flow in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display power flow in 2010 through 2050

120

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Shared Path Toward a Sustainable Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shared Path Toward a Sustainable Energy Future Shared Path Toward a Sustainable Energy Future The DOE Office of Indian Energy's approach is, first and foremost, a collaborative one. Led by Director Tracey A. LeBeau (Cheyenne River Sioux), the office works with tribal nations, federal agencies, state governments, nongovernmental organizations, and the private sector to develop the considerable energy resources that exist on Indian lands. To guide the strategic planning and implementation of the department's tribal

122

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 24470 of 26,764 results. 61 - 24470 of 26,764 results. Article Closing the Gender Gap in Energy Policy The second Clean Energy Ministerial in Abu Dhabi included a forum as part of the Clean Energy Education & Empowerment Initiative that focused on women in clean energy. Read about one panelists take on the panel, and why closing the gender gap is so important. http://energy.gov/articles/closing-gender-gap-energy-policy Article Mentoring Our Future Generation of STEM Professionals A program aimed at introducing the students to successful women in science and technology. http://energy.gov/articles/mentoring-our-future-generation-stem-professionals Article San Francisco Turns Up The Heat In Push To Eliminate Old Boilers San Francisco's extensive stock of multifamily properties is getting some

123

Future United States Energy Security Concerns  

E-Print Network (OSTI)

Without energy, the economy can neither function nor grow. However, for at least the next half-century, the U.S. will not have an inexhaustible supply of inexpensive, clean energy. Dependence on energy imports, vulnerability ...

Deutch, John M.

124

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

biomass, geothermal, hydro, and marine energy offshore. Asincluding pumped hydro, compressed air energy storage (Energy System Component Analysis Bin Wind Onshore, shallow offshore tur- bines Concentrated Solar Power (CSP) Solar Photovoltaic (PV) Geothermal Hydro and

2011-01-01T23:59:59.000Z

125

Strengthening America's Energy Future through Education and Workforce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strengthening America's Energy Future through Education and Strengthening America's Energy Future through Education and Workforce Development Strengthening America's Energy Future through Education and Workforce Development August 11, 2010 - 10:04am Addthis Dr. Kristina Johnson What does this mean for me? Of the current energy utility workforce, 40-60 percent could be eligible to retire by 2012. A shortage of training and skills is "a leading barrier to renewable energy and energy-efficiency growth." The Department has a record of supporting education and workforce development. To have a strong clean energy revolution we need to have a strong energy workforce. Maintaining our strong energy workforce is a priority motivator in the "Energy Education and Workforce Development Request for Information" (RFI) that was released late last week. Reports like this

126

Securing America's Clean Energy Future (Brochure)  

SciTech Connect

This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2011-08-01T23:59:59.000Z

127

Securing America's Clean Energy Future (Fact Sheet)  

SciTech Connect

This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2011-08-01T23:59:59.000Z

128

Current Renewable Energy Technologies and Future Projections  

SciTech Connect

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

129

Energy & the Industrial Revolution: Past, Present & Future | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy & the Industrial Revolution: Past, Present & Future Energy & the Industrial Revolution: Past, Present & Future Event Sponsor: Director's Special Colloquium Start Date: Nov 22 2013 - 10:00am Building/Room: Building 402/Auditorium Location: Argonne National Laboratory Speaker(s): Arun Majumdar Speaker(s) Title: Google As we work to develop clean, sustainable and innovative approaches to our nation's greatest energy challenges, Argonne researchers are constantly seeking new insights into the future of the global energy economy. The laboratory is pleased to welcome Director's Special Colloquium speaker Arun Majumdar, who will give a presentation on "Energy & the Industrial Revolution: Past, Present & Future." Dr. Majumdar, a recognized leader in energy innovation, drives energy initiatives at Google.org (the company's charitable arm) and advises the

130

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

131

Scenarios for a Clean Energy Future Industry 5.1  

E-Print Network (OSTI)

In this chapter we present scenarios for future industrial energy use, based on different assumptions for U.S. energy policies. We start with a reference scenario which is derived from the AEO99 (U.S. DOE, EIA, 1998a of primary energy, accounting for 37% of the primary energy consumed in the U.S. that year. The industrial

132

Leveraging Renewable Energy in Data Centers: Present and Future  

E-Print Network (OSTI)

Leveraging Renewable Energy in Data Centers: Present and Future Keynote Summary Ricardo Bianchini in powering data centers (at least par- tially) with renewable or "green" sources of energy, such as solar Keywords Renewable energy, energy-aware scheduling, data centers. 1. INTRODUCTION Data centers consume

Bianchini, Ricardo

133

Resources for the Future | Open Energy Information  

Open Energy Info (EERE)

Future Future Jump to: navigation, search Logo: Resources for the Future Name Resources for the Future Address 1616 P Street NW, Suite 600 Place Washington, DC Zip 20036 Region Northeast - NY NJ CT PA Area Number of employees 11-50 Phone number 202-328-5000 Website http://www.rff.org/Pages/defau Coordinates 38.909151°, -77.03757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.909151,"lon":-77.03757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Clean energy investments in an uncertain future  

E-Print Network (OSTI)

The energy sector faces a multitude of challenges related to climate change and energy security. These challenges will likely prompt considerable changes in the coming decades, including significant investment and new ...

Harrison, Jessica (Jessica Kit)

2005-01-01T23:59:59.000Z

135

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

of energy storage devices and smart-grid technology. High-such as energy storage, or smart grid-connected controllableover a larger group. Smart-grid pilot studies and projects

2011-01-01T23:59:59.000Z

136

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

ideas for energy storage, including pumped hydro, compressedNatural Gas Storage Combustion turbine Pumped hydro Wave,

2011-01-01T23:59:59.000Z

137

Internships Help Future Energy Leaders Gain Hands-On Experience |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience August 23, 2013 - 10:19am Addthis EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Back-To-School Stories: Learn how the Energy Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. Interested in working at the National Labs? There's an internship

138

Biomass 2008: Fueling Our Future Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must diversify our energy sources, our energy suppliers, and our energy supply routes. President Bush challenged us to move toward diversification at an aggressive rate when he announced his Advanced Energy Initiative or AEI. AEI provides for the development of energy alternatives to fossil fuels

139

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

140

Sustainable Energy Future in China's Building Sector  

E-Print Network (OSTI)

This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy demand and CO2 emission forecast scenarios is presented, it is found that the building sector will account for about one third of energy demand in China by 2020 and would have significant environmental implications in terms of GHG and other pollutant gases emission. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared to the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of carbon dioxide (CO2) emissions could be saved by implementing appropriate energy policies within an adapted institutional framework. The main energy saving potentials in buildings can be achieved by improving building's thermal performance and district heating system.

Li, J.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vision of the Future Grid | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless, cost-effective electricity system, from generation to end-use, capable of meeting all clean energy demands and capacity requirements, with: Significant scale-up of clean energy (renewables, natural gas, nuclear, clean fossil) Universal access to consumer participation and choice (including

142

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg The Weatherization Training program at Pennsylvania College A New Biofuels Technology Blooms in Iowa Faces of the Recovery Act: 1366 Technologies Home Energy...

143

Environmentally Sound Energy for America's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Intergovernmental Affairs Executive Director: Andrew D. Lundquist Contents Taking Stock Energy Challenges Facing the United States Striking Home The Impacts of High...

144

Securing a Clean Energy Future: A Governor's Guide to Clean Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Securing a Clean Energy Future: A Governor's Guide to Clean Power Generation and Energy Efficiency Securing a Clean Energy Future: A Governor's Guide...

145

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

for State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipmana new role for sustainable energy strategies. The

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

146

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network (OSTI)

policy 52 New nuclear stations in the UK 57 The UK nuclear fuel cycle: historic, present and future 63 energy, nuclear research 86 and the fuel cycle The future of waste disposal 88 Public perception failures, can nuclear power stations be built to budget and time? Is public opinion sufficiently resilient

Birmingham, University of

147

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Nuclear Power Gas-fired Hydro Power Coal-fired Ordinarynuclear power, non- Chinas Sustainable Energy Future hydro

2004-01-01T23:59:59.000Z

148

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

availability of supplies of natural gas, Chinas Sustainable Energy Future including the West to East Gas Transmission

2004-01-01T23:59:59.000Z

149

BLUEPRINT FOR A SECURE ENERGY FUTURE March 30, 2011  

E-Print Network (OSTI)

Oil and Gas Development and Production Lead the World Towards Safer, Cleaner, and More Secure Energy at the Pump with More Efficient Cars and Trucks Cut Energy Bills with More Efficient Homes and Buildings V to secure our energy future." President Obama, March 30, 2011 Rising prices at the pump affect everybody

Lotko, William

150

Hydro, Solar, Wind The Future of Renewable Energy  

E-Print Network (OSTI)

Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

Lavaei, Javad

151

Winning the Future with a Responsible Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winning the Future with a Responsible Budget Winning the Future with a Responsible Budget Winning the Future with a Responsible Budget February 11, 2011 - 2:24pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy As part of President Obama's commitment to winning the future, the Department of Energy will make critical investments in science, research and innovation that will create jobs, grow the economy, and position America to lead the global clean energy economy. Next week, the Administration will unveil its budget for FY 2012, which will include over $8 billion for research, development, and deployment investments in clean energy technology programs. But while we are making these investments, we are taking responsible steps to cut wasteful spending and reduce expenses. Fiscal responsibility demands shared sacrifice - it means cutting

152

Revolution Now: The Future Arrives for Four Clean Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolution Now: The Future Arrives for Four Clean Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market (e.g. electricity, cars and lighting), they are growing rapidly. The four key technologies this report focuses on are: Onshore wind power Polysilicon photovoltaic modules LED lighting Electric vehicles Editor's note: The original report has been updated to fix inaccuracies in some graph labels. Revolution Now -- The Future Arrives for Four Clean Energy Technologies.pdf

153

The Foreseer Tool - Analysing Energy, Land and Water Resource Futures  

NLE Websites -- All DOE Office Websites (Extended Search)

The Foreseer Tool - Analysing Energy, Land and Water Resource Futures The Foreseer Tool - Analysing Energy, Land and Water Resource Futures through Sankey Diagrams Speaker(s): Bojana Bajzelj Grant Kopec Julian Allwood Liz Curmi Date: November 10, 2011 - 1:30pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Larry Dale The BP funded Foreseer project at the University of Cambridge is creating a tool to visualise the influence of future demand and policy choices on the coupled physical requirements for energy, water and land resources in a region of interest. The basis of the tool is a set of linked physical descriptions of energy, water and land, plus the technologies that transform those resources into final services - e.g. housing, food, transport and goods. The tool has a modular structure, with the potential to incorporate specialised analyses or models to calculate future demand,

154

Revolution Now: The Future Arrives for Four Clean Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolution Now: The Future Arrives for Four Clean Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market (e.g. electricity, cars and lighting), they are growing rapidly. The four key technologies this report focuses on are: Onshore wind power Polysilicon photovoltaic modules LED lighting Electric vehicles Editor's note: The original report has been updated to fix inaccuracies in some graph labels. Revolution Now -- The Future Arrives for Four Clean Energy Technologies.pdf

155

Energy Efficiency in China: Glorious History, Uncertain Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency in China: Glorious History, Uncertain Future Speaker(s): Mark Levine Date: March 3, 2005 - 12:00pm Location: Bldg. 90 From 1980 to 2000, China made remarkable...

156

Securing America's Future with Energy Efficient Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing America's Future with Energy Efficient Buildings Securing America's Future with Energy Efficient Buildings Securing America's Future with Energy Efficient Buildings What We Do We lead a vast network of research and industry partners to continually develop innovative, cost-effective energy saving solutions-better products, better new homes, better ways to improve older homes, and better buildings in which we work, shop, and lead our everyday lives. Why It Matters Energy efficiency is a low cost way to save money, support job growth, reduce pollution, and improve the competitiveness of our businesses. Our homes, offices, schools, hospitals, restaurants, and stores consume a lot of energy-and money. We spend more than $400 billion each year to power our homes and commercial buildings, consuming more than 70% of all

157

CP-1: the Past, Present & Future of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-1: the Past, Present & Future of Nuclear Energy CP-1: the Past, Present & Future of Nuclear Energy Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share CP-1: the Past, Present & Future of Nuclear Energy Jan. 29, 2013 On January 25, 2013, a lunch program to commemorate the 70th anniversary of the world's first self-sustaining, controlled nuclear chain reaction was

158

Industrial Assessment Centers Train Future Energy-Savvy Engineers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced Manufacturing Office What does this project do? The Industrial Assessment Centers provide students with real-world experience performing energy audits for small- and medium-sized

159

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

biofuels: 13.0 bgge/yr, with 20% GHG intensity of fossil fuels Getting to the 80% Target (biofuels etc. ) could meet the 2050 energy requirements and not exceed the emissions target.

2011-01-01T23:59:59.000Z

160

Analysis of future energy pathways for Vietnam .  

E-Print Network (OSTI)

??This research conducts an in-depth analysis of the long-term impacts of alternative energy options for Vietnam up to 2050, with a view to identify an (more)

Do, Tien Minh

2050-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Faces of the Recovery Act: Sun Catalytix Investing in Clean, Safe Nuclear Energy Secretary Chu Speaks at the 2010 Washington Auto Show Faces of the Recovery Act: Johnson Controls...

162

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Jam at New York Energy Week Secretary Moniz Speaks at Solar Impulse Press Conference Secretary Moniz Speaks at Solar Impulse Press Conference Common Sense and The Next 30...

163

Fusion reactors as future energy sources  

SciTech Connect

From conference on energy policies and the international system; New, Delhi, India (4 Dec 1973). The need is now apparent for a global energy policy with the following characteristics: Compatibility with environmental and economic factors; large fuel resources, the recovery and exploration of which have minimal environmental impact and which do not introduce disturbing factors into the world political situation. Fusion power in this context is discussed, including assessments of its potential and of the problems yet to be solved in achieving its realization. The proposition is advanced that fusion should be considered as the ultimate source of energy, and that other sources of energy, including conventional nuclear power, should be considered as interim sources. (auth)

Post, R.F.; Ribe, F.L.

1973-01-01T23:59:59.000Z

164

Transportation Energy Futures Series: Vehicle Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as the full series of reports, can be found at http:www.eere.energy.govanalysistransportationenergyfutures. Contract Nos. DC-A36-08GO28308 and DE-AC02-06CH11357 v...

165

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

Yang, Christopher

2011-01-01T23:59:59.000Z

166

Flexible loads in future energy networks  

Science Conference Proceedings (OSTI)

We develop a vignette of an information-rich energy network with flexible and responsive electrical loads in the form of a domestic refrigerator augmented with a thermal storage system and a supply-following controller that responds to the availability ... Keywords: renewable, supply-following

Jay Taneja, Ken Lutz, David Culler

2013-01-01T23:59:59.000Z

167

Advanced Materials for Sustainable, Clean Energy Future  

DOE Green Energy (OSTI)

The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon trading, giving benefits to low carbon footprint industries, while making higher emitting industries purchase carbon allowances. There have been an increasing number of countries and states adopting the trade and cap systems.

Yang, Zhenguo

2009-04-01T23:59:59.000Z

168

Investing in Our Energy Future: The Story of General Compression |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Future: The Story of General Compression Our Energy Future: The Story of General Compression Investing in Our Energy Future: The Story of General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to a small clean energy startup? In the case of many ARPA-E awardees and small businesses across the country, it means being able to secure the private capital necessary to bring their innovations to life. Just ask David Marcus, founder of General Compression, a Massachusetts company founded in 2006 that received a $750,000 award from ARPA-E to develop a technology that has the ability to store renewable energy for use at any location on the electric grid. "Investors were interested in the

169

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

170

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Realizing a Clean Energy Future 2 Table of Contents Profound Energy System Transformation is Underway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A Clean Energy Future Has Arrived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Renewable Industry Continues to Grow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Renewable Energy Technical Potential is Enormous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Comprehensive Studies Validate Opportunity for U .S . Renewables to Provide Clean Electricity and Transportation . . . . . . . . . . . . . . . . . . . 8 Realizing Clean Energy's Potential: Challenge and Opportunity . . . . . . . . . . . . . . . . . . . . . . . 9 Renewables and Natural

171

Michigan Town Committed to Sustainable Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future May 14, 2010 - 10:04am Addthis Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Stephen Graff Former Writer & editor for Energy Empowers, EERE Charlevoix, Mich., sits on a stretch of land between Lake Michigan and Lake Charlevoix along the Pine River. It's a scenic atmosphere that both summer vacationers and local residents have worked to protect, city manager Rob Straebel says. "The community here has been proactive in creating a sustainable future," he says. Citizens are taking steps to become a more environmentally-conscious

172

Particle Physics and America's Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Physics and America's Future Particle Physics and America's Future Particle Physics and America's Future September 14, 2010 - 6:42pm Addthis Dennis Kovar Former Associate Director, High Energy Physics in the Energy Department's Office of Science. What does this mean for me? Particle physics innovates, develops, and drives critical technologies directly applicable to challenges confronting our nation on several fronts. A new report lays out the potential for future developments with transformative impacts for energy, the environment, medicine, industry, security and defense, and discovery science. These are extraordinary times for particle physics, remarkable not only for the scientific discoveries that could be in store, but also for the very real opportunities to address critical issues confronting our nation.

173

Michigan Town Committed to Sustainable Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future May 14, 2010 - 10:04am Addthis Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Stephen Graff Former Writer & editor for Energy Empowers, EERE Charlevoix, Mich., sits on a stretch of land between Lake Michigan and Lake Charlevoix along the Pine River. It's a scenic atmosphere that both summer vacationers and local residents have worked to protect, city manager Rob Straebel says. "The community here has been proactive in creating a sustainable future," he says. Citizens are taking steps to become a more environmentally-conscious

174

Could Building Energy Codes Mandate Rooftop Solar in the Future?  

Science Conference Proceedings (OSTI)

This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

2012-08-01T23:59:59.000Z

175

The Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN  

E-Print Network (OSTI)

,000 barrels of oil o Multiple end uses - Electricity - Fissile fuel - Tritium production o Attractive,000,000 1,000,000,000,000 2015 NIF ITER #12;0 100 200 300 400 500 600 700 800 U.S. Fusion Budget History 70 History 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 Years 00 $inMillions #12;Secretary of Energy Bill

176

Energy-efficient automobiles for the future  

DOE Green Energy (OSTI)

The characteristics of energy-efficient vehicles determined by the degree of incorporation of advanced technology and on reactions of consumers to the vehicles using those technologies are emphasized. Critical technology design aspects, as well as important consumer preferences, have been identified. Nearly 300 vehicles were designed using a heuristic method to meet several different expectations of consumer preference for acceleration. Air-pollutant emission standards in the Clear Air Act Amendments of 1977 were assumed to have been met in all designs, even when fuel efficiency was projected to increase sharply. Weight reductions are still expected to play an important role in improving fuel economy. Stirling, and electric motors, was also expected to play a significant role in reducing automobile energy consumption. Use of alternative fuels for spark-ignition engines, as well as for the other engines, was projected. Large gains in overall energy efficiency were projected, with methanol fuels playing a significant role. Even with so many acceptable alternatives projected to be available to households for purchase, the spark-ignition engine always captured the largest share of the market. Steady improvement in that vehicle's design kept it attractive to households through the year 2000 under varying economic conditions.

LaBelle, S.J.; Hudson, C.L.

1983-08-01T23:59:59.000Z

177

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

178

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

179

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

180

Energy Department Selects Global Laser Enrichment for Future Operations at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Selects Global Laser Enrichment for Future Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global Laser Enrichment (GLE) for the sale of the depleted uranium hexafluoride inventory. The Department determined that GLE offered the greatest benefit to the government among those who responded to a Request for Offers (RFO) released earlier this year. Through the RFO review process, the Department also decided to enter into

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

182

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance and existing homes, and supports the U.S. Department of Energy's (DOE) goal to develop cost effective laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated

183

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Vehicles in Southern California, Energy Policy, 39 (2011)contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for their

Yang, Christopher

2011-01-01T23:59:59.000Z

184

Future Power Systems 21 - The Smart Customer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - The Smart Customer 1 - The Smart Customer Future Power Systems 21 - The Smart Customer Future Power Systems 21 - The Smart Customer: From Future Power Systems (FPS) articles 18 and 19 we can see that there are a number of different trading and tariff mechanisms which can be employed on the utility to customer interface to enable participation. From article 20 we see that there will be different pricing profiles on similar day types due to changes in availability of renewable generation. Future Power Systems 21 - The Smart Customer More Documents & Publications Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical

185

Diversity United, Building America's Future Today | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United, Building America's Future Today United, Building America's Future Today Diversity United, Building America's Future Today October 24, 2012 10:30AM EDT Department of Energy Forrestal Building, Small Auditorium Patti Solis Doyle has been honored by Hispanic Magazine with the "2007 Latinas of Excellence Award" for her accomplishments in the areas of government, politics, and civil leadership. She also received Siempre Mujer magazine's "Siempre Insprian Award," honoring remarkable Latinas whose achievements and contributions are helping shape the future of Hispanic women in this country. Hispanic Business Magazine recently counted her among America's 100 Most Influential Hispanics. Join us as Ms. Doyle provides her keynote remarks on shaping the future of Hispanics in the U.S.

186

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

187

A Safe, Secure Nuclear Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future June 8, 2011 - 12:00pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I am in Russia meeting with business, government and scientific leaders about opportunities for partnership between our two countries. One of the most important areas where we need to work together is on nuclear power and nuclear security. In a speech I delivered earlier today, I mentioned a letter that Albert Einstein wrote to President Roosevelt in 1939, at the dawn of the atomic era. Einstein's letter correctly predicted that nuclear power would become "a new and important source of energy in the immediate future." But he went on to alert the President to another possibility -- less certain, but much more ominous -- that Germany was seeking to create "extremely

188

FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Major Demonstrations » Clean Coal » Major Demonstrations » FutureGen 2.0 FutureGen 2.0 On August 5, 2010, U.S. Energy Secretary Steven Chu announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners will repower Ameren's 200 megawatt Unit 4 in Meredosia, Illinois with advanced oxy-combustion technology to capture approximately 1.3 million tonnes of CO2 each year - more than 90 percent of the plant's carbon emissions. Other emissions will be reduced to near zero levels. Oxy-combustion burns coal with a mixture of oxygen and CO2 instead of air

189

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

190

Solar Generation Has a Bright Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Has a Bright Future Generation Has a Bright Future Solar Generation Has a Bright Future September 12, 2012 - 3:06pm Addthis Growth of Solar Power Electricity Generation in the United States, 1999-2013 | Chart provided by the U.S. Energy Information Administration Growth of Solar Power Electricity Generation in the United States, 1999-2013 | Chart provided by the U.S. Energy Information Administration Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013. A growing solar industry presents a tremendous economic opportunity for the United States, and that is why the Energy Department's SunShot Initiative

191

Better Buildings Case Competition Helps Develop Future Clean Energy Leaders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Case Competition Helps Develop Future Clean Energy Better Buildings Case Competition Helps Develop Future Clean Energy Leaders Better Buildings Case Competition Helps Develop Future Clean Energy Leaders March 7, 2013 - 10:30am Addthis Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher Jones and Wesley Look. | Photo courtesy of Elena Alschuler. Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher

192

CSSEF: Climate Science for a Sustainable Energy Future | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

CSSEF: Climate Science for a Sustainable Energy Future CSSEF: Climate Science for a Sustainable Energy Future Simulation on Intrepid of Katrina-like hurricanes Simulation on Intrepid of Katrina-like hurricanes The Climate Science for a Sustainable Energy Future (CSSEF) project objectives are to: Accelerate incorporation of new knowledge, including process data and observations, into climate models; Develop new methods for rapid evaluation of improved models; and Develop novel approaches to exploit computing at the level of tens of petaflops in climate models. Success in this project will enable scientists to answer questions posed in the period after the publication of the IPCC 5th Assessment Report. The project comprises three components: data and testbeds, numerical methods and computational science, and uncertainty quantification. There are

193

Fuels and energy for the future: The role of catalysis  

SciTech Connect

There are many reasons to decrease the dependency on oil and to increase the use of other energy sources than fossil fuels. The wish for energy security is balanced by a wish for sustainable growth. Catalysis plays an important role in creating new routes and flexibility in the network of energy sources, energy carriers, and energy conversion. The process technologies resemble those applied in the large scale manufacture of commodities. This is illustrated by examples from refinery fuels, synfuels, and hydrogen and the future role of fossil fuels is discussed.

Rostrup-Nielsen, J.R.; Nielsen, R. [Haldor Topsoe Research Labs., Lyngby (Denmark)

2004-07-01T23:59:59.000Z

194

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

195

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing America's Securing America's Clean Energy Future The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, reduce dependence on foreign oil, and protect the environment. EERE leverages partnerships with the private sector, state and local governments, DOE national laboratories, and universities to transform the nation's economic engine to one powered by clean energy. EERE Programs 2011 Budget (in $ millions) EERE operates with $1.8 billion budget (FY 2011) and is responsible for investing more than $16 billion from the Recovery Act. Deploying Renewable Energy at Speed and Scale Growing a Clean Energy Future Organic plant material, or biomass, is an abundant, renewable resource for biofuels, bioproducts, and biopower. Biomass

196

Scenarios for a Clean Energy Future AEO Annual Energy Outlook  

E-Print Network (OSTI)

. Department of Energy DOT U. S. Department of Transportation EERE Office of Energy Efficiency and Renewable Energy EIA Energy Information Administration EPA U.S. Environmental Protection Agency EPACT Energy Policy carbon dioxide CRADA cooperative research and development agreement CT combustion turbine DOE U.S

197

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance on advancing the U.S. Department of Energy's goals. With no vested interest other than upholding NREL's mission energy. Data are frequently collected from the U.S. Geological Survey (USGS), U.S. De- partment

198

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2050 target. Thus, total heavy truck energy usage even with9 shows total light-duty fuel energy usage is approximatelyof fuel usage (PEV: 87% combined: 77%). Total energy use for

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

199

U.S. energy outlook and future energy impacts.  

E-Print Network (OSTI)

??Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that (more)

Hamburger, Randolph John

2011-01-01T23:59:59.000Z

200

Department of Energy and FutureGen Alliance Discuss Next Steps...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 19, 2010 -...

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Growth Rates of Global Energy Systems and Future Outlooks  

Science Conference Proceedings (OSTI)

The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

Hoeoek, Mikael, E-mail: Mikael.Hook@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Global Energy Systems (Sweden); Li, Junchen [China University of Petroleum-Beijing, School of Business Administration (China); Johansson, Kersti [Uppsala University, Department of Physics and Astronomy, Global Energy Systems (Sweden); Snowden, Simon [University of Liverpool, Management School (United Kingdom)

2012-03-15T23:59:59.000Z

202

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network (OSTI)

Risø Energy Report 8 The intelligent energy system infrastructure for the future Reprint Petersen #12;Risø Energy Report 5 Renewable energy for power and transport Global energy policy today is dominated by three concerns: security of supply, climate change, and energy for development and poverty

203

Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source  

Science Conference Proceedings (OSTI)

Introduction / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

J. Ongena; G. Van Oost

204

Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source  

Science Conference Proceedings (OSTI)

Introduction / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

J. Ongena; G. Van Oost

205

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations,Energy Reliability, Distributed Energy Program of the U.S.Microgrids for a Distributed Energy Future in Portugal

Mendes, Goncalo

2013-01-01T23:59:59.000Z

206

Thermal Energy Storage (TES): Past, Present and Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage (TES): Past, Present and Future Thermal Energy Storage (TES): Past, Present and Future Speaker(s): Klaus Schiess Date: June 10, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote Thermal Energy Storage (TES) is a technology that stores "cooling" energy in a thermal storage mass. In the eighties and early nineties the utilities in California incentivised this technology to shift electrical on-peak power to off-peak. Thereafter, for various reasons TES became the most neglected permanent load shifting opportunity. It is only now with the challenges that the renewables provide that TES may have a come- back because it is basically the best and most economical AC battery available with a round trip efficiency of 100% or even better. This presentation gives some background to this development and shows the interdependence of

207

Sensor Switch's Bright Manufacturing Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future June 16, 2010 - 12:01pm Addthis Lindsay Gsell It's a simple concept that's saving thousands of dollars in utility bills each year: when a room is empty, turn off the lights. This is the basic concept behind Sensor Switch, a Connecticut-based manufacturer of lighting control products. Sensor Switch's occupancy sensor devices turn off lights when spaces are vacant. They also make devices that dim or turn off lights when sufficient daylight is present. Both types of products provide cost effective energy savings in indoor spaces like office buildings and warehouses. "There's an increasing public demand to save energy, which directly impacts the demand for our products," said Ben Hahn, vice president. "A key part of

208

Brighter Future for Kentucky Manufacturing Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff Former Writer & editor for Energy Empowers, EERE Consider This: Saving $90,000 a year by curbing energy use is about equal to the salaries of three operators at a typical manufacturing plant in the Bluegrass State, according to wages listed from the U.S. Bureau of Labor

209

Renewable energy provisioning for ICT services in a future internet  

Science Conference Proceedings (OSTI)

As one of the first worldwide initiatives provisioning ICT (Information and Communication Technologies) services entirely based on renewable energy such as solar, wind and hydroelectricity across Canada and around the world, the GreenStar Network (GSN) ... Keywords: Mantychore FP7, future internet, green ICT, green star network

Kim Khoa Nguyen; Mohamed Cheriet; Mathieu Lemay; Bill St. Arnaud; Victor Reijs; Andrew Mackarel; Pau Minoves; Alin Pastrama; Ward Van Heddeghem

2011-01-01T23:59:59.000Z

210

Suitable usage scenarios for trusted Elements of future energy production,  

E-Print Network (OSTI)

. Exactly what the Smart Grid architecture will look like at a national level is still not clear. While multiple smart meters to integrate with the HAN, we prefer to go with an open architecture for WinSmartGridConvergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy

211

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

212

Status and future directions of the ENERGY STAR program  

SciTech Connect

In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper provides a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development. First, we describe the products that are currently eligible for the ENERGY STAR label and the program mechanisms that EPA and DOE are using to promote these products. Second, we illustrate selected milestones achieved in some markets, and ways that EPA and DOE are responding to challenges or changes in certain markets. Third, we discuss the evolving ENERGY STAR brand strategy. Next, we explore ways in which ENERGY STAR interacts with and enhances other policies, such as appliance standards and regional market transformation collaboratives. We then discuss evaluation studies that EPA and DOE are undertaking to quantify the impact of the ENERGY STAR program. Finally, we discuss future areas of expansion for the ENERGY STAR program, including labeling of new products and integrated programs for commercial and existing residential buildings.

Brown, Richard E.; Webber, Carrie A.; Koomey, Jonathan G.

2000-06-19T23:59:59.000Z

213

Future Advanced Windows for Zero-Energy Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

214

USVI Energy Road Map: Charting the Course to a Clean Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USVI Energy Road Map: Charting the Course to a Clean Energy Future USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones. edinusvi_roadmap.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Integrating Renewable Energy into the Transmission and Distribution System

215

USVI Energy Road Map: Charting the Course to a Clean Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USVI Energy Road Map: Charting the Course to a Clean Energy Future USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones. edinusvi_roadmap.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Integrating Renewable Energy into the Transmission and Distribution System

216

Walking the Walk to a Brighter Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walking the Walk to a Brighter Energy Future Walking the Walk to a Brighter Energy Future Walking the Walk to a Brighter Energy Future September 13, 2011 - 12:33pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy There are all kinds of ways to get young people excited about saving energy. Recently, on the Energy Savers Blog, we've been pointing elementary and high school teachers and students to America's Home Energy Education Challenge. This nationwide initiative engages students at schools across the country to learn more about how energy works in their homes and communities; it also encourages them to work with their parents to take simple steps that can save them energy and money. But there are a number of other programs funded through the Department of Energy's (DOE) Office of

217

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

and hydrogen as alternative fuels is in energy storage.hydrogen energy density and cost goals is not possible using current compressed hydrogen storageenergy density of electricity storage in batteries or hydrogen

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

218

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

219

Choices for A Brighter Future: Perspectives on Renewable Energy  

DOE Green Energy (OSTI)

The report discusses the perspectives on the evolving U.S. electricity future, the renewable electric technology portfolio, the regional outlook, and the opportunities to move forward. Renewables are at a critical juncture as the domestic electricity marketplace moves toward an era of increased choice and greater diversity. The cost and performance of these technologies have improved dramatically over the past decade, yet their market penetration has stalled as the power industry grapples with the implications of the emerging competitive marketplace. Renewable energy technologies already contribute to the global energy mix and are ready to make an even greater contribution in the future. However, the renewables industry faces critical market uncertainties, both domestically and internationally, as policy commitments to renewables at both the federal and state levels are being reshaped to match the emerging competitive marketplace. The energy decisions that we make, or fail to make, today will have long-lasting implications. We can act now to ensure that renewable energy will play a major role in meeting the challenges of the evolving energy future. We have the power to choose.

NREL

1999-09-30T23:59:59.000Z

220

AVESTAR Center for clean energy plant operators of the future  

Science Conference Proceedings (OSTI)

Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

Zitney, S.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy technologies at Sandia National Laboratories: Past, Present, Future  

DOE Green Energy (OSTI)

We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

Not Available

1989-08-01T23:59:59.000Z

222

Open Data for a Clean, Secure Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Open Data for a Clean, Secure Energy Future Open Data for a Clean, Secure Energy Future Open Data for a Clean, Secure Energy Future July 12, 2012 - 2:35pm Addthis Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Todd Park U.S. Chief Technology Officer and Assistant to the President David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy Richard Kauffman Richard Kauffman Senior Advisor to the Secretary of Energy Ed. Note: Energy Department officials, including David Danielson and Patricia Hoffman, attended the second Energy Data Jam in New York City on Monday. The first Energy Data Jam was held at Stanford University in May. This entry is cross-posted from the White House Blog.

223

Bright Young Minds for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bright Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future August 16, 2011 - 12:11pm Addthis Bright Young Minds for a Clean Energy Future Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Registration begins August 15 and ends on October 7, 2011. Students are encouraged to register with their teachers by September 30, 2011 to take advantage of the full energy savings period. It's that time again: Back to school season is officially here! Time for students to prepare for the new experiences and challenges that they will encounter throughout the upcoming school year. One such challenge-from the Energy Department in partnership with the National Science Teachers Association (NSTA)-aims to tap into the

224

Bright Young Minds for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Young Minds for a Clean Energy Future Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future August 16, 2011 - 12:11pm Addthis Bright Young Minds for a Clean Energy Future Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Registration begins August 15 and ends on October 7, 2011. Students are encouraged to register with their teachers by September 30, 2011 to take advantage of the full energy savings period. It's that time again: Back to school season is officially here! Time for students to prepare for the new experiences and challenges that they will encounter throughout the upcoming school year. One such challenge-from the Energy Department in partnership with the National Science Teachers Association (NSTA)-aims to tap into the

225

An advanced metering infrastructure for future energy networks  

E-Print Network (OSTI)

Abstract. We are moving towards a highly distributed serviceoriented energy infrastructure where providers and consumers heavily interact with interchangeable roles. Smart meters empower an advanced metering infrastructure which is able to react almost in real time, provide fine-grained energy production or consumption info and adapt its behavior proactively. We focus on the infrastructure itself, the role and architecture of smart meters as well as the security and business implications. Finally we discuss on research directions that need to be followed in order to effectively support the energy networks on the future.

Stamatis Karnouskos; Orestis Terzidis; Panagiotis Karnouskos; Frigoglass S. A. I. C; Kato Achaia

2007-01-01T23:59:59.000Z

226

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Path Transportation Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good against today's technologies, but that's really not what people will be judging them against.....the best "reference vehicle" is one customers will be seeing on showroom floors, in that year.  Understand your model! -- Some of your "key results" may be coming

227

A First Peek at Our Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

feeds, or follow it on Twitter. Addthis Related Articles Natural Gas Production and U.S. Oil Imports Offshore Drilling Safety and Response Technologies The Department of Energy's...

228

Massachusetts is Winding the Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts is Winding the Future Massachusetts is Winding the Future Massachusetts is Winding the Future May 18, 2011 - 4:48pm Addthis Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? The facility will attract companies to design, manufacture and test their blades in the United States and strengthen America's place as a global leader in wind power technology. Chicago may be known as the Windy City, but as of today, Boston is home to the largest commercial wind blade test facility in the world. After a ribbon cutting ceremony this afternoon, the Wind Technology Testing

229

Massachusetts is Winding the Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Winding the Future is Winding the Future Massachusetts is Winding the Future May 18, 2011 - 4:48pm Addthis Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? The facility will attract companies to design, manufacture and test their blades in the United States and strengthen America's place as a global leader in wind power technology. Chicago may be known as the Windy City, but as of today, Boston is home to the largest commercial wind blade test facility in the world. After a ribbon cutting ceremony this afternoon, the Wind Technology Testing

230

Moving Toward a Peaceful Nuclear Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What roles do the labs play? PNNL projects are reinforcing the effectiveness of the International Monitoring System, which utilizes 337 facilities worldwide to monitor for

231

Scenarios for a Clean Energy Future Prepared by the Interlaboratory Working Group on Energy-Efficient and Clean Energy  

E-Print Network (OSTI)

This report, Scenarios for a Clean Energy Future, was commissioned by the U.S. Department of Energy's Office significant net economic impacts. Widespread use of these technologies would do much to cut U.S. greenhouseScenarios for a Clean Energy Future Prepared by the Interlaboratory Working Group on Energy

232

Alternative futures for the Department of Energy National Laboratories  

Science Conference Proceedings (OSTI)

This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

Not Available

1995-02-01T23:59:59.000Z

233

Status and Future Directions of the ENERGY STAR Program  

SciTech Connect

In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark) a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then, the EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper is based on our experience since 1993 in providing technical support to the ENERGY STAR program. We provide a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development.

Brown, Richard; Webber, Carrie; Koomey, Jonathan

2001-12-04T23:59:59.000Z

234

Carbonless Transportation and Energy Storage in Future Energy Systems  

SciTech Connect

By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

Lamont, A.D.; Berry, G.D.

2001-01-17T23:59:59.000Z

235

Wind Plant Cost of Energy: Past and Future (Presentation)  

SciTech Connect

This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

Hand, M.

2013-03-01T23:59:59.000Z

236

At home with agents: exploring attitudes towards future smart energy infrastructures  

Science Conference Proceedings (OSTI)

This paper considers how consumers might relate to future smart energy grids. We used animated sketches to convey the nature of a future energy infrastructure based on software agents. Users showed a considerable lack of trust in energy companies raising ...

Tom A. Rodden, Joel E. Fischer, Nadia Pantidi, Khaled Bachour, Stuart Moran

2013-08-01T23:59:59.000Z

237

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2009 with Projections to 2030. US Department of Energy.duty VMT growth of nearly 64% from 2005 to 2030 and 92%from 1990 to 2030. These growth rates are consistent (on a

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

238

Cellulosic Ethanol: Securing the Planet Future Energy Needs  

E-Print Network (OSTI)

Abstract: Bioenergy is fairly recognized as not only a necessity, but an inevitable path to secure the planet future energy needs. There is however a global consensus that the overall feasibility of bioenergy will require an integrated approach based on diversified feedstocks and conversion processes. As illustrated in the Brazilian experience, the thrust of any bioenergy program should be centered on the principles and criteria of sustainable production. In general the trends are towards exploiting low value cellulosic materials to obtain high-end value energy products. To this end, it is expected that scientific or technical innovation will come to play a critical role on the future prospects and potential of any bioenergy initiative.

Clifford Louime; Hannah Uckelmann

2008-01-01T23:59:59.000Z

239

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future...

240

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

ASSESSMENTS VI. ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--ENVIRONMENTAL IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FORVolume 5, Status of Alternative Energy Technologies, 1977

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network (OSTI)

Risø Energy Report 8 The intelligent energy system infrastructure for the future Risø-R-1695(EN) September 2009 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 8 Edited by Hans Larsen and Leif Sønderberg Petersen, Risø National Laboratory for Sustainable Energy Technical University

242

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

1982-01-01T23:59:59.000Z

243

Search for a bridge to the energy future: Proceedings  

DOE Green Energy (OSTI)

The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

Saluja, S.S. (ed.)

1986-01-01T23:59:59.000Z

244

Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Speaks on Future of Fossil Energy Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Yesterday, Energy Secretary Ernest Moniz toured the National Energy Technology Laboratory (NETL) West Virginia campus and spoke with employees about their work developing the cleaner and more efficient energy technology that's helping power the nation. He was also on hand to dedicate the Lab's newest supercomputer -- a unique tool made to support fossil energy research like chemical looping and carbon capture technologies. The Secretary's remarks to employees focused on the importance of these types of clean technologies being created at the lab as part of the Energy

245

The Future of Nuclear Energy: Facts and Fiction Chapter I: Nuclear Fission Energy Today  

E-Print Network (OSTI)

Nuclear fission energy is considered to be somewhere between the holy grail, required to solve all energy worries of the human industrialized civilization, and a fast path directly to hell. Discussions about future energy sources and the possible contribution from nuclear energy are often dominated by variations of fundamentalists and often irrational approaches. As a result, very little is known by the general public and even by decision makers about the contribution of nuclear energy today, about uranium supplies, uranium resources and current and future technological challenges and limitations. This analysis about nuclear energy and its contribution for tomorrow tries to shed light on the nuclear reality and its limitations in the near and long term future. The report, presented in four chapters, is based essentially on the data provided in the documents from the IAEA (International Atomic Energy Administration) and the NEA (the Nuclear Energy Agency from the OECD countries, the WNA (World Nuclear Associat...

Dittmar, Michael

2009-01-01T23:59:59.000Z

246

Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Yesterday, Energy Secretary Ernest Moniz toured the National Energy Technology Laboratory (NETL) West Virginia campus and spoke with employees about their work developing the cleaner and more efficient energy technology that's helping power the nation. He was also on hand to dedicate the Lab's newest supercomputer -- a unique tool made to support fossil energy research like chemical looping and carbon capture technologies. The Secretary's remarks to employees focused on the importance of these types of clean technologies being created at the lab as part of the Energy

247

Water requirements for future energy production in California  

DOE Green Energy (OSTI)

This assessment estimates the impact of future national energy development on water resources. Energy development would include various types of electric power plants, production of synthetic fuels, coal and uranium mining, oil and gas extraction, and other conversion processes. The Energy Analysis Program at LBL has conducted this analysis for its assigned region, the states of California and Nevada. The objective of this study is to determine water requirements of energy technologies and their implications, with emphasis on emerging technologies for aggregated subareas (ASA) in California. The first phase of this study provides energy-supply projections and corresponding demands for water resources as perceived by regional and state groups responsible for or involved in energy planning in California and Nevada. The second phase of the study is designed to calculate the water requirements for the levels of energy development in California as specified by a Department of Energy scenario for the year 2000 and by utility projections as reported by the Federal Power Commission for 1985. The implications of these water requirements on competing water users are explored briefly. 24 references.

Sathaye, J.A.; Ritschard, R.L.

1977-05-01T23:59:59.000Z

248

Future World Energy Constraints and the Direction for Solutions  

SciTech Connect

This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which take advantage of the concentrated energy and portability of nuclear fission: (1) to find ways of extending nuclear fission to smaller transportation and heating applications and (2) to develop nuclear fusion for manufacturing fissionable materials.

Lightfoot, H.D.

2004-09-12T23:59:59.000Z

249

Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions  

SciTech Connect

In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

Al-Alili, A.; Hwang, Y.; Radermacher, R. [Department of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kubo, I. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi (United Arab Emirates)

2010-12-15T23:59:59.000Z

250

Efficient multi-energy generation portfolios for the future  

E-Print Network (OSTI)

This paper introduces the application of mean-variance portfolio theory to portfolios generating multiple forms of energy such as electricity, heating or cooling power. Portfolio theory has already been successfully applied to several cases of electricity generation planning. A general extension of this method to an arbitrary number of output energies will be developed in this paper. Instead of calculating means and variances from time series of historical data- as it is commonly done- a set of several possible scenarios is used. By this means, the model allows to appropriately take into account uncertainties about future developments, which may be able to alter the economic performance of the considered generation technologies. In order to illustrate the proposed method, the model is applied to a portfolio of distributed electricity and heat generation technologies. In so doing, it is shown how efficient risk-return combinations for multi-energy generation portfolios can be determined. 1

Florian Kienzle; Gran Andersson

2008-01-01T23:59:59.000Z

251

Water Power for a Clean Energy Future (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

252

New Science for a Secure and Sustainable Energy Future  

SciTech Connect

Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

None

2008-12-01T23:59:59.000Z

253

New Science for a Secure and Sustainable Energy Future  

SciTech Connect

Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

2008-12-01T23:59:59.000Z

254

Video: Training Clean Energy Leaders of the Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Video: Training Clean Energy Leaders of the Future Video: Training Clean Energy Leaders of the Future Video: Training Clean Energy Leaders of the Future October 22, 2013 - 10:26am Addthis Watch our latest video for highlights from this year's Solar Decathlon and insights into how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Videographer Last week, the U.S. Department of Energy Solar Decathlon 2013 wrapped up. Even though the sun has set at the Solar Decathlon village and students have gone home, their hard work is having a lasting effect on sustainable design and our nation's clean energy leaders.

255

NETL: News Release - Department of Energy and FutureGen Alliance...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Washington, D. C. -Officials from the Department of Energy, the state of Illinois,...

256

NETL: News Release - Department of Energy and FutureGen Alliance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Washington, D. C. -Officials from the Department of Energy, the state of Illinois,...

257

IEA Wind Task 26: The Past And Future Cost Of Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA Wind Task 26: The Past And Future Cost Of Wind Energy Title IEA Wind Task 26: The Past And Future Cost Of Wind Energy Publication Type Report Year of Publication 2012 Authors...

258

The Key to an Energy-Efficient and Low-Carbon Future  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and ... Abstract Scope, Our world faces significant and urgent challenges in meeting future energy...

259

Science for Our Nation's Energy Future | U.S. DOE Office of Science...  

Office of Science (SC) Website

DOE Announcements Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

260

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

E-Print Network (OSTI)

and Carbon Emissions Outlook to 2050. Lawrence Berkeley2009. World Energy Outlook 2009. Paris: OECD Publishing.Future Energy and Emissions Outlook Nina Zheng, Nan Zhou and

Zheng, Nina

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy  

Science Conference Proceedings (OSTI)

Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China's future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people. (author)

Zhiwei Zhou [Tsinghua University, Beijing, 100084 (China)

2006-07-01T23:59:59.000Z

262

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

263

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

264

Open Data for a Clean, Secure Energy Future | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Open Data for a Clean, Secure Energy Future Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov Communities Energy Blogs Open...

265

How ARPA-e is "Winning the Future" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future...

266

Chu at COP-16: Building a Sustainable Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future December 7, 2010 - 11:16pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu addressed the U.S. Center in Cancun, Mexico, as part of the United Nations Climate Change Conference (COP-16) that has been taking place there over the past week. His speech focused the essential role that international collaborations must play in finding new solutions to energy and climate challenges, solutions that will benefit us all. You can view the Secretary's remarks in full below: John Schueler is a New Media Specialist with the Office of Public Affairs. Addthis Related Articles Secretary Chu to Attend U.N. Climate Change Conference in Cancun

267

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

268

Chu at COP-16: Building a Sustainable Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at COP-16: Building a Sustainable Energy Future at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future December 7, 2010 - 11:16pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu addressed the U.S. Center in Cancun, Mexico, as part of the United Nations Climate Change Conference (COP-16) that has been taking place there over the past week. His speech focused the essential role that international collaborations must play in finding new solutions to energy and climate challenges, solutions that will benefit us all. You can view the Secretary's remarks in full below: John Schueler is a New Media Specialist with the Office of Public Affairs. Addthis Related Articles Secretary Chu to Attend U.N. Climate Change Conference in Cancun

269

A VISION FOR America's Energy Future More Diverse More Domestic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VISION FOR VISION FOR America's Energy Future More Diverse More Domestic More Efficient Business Roundtable (www.businessroundtable.org) is an association of chief executive officers of leading U.S. companies with $4.5 trillion in annual revenues and more than 10 million employees. Member companies comprise nearly a third of the total value of the U.S. stock market and represent more than 40 percent of all corporate income taxes paid to the federal government. Collectively, they returned $112 billion in dividends to shareholders and the economy in 2005. Roundtable companies give more than $7 billion a year in combined charitable contributions, representing nearly 60 percent of total corporate giving. They are technology innovation leaders, with $90 billion in annual research and development (R&D) spending - nearly half

270

Supercomputing Our Way to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

271

Supercomputing Our Way to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

272

Renewable Energy Requirements for Future Building Codes: Options for Compliance  

Science Conference Proceedings (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

2011-09-30T23:59:59.000Z

273

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES . . . . . . .DISTRIBUTED ENERGY SYSTEMS I~N CALIF RNIA/S FUTURE: UU-6831Ur'l1E:i\\i-fS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUP

Balderston, F.

2010-01-01T23:59:59.000Z

274

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

National Laboratory for Sustainable Energy (4) Danish EnergyR]evolution: A Sustainable World Energy Outlook. Brussels,

Wiser, Ryan

2013-01-01T23:59:59.000Z

275

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

with the National Renewable Energy Laboratory and underLehmann, H. (2008). Renewable Energy Outlook 2030 EnergyWatch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

276

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

Renewable Energy Outlook 2030 Energy Watch Group GlobalTargets for 2020 and 2030. Brussels, Belgium: European Wind2008). 20% Wind Energy by 2030: Increasing Wind Energy's

Wiser, Ryan

2013-01-01T23:59:59.000Z

277

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

shows key indicators of aggregate energy intensity in sevenEnergy (EERE) of Department of Energy (DOE), 2006. Indicators of Energy Intensity

2008-01-01T23:59:59.000Z

278

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

2008). Renewable Energy Outlook 2030 Energy Watch GroupA Sustainable World Energy Outlook. Brussels, Belgium:to the Annual Energy Outlook 2011. DOE/EIA-0554. Washington,

Wiser, Ryan

2013-01-01T23:59:59.000Z

279

Dolphin Energy | Open Energy Information  

Open Energy Info (EERE)

Dolphin Energy Dolphin Energy Jump to: navigation, search Logo: Dolphin Energy Name Dolphin Energy Address Abu Dhabi Trade Center Building Place Abu Dhabi, United Arab Emirates Sector Oil and Gas Product Natural Gas Year founded 1999 Phone number +971 2 6995500 Website http://www.dolphinenergy.com/P Coordinates 24.4666667°, 54.3666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.4666667,"lon":54.3666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy  

E-Print Network (OSTI)

forecasting; Energy futures analysis; PV-ANWR comparison Direct comparison of Arctic National Wildlife Refuge (ANWR) oil production and potential photovoltaics (PV) output (during the 70-year expected pumping lifetime of the ANWR deposit) has been neglected in the recent US policy debate. In part, this is because

Delaware, University of

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future  

Open Energy Info (EERE)

USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future Jump to: navigation, search Tool Summary Name: USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future Agency/Company /Organization: United States Agency for International Development (USAID) Sector: Climate, Energy Focus Area: Renewable Energy, Economic Development Topics: GHG inventory, Low emission development planning, Policies/deployment programs Resource Type: Publications User Interface: Other Website: redd-net.org/resource-library/Energy+Trends+in+Developing+Asia%3A+Prio Language: English USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future Screenshot References: USAID-Energy Trends in Developing Asia: Priorities for a Low-Carbon Future[1]

282

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies  

E-Print Network (OSTI)

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies Gregor Czisch that we must transform our energy system into one using only renewable energies. But questions arise how. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity

283

At home with agents: exploring attitudes towards future smart energy infrastructures  

Science Conference Proceedings (OSTI)

Energy systems researchers are proposing a broad range of future "smart" energy infrastructures to promote more efficient management of energy resources. This paper considers how consumers might relate to these future smart grids within the UK. To address ... Keywords: agent-based systems, envisioning, focus groups, participatory design, sketching, smart grid, whiteboard animations

Tom A. Rodden; Joel E. Fischer; Nadia Pantidi; Khaled Bachour; Stuart Moran

2013-04-01T23:59:59.000Z

284

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

285

Energy Policy 29 (2001) 11791196 Scenarios for a clean energy future $  

E-Print Network (OSTI)

This paper summarizes the results of a studyFScenarios for a Clean Energy FutureFthat assess how energy-efficient and clean energy technologies can address key energy and environmental challenges facing the US. A particular focus of this study is the energy,environmental,and economic impacts of different public policies and programs. Hundreds of technologies and approximately 50 policies are analyzed. The study concludes that policies exist that can significantly reduce oil dependence,air pollution,carbon emissions,and inefficiencies in energy production and end-use systems at essentially no net cost to the US economy. The most advanced scenario finds that by the year 2010,the US could bring its carbon dioxide emissions three-quarters of the way back to 1990 levels. The study also concludes that over time energy bill savings in these scenarios can pay for the

Marilyn A. Brown A; Mark D. Levine B; Walter Short C; Jonathan G. Koomey D

2001-01-01T23:59:59.000Z

286

Integral Fast Reactor: A future source of nuclear energy  

SciTech Connect

Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality.

Southon, R.

1993-09-01T23:59:59.000Z

287

Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy  

E-Print Network (OSTI)

Convergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid into what the Future / Smart Electric Grid should look like. For example the DOE has a vision for the Modern

California at Los Angeles, University of

288

Strengthening America's Energy Future through Education and Workforce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to ensure that our workforce is as vibrant as ever; teaching our students and future solar panel installers, line engineers and smart grid technicians the skills necessary to...

289

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pledge? Conversation on the Future of the Wind Industry Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Bill Gates and Deputy Secretary Poneman Discuss the...

290

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

Moreover, useful cost projections are likely to benefit fromutilize an iterative projection process involving historicalto determine whether projections of future costs are

Wiser, Ryan

2013-01-01T23:59:59.000Z

291

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

tech. selection Net energy consumption Service tech. cost &equip. selection Net energy consumption Service tech. cost &tech. selection Net energy consumption Service tech. cost &

Stadler, Michael

2011-01-01T23:59:59.000Z

292

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape Energy Innovation Hubs Online Q&A Oven Cliff Joining the Obama Administration Energy Matters: Our...

293

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

of the scenarios. Energy consumption is driven by thepatterns of energy consumption, trends in saturation andcomponents and trends in energy consumption in the worlds

2008-01-01T23:59:59.000Z

294

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

Sectoral Trends in Global Energy Use and Greenhouse Gasto Development of Long-Term Energy Demand Scenarios forto Development of Long-Term Energy Demand Scenarios for

2008-01-01T23:59:59.000Z

295

The Solar Economy: Renewable Energy for a Sustainable Global Future  

E-Print Network (OSTI)

The Solar Economy: Renewable Energy for a Sustainable GlobalThe Solar Economy: Renewable Energy for a Sustainable Globalthe European Association for Renewable Energies-and general

Mirza, Umar Karim

2003-01-01T23:59:59.000Z

296

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

RMB) hydro & nuclear Historical Primary Energy Consumptionhouseholds. Primary Energy Consumption (EJ) hydro nuclearfuels and hydro can be easily compared Energy Use in China

2008-01-01T23:59:59.000Z

297

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

2009). Technology Roadmap Wind Energy. Paris, France:EWEA. (2011). Pure Power Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

298

Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper  

E-Print Network (OSTI)

being developed for the smart grid will change grid operations and grid characteristics. With high- prove system reliability and facilitate the management of variable renewable resources. Smart Grid Technologies Future smart grid technologies will also impact reserve requirement determination and our ability

299

Past and Future Cost of Wind Energy: Preprint  

DOE Green Energy (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

Lantz, E.; Hand, M.; Wiser, R.

2012-08-01T23:59:59.000Z

300

Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DOE Announcements » Science for Our Nation's Energy Future DOE Announcements » Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter Hotel in Washington, DC, will explore the challenges and opportunities in applying America's extraordinary scientific and technical resources to critical energy needs. It will highlight early successes of the Office of Science Energy Frontier Research Centers, and promote collaboration across the national energy enterprise.

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Bangladesh-Feed the Future | Open Energy Information  

Open Energy Info (EERE)

Bangladesh-Feed the Future Bangladesh-Feed the Future Jump to: navigation, search Name Bangladesh-Feed the Future Agency/Company /Organization United States Agency for International Development Sector Land Focus Area Agriculture Topics Implementation, Policies/deployment programs, Pathways analysis, Background analysis Resource Type Publications Website http://www.usaid.gov/our_work/ Country Bangladesh Southern Asia References Bangladesh-Feed the Future (FY10)[1] Overview "The Feed the Future (FTF) FY 2010 implementation plans are working documents outlining U.S. government planning for the first year of the Global Hunger and Food Security Initiative. These plans represent a transition towards the development of multiyear strategies and are targeted at investments that lay the foundation for a new country-level and

302

Capturing the Sun, Creating a Clean Energy Future (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the Department of Energy's Solar Energy Technologies program.

2011-08-01T23:59:59.000Z

303

Integrating Innovation and Policy for a Renewable Energy Future (Presentation)  

SciTech Connect

Presentation on renewable energy innovations and policies by Dr. Dan Arvizu of the National Renewable Energy Laboratory.

Arvizu, D. E.

2007-02-05T23:59:59.000Z

304

Mathematical and computer modelling reports: Modeling and forecasting energy markets with the intermediate future forecasting system  

Science Conference Proceedings (OSTI)

This paper describes the Intermediate Future Forecasting System (IFFS), which is the model used to forecast integrated energy markets by the U.S. Energy Information Administration. The model contains representations of supply and demand for all of the ...

Frederic H. Murphy; John J. Conti; Susan H. Shaw; Reginald Sanders

1989-09-01T23:59:59.000Z

305

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

Institute, Energy Primer: Oil and Gas Past and Future, Randreliance upon depleting oil and gas to other energy formsThe state relies heavily on oil and gas, with oil presently

Authors, Various

2010-01-01T23:59:59.000Z

306

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

307

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

308

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

309

Scenarios for a Clean Energy Future Background 2.1  

E-Print Network (OSTI)

efficiency can decrease the "energy intensity" of the U.S. economy, thereby reducing carbon emissions. Energy zero energy growth over this 13-year period. Looking ahead, an actual decrease in U.S. energy that have made the U.S. economy much less energy intensive today than it was in #12;Scenarios for a Clean

310

Energy Mobility Network : system design, interfaces, and future interactions  

E-Print Network (OSTI)

The Energy Mobility Network is a mobile, networked energy production, consumption and sharing system that is designed to motivate users to be more aware of their energy consumption. In particular, the system provides a ...

Cheung, Natalie Wen Yua

2011-01-01T23:59:59.000Z

311

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

third of the national total energy consumption, to reduceenergy consumption statistics by sector, and provincial and nationalNational Energy Comprehensive Strategy and Policy of China (RNECSPC,2005), it shows the building energy consumption

2008-01-01T23:59:59.000Z

312

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

off- site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%

Stadler, Michael

2011-01-01T23:59:59.000Z

313

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

Zhu,Y. , 2003. Chinas Sustainable Energy Scenarios in 2020,Zhu,Y. , 2003. Chinas Sustainable Energy Scenarios in 2020,Economic Policy Sustainable Energy Development Research ,

2008-01-01T23:59:59.000Z

314

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Why Cool Roofs? Secretary Chu and the 'Sputnik Moment' New Orleans and Energy Efficiency Cathy...

315

The Solar Economy: Renewable Energy for a Sustainable Global Future  

E-Print Network (OSTI)

with the use of renewable energies. Strong arguments haveThe Solar Economy: Renewable Energy for a Sustainable GlobalThe Solar Economy: Renewable Energy for a Sustainable Global

Mirza, Umar Karim

2003-01-01T23:59:59.000Z

316

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

such as hospitals and hotels, use energy continuously whileHeating Variable: Hotel: Useful Energy Intensity (Kilowatt-Hotel Other Figure 15 Floor Area Distribution 4.2.3 End Use Penetration and Intensities Energy

2008-01-01T23:59:59.000Z

317

U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announce Cooperation on FutureGen and Sign Energy Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue December 15, 2006 - 9:46am Addthis BEIJING, CHINA - The United States and China today announced that China will join the Government Steering Committee of the FutureGen project making China the third country to join the United States in the FutureGen International Partnership. The U.S. and China also signed an Energy Efficiency and Renewable Energy Protocol renewing cooperation in advancing clean technology including solar, wind, and biomass. The agreements were made as an outcome of the U.S.-China Strategic Economic Dialogue (SED) in

318

Walking the Walk to a Brighter Energy Future | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Education Challenge. This nationwide initiative engages students at schools across the country to learn more about how energy works in their homes and...

319

Energy Revolution: Policies for a Sustainable Future (2004)  

NLE Websites -- All DOE Office Websites (Extended Search)

two decades and is now director of the Southwest Energy Efficiency Project in Boulder, Colorado. He is the author of three previous books on energy policy: Efficient Electricity...

320

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response & Procedures or Search Energy.gov Search Clear Filters All Videos Secretary Moniz at Town Hall Forum on Departmental Reorganization Data Jam at New York Energy Week...

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

mix .. 14 Sectoral Energy Use in China ..energy consumption, Mtce Percentage of total, % Adjustment in fuel mix As discussed above, End-use fuel consumption in China

2008-01-01T23:59:59.000Z

322

Basic Research for Our Nations Energy Future  

Spallation Neutron Source. Manuel Lujan Jr. Neutron Scattering Center. U.S. Department of Energy Office of Science . 9. Department of Energy National ...

323

Future Prospects for Oil Production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics ... Integrated high and low technology ... U.S. Energy Information Administration home page |

324

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

and Renewable Energy (EERE) of Department of Energy (DOE),1985-2004 period in the U.S. (EERE, 2006). k W h / s q u a r

2008-01-01T23:59:59.000Z

325

Future world energy demand driven by trends in developing ...  

U.S. Energy Information Administration (EIA)

EIA's International Energy Outlook 2013 (IEO2013) projects that growth in world energy use largely comes from countries outside of the Organization ...

326

Clean Energy for America's Future (Fact Sheet)  

SciTech Connect

This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

2010-06-01T23:59:59.000Z

327

Securing America's Clean Energy Future (Fact Sheet)  

SciTech Connect

This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

2011-08-01T23:59:59.000Z

328

Securing America's Clean Energy Future (Brochure)  

SciTech Connect

This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

2011-08-01T23:59:59.000Z

329

Department of Energy and FutureGen Alliance Discuss Next Steps for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and FutureGen Alliance Discuss Next Steps for and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 20, 2010 - 1:00pm Addthis Washington, DC - Officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in Illinois. The project remains on track for obligation before the end of September. Preparations will then begin for the repowering of Unit 4 at the Ameren facility in Meredosia, with construction set to begin in 2012. At the same time, following DOE best practices, a site selection process will be conducted to locate a site for the carbon

330

Department of Energy and FutureGen Alliance Discuss Next Steps for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Alliance Discuss Next Steps for FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 19, 2010 - 12:00am Addthis Washington, DC - At a meeting today in Chicago, officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture and storage project in Illinois. The project remains on track for obligation before the end of September. Preparations will then begin for the repowering of Unit 4 at the Ameren facility in Meredosia, with construction set to begin in 2012. At the same time, following DOE best practices, a site selection process will be

331

"Developing Nationally Significant Infrastructure: the Future Role of Energy Planning"  

E-Print Network (OSTI)

infrastructure in 2005.4 Emphasis was placed upon clean energy: renewable energy and the efficient use of natural to about 1/3 of current overall capacity. The 2003 Energy Review placed growing emphasis on renewable energy. There is currently a national target of 5% renewable generation by 2007, and 10% by 2015

Martin, Ralph R.

332

Scenarios for a Clean Energy Future Electricity 7.1  

E-Print Network (OSTI)

of satisfying the biofuels utilization target of the Energy Independence and Security Act (EISA). The i

333

Wisconsin Tribal Leaders Work Towards a Clean Energy Future | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Tribal Leaders Work Towards a Clean Energy Future Wisconsin Tribal Leaders Work Towards a Clean Energy Future Wisconsin Tribal Leaders Work Towards a Clean Energy Future July 17, 2012 - 11:54am Addthis Secretary Chu and Office of Indian Energy Director Tracey LeBeau meet with Wisconsin tribal leaders in Milwaukee, WI. | Photo courtesy of Mark Appleton. Secretary Chu and Office of Indian Energy Director Tracey LeBeau meet with Wisconsin tribal leaders in Milwaukee, WI. | Photo courtesy of Mark Appleton. Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs How can I participate? Forest County Potawatomi will host an upcoming Energy Department workshop, "Renewable Energy & Efficiency for Tribal Community Development," from August 7-9. A more detailed agenda will be posted on Indian Energy Program page.

334

Preparing the U.S. Foundation for Future Electric Energy Systems  

E-Print Network (OSTI)

Preparing the U.S. Foundation for Future Electric Energy Systems: A Strong Power and Energy Engineering Workforce U.S. Power and Energy Engineering Workforce Collaborative Prepared by the Management Steering Committee of the U.S. Power and Energy Engineering Workforce Collaborative Endorsed

335

Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM-FR)  

E-Print Network (OSTI)

Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM is required to maintain water supplies while water is essential to produce energy. However, the models and energy generally dealt with them separately, the two resources are highly interconnected. Energy

336

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

337

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and State Corporation for Nuclear Energy (Rosatom) Director General Sergey Kirienko today held talks in Washington, D.C., about the future of U.S.-Russia collaborative work in the nuclear energy field, including nuclear research and development, commercial aspects of cooperation, nuclear safety, and nonproliferation. The meeting coincided with the arrival of the final shipment of low

338

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)  

SciTech Connect

Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

Not Available

2013-12-01T23:59:59.000Z

339

FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy  

E-Print Network (OSTI)

with sophisti- cated mathematical models to conduct November 2012 PNNL-SA-90014 Shuai Lu Pacific Northwest National Laboratory (509) 375-2235 shuai.lu@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI), the Pacific Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI

340

Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles  

SciTech Connect

This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

Berry, G; Daily III, W

2004-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Home Energy Assessment Recovery Act update from Sr. Advisor Matt Rogers -- End of Obligations The Recovery Act is "Lighting Up" the streets of Philadelphia 200,000...

342

Water Power for a Clean Energy Future (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

Not Available

2011-06-01T23:59:59.000Z

343

Culham Centre for Fusion Energy Fusion -A clean future  

E-Print Network (OSTI)

be expected, even if energy can be used more efficiently. At the same time, we need to find new ways; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable, lithium, which is abundant in the earth's crust; · An efficient way of making energy. Just one kilogram

344

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

SciTech Connect

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

2012-03-26T23:59:59.000Z

345

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think of Electric 'Cars of the Future'? Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail

346

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment

347

China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)  

SciTech Connect

China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, Chi

Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

2004-03-10T23:59:59.000Z

348

FutureCarbon GmbH | Open Energy Information  

Open Energy Info (EERE)

FutureCarbon GmbH FutureCarbon GmbH Jump to: navigation, search Name FutureCarbon GmbH Place Bayreuth, Germany Zip 95448 Sector Carbon, Efficiency, Hydro, Hydrogen Product The company originated out of a former Mannesmann think tank. Its focus is the development of carbon nano materials.They are developing materials for efficiency improvents of PME fuel cells and others for hydrogen storage. Coordinates 49.945189°, 11.571023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.945189,"lon":11.571023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Shell Future Fuels and CO2 | Open Energy Information  

Open Energy Info (EERE)

Shell Future Fuels and CO2 Shell Future Fuels and CO2 Jump to: navigation, search Name Shell Future Fuels and CO2 Place Glasgow, Scotland, United Kingdom Zip G1 9BG Sector Hydro, Hydrogen Product UK-based division of Shell's Oil Products business active in the hydrogen & CCS sectors as a developer of technology. Coordinates 55.857809°, -4.242511° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.857809,"lon":-4.242511,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Energy-Adaptive Display System Designs for Future Mobile Environments  

E-Print Network (OSTI)

The utility of a mobile computer, such as a laptop, is largely constrained by battery life. The display stands out as a major consumer of battery energy, so reducing that consumption is desirable. In this paper, we motivate and study energy-adaptive display sub-systems that match display energy consumption to the functionality required by the workload/user. Through a detailed characterization of display usage patterns, we show that screen usage of a typical user is primarily associated with content that could be displayed in smaller and simpler displays with significantly lower energy use. We propose example energy-adaptive designs that use emerging OLED displays and software optimizations that we call dark windows. Modeling the power benefits from this approach shows significant, though user-specific, energy benefits. Prototype implementations also show acceptability of the new user interfaces among users.

Parthasarathy Ranganathan; Subu Iyer; Subu Iyer; Lu Luo; Lu Luo; Robert Mayo; Robert Mayo

2003-01-01T23:59:59.000Z

351

NREL: News - Transportation Energy Futures Study Reveals Potential...  

NLE Websites -- All DOE Office Websites (Extended Search)

generation, and other applications. Transportation Demand Opportunities to save energy and abate GHG emissions through community development and urban planning. Trip...

352

DOE Science Showcase - Energy Plants of the Future | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification Technology R&D How Coal Gasification Power Plants Work...

353

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg The Weatherization Training program at Pennsylvania College A New Biofuels Technology Blooms in Iowa Faces of the Recovery Act: 1366 Technologies Home Energy Assessments...

354

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Daylighting Solar Smarter Faster Seven Traffic Signals in Two Minutes It Starts with Science... Demoing the Modified TALON Robot Retrofitting the Streetlights in Boise,...

355

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Faces of the Recovery Act: Sun Catalytix Investing in Clean, Safe Nuclear Energy Secretary Chu Speaks at the 2010 Washington Auto Show Faces of the Recovery Act:...

356

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

2009). Technology Roadmap Wind Energy. Paris, France:Bolinger, M. (2011). 2010 Wind Technologies Market Report.konomi (The Economy of Wind Power). EUDP 33033-0196.

Wiser, Ryan

2013-01-01T23:59:59.000Z

357

Future of Wind Energy Technology in the United States  

DOE Green Energy (OSTI)

This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

Thresher, R.; Robinson, M.; Veers, P.

2008-10-01T23:59:59.000Z

358

Hydropower: Setting a Course for Our Energy Future. Wind and...  

NLE Websites -- All DOE Office Websites (Extended Search)

without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this...

359

Powering the Future: New Energy Opportunities for Materials ...  

Science Conference Proceedings (OSTI)

Oct 26, 2009 ... Specific areas of focus will include energy storage/batteries, nuclear, solar, and wind technologies. Panelists included: Al Romig (Moderator)...

360

Indonesian energy policy pathways : from past trends to future alternatives.  

E-Print Network (OSTI)

??The main achievement of this thesis has been the development of an operational system dynamics model of the Indonesian energy system. This model attempts to (more)

Muliadiredja, Emy Perdanahari

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE FUTURE OF ENERGY IN MISSISSIPPI: POLICY AND POLITICS.  

E-Print Network (OSTI)

??This study analyzes the elements surrounding renewable energy development in Mississippi, with emphasis on the aspects related to government intervention. This study addresses the question: (more)

Fowler, Nicholas Luke

2009-01-01T23:59:59.000Z

362

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In...

363

Determining energy requirement for future water supply and demand alternatives.  

E-Print Network (OSTI)

??Water and energy are two inextricably linked resources. Each has the potential to limit the development of the other. There is a substantial body of (more)

Larsen, Sara Gaye

2010-01-01T23:59:59.000Z

364

Enabling Renewable Energy and the Future Grid with Advanced ...  

Science Conference Proceedings (OSTI)

Environmental concerns about using fossil fuels, and their resource constraints along with energy security concerns, have spurred great interest in generating...

365

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

konomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Wiser, Ryan

2013-01-01T23:59:59.000Z

366

Present and future high-energy accelerators for neutrino experiments  

SciTech Connect

There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

Kourbanis, I.; /Fermilab

2007-06-01T23:59:59.000Z

367

Decarbonising the UK Energy for a Climate Conscious Future  

E-Print Network (OSTI)

in the UK Fuel cells: providing heat and power in the urban environment Microgrids: distributed on, instruments and mechanisms The contribution of energy service contracting to a low carbon economy Special Three: Exploring transitions to sustainable energy Publications from the Decarbonising the UKTheme

Watson, Andrew

368

Modeling China's energy future Pat DeLaquil  

E-Print Network (OSTI)

, renewables, and coal gasification-based energy supply technologies, can enable China to meet economic), and (3) coal gasification technolo- gies co-producing electricity and clean liquid and gaseous energy-induced oil price shocks. · Estimate the relative costs of achieving target levels of reductions in air

369

NRRI's Bill Berguson promotes fast-growing trees as part of America's new energy future.  

E-Print Network (OSTI)

to increase energy independence with new biorefinery industries and sustainable new crops. A study undertaken Commission with representatives from the union, paper industry, legislature, University, energy company andNRRI's Bill Berguson promotes fast-growing trees as part of America's new energy future. Winter

Netoff, Theoden

370

Future for Offshore Wind Energy in the United States: Preprint  

DOE Green Energy (OSTI)

Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

Musial, W.; Butterfield, S.

2004-06-01T23:59:59.000Z

371

How ARPA-e is "Winning the Future" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-e is "Winning the Future" ARPA-e is "Winning the Future" How ARPA-e is "Winning the Future" Addthis Description The Advanced Research Projects Agency - Energy (ARPA-E) is answering the President's call to "Win the Future". By directly funding some of the most groundbreaking discoveries in science and technology, we're encouraging the development of the most advanced clean tech innovations out there today. Speakers President Barack Obama, Arun Majumdar Duration 2:43 Topic Energy Economy Loans Energy Sources ARPA-E Summit Emerging Technologies Credit Energy Department Video PRESIDENT BARACK OBAMA: Two years ago, I said that we needed to reach a level of research and development we haven't seen since the height of the space race. We'll fund the Apollo projects of our time.

372

2012 CERTS R&M Peer Review - Summary: Mapping Energy Futures - Bill Schulze  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mapping Energy Futures: The SuperOPF Planning Tool Mapping Energy Futures: The SuperOPF Planning Tool Project Lead: Bill Schulze Co-investigators: Dick Schuler, Ray Zimmerman, Dan Shawhan 1. Project objective: Given that the electric power system is central to the US energy future, the project objective is to develop an open source planning tool that can demonstrate the impact of various policies and regulations on electricity prices, emissions, fuel use, renewable energy use, etc. This tool currently optimizes investment in generation and uses a model of the US electricity network that includes all high voltage lines. 2. Major technical accomplishments that have been completed this year: The model has been successfully run for both the Eastern Interconnection and ERCOT to examine the impact of high and low future natural gas prices and with and without

373

The Future of Offshore Wind Energy and Transmission in New Jersey...  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium The Future of Offshore Wind Energy and Transmission in New Jersey Kris Ohleth The Atlantic Wind Connection Offshore wind is the...

374

The U.S. Fusion Energy Sciences Program: Past, Present, and Future...  

NLE Websites -- All DOE Office Websites (Extended Search)

Success Stories Contact Us Index Home | ORNL | Events and Conferences The U.S. Fusion Energy Sciences Program: Past, Present, and Future Jul 22 2013 11:00 AM - 12:00 PM...

375

VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy March 5, 2012 - 1:24pm Addthis Secretary Chu sits down with Microsoft Founder and Chairman Bill Gates at the 2012 ARPA-E Energy Innovation Summit. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last week, attendees at the 2012 ARPA-E Energy Innovation Summit heard from a variety of leaders from across the research, business and government sectors who spoke at the conference of nearly 2,400. These speakers, along with the startup companies and innovators in attendance, converged outside of Washington, D.C., to offer their take on how America can tackle our energy challenges. One of the top-level highlights from the Summit included this fireside chat

376

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future  

Energy.gov (U.S. Department of Energy (DOE))

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

377

RESEARCH FOR OUR ENERGY FUTURE BROOKHAVEN NATIONAL LABORATORY  

E-Print Network (OSTI)

, hydro, or biofuel/biomass, among others. The primary reason we use so much energy is the inherent -- to power our cars, support industry, and light and heat our homes and businesses -- nearly 60 percent

Ohta, Shigemi

378

Chu at COP-16: Building a Sustainable Energy Future | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu Slides SlideShare. Present yourself. Upload Login or Signup Go Pro ARPA-E Energy Innovation Summit 2011 Keynote Presentation: Secretary Steven Chu ARPA-E 2011 Keynote:...

379

Moving Toward a Peaceful Nuclear Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What roles do the labs play? PNNL projects are...

380

Capturing the Sun, Creating a Clean Energy Future (Brochure)  

DOE Green Energy (OSTI)

Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

Not Available

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Past and Future Cost of Wind Energy: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

J.; Watson, S. (2008). "Assessment of Condition Monitoring Techniques for Offshore Wind Farms." Journal of Solar Energy Engineering (130:3); pp. 031004-031009 (26) UpWind....

382

High energy physics advisory panel`s subpanel on vision for the future of high-energy physics  

SciTech Connect

This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

1994-05-01T23:59:59.000Z

383

An assessment of future energy use and carbon emissions from US residences  

SciTech Connect

This paper explores residential energy futures and their associated carbon emissions using an engineering-economic end-use model. The authors present detailed input assumptions and output results for twenty-four cases, each representing a different combination of electricity supply mix, demand-side policy case, and carbon tax. They describe current and projected future energy use by end-use and fuel, and assess which end-uses are growing most rapidly in importance over time.

Koomey, J.G.; Johnson, F.X.; McMahon, J.E.; Orland, M.C.; Levine, M.D.; Chan, P.; Krause, F.

1993-12-01T23:59:59.000Z

384

Germany's Future Energy Policy - Potential Scope and Areas of Action for  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany's Future Energy Policy - Potential Scope and Areas of Action for Germany's Future Energy Policy - Potential Scope and Areas of Action for Rational Energy Use and Renewable Energies Speaker(s): Ole Langniss Date: June 24, 1996 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Judy Jennings Energy efficiency is defined as matter of obtaining balance between the energy gained and the sacrifices necessary to bring about this gain . A building in Sweden, now in the designing stage, will be testing a new design process to reach the highest possible level of energy efficiency. (Construction to take place in 1997, and commissioning in 1998.).All major services and systems for this building will be optimized, via marginal profitability analysis, in order to give maximum contribution to the integrated energy efficiency (both electricity and heat). Energy

385

Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and  

E-Print Network (OSTI)

1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable renewable energy integration and improved energy management capability. Microgrids consist of multiple power quality and power distribution reliability, microgrids need to operate in both grid

Collins, Emmanuel

386

Secretary Chu Announces FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen 2.0 FutureGen 2.0 Secretary Chu Announces FutureGen 2.0 August 5, 2010 - 1:00pm Addthis Washington, DC - Today, U.S. Energy Secretary Steven Chu and U.S. Senator Dick Durbin announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners estimate the program will bring 900 jobs to downstate Illinois and another 1,000 to suppliers across the state. Today's announcement will help ensure the US remains competitive in a carbon constrained economy, creating jobs while reducing greenhouse gas pollution," said Secretary Chu. "This investment in the world's first,

387

Secretary Chu Announces FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen 2.0 FutureGen 2.0 Secretary Chu Announces FutureGen 2.0 August 5, 2010 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu and U.S. Senator Dick Durbin announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Costruction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners estimate the program will bring 900 jobs to downstate Illinois and another 1,000 to suppliers across the state. "Today's announcement will help ensure the US remains competitive in a carbon constrained economy, creating jobs while reducing greenhouse gas pollution," said Secretary Chu. "This investment in the world's first,

388

Your World Magazine - Biofuels: Energy for Your Future  

SciTech Connect

Policymakers have been talking for years about measures to cut back how much petroleum we use. Interest has spiked recently, with government and private companies coming together to push forward scientific research and development of alternative fuel products such as ethanol. Biotechnology is helping make alternative energy sources easier - and more affordable - to produce. Most of the world's energy needs are met with oil and natural gas, which come from fossil fuel. No one knows how long the supply can last. Biobased fuels come from natural sources that can be replaced quickly. Along with corn, there are many other grains, grasses, trees, and even agricultural wastes being investigated for their usefulness and environmental friendliness as alternative fuel sources. Careers in this emerging new field emphasize chemistry and engineering. Look into it for a potential career - it's definitely a job full of energy.

Biotechnology Institute

2006-10-01T23:59:59.000Z

389

Your World Magazine - Biofuels: Energy for Your Future  

DOE Green Energy (OSTI)

Policymakers have been talking for years about measures to cut back how much petroleum we use. Interest has spiked recently, with government and private companies coming together to push forward scientific research and development of alternative fuel products such as ethanol. Biotechnology is helping make alternative energy sources easier - and more affordable - to produce. Most of the world's energy needs are met with oil and natural gas, which come from fossil fuel. No one knows how long the supply can last. Biobased fuels come from natural sources that can be replaced quickly. Along with corn, there are many other grains, grasses, trees, and even agricultural wastes being investigated for their usefulness and environmental friendliness as alternative fuel sources. Careers in this emerging new field emphasize chemistry and engineering. Look into it for a potential career - it's definitely a job full of energy.

Biotechnology Institute

2006-10-01T23:59:59.000Z

390

Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information  

Open Energy Info (EERE)

Zimbabwe-Terms of Reference for Future LEDS Zimbabwe-Terms of Reference for Future LEDS Jump to: navigation, search Name Zimbabwe-Terms of Reference for Future LEDS Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/ Country Zimbabwe UN Region Southern Africa References CDKN-Zimbabwe-Terms of Reference for Future LEDS[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "CDKN-Zimbabwe-Terms of Reference for Future LEDS" Retrieved from "http://en.openei.org/w/index.php?title=Zimbabwe-Terms_of_Reference_for_Future_LEDS&oldid=698706"

391

CDKN-Zimbabwe-Terms of Reference for Future LEDS | Open Energy Information  

Open Energy Info (EERE)

Zimbabwe-Terms of Reference for Future LEDS Zimbabwe-Terms of Reference for Future LEDS Jump to: navigation, search Name CDKN-Zimbabwe-Terms of Reference for Future LEDS Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/ Country Zimbabwe UN Region Southern Africa References CDKN-Zimbabwe-Terms of Reference for Future LEDS[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "CDKN-Zimbabwe-Terms of Reference for Future LEDS" Retrieved from "http://en.openei.org/w/index.php?title=CDKN-Zimbabwe-Terms_of_Reference_for_Future_LEDS&oldid=407560"

392

Scenarios for a Clean Energy Future Buildings 4.1  

E-Print Network (OSTI)

be hundreds of millions of dollars per year, but the cost per TV is so low that it would be hard to imagine on many technologies that will not be cost effective for years, yet may be strategically important decades. The cost of delivering all energy services in buildings (such as cold food, lighted offices, and warm

393

Geothermal Energy Market in Southern California Past, Present and Future  

SciTech Connect

I'm pleased to be here as your keynote speaker from the utility industry. Today is fitting to discuss the role of an alternative/renewable energy resource such as geothermal. Three years ago today, the Exxon Valdez oil tanker spilled 11 million gallons of oil into Prince William Sound, Alaska. This ecological catastrophe was another of those periodic jolts that underscores the importance of lessening our nation's dependence on oil and increasing the use of cost-effective, environmentally benign alternative/renewable energy sources. Alternative/renewables have come a long way since the first oil crisis in 1973. Today, they provide 9 percent of electric power used in the United States. That's nearly double the figure of just two years ago. And since 1985, one-third of a new capacity has come from geothermal, solar, wind and biomass facilities. Nevertheless, geothermal supplies only about three-tenths of a percent of the country's electric power, or roughly 2,800 megawatts (MW). And most of that is in California. In fact, geothermal is California's second-largest source of renewable energy, supplying more than 5 percent of the power generated in the state. Today, I'd like to discuss the outlook for the geothermal industry, framing it within Southern California Edison's experience with geothermal and other alternative/renewable energy sources.

Budhraja, Vikram S.

1992-03-24T23:59:59.000Z

394

Geothermal Energy Market in Southern California Past, Present and Future  

DOE Green Energy (OSTI)

I'm pleased to be here as your keynote speaker from the utility industry. Today is fitting to discuss the role of an alternative/renewable energy resource such as geothermal. Three years ago today, the Exxon Valdez oil tanker spilled 11 million gallons of oil into Prince William Sound, Alaska. This ecological catastrophe was another of those periodic jolts that underscores the importance of lessening our nation's dependence on oil and increasing the use of cost-effective, environmentally benign alternative/renewable energy sources. Alternative/renewables have come a long way since the first oil crisis in 1973. Today, they provide 9 percent of electric power used in the United States. That's nearly double the figure of just two years ago. And since 1985, one-third of a new capacity has come from geothermal, solar, wind and biomass facilities. Nevertheless, geothermal supplies only about three-tenths of a percent of the country's electric power, or roughly 2,800 megawatts (MW). And most of that is in California. In fact, geothermal is California's second-largest source of renewable energy, supplying more than 5 percent of the power generated in the state. Today, I'd like to discuss the outlook for the geothermal industry, framing it within Southern California Edison's experience with geothermal and other alternative/renewable energy sources.

Budhraja, Vikram S.

1992-03-24T23:59:59.000Z

395

Hydropower: Setting a Course for Our Energy Future  

DOE Green Energy (OSTI)

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

396

Scenarios for a Clean Energy Future Transportation 6.1  

E-Print Network (OSTI)

automotive manufacturers have announced commercial introductions of hybrid vehicles five to ten years sooner turnover of fleets, gasoline's dominance of light-duty vehicle fueling infrastructure, and low energy vehicles are included, as in the case here. Recent studies limited to a 10-year time horizon suggest

397

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

USA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Relative Importance Total off- site energy demand (

Stadler, Michael

2011-01-01T23:59:59.000Z

398

Energy Efficiency in China: Glorious History, Uncertain Future  

Science Conference Proceedings (OSTI)

Chinas rapid economic growth of 10% per year has been accompanied by an annual energy growth rate of greater than 10% from 20012005. This in turn has led to the construction of 1 to 2 GWe of electrical generating capacity per week over the period

Mark D. Levine

2008-01-01T23:59:59.000Z

399

Catalyzing a Cleaner Energy Future When asked about catalysts, most  

E-Print Network (OSTI)

National Laboratory (PNNL) embodies all three of these notions. Because chemical transformations from across the globe and just across campus at PNNL's Institute for Integrated Catalysis (IIC for Energy PNNL's story of high-impact catalysis science doesn't begin in 2001, when the IIC was formed. Nor

400

Affordable comfort 95 - investing in our energy future  

Science Conference Proceedings (OSTI)

This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Scenarios for a Clean Energy Future EXECUTIVE SUMMARY  

E-Print Network (OSTI)

individually for each sector (buildings, industry, transportation, and electric generation) and assessed-at-the-pump" auto insurance ­Renewable energy portfolio standards and production tax credits ­Electric industry for renewables, restrictions on emissions of particulate matter, and restructuring of the electricity industry

402

Renewable Energy in India: Status and future Potential  

E-Print Network (OSTI)

Centralised Grid Connected Cogeneration/Trigeneration Decentralised Distributed Generation Isolated Demand 61000 PHWR ~50 10GW Data Source Plg Comm IEPC, 2006 #1 Sustainability #12;#1 Sustainability Present;Energy End uses End-uses Cooking Transport Electricity HeatingCooling Cooling Motive Power Lighting

Banerjee, Rangan

403

Smart Grid: Powering Our Way to a Greener Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid: Powering Our Way to a Greener Future Grid: Powering Our Way to a Greener Future Smart Grid: Powering Our Way to a Greener Future April 25, 2013 - 9:28am Addthis Eric Lightner Eric Lightner Director of the Federal Smart Grid Task Force in the Office of Electricity Delivery and Energy Reliability Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money every day. To take full advantage of a modern electric grid, however, people need to understand what those opportunities are. The "Power Over Energy" energy literacy initiative, which the Department joined this week, is educating, motivating and empowering

404

Unlocking the Promise of a Clean Energy Future by Boosting Diversity in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unlocking the Promise of a Clean Energy Future by Boosting Unlocking the Promise of a Clean Energy Future by Boosting Diversity in STEM Unlocking the Promise of a Clean Energy Future by Boosting Diversity in STEM December 11, 2012 - 10:56am Addthis There is a critical need for more minorities to enter the energy industry. Hands-on activities like the workshop pictured above at the Spelman Girls Institute (Nov 17, 2012) help provide these entry points. There is a critical need for more minorities to enter the energy industry. Hands-on activities like the workshop pictured above at the Spelman Girls Institute (Nov 17, 2012) help provide these entry points. Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity *Editor's Note: This article was originally published in the December 2012

405

"Getting to Know Nuclear Energy: The Past, Present & Future" on  

NLE Websites -- All DOE Office Websites (Extended Search)

"Getting to Know Nuclear Energy: The Past, Present & Future" "Getting to Know Nuclear Energy: The Past, Present & Future" Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne Energy Showcase 2012 Highlights Bookmark and Share "Getting to Know Nuclear Energy: The Past, Present & Future" An Argonne OutLoud free public lecture by nuclear engineer Roger Blomquist WATCH VIDEO ARGONNE, Ill. (Updated on Nov. 18, 2012) - On November 15, 2012 at 6:30

406

Securing a Clean Energy Future: A Governor's Guide to Clean Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing a Clean Energy Future: A Governor's Guide to Clean Power Securing a Clean Energy Future: A Governor's Guide to Clean Power Generation and Energy Efficiency Securing a Clean Energy Future: A Governor's Guide to Clean Power Generation and Energy Efficiency Meeting today's electricity needs calls for addressing two important and seemingly incompatible challenges: satisfying steadily growing demand and mitigating greenhouse gas emissions.The United States' electricity demand totaled more than 3,800 billion kilowatt hours (kWh) in 2006 and is expected to grow approximately 1.1 percent each year in the next two decades. By 2030, electricity consumption will be about 26 percent greater than it is today. Meanwhile, electricity production and distribution accounts for 40 percent of U.S. carbon dioxide (CO2) emissions. These emissions are projected to grow more than 20 percent by

407

Department of Energy Takes Another Step Forward on FutureGen Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Takes Another Step Forward on FutureGen Energy Takes Another Step Forward on FutureGen Project in Mattoon, IL Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, IL July 14, 2009 - 12:00am Addthis Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's decision is based on careful consideration of the proposed project's potential environmental impacts, as well as the program goals and objectives. "The carbon capture and sequestration technologies planned for this flagship facility are vitally important to America and the world," said Energy Secretary Steven Chu. "This step forward demonstrates the

408

Lab Game-Changers in Our Past and Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changers in Our Past and Future Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future March 20, 2012 - 1:17pm Addthis A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form scientific partnerships designed to hurdle an energy barrier with transformative technology. | Photo courtesy of Berkeley National Lab. A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form

409

Lab Game-Changers in Our Past and Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future Lab Game-Changers in Our Past and Future March 20, 2012 - 1:17pm Addthis A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form scientific partnerships designed to hurdle an energy barrier with transformative technology. | Photo courtesy of Berkeley National Lab. A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form

410

Environmental concerns influencing the future development of energy material transportation systems: the year 2000 study  

DOE Green Energy (OSTI)

This paper presents results of studies conducted to assess the potentially longer-range problems which could hinder the future development of safe and environmentally-acceptable energy material transportation systems. The purpose of this effort is to recommend appropriate action that contributes to the anticipatory management of possible future problems before they can have serious effects on the adequacy or acceptability of the system. Most significant future concerns in energy material transportation relate to potential institutional, legal, political and social problems. Environmental issues are involved in many of these concerns. Selected environmental concerns are discussed that may influence the future development of transportation systems for fossil and nuclear energy materials during the balance of this century. A distinction between potentially real and perceived concerns is made to emphasize basic differences in the recommended approach to solutions of the respective type of potential problem.

DeSteese, J. G.

1978-01-01T23:59:59.000Z

411

Technical challenges for the future of high energy lasers  

SciTech Connect

The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

LaFortune, K N; Hurd, R L; Fochs, S N; Rotter, M D; Pax, P H; Combs, R L; Olivier, S S; Brase, J M; Yamamoto, R M

2007-01-10T23:59:59.000Z

412

Inertial fusion: an energy-production option for the future  

SciTech Connect

The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

1982-05-01T23:59:59.000Z

413

Energy forecasting: the troubled past of looking the future  

SciTech Connect

Energy forecasts have hardly been distinguished by their accuracy. Why forecasts go awry, and the impact these prominent tools have, is explored. A brief review of the record is given. Because of their allure, their popularity in he media, and their usefulness as tools in political battles, forecasts have played a significant role so far. The danger is that they represent and enhance a fix 'em up, tinkering approach, to the detriment of more efficient free-market policies.

Kutler, E.

1986-01-01T23:59:59.000Z

414

The Future of High Energy Nuclear Physics in Europe  

E-Print Network (OSTI)

In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

J. Schukraft

2006-02-14T23:59:59.000Z

415

Role of Future Generation and Energy Efficiency Options  

Science Conference Proceedings (OSTI)

This Technical Update provides results of various policy scenarios using EPRI's financial model of the U.S. electric sector for generation capacity expansion and dispatch at the national and regional levels. The model evaluates the possible effects of climate policy, renewable portfolio standard (RPS), energy efficiency, technology availability, and market scenarios on the deployment and operation of nuclear, fossil, and renewable generation options and on electricity prices, emissions, fuel use, and oth...

2009-11-30T23:59:59.000Z

416

Distributed Energy Resources and Management of Future Distribution  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Smart Grid demonstration initiative is a collaborative research effort focused on the design, implementation, and assessment of field demonstrations to address challenges with integrated distributed resources in grid and market operations as well as system planning. The main objective of this study is to identify approaches to interoperability and integration that can be used on a systemwide scale to help standardize the use of distributed energy resources...

2010-03-25T23:59:59.000Z

417

Larger Turbines and the Future Cost of Wind Energy (Poster)  

DOE Green Energy (OSTI)

The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.

Lantz, E.; Hand, M.

2011-03-01T23:59:59.000Z

418

FutureGen: Pathway to Near-Zero Emissions and Sustainable Energy  

DOE Green Energy (OSTI)

This presentation will highlight the U.S. Department of Energys (DOE) FutureGen project ? a $1 billion government-industry partnership to design, build, and operate a near-zero emissions coal-fueled power plant. The lead organization for the FutureGen initiative is the National Energy Technology Laboratory (NETL), a multi-purpose laboratory operated by the U.S. DOEs Office of Fossil Energy. NETL has a mission to conduct R&D from fundamental science to technology demonstration for resolving the environmental, supply, and reliability constraints of producing and using fossil energy resources. The commercial-scale FutureGen R&D facility is a pathway toward future fossil-energy power plants that will produce hydrogen and electricity while nearly eliminating emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. Low carbon emissions would be achieved by integrating CO2 capture and sequestration operations with the power plant.

Zitney, S.E.; Sarkus, T.A

2007-11-04T23:59:59.000Z

419

Future of hot dry rock geothermal energy systems  

DOE Green Energy (OSTI)

Where natural groundwater circulation does not exist, the obvious method of extracting heat from the earth's crust is to imitate nature by creating it. A means of doing so by hydraulic fracturing has been demonstrated. Alternatively, explosives or mechanical or chemical methods might be used to open circulation paths. However, where permeabilities are sufficient so that fluid loss is excessive, other approaches are also possible. The magnitude and distribution of hot dry rock and the variety of possible heat-extraction techniques make it appear inevitable that this energy supply will eventually be used on a large scale.

Smith, M.C.

1979-01-01T23:59:59.000Z

420

Future of photovoltaic energy conversion in developing countries  

DOE Green Energy (OSTI)

Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

Hogan, S.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

DOE Green Energy (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

422

Photo of the Week: Alaska's Future in Renewable Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska's Future in Renewable Energy Alaska's Future in Renewable Energy Photo of the Week: Alaska's Future in Renewable Energy August 13, 2013 - 12:53pm Addthis In Alaska's rural villages, many families struggle with the impact of high energy costs -- often times, almost half of a family's income is spent on fuel to power a home. To face this, the Department of Energy's Office of Indian Energy works closely with tribal nations, state government, NGOs and the private sector to help tribes develop the energy resources that exist on tribal lands. NANA is an organization that operates in northwest Alaska -- the region pictured in the pastoral landscape above. Through building businesses and using smart development of Alaskan resources, NANA's strategic energy plan involves expanding sources of renewable energy, with the goal of reducing the region's dependence on fossil fuels by 50 percent by the year 2025. Learn more about the Energy Department's efforts to reduce energy costs in Alaska. | Photo courtesy of NANA, Arend.

423

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 8020 of 31,917 results. 11 - 8020 of 31,917 results. Article Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi, United Arab Emirates http://energy.gov/articles/secretary-chu-attend-second-clean-energy-ministerial-abu-dhabi-united-arab-emirates Download The History of Nuclear Energy Although they are tiny, atoms have a large amount of energy holding their nuclei together. Certain isotopes of some elements can be split and will release part of their energy as heat. This... http://energy.gov/ne/downloads/history-nuclear-energy Download Duke-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina http://energy.gov/sepa/downloads/duke-3-e-wholesale-power-rate-schedule Download SOCO-3-E Wholesale Power Rate Schedule Area: MEAG, Dalton System: Georgia-Alabama-South Carolina

424

DOE Science Showcase - Energy Plants of the Future | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Energy Plants of the Future DOE Science Showcase - Energy Plants of the Future Advanced Integrated Gasification Combined Cycle Power Plants Advanced IGCC is a flexible technology for generating low-cost electricity while meeting all future environment requirements Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification Technology R&D How Coal Gasification Power Plants Work 2010 Worldwide Gasification Database Follow NETL Gasification IGCC Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services

425

Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries  

SciTech Connect

Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

Koopman, R.; Richardson, J.

1993-10-01T23:59:59.000Z

426

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

SciTech Connect

The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

Zheng, Nina; Zhou, Nan; Fridley, David

2010-09-01T23:59:59.000Z

427

#LabChat Recap: The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of Biofuels The Future of Biofuels #LabChat Recap: The Future of Biofuels September 27, 2012 - 4:51pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs #LabChat: The Future of Biofuels Brian Pfleger, a synthetic biologist and metabolic engineer from the Great Lakes Bioenergy Research Center, stepped into the #LabChat to answer questions about his work developing advanced biofuels. Moderating the #LabChat was John Greenler, director of education and outreach for the center. Storified by Energy Department · Thu, Sep 27 2012 14:48:51 Great Lakes Bioenergy Research Center is one of three Energy Department facilities not only trying to develop the next generation of biofuels, but rather, trying to develop a new generation of biofuels. They are

428

Analysis of the Past and Future Trends of Energy Use in Key Medium- and  

NLE Websites -- All DOE Office Websites (Extended Search)

the Past and Future Trends of Energy Use in Key Medium- and the Past and Future Trends of Energy Use in Key Medium- and Large-Sized Chinese Steel Enterprises, 2000-2030 Title Analysis of the Past and Future Trends of Energy Use in Key Medium- and Large-Sized Chinese Steel Enterprises, 2000-2030 Publication Type Report LBNL Report Number LBNL-6380E Year of Publication 2013 Authors Hasanbeigi, Ali, Zeyi Jiang, and Lynn K. Price Date Published 09/2013 Publisher Lawrence Berkeley National Laboratory Keywords china, decomposition, iron and steel industry, Low Emission & Efficient Industry Abstract The iron and steel industry is one of the most energy-intensive and polluting industries in China. This industry accounted for approximately 27% of China's primary energy use for the manufacturing industry in 2010. Also, China's steel production represented around 47% of the world steel production that year. Hence, reducing energy use and air pollutant emissions from the Chinese steel industry not only has significant implications for China but also for the entire world. For this reason, it is crucial and it is the aim of this study to analyze influential factors that affected the energy use of the steel industry in the past in order to try to quantify the likely effect of those factors in the future.

429

The Future of Utility Customer-Funded Energy Efficiency Programs in the  

NLE Websites -- All DOE Office Websites (Extended Search)

The Future of Utility Customer-Funded Energy Efficiency Programs in the The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025 Title The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025 Publication Type Report Year of Publication 2013 Authors Barbose, Galen L., Charles A. Goldman, Ian M. Hoffman, and Megan A. Billingsley Date Published 01/2013 Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments).

430

Electric automobiles: energy, environmental, and economic prospects for the future  

DOE Green Energy (OSTI)

The book discusses the pros and cons of electric cars for the motorist as well as for the nation as a whole. For the motorist, it compares the prospective performance and costs of electric cars with those of conventional cars. For the nation, it projects the changes in energy use, petroleum use, air pollution, and traffic noise that would result from substituting electric cars for conventional cars. Specific projections are advanced for the years 1980, 1990, and 2000. Beginning with the reasons for the current interest in electric cars and why they have not yet come into widespread use, the book offers useful information on: prospective propulsion batteries, with projections of battery performance and capabilities; patterns for urban driving, which serve as a basis for determining the applicability of electric cars with different driving ranges and passenger capabilities; comprehensive projections of electric utility capacity and generation by fuel type, both with and without electric cars; the number of electric cars that may be recharged without adding utility capacity beyond that already planned; the requirements of electric cars for battery materials; and the impact of electric cars on urban air quality and traffic noise.

Hamilton, W.

1980-01-01T23:59:59.000Z

431

U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Fuel Cell Activities: U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions Total Energy USA Houston, Texas Dr. Sunita Satyapal 11/27/2012 Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Overview Fuel Cells - An Emerging Global Industry United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung, Toyota, UTC Power, Nissan, Ballard, Plug Power, Panasonic, Delphi Technologies Clean Energy Patent Growth Index Source: Clean Energy Patent Growth Index Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011.

432

Energy efficient Phase Change Memory based main memory for future high performance systems  

Science Conference Proceedings (OSTI)

Phase Change Memory (PCM) has recently attracted a lot of attention as a scalable alternative to DRAM for main memory systems. As the need for high-density memory increases, DRAM has proven to be less attractive from the point of view of scaling and ... Keywords: DDR3 commodity DRAM memory system, energy efficient phase change memory, main memory, future high performance systems, energy consumption, latency issues, write energy, write endurance, cache, embedded DRAM

R. A. Bheda; Jason A. Poovey; J. G. Beu; T. M. Conte

2011-07-01T23:59:59.000Z

433

Department of Energy Takes Another Step Forward on FutureGen Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Another Step Forward on FutureGen Takes Another Step Forward on FutureGen Project in Mattoon, Illinois Department of Energy Takes Another Step Forward on FutureGen Project in Mattoon, Illinois July 14, 2009 - 1:00pm Addthis Washington, D.C. - The Department of Energy today issued a National Environmental Policy Act (NEPA) Record of Decision to move forward toward the first commercial scale, fully integrated, carbon capture and sequestration project in the country. The Department's decision is based on careful consideration of the proposed project's potential environmental impacts, as well as the program goals and objectives. "The carbon capture and sequestration technologies planned for this flagship facility are vitally important to America and the world," said Energy Secretary Steven Chu. "This step forward demonstrates the

434

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

435

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

436

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

11%, respectively, of final energy consumption in 2020 ().Energy Consumption ..2003). As Chinas energy consumption continues to increase,

2004-01-01T23:59:59.000Z

437

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

DOE Green Energy (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

438

What the Smart Grid Means to America's Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What the Smart Grid Means to America's Future What the Smart Grid Means to America's Future What the Smart Grid Means to America's Future The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at www.smartgrid.gov, this publication is one in a series of books designed to better acquaint discrete stakeholder groups with the promise and possibilities of the Smart Grid. Stakeholder groups include Utilities, Regulators, Policymakers, Technology Providers, Consumer Advocates and

439

HigHligHts Fossil Energy Techline, "DOE Announces Restructured FutureGen  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Restructured FutureGen Announces Restructured FutureGen Approach to Demonstrate Carbon Capture and Storage Technology at Multiple Clean Coal Plants." On January 30, US Secretary of Energy Samuel W. Bodman announced a restructured approach to the FutureGen project, which involves the demonstration of carbon capture and storage (CCS) t e c h n o l o g y a t s e v e r a l commercial-scale Integrated Gasification Combined Cycle (IGCC) power plants. The US Department of Energy (DOE) said that the reorganized approach caps their financing at no more than the plant's CCS component, allowing for plants to be operational as early as 2015. Under this restructured approach, DOE believes that at least twice the amount of carbon dioxide

440

HOW THE SMART GRID PROMOTES A GREENER FUTURE. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOW THE SMART GRID PROMOTES A GREENER FUTURE. HOW THE SMART GRID PROMOTES A GREENER FUTURE. HOW THE SMART GRID PROMOTES A GREENER FUTURE. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at www.smartgrid.gov, this publication is one in a series of books designed to better acquaint discrete stakeholder groups with the promise and possibilities of the Smart Grid. Stakeholder groups include Utilities, Regulators, Policymakers, Technology Providers, Consumer

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A SMART GRID MEANS TO OUR NATION'S FUTURE. A SMART GRID MEANS TO OUR NATION'S FUTURE. WHAT A SMART GRID MEANS TO OUR NATION'S FUTURE. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at www.smartgrid.gov, this publication is one in a series of books designed to better acquaint discrete stakeholder groups with the promise and possibilities of the Smart Grid. Stakeholder groups include Utilities, Regulators, Policymakers, Technology Providers, Consumer

442

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

443

RENEWABLE ENERGY RESOURCES AND TECHNOLOGIES IN NIGERIA: PRESENT SITUATION, FUTURE PROSPECTS AND POLICY FRAMEWORK  

E-Print Network (OSTI)

Abstract. Nigeria is endowed with abundant energy resources, both conventional and renewable, which provide her with immense capacity to develop an effective national energy plan. However, introduction of renewable energy resources into the nations energy mix have implications on its energy budget. The national energy supply system has been projected into the future using MARKAL, a large scale linear optimization model. However, this model may not be absolutely representative of the highly non-linear future of renewable energy. Results of the model reveal that under only a least cost constraint, only large hydro power technology is the prominent commercial renewable energy technology in the electricity supply mix of the country. Despite the immense solar energy potentials available, solar electricity generation is attractive only under severe CO2 emissions mitigation of the nations energy supply system. Similarly, the penetration of small-scale hydro power technology in the electricity supply mix is favoured only under CO2 emissions constraints. Due to economy of scale, large hydro power technology takes the lion share of all the commercial renewable energy resources share for electricity generation under any CO 2 emissions constraint. These analyses reveal that some barriers exist to the development and penetration of renewable energy resources for electricity production in Nigerias energy supply system. Barriers and possible strategies to overcome them are discussed. Intensive efforts and realistic approach towards energy supply system in the country will have to be adopted in order to adequately exploit renewable energy resources and technologies for economic growth and development.

John-felix K. Akinbami

2001-01-01T23:59:59.000Z

444

June 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source  

E-Print Network (OSTI)

's first large-scale, sustainable nuclear fusion reactor, an estimated $10 billion project that many than burning fossil fuels or even nuclear fission, which is used in nuclear reactors today but producesJune 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source By CRAIG S. SMITH PARIS

445

The implications of future building scenarios for long-term building energy research and development  

Science Conference Proceedings (OSTI)

This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

Flynn, W.T.

1986-12-01T23:59:59.000Z

446

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Sustainability Green Growth Energy Demand Elasticity of GDPSustainability Green Growth Energy Demand GDP CarbonFigure 15. In Green Growth, building energy use more than

2004-01-01T23:59:59.000Z

447

Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study  

Science Conference Proceedings (OSTI)

Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

Worrell, Ernst; Price, Lynn

2001-07-24T23:59:59.000Z

448

International Renewable Energy Agency (IRENA) | Open Energy Information  

Open Energy Info (EERE)

Agency (IRENA) Agency (IRENA) Jump to: navigation, search Logo: International Renewable Energy Agency (IRENA) Name International Renewable Energy Agency (IRENA) Address Old Airport Road at Abu Dhabi Corniche Road PO Box 236 Place Abu Dhabi, United Arab Emirates Year founded 2009 Website http://www.irena.org Coordinates 24.4901844247°, 54.3527126312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.4901844247,"lon":54.3527126312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

NREL: News Feature - NREL Tests Energy-Saving Office of the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Tests Energy-Saving Office of the Future Tests Energy-Saving Office of the Future March 13, 2009 Photo of an office cubicle with two employees looking at a monitor and talking. Collaboration between NREL employees like Rick Horner and John Williams has been enhanced by the new workstations. Storage bins with rollers and padded tops become guest chairs for quick meetings and team conversations. Credit: Heather Lammers Drawing of offices with privacy walls and windows. Director level employees will have private offices with walls, doors and windows, but in keeping with the need for energy efficiency, the walls will only be seven-feet high to allow light and air to circulate (conceptual drawing). Photo of three people chatting, at a table, in an office setting. Low walls between work areas allows the natural light to penetrate all

450

U.S. Department of Energy Buildings Technologies Program: Better Buildings, Brighter Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

new technologies and practices, energy-efficient new technologies and practices, energy-efficient buildings will be the new standard for residents in all U.S. climate zones. DOE and its partners are pursuing a portfolio of research to make it happen. Better Buildings, Brighter Future Innovative Building Technologies and Practices Save Energy and Money Buildings use more energy than any other sector of the U.S. economy, consuming more than 70 percent of electricity and over 50 percent of natural gas. Investing in energy-efficient buildings yields: * Cost savings for American homeowners and businesses; * Reductions in peak demand, providing the energy needed for a strong economy with fewer new power plants; and * Expeditious and sustained reductions in carbon dioxide emissions-with fast paybacks

451

Analysis of past and expected future trends in U. S. energy consumption, 1947--2000  

SciTech Connect

In the first part of this paper, energy consumption trends to the year 2000 are estimated for 110 different industrial sectors and for household and government final demand sectors, and these trends are compared with historical 1947-to-1967 trends. For most sectors, energy consumption is expected to increase much less rapidly in the 1967-1985 period than it did in the 1947-1967 period as a result of the recent large energy price increases. Between 1985 and 2000, the rate of growth of energy consumption continues to moderate for most purchasing sectors primarily because of a slackening in output growth rates rather than because of any further decrease in per unit of output energy requirements. These future trends are estimated under the assumption that post-1976 energy price increases will be moderate. In the second part of the paper, alternative strategies for further reducing future energy consumption are considered, and a data base is presented for use in analyzing the effects of implementing the alternative strategies.

Behling, Jr, D J

1977-02-01T23:59:59.000Z

452

Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)  

SciTech Connect

Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

Not Available

2009-07-01T23:59:59.000Z

453

Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)  

Science Conference Proceedings (OSTI)

The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

Not Available

2012-12-01T23:59:59.000Z

454

The implementation of energy education will solve the energy problem in the future  

Science Conference Proceedings (OSTI)

Energy relates to human civilization closely, and it is one of the country's fundamentals. It also helps us Taiwan create the world-famous economic miracle. However, energy in the world is limited. In recent years, the unusual phenomenon of global climate ... Keywords: energy, renewable energy

Wen-Jiuh Chiang; Rong-Jyue Fang; Chiu Kai Yu; Hua-Lin Tsa

2010-04-01T23:59:59.000Z

455

2012 CERTS R&M Peer Review - Mapping Energy Futures - Bill Schulze  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mapping Energy Futures: Mapping Energy Futures: The SuperOPF Planning Tool Bill Schulze, Dick Schuler, Ray Zimmerman, Dan Shawhan, John Taber, Jubo Yan, Andy Kindle PSERC Existing Planning Tools * Are either very detailed but do not optimize investment over the planning region or * Are highly aggregated using bubbles and pipes (or only a few nodes) to represent the network * Don't include environmental modeling PSERC SuperOPF Planning Tool Uses three network reductions (for the EI, ERCOT and WECC) from Dan Tylavsky to cover the entire nation. These reductions retain all high voltage lines of 230 KV and above. PSERC Features * Investment in new generation * Retirement of old generation * Emissions of CO2, NOX and SO2 * Atmospheric modeling of fine particulates and

456

Distributed Energy Resources: Current Landscape and a Roadmap for the Future  

Science Conference Proceedings (OSTI)

This white paper is designed to help utilities, regulators, legislators, vendors, and other interested parties understand the current landscape of distributed energy resources (DER) in the United States by providing a benchmark status on technology, markets, applications, and business models that are active in this area. The white paper benchmarks various DER options and provides perspectives on trends, gaps, and critical factors for achieving pathways that will enable contributions to the future electri...

2004-12-16T23:59:59.000Z

457

Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models  

E-Print Network (OSTI)

We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parameterize the cosmic expansion by the two parameters, $w_0$ and $w_a$, and the linear growth rate of density fluctuations by Linder's $\\gamma$, independently. Dark energy models generically predict $\\gamma \\approx 0.55$, while the DGP model $\\gamma \\approx 0.68$. To determine if future imaging surveys can constrain $\\gamma$ within 20 percent (or $\\Delta\\gamma<0.1$), we perform the Fisher matrix analysis for a weak lensing survey such as the on-going Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the Figure of Merit (FoM) as a function of the exposure time $\\texp$. We find that the tomography technique effectively improves the FoM, which has a broad peak around $\\texp\\simeq {\\rm several}\\sim 10$ minutes; a shallow and wide survey is preferred to constrain the $\\gamma$ parameter. While $\\Delta\\gamma < 0.1$ cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like WFMOS and/or future CMB observations.

Kazuhiro Yamamoto; David Parkinson; Takashi Hamana; Robert C. Nichol; Yasushi Suto

2007-04-23T23:59:59.000Z

458

Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy  

E-Print Network (OSTI)

Energy for the future ­ with Risø from nuclear power to sustainable energy Risø NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risø from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risø fra

459

Energy: options for the future. Curriculum development project for high school teachers. Final report. [Packet  

DOE Green Energy (OSTI)

Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issues for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.

Carroll, T.O.

1978-04-01T23:59:59.000Z

460

LBNL-5803E The Future of Utility Customer- Funded Energy Efficiency Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

803E 803E The Future of Utility Customer- Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025 Galen L. Barbose, Charles A. Goldman, Ian M. Hoffman, Megan Billingsley Environmental Energy Technologies Division January 2013 This work was supported by the National Electricity Delivery Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price of  

E-Print Network (OSTI)

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price Distinctive Energy Policy for Scotland?' explores the emergence of a distinctive energy policy for Scotland and raises the issue of the desirability of any differentiation from UK energy policy. Although

Mottram, Nigel

462

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

463

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Renewable Energy Laboratory, USA Summary International Experts Chinarenewable energy technologies, including solar photovoltaics and fuel cells ChinaChina. Modeling experts from LBNL, ORNL, the National Renewable

2004-01-01T23:59:59.000Z

464

The Energy Challenge: The Current and Future Role of Solar Energy  

DOE Green Energy (OSTI)

This talk begins by framing the outlook for global energy supply and demand over the next 40 years, examining the potential energy mix from a feasibility and sustainability perspective. In this context, the promise and challenges of solar energy utilization are discussed. An overview of solar energy research programs at Argonne is provided, and focuses specifically on research in Seth Darling's group in the areas of organic and hybrid organic/inorganic photovoltaics.

Darling, Seth (ANL)

2011-08-10T23:59:59.000Z

465

Prospects for future projections of the basic energy sources in Turkey  

Science Conference Proceedings (OSTI)

The main goal of this study is to develop the energy sources estimation equations in order to estimate the future projections and make correct investments in Turkey using artificial neural network (ANN) approach. It is also expected that this study will be helpful in demonstrating energy situation of Turkey in amount of EU countries. Basic energy indicators such as population, gross generation, installed capacity, net energy consumption, import, export are used in input layer of ANN. Basic energy sources such as coal, lignite, fuel-oil, natural gas and hydro are in output layer. Data from 1975 to 2003 are used to train. Three years (1981, 1994 and 2003) are only used as test data to confirm this method. Also, in this study, the best approach was investigated for each energy sources by using different learning algorithms (scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM)) and a logistic sigmoid transfer function in the ANN with developed software. The statistical coefficients of multiple determinations (R{sup 2}-value) for training data are equal to 0.99802, 0.99918, 0.997134, 0.998831 and 0.995681 for natural gas, lignite, coal, hydraulic, and fuel-oil, respectively. Similarly, these values for testing data are equal to 0.995623, 0.999456, 0.998545, 0.999236, and 0.99002. The best approach was found for lignite by SCG algorithm with seven neurons so mean absolute percentage error (MAPE) is equal to 1.646753 for lignite. According to the results, the future projections of energy indicators using ANN technique have been obviously predicted within acceptable errors. Apart from reducing the whole time required, the importance of the ANN approach is possible to find solutions that make energy applications more viable and thus more attractive to potential users.

Sozen, A.; Arcaklioglu, E. [Gazi University, Ankara (Turkey). Technical Education Facility

2007-07-01T23:59:59.000Z

466

The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?  

E-Print Network (OSTI)

The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

Dittmar, Michael

2009-01-01T23:59:59.000Z

467

Energy Frontier Research Centers 2011 Summit and Forum: Science for our Nation's Energy Future (Videoed Presentations)  

DOE Data Explorer (OSTI)

Science for our Nations Energy Future, the 2011 Summit and Forum for and by DOEs Energy Frontier Research Centers (EFRC) was held May 2011 in Washington D.C. The videoed presentations are listed below. In addition, the same website provides access to the 26 videos created and submitted by some of the EFRCs as entries to the Life at the Frontiers of Energy Research research.

  • Welcome Remarks and Introduction from the DOE Under Secretary for Science, Steve Koonin
  • Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)
  • Remarks from Congressional Leaders: Senator Jeff Bingaman
  • Remarks from Congressional Leaders: Congressman Daniel Lipinski
  • Remarks from Congressional Leaders: Congresswoman Zoe Lofgren
  • Introduction to the Summit Session, "Leading Perspectives in Energy Research", from the Director of the DOE Office of Science, Bill Brinkman
  • The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (John Hennessy)
  • Innovating a Sustainable Energy Future (Mark Little)
  • Perspectives in Energy Research: How Can We Change the Game? (Eric Isaccs)
  • Joint Center for Artificial Photosynthesis (JCAP): DOE's Solar Fuels Energy Innovation Hub (Nate Lewis)
  • Energy Frontier Research Centers (EFRCs): A Response to Five Challenges for Science and the Imagination (panel session)
  • Science for Energy Technology: The Industry Perspective (panel session)
  • Energy Frontier Research Centers: A View from Senior EFRC Representatives (panel session)
  • Facing Our Energy Challenges in a New Era of Science (Pat Dehmer, Forum Session)
  • Basic Solar Energy Research in Japan (Kazunari Domen, Forum Session)
  • A Resurgence of United Kingdom Nuclear Power Research (Robin Grimes, Forum Session)
  • Key Challenges and New Trends in Battery Research (Jean Marie Tarascon, Forum Session)

468

Energy Futures in Industry - Achievements Through Energy Conservation - A Success Story  

E-Print Network (OSTI)

The paper describes total energy management in a company where only a small amount of energy is used as a proportion of total cost operation and the effect of such programs since their inception in 1976. Energy Management - from central control of heating, air conditioning and lighting; the advantages of enthalpy and economized operation; temperature reduction during non-occupied hours; zone control; advantages of correct lamp selection; propane vehicle conversion; van and car pools; power factor correction; heat recovery methods; process water control; to an employee motivation and participation energy conservation program.

Francis, G.; Tomlin, W. U.

1983-01-01T23:59:59.000Z

469

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

70% of total national energy consumption, and the highlyenergy consumption and sectoral composition so that the base-year data would be consistent with the official national

2004-01-01T23:59:59.000Z

470

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations 1 USVI Energy Road Map Energy transformation. It's an enormous undertaking. One that has been discussed for decades. Debated hotly. Pursued intermittently. And supported halfheartedly in response to various short-lived crises. Until now. Today, the need to move beyond the status quo is driven not by "doom-and-gloom" predictions but by realities on the ground. The global economy is under constant threat as

471

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations 1 USVI Energy Road Map Energy transformation. It's an enormous undertaking. One that has been discussed for decades. Debated hotly. Pursued intermittently. And supported halfheartedly in response to various short-lived crises. Until now. Today, the need to move beyond the status quo is driven not by "doom-and-gloom" predictions but by realities on the ground. The global economy is under constant threat as

472

The Future of Ratepayer-Funded Energy Efficiency in the U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Summary January 2013 The Future of U.S. Utility Customer-Funded Energy Efficiency Programs: Projected Spending & Savings through 2025 Galen Barbose, Charles Goldman Ian Hoffman, Megan Billingsley Electricity Markets and Policy Group Lawrence Berkeley National Laboratory This work was supported by the National Electricity Delivery Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231. Overview of Presentation * Context and Approach * Current EE spending trends and policy drivers * Projections of electric and gas program spending and savings through 2025 * Key challenges to dramatically scaling up EE program activity and issues on the horizon

473

State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy  

Science Conference Proceedings (OSTI)

Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

Kubert, C.; Sinclair, M.

2011-04-01T23:59:59.000Z

474

U.S. Department of Energy and Masdar Collaborate In Testing Cutting-Edge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy and Masdar Collaborate In Testing Department of Energy and Masdar Collaborate In Testing Cutting-Edge Solar PV Coating Technologies U.S. Department of Energy and Masdar Collaborate In Testing Cutting-Edge Solar PV Coating Technologies February 28, 2011 - 12:00am Addthis Abu Dhabi-UAE: The U.S. Department of Energy (DOE) and Masdar, Abu Dhabi's multifaceted renewable energy initiative, announced that they will collaborate to test the performance of specially coated solar photovoltaic modules designed to avoid the moisture and cementation problems currently faced by PV module producers worldwide and prevent dry dust adhesion. Developed by the U.S. National Renewable Energy Laboratory (NREL) - the U.S. federal laboratory dedicated to the research, development, commercialization and deployment of renewable energy and energy efficiency

475

Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis  

SciTech Connect

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

2011-09-30T23:59:59.000Z

476

The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and a Nuclear Venture  

E-Print Network (OSTI)

policies, among which are included a green growth program and the building of a nuclear power plant, this article explores the case of Amman's energy transition. The growth of consumption coupled with new energy demographic and economic growth, particularly fueled by regional migrations. New consumption practices

477

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure)  

Science Conference Proceedings (OSTI)

This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones.

Not Available

2011-07-01T23:59:59.000Z

478

Livermore energy policy model and projections of energy futures for the Gas Research Institute  

Science Conference Proceedings (OSTI)

The Energy and Resource Planning Group at the Lawrence Livermore National Laboratory (LLNL) was asked by the Gas Research Institute to evaluate ten of their research projects relative to proposed funding levels for 1982. These energy technology projects included gas from unconventional and synthetic sources as well as utilization technologies. The primary tool used in the evaluation was the LLNL Energy Policy Model (EPM). The report gives background information about the study, the basic assumptions used in the study, and some conclusions, and presents selected supporting results from the EPM runs.

Castleton, R.

1981-06-01T23:59:59.000Z

479

Securing America's energy future: the national energy policy plan. [Reagan Administration update  

SciTech Connect

During its first six months, the Administration has reformulated energy policy guidelines within the context of its overall Economic Recovery Program. This new national energy policy (of which Executive Branch action is but one part) will continue to develop and to be refined; it will not be tied to a static and unresponsive plan. This document defines the approach for reformulation of policy, and it presents the current energy outlook of the Nation. It is submitted to Congress in accordance with the requirements of Section 801 of the Department of Energy Organization Act (Public Law 95-91). As specific new legislative policy initiatives are developed over the coming months, they will be forwarded promptly to Congress.

Not Available

1981-07-01T23:59:59.000Z

480

Incineration, Waste-to-energy and Catalytic Gasification: the Past, Present and Future of Medical Waste Management  

E-Print Network (OSTI)

- 1 - Incineration, Waste-to-energy and Catalytic Gasification: the Past, Present and Future Determination 19 Discussion of M.W. Disposal/Use Options Incineration 25 Waste-to-Energy 28 Gasification 29 Waste-to-Energy Ash Research 31 Dioxins 35 Discussion of Gasification/Catalytic Alternative 36 GCMS

Columbia University

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.