Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Masdar Abu Dhabi Future Energy Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyMMalawi:Manassas isMaryville

2

Secretary Chu to Attend Second Clean Energy Ministerial in Abu Dhabi,  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13DiscoversGE SolarTravels| Department ofUnited

3

ORIGINAL PAPER A microseismic experiment in Abu Dhabi, United Arab  

E-Print Network [OSTI]

ORIGINAL PAPER A microseismic experiment in Abu Dhabi, United Arab Emirates: implications in an offshore oilfield in the emirate of Abu Dhabi in the United Arab Emirates. The Lower Cretaceous Thamama Dhabi, United Arab Emirates e-mail: asam.farid@gmail.com S. Basu e-mail: sumana0128@gmail.com M. Y. Ali

Ali, Mohammed

4

E-Print Network 3.0 - abu dhabi united Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: abu dhabi united Page: << < 1 2 3 4 5 > >> 1 Discover New York University Abu Dhabi NYUADDiscover New York UniversityAbu Dhabi Summary: Discover New...

5

E-Print Network 3.0 - abu dhabi Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: abu dhabi Page: << < 1 2 3 4 5 > >> 1 Discover New York University Abu Dhabi NYUADDiscover New York UniversityAbu Dhabi Summary: Discover New...

6

Global Energy Futures: With International Futures (IFs)  

SciTech Connect (OSTI)

Dr. Hughes presents and discusses the results of simulations on alternative energy futures composed in collaboration with SNL's Sustainability Innovation Foundry.

Hughes, Barry

2013-03-20T23:59:59.000Z

7

California's Energy Future  

E-Print Network [OSTI]

#12;California's Energy Future ­ The Potential for Biofuels May 2013 Heather Youngs and Christopher R. Somerville #12;LEGAL NOTICE This report was prepared pursuant to a contract between the California Energy Commission (CEC) and the California Council on Science andTechnology (CCST). It does

California at Davis, University of

8

Bioenergy: America's Energy Future  

SciTech Connect (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-07-31T23:59:59.000Z

9

Bioenergy: America's Energy Future  

ScienceCinema (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-08-12T23:59:59.000Z

10

ENERGY WHITE PAPER Our energy future -  

E-Print Network [OSTI]

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

11

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

12

UAE-Abu Dhabi: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports that production expansion projects remain the focus in Abu Dhabi, with increased drilling operations underway both on and offshore. Only Abu Dhabi Co. for Onshore Operations (Adco) and Abu Dhabi Marine Operating Co. (Adma-Opco) provide any information about activity in the Emirate. Plans call for boosting productive capacity by 1 million bpd to near 3 million bpd. Present sustainable capacity is estimated at 1.8 million bpd by the CIA. This rate has been exceeded recently (it reached over 2 million bpd) to take advantage of higher prices in late 1990 and to make up for the shortfall due to loss of Iraqi and Kuwaiti exports. However, it does not appear higher rates can be sustained for a long period of time. By year-end 1992, sustainable output has been projected to reach 2.3 million bpd.

Not Available

1991-08-01T23:59:59.000Z

13

Energy for the Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-upEnergyTricksJohnEnergy for the

14

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...  

Office of Environmental Management (EM)

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

15

Futures for energy cooperatives  

SciTech Connect (OSTI)

A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

None

1981-01-01T23:59:59.000Z

16

Energy for the Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn e rArgonneEnergy

17

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation  

E-Print Network [OSTI]

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

Kemner, Ken

18

Options for Kentucky's Energy Future  

SciTech Connect (OSTI)

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

19

Water Requirements for Future Energy production in California  

E-Print Network [OSTI]

FOR FUTURE ENERGY PRODUCTION STATE'S PERSPECTIVE. CALIFORNIAREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIAREQUIREMENTS POR FUTURE ENERGY PRODUCTION IN CALIFORNIA

Sathaye, Jayant A.; Ritschard, R.L.

1977-01-01T23:59:59.000Z

20

Water Requirements for Future Energy production in California  

E-Print Network [OSTI]

FOR FUTURE ENERGY PRODUCTION STATE'S PERSPECTIVE. CALIFORNIAREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIAREQUIREMENTS POR FUTURE ENERGY PRODUCTION IN CALIFORNIA

Sathaye, J.A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Toward an energy surety future.  

SciTech Connect (OSTI)

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

22

Foundation futures: Energy saving opportunities  

SciTech Connect (OSTI)

Significant energy savings will result from compliance to the foundation insulation recommendations in ASHRAE Standard 90.2P, /open quotes/Energy Efficient Design of New, Low-Rise Residential Buildings/close quotes/ (ASHRAE 1987). This paper summarizes an assessment of current US energy savings from foundation insulation and estimates future savings resulting from broad-scale adoption of ASHRAE 90.2P. The assessment is based on the premise that the detailed analysis behind ASHRAE 90.2P and its systematic method of determining insulation levels in a balanced manner will allow it to become the accepted base energy performance standard for all residential construction. The total energy currently being saved by foundation insulation (30% of 1.7 million new units) in one year's worth of new housing starts in the United States is estimated at 9.6 /times/ 10/sup 12/ Btu/yr (10.1 PJ/yr (petajoule = 10/sup 15/ joule)). The full compliance with ASHRAE 90.2P leads to more than a doubling of current foundation insulation energy savings. The extrapolation of existing practice and the addition of other contributions resulting from compliance with ASHRAE 90.2 lead to an estimated energy savings by the year 2010 between 0.38 and 0.45 quad/yr (400 and 475 PJ/yr (quad = 10/sup 15/ Btu)). 11 refs., 14 tabs., 7 figs.

Christian, J.E.

1988-01-01T23:59:59.000Z

23

Coal: Energy for the future  

SciTech Connect (OSTI)

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

NONE

1995-05-01T23:59:59.000Z

24

The Future of Atomic Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentThe Five FastestFuture is bright

25

Future Use | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D ExplorationsFuture Physics

26

James Smith: Building the Energy Future Shaping the Future Lecture  

E-Print Network [OSTI]

James Smith: Building the Energy Future Shaping the Future Lecture James Smith was appointed been involved in Shell business in a number of Middle Eastern countries and in the US. James Smith `ought'to do in response and assess what society will `choose'to do in reality. James Smith will identify

Mumby, Peter J.

27

Future Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy Inc JumpGeothermal Field |Future

28

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

...............................................................................................19 Competitive Green Power and Renewable Energy Certificate Marketing..............................45.......................................................................................53 Selected Wholesale MarketersNational Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory

29

RENEWABLE ENERGIES Innovations for the future  

E-Print Network [OSTI]

RENEWABLE ENERGIES Innovations for the future #12;Imprint Publisher: Federal Ministry Böhme BMU, Division KI I1 "General and Fundamental Aspects of Renewable Energies" Content: Dr. Martin in a seminal global market: with both renewable energy and energy efficiency. For a sustainable energy economy

Peinke, Joachim

30

Energy Implications of Alternative Water Futures  

E-Print Network [OSTI]

Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

Keller, Arturo A.

31

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network [OSTI]

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

32

www.kostic.niu.edu Global Energy and Future:Global Energy and Future  

E-Print Network [OSTI]

Most of BC history Population in millions Time in history www.kostic.niu.edu Earth Energy Balance1 www.kostic.niu.edu Global Energy and Future:Global Energy and Future: Importance of Energy Conservation andImportance of Energy Conservation and Renewable and Alternative Energy Resources

Kostic, Milivoje M.

33

Bright Future NW Energy Coalition  

E-Print Network [OSTI]

Getting To a Bright Future 1. Cap global-warming emissions. President Obama and the U.S. Congress should Climate Initiative: 15% reduction from 1990 levels by 2020, 80% or larger reduction by 2050. While

34

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

35

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

Zheng, Nina

2012-01-01T23:59:59.000Z

36

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

more expensive than coal and energy security concerns ofPetroleum Input Coal Input Total Energy Input EROEI Per MJOutput Efficiency Coal Electricity Total Energy Water (tons/

Zheng, Nina

2012-01-01T23:59:59.000Z

37

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

compared to other renewable energy policies illustrate thatExpansion Policy Drivers Renewable Energy Law of China TheRenewable Energy Law, other technology-specific policies

Zheng, Nina

2012-01-01T23:59:59.000Z

38

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

Solar Water Heater Geothermal energy Biomass Pellets mil m2an increasingly important geothermal energy user in the lastin direct use of geothermal energy through ground source

Zheng, Nina

2012-01-01T23:59:59.000Z

39

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

of total primary energy consumption was also announced forenergy in total primary energy consumption to 10% by 2010coal in total primary energy consumption as well as slightly

Zheng, Nina

2012-01-01T23:59:59.000Z

40

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

to 2005 Renewable Energy Law The unprecedented growth ofhighlights that growth in renewable energy development inthe fastest growth of 106% in renewable energy capacity from

Zheng, Nina

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network [OSTI]

energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

2004-01-01T23:59:59.000Z

42

FIRST STEPS INTO AN ENERGY EFFECIENT FUTURE  

SciTech Connect (OSTI)

Red Lake Band of Chippewa Indians proposes to develop a more sustainable, affordable and autonomous energy future for Tribal Members. The Band will develop the capacity to conduct energy audits, to implement energy efficiency measures in tribal homes, and to build more energy efficient housing. This will be done by providing direct classroom and on the job training for Tribal members to conduct the energy audits and the installation of insulation.

BARRETT, JANE L.

2009-04-02T23:59:59.000Z

43

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

energy in China. ” Renewable Energy 36 (5): 1374-1378. Chen,GoC/World Bank/GEF China Renewable Energy Scale-up Programwind power systems. ” Renewable Energy 35: 218-225. Lechon

Zheng, Nina

2012-01-01T23:59:59.000Z

44

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

40 Table 17. Uranium Ore Mining and Milling Energy Intensity45 Table 20. Energy Intensity for Nuclear Fuel Cycleset out to reduce its energy intensity as defined by energy

Zheng, Nina

2012-01-01T23:59:59.000Z

45

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

California renewable portfolio could be about 75% variable resources from solar andCalifornia Public Utilities Commission CSP Concentrating solara direct solar fuels industry. California’s Energy Future -

2011-01-01T23:59:59.000Z

46

Biomass 2014: Growing the Future Bioeconomy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of...

47

Abu Dhabi, United Arab Emirates: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification ProjectAVANTI Jump

48

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

renewable energy source and with abundant solar resources inEnergy Generation and Sources 2005 Actual Wind Solar Biomasssources of non- fossil electricity generation including wind, solar, hydro, nuclear and geothermal, renewable energy

Zheng, Nina

2012-01-01T23:59:59.000Z

49

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

88 Figure 38. Carbon Intensity of China's Electricityboth its energy and carbon intensities as it strives to meetincluding energy and carbon intensity reduction goals of 16%

Zheng, Nina

2012-01-01T23:59:59.000Z

50

A Renewable Energy Future: Innovation and Beyond  

Broader source: Energy.gov [DOE]

This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

51

Hydrogen and OUr Energy Future  

SciTech Connect (OSTI)

In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

Rick Tidball; Stu Knoke

2009-03-01T23:59:59.000Z

52

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance two-way power flow with communication and control. Renewable Energy Grid Integration As the market

53

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance a given location for the best technology, or a renewable energy technology for the best location, accurate

54

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

55

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

% postconsumer waste #12;Acknowledgments This work was funded by the U.S. Department of Energy's (DOE) OfficeNational Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest

56

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

sources of non- fossil electricity generation including wind, solar, hydro, nuclear and geothermal, renewable energy

Zheng, Nina

2012-01-01T23:59:59.000Z

57

IM Future | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUS Innovative Technische

58

THE FUTURE OF GEOTHERMAL ENERGY  

SciTech Connect (OSTI)

Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

J. L. Renner

2006-11-01T23:59:59.000Z

59

Drivers of Future Energy Demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

60

Prompt-Month Energy Futures  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year JanProductPrompt-Month

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Future Heating | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a pageFuhrmetFundicionHeating

62

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

Wind Energy Association (BWEA), 2005, “BWEA Briefing Sheet: Wind Turbineturbines with expected annual production capacity of 450 MW (Xinhua, 2011c). 3.5 Remaining Challenges for Wind Energy

Zheng, Nina

2012-01-01T23:59:59.000Z

63

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

and subsidies initiated in the last few years, China’s solarChina has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar,

Zheng, Nina

2012-01-01T23:59:59.000Z

64

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

development and transmission planning between the State Council, State Electricity Regulatory Council, grid companies, renewable energy developers and local

Zheng, Nina

2012-01-01T23:59:59.000Z

65

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar,

Zheng, Nina

2012-01-01T23:59:59.000Z

66

Securing America's Future Energy April 8, 2011 | Department of...  

Broader source: Energy.gov (indexed) [DOE]

America's Future Energy an e-mail with attachments of a New York Times article on oil prices. Securing America's Future Energy April 8, 2011 More Documents & Publications...

67

New Feedstocks and Replacement Fuels - Future Energy for Mobility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels - Future Energy for Mobility New Feedstocks and Replacement Fuels - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

68

A low-frequency passive seismic array experiment over an onshore oil field in Abu Dhabi, United Arab Emirates  

E-Print Network [OSTI]

oil field in the emirate of Abu Dhabi in the United Arab Emirates. The aim of the experiment Arab Emirates Mohammed Y. Ali1 , Braham Barkat1 , Karl A. Berteussen1 , and James Small1 ABSTRACT A lowA low-frequency passive seismic array experiment over an onshore oil field in Abu Dhabi, United

Ali, Mohammed

69

Copyright 2006, Society of Petroleum Engineers This paper was prepared for presentation at the 2006 Abu Dhabi International Petroleum  

E-Print Network [OSTI]

Copyright 2006, Society of Petroleum Engineers This paper was prepared for presentation at the 2006 Abu Dhabi International Petroleum Exhibition and Conference held in Abu Dhabi, U.A.E., 5­8 November not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author

Mohaghegh, Shahab

70

Energy sources for a secure (?) and clean (?) energy future  

E-Print Network [OSTI]

ERG/200804 Energy sources for a secure (?) and clean (?) energy future Larry Hughes Energy Research." South Korean Prime Minister Han Seung-soo, 6 July 2008 #12;Energy sources for a secure (?) and clean #12;"To take concrete measures to save energy is not a matter of choice but a matter of survival

Hughes, Larry

71

Alternative Energy Development and China's Energy Future  

SciTech Connect (OSTI)

In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

Zheng, Nina; Fridley, David

2011-06-15T23:59:59.000Z

72

Future high energy colliders symposium. Summary report  

SciTech Connect (OSTI)

A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

1996-12-31T23:59:59.000Z

73

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

for Geothermal Power Development energy development. Geothermal Power Technology OverviewChina, the binary cycle geothermal power plant is assumed to

Zheng, Nina

2012-01-01T23:59:59.000Z

74

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

of thermosiphon solar water heaters. ” Solar Energy 83: 39-2011e, “Shoddy solar water heaters threaten reputation. ”54 Outlook of Solar Water Heaters in the Residential

Zheng, Nina

2012-01-01T23:59:59.000Z

75

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

findings from various nuclear plant construction lifecycle2011c, “New nuclear power plants ‘set to be approved. ’”energy implications of nuclear power plants but the results

Zheng, Nina

2012-01-01T23:59:59.000Z

76

Abu Dhabi's Masdar project: dazzling? or Just a mirage?  

SciTech Connect (OSTI)

The Masdar project is to build a self-contained economic zone creating 70,000 jobs and eventually housing as many as 40,000 residents in the middle of the desert by 2016. The community, which is envisioned to house a science and technology park and housing, is designed to be carbon neutral and virtually waste-free. Two-thirds of the power is to come from a 10 MW solar farm, and nearly all water is to be recycled and reused. There will be virtually no waste, as all packaging and material are to be recycled, used for power generation or turned into compost. The car-free zone will be served by advanced personal rapid transit (PRT) vehicles that will zip residents around the 6.5-square-kilometer area. The problem with Masdar is not so much what goes inside it, but rather what is outside. Masdar is unlikely to change the image of Abu Dhabi as the most carbon-intensive place on earth.

NONE

2009-06-15T23:59:59.000Z

77

Growing America's Energy Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoing OffGreen LeaseBreaking of9Growing

78

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

uranium ore mining techniques: underground excavation, open- pit mininguranium is already dissolved, milling is not required and there is a lower energy requirement compared to underground and open-pit mining.

Zheng, Nina

2012-01-01T23:59:59.000Z

79

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

Olefin.. 68 9.3 Coal-to-Gas .. 68 Comparative Analysis of Alternative Energy Technologies Potential 69 10.1 Naturalolefin. Coal-to-methanol For methanol production from alternative fuels, coal or natural gas

Zheng, Nina

2012-01-01T23:59:59.000Z

80

Ris Energy Report 7 Future low carbon energy systems  

E-Print Network [OSTI]

Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Efficiency of Future Networks Energy Efficient Transmission in  

E-Print Network [OSTI]

Energy Efficiency of Future Networks Part 1: Energy Efficient Transmission in Classical Wireless #12;Goals Energy Efficiency: What it meant last decade; what it means today From a communication network design perspective what should we care about for energy efficient design of cellular

Ulukus, Sennur

82

The future of energy and climate  

ScienceCinema (OSTI)

The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

None

2011-10-06T23:59:59.000Z

83

National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future  

E-Print Network [OSTI]

, energy- efficient data center #12;National Renewable Energy Laboratory Innovation for Our Energy Future Alternative Fuel Users Facility (AFUF) #12;National Renewable Energy La · The leading efficiency and renewables research center in the world · Designed to meet the nation's crucial

84

California Energy Futures Study Working Committee  

E-Print Network [OSTI]

Organization (ILO) (2008) Green Jobs: Towards decent work in a sustainable, low-carbon world. 376 pp. Urbanchuk of renewable & sustainable feedstocks for fuels (e.g. BCAP), development of new market mechanisms Medium's Energy Future, Biofuels #12;#12;#12;#12;Build-out Rate Final scenario 5.5 bgge ~100 biorefineries

California at Davis, University of

85

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

86

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff

87

Future Energy Enterprises | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette, IL Website:

88

Future Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a pageFuhrmetFundicion

89

Bioenergy: America's Energy Future | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould

90

Future Energy Assets LP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy Inc JumpGeothermal Field |

91

Future Energy Yorkshire | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy Inc JumpGeothermal Field

92

Energy revolution: policies for a sustainable future  

SciTech Connect (OSTI)

The book examines the policy options for mitigating or removing the entrenched advantages held by fossil fuels and speeding the transition to a more sustainable energy future, one based on improved efficiency and a shift to renewable sources such as solar, wind, and bioenergy. The book: examines today's energy patterns and trends and their consequences; describes the barriers to a more sustainable energy future and how those barriers can be overcome; provides ten case studies of integrated strategies that have been effective in different parts of the world examines international policies and institutions and recommends ways they could be improved; reviews global trends that suggest that the transition to renewables and increased efficiency is underway and is achievable. The core of the book are presentations of Clean Energy scenarios for the US and Brazil. His US scenario has 10 policies. These include: Adopt voluntary agreements to reduce industrial energy use; Provide tax incentives for innovative renewable energy and energy-efficient technologies; Expand federal R & D and deployment programs; Remove barriers to combined heat and power systems; and Strengthen emissions standards on coal-fired plants. Geller calculates that the impact of his ten policies would be a $600 billion cost and a $1200 billion savings, for a net savings of $600 billion compared to a baseline scenario of continued promotion of fossil fuels.

Howard Geller [Southwest Energy Efficiency Project, Boulder, CO (United States)

2002-07-01T23:59:59.000Z

93

World energy: Building a sustainable future  

SciTech Connect (OSTI)

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

94

World energy: Building a sustainable future  

SciTech Connect (OSTI)

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

95

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates  

E-Print Network [OSTI]

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

Ali, Mohammed

96

Enterprise SRS Future Initiatives | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy2 ENRONDecember 2014 |MarchFuture

97

Abu Dhabi National Oil Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation, search Name:Brophy br Model brAbu

98

Abu Dhabi Supreme Petroleum Council | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification ProjectAVANTI Jump to:AbengoaSupreme

99

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

100

The Future of Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

102

ITP Glass: Glass Industry of the Future: Energy and Environmental...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of...

103

Future high energy colliders. Formal report  

SciTech Connect (OSTI)

This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

Parsa, Z. [ed.] [ed.

1996-12-31T23:59:59.000Z

104

Portsmouth Future Use | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply referFuture Use Portsmouth

105

Paducah Site Future Use | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9Environmental RemediationFuture Use

106

Geothermal: Sponsored by OSTI -- Renewable energy for the future...  

Office of Scientific and Technical Information (OSTI)

Renewable energy for the future. Local government options for promoting development of renewable energy resources Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

107

Future Technologies to Enhance Geothermal Energy Recovery  

SciTech Connect (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

108

Capturing the Sun, Creating a Clean Energy Future (Brochure)...  

Broader source: Energy.gov (indexed) [DOE]

energy solutions, visit www.energy.gov sunshot and www.solar.energy.gov. Capturing the Sun, Creating a Clean Energy Future Front photo by Dennis Schroeder, NRELPIX 19125; inside...

109

Coal: America's energy future. Volume I  

SciTech Connect (OSTI)

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

110

The Future of Energy from Nuclear Fission  

SciTech Connect (OSTI)

Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

Kim, Son H.; Taiwo, Temitope

2013-04-13T23:59:59.000Z

111

The Future of Geothermal Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds FamiliesDepartmentThe Future ofThe

112

Capturing the Sun, Creating a Clean Energy Future (Brochure)...  

Broader source: Energy.gov (indexed) [DOE]

Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean...

113

Getting to Know Nuclear Energy: The Past, Present & Future  

E-Print Network [OSTI]

Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

Kemner, Ken

114

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network [OSTI]

THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

Birmingham, University of

115

The Future Energy and GHG Emissions Impact of Alternative Personal  

E-Print Network [OSTI]

The Future Energy and GHG Emissions Impact of Alternative Personal Transportation Pathways in China://globalchange.mit.edu/ Printed on recycled paper #12;The Future Energy and GHG Emissions Impact of Alternative Personal Paul N. Kishimoto, Sergey Paltsev and Valerie J. Karplus Report No. 231 September 2012 China Energy

116

Water Requirements for Future Energy production in California  

E-Print Network [OSTI]

I~EVADA WATER SUPPLIES State Water Problems Energy FuturesReport No. Western States Water Council, Western Statesthe Federal in California the State Water Resources Council.

Sathaye, J.A.

2011-01-01T23:59:59.000Z

117

Future scientific applications for high-energy lasers  

SciTech Connect (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

118

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be...

119

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

Strategies for Future Hydrogen Production and Use, Nationaldevelopment. 26 Off-peak hydrogen production could do thisfuels, the production of hydrogen, and the potential for

2011-01-01T23:59:59.000Z

120

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

PV installations. Geothermal energy may require water tobiomass, geothermal, hydro, and marine energy offshore. Asgeothermal and hydropower not included in this table The 2050 Energy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

efficiency, nuclear power, renewable energy, biofuels etc. )and storage (CCS) and renewable energy. We look at two wayspower, or CCS or renewable energy, without worrying about

2011-01-01T23:59:59.000Z

122

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

pumped hydro, compressed air energy storage (CAES), 25as-usual CAES Compressed air energy storage CARB Californiacompressed air energy Commercial time-of-use storage (CAES),

2011-01-01T23:59:59.000Z

123

China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)  

SciTech Connect (OSTI)

China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

2004-03-10T23:59:59.000Z

124

Islands and Our Renewable Energy Future (Presentation)  

SciTech Connect (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

125

ONLINE LEARNING Managing energy for a sustainable future  

E-Print Network [OSTI]

ONLINE LEARNING Managing energy for a sustainable future The Energy Resource Management Certificate energy management. Pursuing sustainable energy management strategies can be a powerful tool for achieving the California Energy Commission. Gain practical knowledge that matters n Explore the practical, sustainable

California at Davis, University of

126

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

127

The Future of Utility Customer-Funded Energy Efficiency Programs  

E-Print Network [OSTI]

LBNL-5803E The Future of Utility Customer- Funded Energy Efficiency Programs in the United States Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

128

Chu at COP-16: Building a Sustainable Energy Future  

Broader source: Energy.gov [DOE]

U.S. Secretary of Energy Steven Chu addresses the U.S. Center in Cancun on the need to build a sustainable energy future as part of the United Nations Climate Change Conference, COP-16. In his...

129

USVI Energy Road Map: Charting the Course to a Clean Energy Future...  

Energy Savers [EERE]

upcoming milestones. edinusviroadmap.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in...

130

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

conversion to the needed energy mix. Figure 8 shows thefraction of the State’s energy mix. The use of fossil fuelleast 33% renewable energy in the mix. The renewables case

2011-01-01T23:59:59.000Z

131

Future United States Energy Security Concerns  

E-Print Network [OSTI]

Without energy, the economy can neither function nor grow. However, for at least the next half-century, the U.S. will not have an inexhaustible supply of inexpensive, clean energy. Dependence on energy imports, vulnerability ...

Deutch, John M.

132

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

compete with grid power. Wind energy in areas of good winda large build out of wind energy may include adverse impactsgigawatt-days of energy if, for example, the wind does not

2011-01-01T23:59:59.000Z

133

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

with grid power. Wind energy in areas of good wind resourceintensity of that energy. Thus, the area of the box is thearea of the red box represents 2050 target emissions. California’s Energy

2011-01-01T23:59:59.000Z

134

Current Renewable Energy Technologies and Future Projections  

SciTech Connect (OSTI)

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

135

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

ensure that trade-offs are made explicitly, energy measuresof the energy system in order to account for trade- offs and

2011-01-01T23:59:59.000Z

136

Clean Energy for America's Future (Fact Sheet)  

SciTech Connect (OSTI)

This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2010-06-01T23:59:59.000Z

137

Securing America's Clean Energy Future (Brochure)  

SciTech Connect (OSTI)

This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2011-08-01T23:59:59.000Z

138

Securing America's Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2011-08-01T23:59:59.000Z

139

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

renewable energy and reliability. The German electricity grid now faces instability because of very rapid growth

2011-01-01T23:59:59.000Z

140

RESEARCH FOR OUR ENERGY FUTURE BROOKHAVEN NATIONAL LABORATORY  

E-Print Network [OSTI]

research. Right now, we derive the bulk of the energy we use from oil, gasoline, coal, and natural gasRESEARCH FOR OUR ENERGY FUTURE BROOKHAVEN NATIONAL LABORATORY #12;ON THE cOVER Energy research technologies and may enable completely new and vastly more efficient energy systems. One of ten national

Ohta, Shigemi

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ETSF5 -INTERNATIONAL CONFERENCE ENERGY TECHNOLOGIES FOR A SUSTAINABLE FUTURE  

E-Print Network [OSTI]

ETSF5 - INTERNATIONAL CONFERENCE ENERGY TECHNOLOGIES FOR A SUSTAINABLE FUTURE Energy and Large Research Facilities: The role of large research facilities in the development of sustainable energy systems, Roskilde, Denmark. Günther G Scherer and Selmiye A Gursel, General Energy Research, Paul Scherrer Institute

142

Modeling China's energy future Pat DeLaquil  

E-Print Network [OSTI]

Modeling China's energy future Pat DeLaquil Clean Energy Commercialization, 1816 Crosspointe Drive, renewables, and coal gasification-based energy supply technologies, can enable China to meet economic), and (3) coal gasification technolo- gies co-producing electricity and clean liquid and gaseous energy

143

Evaluation of Future Energy Technology Deployment Scenarios for  

E-Print Network [OSTI]

Subtask 2.1 Report By the University of Hawaii Hawaii Natural Energy Institute School of Ocean and EarthEvaluation of Future Energy Technology Deployment Scenarios for the Big Island Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847

144

Forming the Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdf Flash2010-57.pdfDepartment of Energy ForestEnergy ActFormer

145

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

coal and natural gas) with carbon capture and storage (CCS) and renewable energy.from Coal and Biomass: Performance and Cost Analysis. Energya source of energy (e.g. , sunlight, coal, etc. ) and the

2011-01-01T23:59:59.000Z

146

Clean energy investments in an uncertain future  

E-Print Network [OSTI]

The energy sector faces a multitude of challenges related to climate change and energy security. These challenges will likely prompt considerable changes in the coming decades, including significant investment and new ...

Harrison, Jessica (Jessica Kit)

2005-01-01T23:59:59.000Z

147

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

2011-01-01T23:59:59.000Z

148

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

Energy Biosciences Institute (lead by UC Berkeley and LBNL in partnership with BP and the University of Illinois),

2011-01-01T23:59:59.000Z

149

Growing Americas Energy Future  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergyGreensburg RebuildsSenate |Sustainedof 2014

150

Keynote Address: Future Vision | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7JanuaryWASTE-TO-ENERGY:About »KEY40PM

151

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

for State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipmana new role for sustainable energy strategies. The

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

152

Energy Workforce Training Future Need and Projections  

E-Print Network [OSTI]

effort between a university, a two-year college, state Energy Office, and industry to address training of students for careers in industrial energy sector. In addition to describing the experiences of offering short course modules to train tradesmen... Energy Office and its collaborators have considered non-credit and certificate courses for employees of the manufacturing industries in Little Rock and other parts of the state. A large number of 2-year colleges, 22 in total in the state, provided...

Midturi, S.; Pidugu, S. B.

2006-01-01T23:59:59.000Z

153

Energy and Reliability in Future NOC Interconnected CMPS  

E-Print Network [OSTI]

In this dissertation, I explore energy and reliability in future NoC (Network-on-Chip) interconnected CMPs (chip multiprocessors) as they have become a first-order constraint in future CMP design. In the first part, we target the root cause...

Kim, Hyungjun

2013-08-01T23:59:59.000Z

154

Carnets de Gologie / Notebooks on Geology -Letter CG2011/04 (CG2011_L04) Aptian ammonites of Abu Dhabi  

E-Print Network [OSTI]

Carnets de Géologie / Notebooks on Geology - Letter CG2011/04 (CG2011_L04) 117 Aptian ammonites BUSNARDO 1 Bruno GRANIER 2 Abstract: The identification of some twenty ammonite fragments from oil wells and neighboring countries (Oman, Qatar, ...). Ammonites had been reported in the oil wells of offshore Abu Dhabi

Boyer, Edmond

155

Winning the Biofuel Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&DWinning the

156

Hydro, Solar, Wind The Future of Renewable Energy  

E-Print Network [OSTI]

Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

Lavaei, Javad

157

Leveraging Renewable Energy in Data Centers: Present and Future  

E-Print Network [OSTI]

2029 [DOE'11,Solarbuzz'12] 2011DollarsperWatt Inverters Panels Installed Cost of solar PV energy [DOE'11,Solarbuzz'12] 2011DollarsperWatt Inverters Panels Installed Cost of solar PV energy for leveraging solar energy · Parasol: our solar micro-data center · Current and future works · Conclusions #12

Epema, Dick H.J.

158

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

159

Leveraging Renewable Energy in Data Centers: Present and Future  

E-Print Network [OSTI]

in powering data centers (at least par- tially) with renewable or "green" sources of energy, such as solar will first discuss the tradeoffs involved in leveraging green energy to- day and the prospects for the future center's computational workload to the green energy supply. I will also describe Parasol, the solar

Bianchini, Ricardo

160

ICF & High Energy Density (HED) Research Future Directions and Plans  

E-Print Network [OSTI]

and ICF activities Energy Balance FY08 Getting the Job Done First credible ignition attempt FYNSP 20 YearsICF & High Energy Density (HED) Research Future Directions and Plans Fusion Power Associates of Defense Science and Inertial Fusion National Nuclear Security Administration US Dept. of Energy #12

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

THE FUTURE OF ENERGY Carlo Rubbia  

E-Print Network [OSTI]

4.-- Conventional nuclear power, scientists and the people at large is focused today on the problem of energy. Everybody will agree the food energy supply of 3000 kcal/day corresponds to a thermal continuous power supply of 0.14 k

162

Resources for the Future | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII JumpInformationLLC Jump to:Future Name:

163

Winning the Biofuel Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3WindowsBiofuel Future

164

Rethinking the Future Grid: Integrated Nuclear Renewable Energy...  

Office of Scientific and Technical Information (OSTI)

Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint Re-direct Destination: The U.S. DOE is supporting research and development that could lead to more...

165

Water Requirements for Future Energy production in California  

E-Print Network [OSTI]

for 1985 Power Plant Type Electricity Generation (1015BTU)Electricity Generation and Capacity for Po'". :cr Plant Typeelectricity generation energy will form the major por- tion of water requirements Since coast, almost all the power for future plants

Sathaye, J.A.

2011-01-01T23:59:59.000Z

166

New Methane Hydrate Research: Investing in Our Energy Future...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed...

167

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

increases in biomass and geothermal power and the assumptionSolar Power (CSP) Solar Photovoltaic (PV) Geothermal HydroGeothermal energy may require water to keep the reservoirs from depletion, but, as with nuclear power,

2011-01-01T23:59:59.000Z

168

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

of Illinois), the Joint BioEnergy Institute, and UC Davis’of certified imported bioenergy, and proximity to meet end-in the context of bioenergy potential in the U.S. and

2011-01-01T23:59:59.000Z

169

Sustainable Energy Future in China's Building Sector  

E-Print Network [OSTI]

, The Netherlands and Finland (11W/m²). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/m²a 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/m²a). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

170

Powering the Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015an overview ofofENERGYRACEUsing the

171

Summary and Future Plans | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/BuySummary Max TotalResults for

172

Growing the Future Bioeconomy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4 Subject EnergyGrandandSummary ofPreserveBreakout

173

Advanced Materials for Sustainable, Clean Energy Future  

SciTech Connect (OSTI)

The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

Yang, Zhenguo

2009-04-01T23:59:59.000Z

174

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Assessment of Future Li-Ion Battery Production Costs. GermanNREL’s PHEV/EV Li-ion Battery Secondary-Use Project.

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

175

GreenFuture Renewables | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestionSolar Inc GTS Jump

176

Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy  

E-Print Network [OSTI]

Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

Delaware, University of

177

"Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy  

E-Print Network [OSTI]

"Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy GRADUATE PROGRAMS IN SUSTAINABLE ENERGY SHAPE YOUR FUTURE BASED ON YOUR RESEARCH INTERESTS Sustaining energy production and use is becoming increasingly challenging and requires innovative research into new

Dawson, Jeff W.

178

Present and future evidence for evolving dark energy  

E-Print Network [OSTI]

We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

Andrew R Liddle; Pia Mukherjee; David Parkinson; Yun Wang

2006-12-04T23:59:59.000Z

179

Present and future evidence for evolving dark energy  

SciTech Connect (OSTI)

We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, {lambda}CDM is currently favored as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom); Wang Yun [Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2006-12-15T23:59:59.000Z

180

Technique for estimating jet fuel prices from energy futures market  

SciTech Connect (OSTI)

This report presents a statistical analysis of future prices of petroleum products for use in predicting the monthly average retail price of kerosene-type jet fuel. The method of least squares was employed to examine the relationship between kerosene-type jet fuel retail prices and energy futures prices. Regression equations were constructed for four of the petroleum commodities traded on the energy futures market: heating oil No. 2, leaded regular gasoline, crude oil, and unleaded gasoline. Thirty-nine regression equations were estimated by the method of least squares to relate the cash price of kerosene-type jet fuel to the futures prices of the above four petroleum commodities for contract periods of 1 to 12 months. The analysis revealed that 19 of the 39 first-order linear regression equations provided a good fit to the data. Specifically, heating oil No. 2 performed better than the order energy futures in predicting the price of kerosene-type jet fuel. The only information required to use these regression equations are energy futures prices which are available daily from the Wall Street Journal. 5 refs., 4 tabs.

Vineyard, T.A.

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

182

Future Communications Needs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103of

183

NYMEX Coal Futures - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUG 2012 2014NWChemNX »

184

Innovation: Enabling a Sustainable Energy Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in theSurface. | InnovationSinha

185

NREL: Energy Analysis - Renewable Electricity Futures Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo ofRegister

186

Transportation Energy Futures (TEF) Data and Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearch keywordsclear

187

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

Yang, Christopher

2011-01-01T23:59:59.000Z

188

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

travel demand, reducing energy intensity and reducing carbonVehicles Vehicle Energy Intensity (E) MPGGE 1990 CA Fleetthe improvements in energy intensity that could be achieved

Yang, Christopher

2011-01-01T23:59:59.000Z

189

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.2009). March 2009. Annual Energy Outlook (AEO). 2011. Annual

Yang, Christopher

2011-01-01T23:59:59.000Z

190

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Broader source: Energy.gov (indexed) [DOE]

Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy...

191

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

192

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

energy use and emissions in 2050. The ultimate marketmarket introduction of FCVs and associated refueling infrastructure. Vehicle EnergyEnergy Use in California Studying these factors will also help determine the rate of adoption and also maximum market

Yang, Christopher

2011-01-01T23:59:59.000Z

193

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Coal steam Renewable electricity Table 3. 2050 values for vehicle energy,Coal with CCS Renewable or Nuclear H 2 Table 5. 2050 values for vehicle energy,

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

194

U.S. energy outlook and future energy impacts.  

E-Print Network [OSTI]

??Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that… (more)

Hamburger, Randolph John

2011-01-01T23:59:59.000Z

195

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

Yang, Christopher

2011-01-01T23:59:59.000Z

196

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

for Sustainable Energy, LLC of energy savings in new homes. The DOE Building America (BA) program has adopted: · Building Energy Optimization (BEopt). BEopt allows users to navigate different building designs and systems required to design and build net-zero energy homes (NZEHs) and communities. Buildings use 39

197

for a Sustainable Energy Future Sossina M. Haile  

E-Print Network [OSTI]

Engineering California Institute of Technology Is There a Role for Nano-materials? I-CARES Lecture, November Future Energy Solutions Solar 1.2 x 105 TW at Earth surface 600 TW practical Biomass 5-7 TW gross all technically feasible 0.9 TW economically feasible 0.6 TW installed capacity 12 TW gross over land small

Subramanian, Venkat

198

Innovating a Sustainable Energy Future (2011 EFRC Summit)  

ScienceCinema (OSTI)

The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Little, Mark (GE Global Research)

2012-03-14T23:59:59.000Z

199

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

200

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network [OSTI]

Risø Energy Report 8 The intelligent energy system infrastructure for the future Dansk oversættelse Sønderberg Petersen #12;Risø Energy Report 5 Renewable energy for power and transport Den globale Report 5, som sætter fokus på status og tendenser inden for vedvarende energi. Rapporten giver et

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and a Nuclear Venture  

E-Print Network [OSTI]

The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and nuclear energy. Alternative eco-friendly energy resources represent only a small part of the potential authorities and local business elites are often seen as major players in the energy transition in the city

Paris-Sud XI, Université de

202

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

203

AVESTAR Center for clean energy plant operators of the future  

SciTech Connect (OSTI)

Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

Zitney, S.

2012-01-01T23:59:59.000Z

204

The Future of Bioenergy Feedstock Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds FamiliesDepartmentThe Future of

205

Energy technologies at Sandia National Laboratories: Past, Present, Future  

SciTech Connect (OSTI)

We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

Not Available

1989-08-01T23:59:59.000Z

206

A Cornerstone of Our Energy Future: Women | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA Boost forA ConversationAA

207

A First Peek at Our Energy Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA Boost forAA First Peek at

208

A Global Sustainable Energy Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA Boost forAA First Peek atA

209

Investing in our Energy Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 U.S.Department of05The830, atInvesting in

210

The importance of population growth in future commercial energy consumption  

SciTech Connect (OSTI)

This paper estimates the contribution of population growth to commercial energy consumption, which is considered a major cause of increases in air pollution and greenhouse gases. This paper first summarizes some of the recent estimates of future energy use developed by well-known models. It then develops several alternative scenarios that use different assumptions about population growth and energy use per capita for 122 countries for the years 2020 and 2050. It calculates the relative contribution of population growth to the change in total commercial energy use and demonstrates the sensitivity of the results to different assumptions. Individual country data are separately summed to totals for more-developed countries (MDCs) and less-developed countries (LDCs). Under a business as usual scenario for both MDCs and LDCs, population growth is important, but not the most important factor, in future increases in global energy consumption. Analysis of other scenarios shows that while slower population growth always contributes to a slowing of future global energy consumption, such changes are not as effective as reductions in per capita commercial energy use. Calculations on a global basis are made in two ways: from global aggregates and by summing individual country data. Comparison of the results shows that the first method is misleading because of the heterogeneity of population growth rates and energy consumption rates of individual countries. The tentative conclusions reached in this paper are only small pieces of a much larger puzzle. More work needs to be done to better understand the dynamics of these relationships before the analysis is extended to the broader questions of population growth and environmental change.

Kolsrud, G. [Congress, Washington, DC (United States); Torrey, B.B. [Bureau of the Census, Washington, DC (United States)

1992-12-31T23:59:59.000Z

211

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

Brent W. Dixon; Steven J. Piet

2004-10-01T23:59:59.000Z

212

IBM and the Future of Energy 1 IBM AND THE FUTURE OF ENERGY  

E-Print Network [OSTI]

. Vantage Point's portfolio includes clean tech startups focused on renewable energy, transportation for a moment on some of the cleaner renewable energy sources. For example, solar and wind. We're seeing a lot more hybrid cars on the road and consumers are beginning to fill their cars more and more with ethanol

213

Postdoctoral Scholar position Area: SUSTAINABLE ENERGY FUTURES SCENARIO DESIGN AND APPLICATIONS  

E-Print Network [OSTI]

Postdoctoral Scholar position Area: SUSTAINABLE ENERGY FUTURES SCENARIO DESIGN AND APPLICATIONS Fellow in SUSTAINABLE ENERGY Job Description: The Enbridge Centre for Corporate Sustainability-doctoral fellow to explore how energy companies engage in planning for sustainable futures. More specifically

de Leon, Alex R.

214

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

intensity and reducing carbon intensity. The equations belowin energy use and carbon intensity. We forecast that totalFleet Average a Fuel Carbon Intensity (C) kWh/mi gCO 2 /gge

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

215

Building Our Energy Future: Teaching Students the Significance of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShotAppealsBudgetEnergy America:

216

Alternative futures for the Department of Energy National Laboratories  

SciTech Connect (OSTI)

This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

Not Available

1995-02-01T23:59:59.000Z

217

Wind Plant Cost of Energy: Past and Future (Presentation)  

SciTech Connect (OSTI)

This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

Hand, M.

2013-03-01T23:59:59.000Z

218

Ris Energy Report 4 International trends and scenarios for future energy systems Introduction  

E-Print Network [OSTI]

Risø Energy Report 4 International trends and scenarios for future energy systems 3 Introduction In evaluations of long term energy forecasts made in the past the conclusion often is that a large number on internationally recognised scientific material". One key observation in a recent evaluation of long term energy

219

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

ASSESSMENTS VI. ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--ENVIRONMENTAL IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FORVolume 5, Status of Alternative Energy Technologies, 1977

Authors, Various

2010-01-01T23:59:59.000Z

220

Innovation: Enabling a Sustainable Energy Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartmentEnergyThese slides correspond to

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency &  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of Energy 2:52pmResearchHealthAbout Energy.gov

222

Critical Materials for a Clean Energy Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarterinto PARSCriteria Review

223

Armstrong Teasdale Future Energy Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop Corp Place:Armaec EnergyInformation

224

NREL: Director's Page - Presentations and Speeches  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lisbon, Portugal June 17, 2013 Renewable Energy: Capturing the Potential World Future Energy Summit Abu Dhabi January 17, 2013 Solar Photovoltaic Technology Status, Challenges,...

225

Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions  

SciTech Connect (OSTI)

In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

Al-Alili, A.; Hwang, Y.; Radermacher, R. [Department of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kubo, I. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi (United Arab Emirates)

2010-12-15T23:59:59.000Z

226

Search for a bridge to the energy future: Proceedings  

SciTech Connect (OSTI)

The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

Saluja, S.S. (ed.)

1986-01-01T23:59:59.000Z

227

Brainstorming Apps for a Clean Energy Future | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015CommerceDepartmentBlower

228

Geothermal Energy in Hawaii: Present and Future | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS) |Phases Jumpin Hawaii:

229

AgFuture Energy LLC AFE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies Jump

230

Charting the Future of Energy Storage | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval Charles Townes

231

Hydrogen & Our Energy Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose of this work isDOE

232

Reaching Underground Sources (from MIT Energy Initiative's Energy Futures,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare Iron Oxide inRaviRaymondSpring

233

Creating the Future of Solar Energy, Today | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activitiesofHomemade blankets canManagers

234

Future World Energy Constraints and the Direction for Solutions  

SciTech Connect (OSTI)

This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which take advantage of the concentrated energy and portability of nuclear fission: (1) to find ways of extending nuclear fission to smaller transportation and heating applications and (2) to develop nuclear fusion for manufacturing fissionable materials.

Lightfoot, H.D.

2004-09-12T23:59:59.000Z

235

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

236

The Importance of CCS in aThe Importance of CCS in a LowLow--Carbon Energy FutureCarbon Energy Future  

E-Print Network [OSTI]

--a potential bridging strategy to a sustainable energy future · CCS also is needed decarbonizeThe Importance of CCS in aThe Importance of CCS in a LowLow--Carbon Energy FutureCarbon Energy on "Addressing Barriers to Carbon Capture and Storage in Developing Countries" Washington, DC September 7, 2011

237

Water Power for a Clean Energy Future (Fact Sheet), Wind and...  

Energy Savers [EERE]

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

238

New Science for a Secure and Sustainable Energy Future  

SciTech Connect (OSTI)

Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

None

2008-12-01T23:59:59.000Z

239

New energy saving system for future LNG carriers  

SciTech Connect (OSTI)

Steam turbine plant, which burns BOG (Boil-Off Gas) as fuel, has bene installed for LNG carriers with the necessity of disposing BOG safely. Are other plants unpractical for LNG carriers? To answer to this question, this paper evaluates (1) dual fuel diesel, (2) diesel with reliquefaction plant, (3) diesel with auxiliary boiler and power assist motor, (4) gas turbine/steam turbine and (5) steam turbine with CRP (Contra Rotating Propeller) from several aspects, such as safety and reliability, maintainability and operability, economy and effect on environment. Based on the above studies, this paper proposes Steam turbine with CRP plant as a new energy saving system for future LNG carriers.

Kahara, Susumu; Suetake, Yoshihiro [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ishimaru, Junshiro; Hiraoka, Kazuyoshi [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan)

1994-12-31T23:59:59.000Z

240

Materials for fossil energy systems -- Past, present, and future  

SciTech Connect (OSTI)

The vast majority of energy-generating systems are heat engines, which depend on the combustion of fuel and recovery of the heat of combustion. Fossil fuels--coal, oil, and natural gas--may be directly combusted or converted prior to combustion. Development of these conversion and combustion systems has been paced by the selection and development of the materials of construction and by design modifications to overcome limitations of the available materials. The developments in these systems, the current status, and future developments which may result from the use of advanced materials are reviewed.

Stringer, J. (Electric Power Research Inst., Palo Alto, CA (United States))

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Future of Renewable Energy | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentThe Five FastestFuturePowering Ideas

242

The Future is Here: Smart Home Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe Facts on GasTheThe Future is

243

The Future of Housing-Today | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe Facts on GasTheThe FutureThe

244

FutureCamp GmBH | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette, IL Website:FutureCamp GmBH

245

Science for Our Nation's Energy Future | U.S. DOE Office of Science...  

Office of Science (SC) Website

DOE Announcements Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

246

Better Buildings for a Brighter Future | Department of Energy  

Energy Savers [EERE]

Better Buildings for a Brighter Future Better Buildings for a Brighter Future This program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the...

247

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect (OSTI)

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

248

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future  

E-Print Network [OSTI]

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

Laughlin, Robert B.

249

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

250

Future waste treatment and energy systems – examples of joint scenarios  

SciTech Connect (OSTI)

Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

Münster, M., E-mail: maem@dtu.dk [System Analysis Division, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Finnveden, G. [KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Planning and Environment, Division of Environmental Strategies Research – fms, 100 44 Stockholm (Sweden); Wenzel, H. [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

2013-11-15T23:59:59.000Z

251

June 10, 2013 Canada's energy future meeting demand AND the climate change challenge  

E-Print Network [OSTI]

MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

Pedersen, Tom

252

Hydrogen and the materials of a sustainable energy future  

SciTech Connect (OSTI)

The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

Zalbowitz, M. [ed.

1997-02-01T23:59:59.000Z

253

Renewable Energy Requirements for Future Building Codes: Options for Compliance  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

2011-09-30T23:59:59.000Z

254

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

coal-nuclear fuel energy sources mix,while the future drivena solar and solar derivative energy sources mix. However,XV-l shows either energy sources mix may be asso- ciated

Balderston, F.

2010-01-01T23:59:59.000Z

255

Overview of current and future energy storage technologies for electric power applications  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519 6.2. Compressed air energy storageOverview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B

Bahrami, Majid

256

Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system  

E-Print Network [OSTI]

fuel (REtrol, Chapter 4) or heat, whether from direct electric heating, or heat pumps. Other uses the interaction between wind turbines, other energy sources and consumers in the electricity system. Biomass is combusted for heat and power (24%), A key theme of this chapter is that the energy systems should be (and

257

Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours,FrequentlyFunded

258

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Sustainable Energy (4) Danish Energy Agency (DEA). (1999).al. [3] and the Danish Energy Agency (DEA) [4], illustrate

Wiser, Ryan

2013-01-01T23:59:59.000Z

259

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

structure. From 51% of total energy consumption in 1980, thefor 61% of total energy consumption. Industrial energy usethis scenario, China’s total energy consumption by 2020 will

2008-01-01T23:59:59.000Z

260

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

the end user while primary energy consumption includes finalWEC 2001). GDP Primary Energy Consumption (EJ) natural gasHistorical Primary Energy Consumption by sector Energy Use

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

with the National Renewable Energy Laboratory and underLehmann, H. (2008). Renewable Energy Outlook 2030 – EnergyWatch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

262

Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo  

E-Print Network [OSTI]

Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo Department traffic with extremely low energy consumption and high goodput. Keywords: Optical packet switching, optical label switching, energy efficient networks. 1. Introduction The future Internet is rapidly

Kolner, Brian H.

263

Policy ForumSeries "Beyond 33 Percent: California's Renewable Energy Future,  

E-Print Network [OSTI]

Policy ForumSeries "Beyond 33 Percent: California's Renewable Energy Future, From Near with the UC Davis Policy Institute is the UC Davis Energy Institute. Renewables Beyond 33 Percent October 17 as it transitions to a renewable energy future. Featuring panelists from government, industry and academia

California at Davis, University of

264

Presentation 2.4: Forest biorefining and implications for future wood energy scenarios Jack N. Saddler  

E-Print Network [OSTI]

Presentation 2.4: Forest biorefining and implications for future wood energy scenarios Jack N Products Biotechnology at UBC Forest biorefining and implications for future wood energy scenarios W.mabee@ubc.ca International Seminar on Energy and the Forest Products Industry Rome, Italy: October 30 2006 Forest Products

265

Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy  

E-Print Network [OSTI]

Convergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid into what the Future / Smart Electric Grid should look like. For example the DOE has a vision for the Modern

California at Los Angeles, University of

266

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewableBringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Beckermann, Christoph

267

Water Requirements for Future Energy production in California  

E-Print Network [OSTI]

be in a position wjth geothermal power its future geothermalof this type of geothermal for fossil power Table plants.two geothermal electricity annually) in MWe power plants (

Sathaye, J.A.

2011-01-01T23:59:59.000Z

268

Past and Future Cost of Wind Energy: Preprint  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

Lantz, E.; Hand, M.; Wiser, R.

2012-08-01T23:59:59.000Z

269

Fossil energy, clean coal technology, and FutureGen  

SciTech Connect (OSTI)

Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

Sarkus, T.A.

2008-07-15T23:59:59.000Z

270

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:EWEA. (2011). Pure Power – Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

271

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

J. , 2001. “Changing Energy Intensity in Chinese Industry”,M. ,1994. “Changing Energy Intensity in Chinese Industry”,2006. Indicators of Energy Intensity in the Unites States,

2008-01-01T23:59:59.000Z

272

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

08-GO28308 with the National Renewable Energy Laboratory andS. ; Lehmann, H. (2008). Renewable Energy Outlook 2030 –Watch Group Global Renewable Energy Scenarios. Berlin,

Wiser, Ryan

2013-01-01T23:59:59.000Z

273

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:5) Ceña, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

Wiser, Ryan

2013-01-01T23:59:59.000Z

274

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

10 Historical Primary Energy Per GDP and Per11 Historical Primary Energy per GDP and perHistorical Primary Energy Per GDP and Per capita Population

2008-01-01T23:59:59.000Z

275

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

31% of the world’s energy consumption increase from 2003 totrends in energy consumption in the world’s largest country.s energy consumption has a growing impact on world energy

2008-01-01T23:59:59.000Z

276

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Developments in the Levelized Cost of Energy From U.S. Windreducing the levelized cost of energy (LCOE) for onshore

Wiser, Ryan

2013-01-01T23:59:59.000Z

277

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect (OSTI)

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

278

What does it take to create a clean energy future for Washington? Solar, Wind, Hydro  

E-Print Network [OSTI]

Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10's leadership and economic advantages in clean energy. - The mission of the Clean Energy Institute is to accelerate the adoption of a clean energy future by advancing next generation solar energy and electrical

Hochberg, Michael

279

USVIEnergyRoadMap Charting the Course to a Clean Energy Future  

E-Print Network [OSTI]

USVIEnergyRoadMap Charting the Course to a Clean Energy Future EDIN Energy Development in Island's (DOE's) National Renewable Energy Laboratory (NREL), as well as financial and technical support from Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy

280

The Global Solar and Wind Atlas: a unique Global Spatial Data Infrastructure for all renewable energy  

E-Print Network [OSTI]

@masdar.ac.ae Nicolas Fichaux International Renewable Energy Agency - IRENA Abu Dhabi United Arab Emirates NFichaux in the field of solar and wind energy. The initiative will be expanded to encompass all renewable energies by 2015, and will be the largest information source on renewable energy potentials ever created. It has

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 SEARCHING FOR SUSTAINABILITY  

E-Print Network [OSTI]

SEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 1 SEARCHING FOR SUSTAINABILITY KENYA'S ENERGY PAST AND FUTURE BY ROB BAILIS, CHARLES KIRUBI AND ARNE JACOBSON SEARCHING exceeds that of fossil fuels [7], but the starting point 25 years ago was miniscule. Kenya has benefited

Kammen, Daniel M.

282

Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark  

E-Print Network [OSTI]

Future Smart Energy - Fuel Cell and Hydrogen Technology Summer School 2014, Aalborg, Denmark August #12;31 Future Smart Energy - Fuel Cell and Hydrogen Technology Samuel Simon Araya Introduction to fuel cells History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen

Berning, Torsten

283

What is the fast track to future energy systems with lower CO2 emissions?  

E-Print Network [OSTI]

What is the fast track to future energy systems with lower CO2 emissions? Main findings2 emissions? Main findings and recommendations from the Workshop on Future Energy Systems................................................21 How do we make Denmark peak before 2020 when it comes to CO2

284

REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS  

SciTech Connect (OSTI)

Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research

Wise, Mark B. [California Institute of Technology; Kapustin, Anton N. [California Institute of Technology; Schwarz, John Henry [California Institute of Technology; Carroll, Sean [California Institute of Technology; Ooguri, Hirosi [California Institute of Technology; Gukov, Sergei [California Institute of Technology; Preskill, John [California Institute of Technology; Hitlin, David G. [California Institute of Technology; Porter, Frank C. [California Institute of Technology; Patterson, Ryan B. [California Institute of Technology; Newman, Harvey B. [California Institute of Technology; Spiropulu, Maria [California Institute of Technology; Golwala, Sunil [California Institute of Technology; Zhu, Ren-Yuan

2014-08-26T23:59:59.000Z

285

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

fall in China's coal use and energy intensity after 1995 wasLPG is a major energy source, while coal and electricity arewas the dominance of coal in the energy structure. From 51%

2008-01-01T23:59:59.000Z

286

Energy Mobility Network : system design, interfaces, and future interactions  

E-Print Network [OSTI]

The Energy Mobility Network is a mobile, networked energy production, consumption and sharing system that is designed to motivate users to be more aware of their energy consumption. In particular, the system provides a ...

Cheung, Natalie Wen Yua

2011-01-01T23:59:59.000Z

287

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

reliance on biomass for rural energy consumption shows theLiving area Urban and Rural area 17 Energy Use andBiomass is the major energy in rural area. Design Standard

2008-01-01T23:59:59.000Z

288

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

289

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

WIND ENERGY by as much as 270% when comparing today’s turbinesTurbines in Denmark. Presentation to IEA Wind Task 26 (12) European Wind Energy

Wiser, Ryan

2013-01-01T23:59:59.000Z

290

Coal and Renewable Energy: History, Impacts, and Future in Alabama .  

E-Print Network [OSTI]

??Coal and renewable energy have differential impacts on human society. Coal is the most abundant, cheap, and yet environmentally detrimental source of energy. Renewable sources… (more)

Singh, Brajesh

2010-01-01T23:59:59.000Z

291

Strengthening America's Energy Future through Education and Workforce...  

Broader source: Energy.gov (indexed) [DOE]

shortage of training and skills is "a leading barrier to renewable energy and energy-efficiency growth." The Department has a record of supporting education and workforce...

292

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect (OSTI)

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

293

THE FUTURE OF ENERGY GASES David G. Howell, Editor  

E-Print Network [OSTI]

totally independent of oil. Methane is found in association with coal; it is a byproduct of metabolic the term "energy gases" to distinguish those natural gases, primarily methane, that have utility for energy consequences associated with an expanded role of energy gases? Energy gases, particularly methane, are commonly

294

Energy Options for the Future* John Sheffield,1  

E-Print Network [OSTI]

, geo- thermal, and biomass energy sources and the effect of measures for energy conservation and discussion. KEY WORDS: Energy; fuels; nuclear; fusion; efficiency; renewables. OPENING REMARKS: STEVE of Tennessee. 1 Joint Institute for Energy and Environment, 314 Conference Center Bldg., TN, 37996-4138, USA, 2

295

www.kostic.niu.edu Energy Future Outlook  

E-Print Network [OSTI]

Population in millions Time in history #12;3 www.kostic.niu.edu Earth Energy Balance: · All energy to Earth surface is 99.98 % solar, 0.02% geothermal, and 0.002% tidal-gravitational. · About 13 TW world energy/EIA, International Petroleum Statistics Reports, April 1999; DOE/EIA 0520, International Energy Annual 1997, DOE

Kostic, Milivoje M.

296

INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE  

E-Print Network [OSTI]

.4 Hydro Quebec 14 5.5 Energy Research Group, Simon Fraser University 14 5.6 CANMET 15 #12;Industrial. INDUSTRIAL PRIMARY ENERGY DATA COLLECTION FORMATS 27 9.1 Energy Audits 27 9.1.1 Methodology 29 9.1.2 Steps Involved in an Energy Audit 30 9.2 Surveys 31 9.2.1 Detailed Site Energy End-use Survey 32 9.2.2 Equipment

297

Energy Efficiency in the Future The Sixth Northwest Power Plan, 2010  

E-Print Network [OSTI]

Energy Efficiency in the Future The Sixth Northwest Power Plan, 2010 The plan,the sixth five recommendations: 1. Develop cost-effective energy efficiency aggressively -- at least 1,200 average megawatts-grid," new sources of energy efficiency and renewable energy, advanced nuclear power, and methods of reducing

298

Preparing the U.S. Foundation for Future Electric Energy Systems  

E-Print Network [OSTI]

Preparing the U.S. Foundation for Future Electric Energy Systems: A Strong Power and Energy large-scale penetration of Renewable and Alternative Energy technologies Maintain U.S. Electric Power Vehicles to reduce oil consumption, reduce carbon emissions, and store energy for support of the electric

299

Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid  

E-Print Network [OSTI]

Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid Pedram may need to collect various information about users and their energy consumption behavior, which can the total energy cost. Our design requires that each user provides some information about its energy demand

Wong, Vincent

300

Imagine energy and environment in alignment. Now that's a powerful future.  

E-Print Network [OSTI]

Imagine energy and environment in alignment. Now that's a powerful future. America's current energy country needs to transition to a new energy system. A transition of this magnitude typically takes decades, but we cannot afford to wait. To meet our nation's growing energy needs and the needs of our environment

Reif, John H.

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for a comprehensive, physics- based model of dimensional changes and hot tearing. Hot Tear #12;Industrial Technologies

Beckermann, Christoph

302

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)  

SciTech Connect (OSTI)

Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

Not Available

2013-12-01T23:59:59.000Z

303

RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS  

SciTech Connect (OSTI)

The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

S.M. Bragg-Sitton; R. Boardman

2014-12-01T23:59:59.000Z

304

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

Not Available

2011-06-01T23:59:59.000Z

305

Growing America's Energy Future: Bioenergy Technologies Office Successes  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergyGreensburg RebuildsSenate |Sustainedof 2014 |

306

Internships Help Future Energy Leaders Gain Hands-On Experience |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment ofEnergyDepartment of Energy

307

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

2012-03-26T23:59:59.000Z

308

Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint  

SciTech Connect (OSTI)

The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

2015-01-01T23:59:59.000Z

309

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

Not Available

2010-07-01T23:59:59.000Z

310

Marathon Sees Diesel Fuel in Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAllPre-SolicitationEnergyPEMMarathon

311

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Økonomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Wiser, Ryan

2013-01-01T23:59:59.000Z

312

Future of Wind Energy Technology in the United States  

SciTech Connect (OSTI)

This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

Thresher, R.; Robinson, M.; Veers, P.

2008-10-01T23:59:59.000Z

313

NWEC honors BPA for building a cleaner energy future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recently retired vice president of Energy Efficiency, its Bob Olsen Memorial Conservation Eagle Award for their leadership in advancing a clean and affordable electric...

314

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCut Businesses' EnergyAndreaof

315

Building Our Energy Future: Teaching Students the Significance...  

Energy Savers [EERE]

Nevada Teachers Helping Students Learn About Energy The SunSmart Program has installed solar power systems at schools designated as emergency shelters throughout Florida. |...

316

Solar Generation Has a Bright Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourA NewGrowth of Solar

317

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND

318

Solar Energy in Inland Southern California: The Future Is Now Feb. 6, 2014  

E-Print Network [OSTI]

Solar Energy in Inland Southern California: The Future Is Now Feb. 6, 2014 This conference to learn about the state of solar energy by discussing the latest technology, public policy and opportunities for incorporating solar energy in their communities, including how the marketplace works, local

California at Riverside, University of

319

Solar Energy in Inland Southern California: The Future is Now The University of California, Riverside  

E-Print Network [OSTI]

Agenda Solar Energy in Inland Southern California: The Future is Now The University of California Southern California Research Initiative for Solar Energy February 6th 2014, 7:30 am - 6:00 pm and the general public to learn about the state of solar energy by discussing the latest technology, public policy

California at Riverside, University of

320

Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China  

Broader source: Energy.gov [DOE]

Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

INVESTIGATING THE SURFACE ENERGY BALANCE IN URBAN AREAS RECENT ADVANCES AND FUTURE NEEDS  

E-Print Network [OSTI]

INVESTIGATING THE SURFACE ENERGY BALANCE IN URBAN AREAS ­ RECENT ADVANCES AND FUTURE NEEDS M of the surface energy balance of urban areas, based on both experimental investigations and numerical models in urban areas is commonly limited to a few sites, often just at airports. The surface energy balance

Ribes, Aurélien

322

Brighter Future for Kentucky Manufacturing Plants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent Nelson About Us Brent Nelson,FromFuture for

323

Shell Future Fuels and CO2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River,Shakesgeothermal fieldFuture Fuels

324

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

California renewable portfolio could be about 75% variable resources from solar andCalifornia Public Utilities Commission CSP Concentrating solara direct solar fuels industry. California’s Energy Future -

Yang, Christopher

2011-01-01T23:59:59.000Z

325

Industrial Assessment Centers Train Future Energy-Savvy Engineers |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|ofIndustrial

326

Future Power Systems 21 - The Smart Customer | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department1 - The

327

FutureGen 2.0 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department1 - The

328

FutureGen Project Launched | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department1 -Project

329

Revolution Now: The Future Arrives for Four Clean Energy Technologies --  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJ uRevitalizing American2014

330

Revolution Now: The Future Arrives for Four Clean Energy Technologies |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJ uRevitalizing

331

Rising to the Challenge: Innovating toward our Clean Energy Future |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJDickson About

332

About the Bioenergy Technologies Office: Growing America's Energy Future by  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout the Better Buildings Residential Network

333

Bangladesh-Feed the Future | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergy Informationclock(EC-LEDS)

334

Stewards of Affordable Housing for the Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter4-01 ADMINISTRATIVEbriefSteve Lindenberg

335

Communication : S4FE2009 (International Conference on Sustainable Fossil Fuels for Future Energy), Rome, 6 au 10 juillet 2009  

E-Print Network [OSTI]

Communication : S4FE2009 (International Conference on Sustainable Fossil Fuels for Future Energy on Sustainable Fossil Fuels for Future Energy), Rome : Italy (2009)" #12;Communication : S4FE2009 (International Conference on Sustainable Fossil Fuels for Future Energy), Rome, 6 au 10 juillet 2009 2 FFiigguurree 11

Paris-Sud XI, Université de

336

Star Power on Earth: Path to Clean Energy Future  

ScienceCinema (OSTI)

Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

Ed Moses

2010-09-01T23:59:59.000Z

337

Sensor Switch's Bright Manufacturing Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

spaces are vacant. They also make devices that dim or turn off lights when sufficient daylight is present. Both types of products provide cost effective energy savings in indoor...

338

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

Stephane de la Rue du Can, Sinton, J. , Worrell, E. , Zhou,Press, Cambridge: UK Sinton, J.E. , Fridley, D.G. , Levine,No. 4, September, 1996. Sinton, J. , 2001. “Changing Energy

2008-01-01T23:59:59.000Z

339

Investing in Our Energy Future: The Story of General Compression  

Broader source: Energy.gov [DOE]

What does government funding mean to a small clean energy startup? In the case of many small businesses across the country, it means being able to secure the private capital necessary to bring their innovations to life.

340

Future of High Energy Physics | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of High Energy Physics has made dramatic progress in the last several years. The Higgs boson discovery has confirmed the last untested prediction of the Standard Model. We have...

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ultra High Energy Cosmic Rays: present status and future prospects  

E-Print Network [OSTI]

Reasons for the current interest in cosmic rays above 10^19 eV are described. The latest results on the energy spectrum, arrival direction distribution and mass composition of cosmic rays are reviewed, including data that were reported after the meeting in Blois in June 2001. The enigma set by the existence of ultra high-energy cosmic rays remains. Ideas proposed to explain it are discussed and progress with the construction of the Pierre Auger Observatory is outlined.

A. A. Watson

2001-12-20T23:59:59.000Z

342

Status and Future of TRANSCOM | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReport on Pathsand

343

The role of energy efficiency and renewable energies in the future world energy market  

SciTech Connect (OSTI)

The world population is rising rapidly, notably in the developing countries. Historical trends suggest that increased annual energy use per capita is a good surrogate for the standard of living factors which promote a decrease in population growth rate. If these trends continue, stabilization of the world`s population will require the increased use of all sources of energy as cheap oil and gas are depleted. Improved efficiency of energy use and renewable energy sources will be essential to stabilizing population,while providing a decent standard all over the world.

Sheffield, J.

1996-05-01T23:59:59.000Z

344

J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?  

E-Print Network [OSTI]

­ 5kWh One liter of petrol ­ 10kWh One aluminum can for coke, water,... (15g) ­ 0.6kWh Energy : Some: There are only 3 different methods to produce energy 1. Burning Fossil Fuels : Coal, Oil, Gas ? Enormous in the world (2007) Energy source Power [TW] Contribution [%] Oil 4.6 36.6 Coal 3.12 24.9 Gas 3.02 24.1 Hydro

Gerwert, Klaus

345

Your World Magazine - Biofuels: Energy for Your Future  

SciTech Connect (OSTI)

Policymakers have been talking for years about measures to cut back how much petroleum we use. Interest has spiked recently, with government and private companies coming together to push forward scientific research and development of alternative fuel products such as ethanol. Biotechnology is helping make alternative energy sources easier - and more affordable - to produce. Most of the world's energy needs are met with oil and natural gas, which come from fossil fuel. No one knows how long the supply can last. Biobased fuels come from natural sources that can be replaced quickly. Along with corn, there are many other grains, grasses, trees, and even agricultural wastes being investigated for their usefulness and environmental friendliness as alternative fuel sources. Careers in this emerging new field emphasize chemistry and engineering. Look into it for a potential career - it's definitely a job full of energy.

Biotechnology Institute

2006-10-01T23:59:59.000Z

346

Future Directions, Challenges and Opportunities in Nuclear Energy  

SciTech Connect (OSTI)

The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

Andy Klein; Jack Lance

2006-07-01T23:59:59.000Z

347

Better Buildings for a Brighter Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergy BetterApril|Department ofBetter

348

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment of Energy Kaveh Ghaemmaghami PREPAREDBatteries areIn

349

Secretary Moniz: Biofuels Important to America's Energy Future | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear PhysicsDoDepartment of Energy atthe U.S.of

350

Hydropower: Setting a Course for Our Energy Future  

SciTech Connect (OSTI)

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

351

Affordable comfort 95 - investing in our energy future  

SciTech Connect (OSTI)

This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

NONE

1995-12-31T23:59:59.000Z

352

Culham Centre for Fusion Energy Fusion -A clean future  

E-Print Network [OSTI]

, scientists and engineers are working to make fusion a real option for our electricity supply.At the forefront consumption is expected to grow dramatically over the next fifty years as the world's population expands; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable

353

The Hidden Future Shock in Current Energy Economics  

E-Print Network [OSTI]

. The focus of this method is the economic measure of long term profit planning. As part of this presentation, the issues of energy price, availability, uncertainty, and the cost of 'doing nothing' are addressed. The conclusion is that our current lethargic...

Gilbert, J. S.

1981-01-01T23:59:59.000Z

354

Decarbonising the UK Energy for a Climate Conscious Future  

E-Print Network [OSTI]

Development and carbon sequestration: forestry projects in Latin America PhD project highlight: Carbon Section Two: Main findings from the Decarbonising the UK projects The supply of renewable and clean energy Integrating renewables and CHP into the UK electricity system Security of decarbonised electricity systems

Watson, Andrew

355

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

SciTech Connect (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

356

Moving Towards a More Sustainable and Secure Energy Future  

E-Print Network [OSTI]

-emitting replacement ? Natural gas ? Clean coal with carbon capture ? Renewables 6 Rio Nogales: 800 MW Combined Cycle Natural Gas Plant - Acquired by CPS Energy in April 2012 - Located in Seguin, TX off of IH10 - Primary replacement... office in SA ? $600k education investment ? LEDs (light-emitting diodes) ? HQ and Mfrg in SA ? Plan for 25,000 LED street lights in SA major thorough fares ? $10/light produced in SA for education ? Clean coal w carbon capture ? R&D council...

Stoker, K.

2012-01-01T23:59:59.000Z

357

The Future of High Energy Nuclear Physics in Europe  

E-Print Network [OSTI]

In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

J. Schukraft

2006-02-14T23:59:59.000Z

358

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3

359

Energy Department Releases New Wind Report, Examines Future of Industry |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.

360

Smart Federal Partnerships Build Our Biofuels Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices Services Office ofSmallSmart

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Future of Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework Telework The Department'sBlogEnergyTheThe

362

Future Accelerator Challenges in Support of High-Energy Physics  

SciTech Connect (OSTI)

Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

Zisman, Michael S.; Zisman, M.S.

2008-05-03T23:59:59.000Z

363

Laying the Foundation for a More Energy Efficient Future: Reducing Climate Change through Green Building  

E-Print Network [OSTI]

Building Andrew Turco Energy for Sustainable Development Task Force, Spring 2006 Professor Mauzerall May 3Laying the Foundation for a More Energy Efficient Future: Reducing Climate Change through Green, and Steven Pacala and Robert Socolow have developed a stabilization wedges concept to addresses how global

Mauzerall, Denise

364

A Primer on the Fifth Power Plan: A Guide for Our Energy Future  

E-Print Network [OSTI]

be unable to keep up with the demand for electricity. In the 1970s, the Bonneville Power AdministrationA Primer on the Fifth Power Plan: A Guide for Our Energy Future Spring 2004 Striking a Balance Between Energy and the Environment in the Columbia River Basin he Northwest is unique in how it plans its

365

Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building  

ScienceCinema (OSTI)

Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

Gerry Stokes; Jim Misewich

2013-07-19T23:59:59.000Z

366

Energy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems  

E-Print Network [OSTI]

hybrid system using a commodity DRAM cache. Keywords-Memory Controller, DRAM, PCM, Energy I. INTRODUCTIONEnergy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems Abstract system of similar storage size. Our proposed system is highly energy efficient and provides 35

Conte, Thomas M.

367

Present and future perspectives for high energy density physics with intense heavy ion and laser beams  

E-Print Network [OSTI]

Present and future perspectives for high energy density physics with intense heavy ion and laser18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using 2004! Abstract Intense heavy ion beams from the Gesellschaft für Schwerionenforschung ~GSI, Darmstadt

368

Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building  

SciTech Connect (OSTI)

Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

Gerry Stokes; Jim Misewich

2012-04-09T23:59:59.000Z

369

Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries  

SciTech Connect (OSTI)

Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

Koopman, R.; Richardson, J.

1993-10-01T23:59:59.000Z

370

Attaining the Photometric Precision Required by Future Dark Energy Projects  

SciTech Connect (OSTI)

This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

Stubbs, Christopher

2013-01-21T23:59:59.000Z

371

The Future is Now for Advanced Vehicles | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type Water Heaters TanklessDepartment ofThe

372

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103ofTechnology

373

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103ofTechnologyThe

374

Future EfficientDynamics with Heat Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3EfficientDynamics with

375

Future Fuels: Issues and Opportunities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3EfficientDynamicsFuels:

376

Energy Department Selects Global Laser Enrichment for Future Operations at  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMABDevelopmentDepartment ofPaducah Site |

377

Energy Department Selects Global Laser Enrichment for Future Operations at  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMABDevelopmentDepartment ofPaducah Site

378

Vision of the Future Grid | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible LightNORDUnet,1

379

Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Resources Ames Site457 2.448

380

Secretary Moniz Addresses Conference on the Caribbean's Energy Future |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global1WasteRecovery Act Fundingforthe House Committee on Energy

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LEDs: The Future of Lighting is Here | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/ The listing of newLEDs:

382

SciTech Connect: Transportation Energy Futures Series: Projected Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidic Membraneless Fuel

383

Moving Toward a Peaceful Nuclear Future | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,Moving Toward a Peaceful

384

CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment ofJanuary

385

Future Air traffic management Concepts Evaluation Tool (FACET) - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D Explorations ofFusion,Innovation

386

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste

387

Harvesting Solar Energy for the Future | Photosynthetic Antenna Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulfCenter Harvesting Solar

388

FutureCarbon GmbH | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy Inc JumpGeothermal Field-

389

Winning the Future with a Responsible Budget | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject isNovember 07, 2007What Isand SupplyEnergyWinning the

390

New Diesel Feedstocks and Future Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergy Emissions Control

391

New Feedstocks and Replacement Fuels - Future Energy for Mobility |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartment ofof

392

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

SciTech Connect (OSTI)

The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

Zheng, Nina; Zhou, Nan; Fridley, David

2010-09-01T23:59:59.000Z

393

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

394

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

395

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

SciTech Connect (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

396

Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures  

SciTech Connect (OSTI)

A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

1997-09-01T23:59:59.000Z

397

35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

Not Available

2014-12-01T23:59:59.000Z

398

Choosing an electrical energy future for the Pacific Northwest: an alternative scenario  

SciTech Connect (OSTI)

A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

1980-05-19T23:59:59.000Z

399

ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

400

Status and Future of Silicon Photovoltaics Presented at: Renewable energies in the service of humanity: the  

E-Print Network [OSTI]

Status and Future of Silicon Photovoltaics Presented at: Renewable energies in the service at a time 0.5 watts each $100/watt $200/watt Wafered Silicon Process Polysilicon Wafer Solar Cell Solar companies Oil companies Japanese companies Japanese roof program German FIT #12;0,60 6,00 60,00 1 10 100

Canet, Léonie

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)  

SciTech Connect (OSTI)

This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

2014-06-12T23:59:59.000Z

402

What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy  

E-Print Network [OSTI]

What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy UCD-ITS-RR-04 95616 http://www.its.ucdavis.edu/publication.html #12;What Will Power the Hydrogen Economy? i from the UC Davis Hydrogen Pathways Program. I am appreciative of NRDC's timely support for this study

Kammen, Daniel M.

403

Notes From the Chair 2 Toward a Clean Energy Future: 4  

E-Print Network [OSTI]

Notes From the Chair 2 Toward a Clean Energy Future: 4 Issues for the Sixth Power Plan Neighborly. As the technology improves and tags become smaller, more fish can be tagged. For salmon, the technology is approaching the e-mail stage, and for sharks the "here-I-am" technology will be in use soon

404

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Broader source: Energy.gov [DOE]

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

405

RENEWABLE ENERGY FOR CLEAN AND SUSTAINABLE FUTURE: ASSESSMENT AND DEVELOPMENT STRATEGIES OF WIND  

E-Print Network [OSTI]

There is a substantial increase in energy demand in Turkey because of its growth of industrial development. Turkey’s present energy resources are insufficient and the need for energy is growing rapidly. Turkey does not possess enough conventional fossil fuel reserves, but possesses rich renewable energy resources such as hydraulic, solar, geothermal and wind. Among all, wind energy seems to be the most suitable renewable energy resource for electricity production. This study is aimed to summarize the assessment and development strategies of wind power in Turkey. Considering the development of wind energy in the country, it may be concluded that the number of wind power plant installations will considerably increase in the future.

Power In Turkey; Afsin Gungor

406

Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and  

E-Print Network [OSTI]

distributed generators (DGs) that are usually integrated via power-electronic inverters. In order to enhance generators (DGs) has been significantly improved. Inverter-interfaced DGs can be flexibly deployed in power1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable

Collins, Emmanuel

407

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities By Chia

de Weck, Olivier L.

408

Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)  

SciTech Connect (OSTI)

The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

Not Available

2012-12-01T23:59:59.000Z

409

Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy  

E-Print Network [OSTI]

Energy for the future ­ with Risø from nuclear power to sustainable energy Risø NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risø from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risø fra

410

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

SciTech Connect (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

411

Helping to Finance the Future of Clean Coal | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping to Finance the Future

412

Enhanced Oil Recovery Affects the Future Energy Mix | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click to email this to

413

The Energy Challenge: The Current and Future Role of Solar Energy  

SciTech Connect (OSTI)

This talk begins by framing the outlook for global energy supply and demand over the next 40 years, examining the potential energy mix from a feasibility and sustainability perspective. In this context, the promise and challenges of solar energy utilization are discussed. An overview of solar energy research programs at Argonne is provided, and focuses specifically on research in Seth Darling's group in the areas of organic and hybrid organic/inorganic photovoltaics.

Darling, Seth (ANL) [ANL

2011-08-10T23:59:59.000Z

414

Energy Futures in Industry - Achievements Through Energy Conservation - A Success Story  

E-Print Network [OSTI]

The paper describes total energy management in a company where only a small amount of energy is used as a proportion of total cost operation and the effect of such programs since their inception in 1976. Energy Management - from central control...

Francis, G.; Tomlin, W. U.

1983-01-01T23:59:59.000Z

415

U. S. FUSION ENERGY FUTURE John A. Schmidt, Dan Jassby, Scott Larson, Maria Pueyo, and Paul H. Rutherford  

E-Print Network [OSTI]

with fusion development plans in Japan and Europe [e.g. 2]. The primary source of energy demand projections that was used as a basis for this assessment was the World Energy Council/IIASA Global Energy Perspectives [3U. S. FUSION ENERGY FUTURE John A. Schmidt, Dan Jassby, Scott Larson, Maria Pueyo, and Paul H

416

Prospects for future projections of the basic energy sources in Turkey  

SciTech Connect (OSTI)

The main goal of this study is to develop the energy sources estimation equations in order to estimate the future projections and make correct investments in Turkey using artificial neural network (ANN) approach. It is also expected that this study will be helpful in demonstrating energy situation of Turkey in amount of EU countries. Basic energy indicators such as population, gross generation, installed capacity, net energy consumption, import, export are used in input layer of ANN. Basic energy sources such as coal, lignite, fuel-oil, natural gas and hydro are in output layer. Data from 1975 to 2003 are used to train. Three years (1981, 1994 and 2003) are only used as test data to confirm this method. Also, in this study, the best approach was investigated for each energy sources by using different learning algorithms (scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM)) and a logistic sigmoid transfer function in the ANN with developed software. The statistical coefficients of multiple determinations (R{sup 2}-value) for training data are equal to 0.99802, 0.99918, 0.997134, 0.998831 and 0.995681 for natural gas, lignite, coal, hydraulic, and fuel-oil, respectively. Similarly, these values for testing data are equal to 0.995623, 0.999456, 0.998545, 0.999236, and 0.99002. The best approach was found for lignite by SCG algorithm with seven neurons so mean absolute percentage error (MAPE) is equal to 1.646753 for lignite. According to the results, the future projections of energy indicators using ANN technique have been obviously predicted within acceptable errors. Apart from reducing the whole time required, the importance of the ANN approach is possible to find solutions that make energy applications more viable and thus more attractive to potential users.

Sozen, A.; Arcaklioglu, E. [Gazi University, Ankara (Turkey). Technical Education Facility

2007-07-01T23:59:59.000Z

417

Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector  

SciTech Connect (OSTI)

In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

418

Water Power For a Clean Energy Future Cover Photo | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03Waste-to-EnergyFramingAgencyFor

419

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network [OSTI]

consumption, liberalisation of energy markets and the need to take action on climate change are producing new­550­3082­3, Risø-R-1351(EN) Risø Energy Report 2 New and emerging bioenergy technologies Three growing concerns combined to increase interest in bioenergy. This trend has been further encouraged by technological

420

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones.

Not Available

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

2011-09-30T23:59:59.000Z

422

State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy  

SciTech Connect (OSTI)

Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

Kubert, C.; Sinclair, M.

2011-04-01T23:59:59.000Z

423

Safeguarding our energy future. Investing Oil Overcharge funds in energy efficiency  

SciTech Connect (OSTI)

Throughout the past several years, States have been receiving settlement monies distributed from escrow accounts maintained by the Department of Energy and various courts. These monies are paid by oil companies for alleged violations of the petroleum pricing regulations of the 1970`s. These funds, commonly referred to as Petroleum Violation Escrow (PVE) or Oil Overcharge funds, have been an important tool in supporting energy efficiency programs and technologies at the State level. The aim of this publication is to highlight some of the many interesting, replicable projects funded with PVE monies and to serve as a resource for successful, energy efficiency programs in planning, technology application and education. By capturing a number of these innovative State-level programs, this document will expand the information network on renewable energy and energy efficiency and serve as a point of departure for others pursuing similar goals. Projects referenced throughout this publication reflect some of the program areas in which the Department of Energy takes an active interest, and fall into the following categories: (1) Alternative fuels; (2) Industrial efficiency and waste minimization; (3) Electric power production from renewable resources; (4) Building efficiency; (5) Integrated resource planning; and (6) Energy education.

Not Available

1993-06-01T23:59:59.000Z

424

Walking the Walk to a Brighter Energy Future | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDIT REPORT U.S.08-93)Walking

425

The Role Of IC Engines In Future Energy Use | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 NuclearThe Road to HiroshimaTheOf

426

Energy security in the post-Cold War era: Identifying future courses for crises  

SciTech Connect (OSTI)

This paper addresses US energy security in the post-Cold War era for a conference on energy security jointly sponsored by the Department of Energy and the National Defense University. It examines the evolving nature of energy security based on analysis of past crisis-inducing events and-discusses potentially important geopolitical, environmental, regulatory, and economic developments during the next twenty-five years. The paper steps beyond the traditional economic focus of energy security issues to examine the interplay between fundamental economic and technical drivers on the one hand, and political, environmental, and perceptual phenomena, on the other hand, that can combine to create crises where none were expected. The paper expands on the premise that the recent demise of the Soviet Union and other changing world conditions have created a new set of energy dynamics, and that it is imperative that the United States revise its energy security perspective accordingly. It proceeds by reviewing key factors that comprise the concepts of ``energy security`` and ``energy crisis`` and how they may fit into the new world energy security equation. The study also presents a series of crisis scenarios that could develop during the next twenty-five years, paying particular attention to mechanisms and linked crisis causes and responses. It concludes with a discussion of factors that may serve to warn analysts and decision makers of impending future crises conditions. The crisis scenarios contained in this report should be viewed only as a representative sample of the types of situations that could occur. They serve to illustrate the variety of factors that can coalesce to produce a ``crisis.``

Freund, M.T.; Wise, J.A.; Ulibarri, C.A.; Shaw, B.R.; Seely, H.E.; Roop, J.M.

1994-11-01T23:59:59.000Z

427

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price of  

E-Print Network [OSTI]

A Distinctive Energy Policy for Scotland? The Impact of Low Carbon Generation on the Future Price climate change, improved security of supply, affordable energy prices and a stimulus to economic growth of Allander Institute, supported by PricewaterhouseCoopers and published 19th June 2008 explore current energy

Mottram, Nigel

428

Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source of Synchrotron Radiation  

E-Print Network [OSTI]

Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source-ray optics, energy-recovery linac, high brilliance 1. INTRODUCTION As one of the pioneer synchrotron in the area of high heat load and high x-ray flux optics [1-5] since the high critical-energy wigglers

Shen, Qun

429

Department of Energy and FutureGen Alliance Discuss Next Steps for  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services Audit ReportNextConditional LoanEnergyMattoon,FutureGen 2.0 in

430

Department of Energy and FutureGen Alliance Discuss Next Steps for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopmentReport and7 MAY 2011to ReduceFutureGen 2.0

431

Microsoft PowerPoint - The Future Energy Resource Mix in a CC World  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.OnlineTank09TWP-ICE Workshop:The Future

432

Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee  

SciTech Connect (OSTI)

This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

None

2003-02-01T23:59:59.000Z

433

Idaho Save Energy Now - Industries of the Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of Energy Media Contact Brad

434

Video: Training Clean Energy Leaders of the Future | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015MayoXML BookmarkDepartment

435

Sun Rises on Tribal Energy Future in Nevada | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJuly 1, 2013On-BoardSummerofSummit:

436

Supercomputing Our Way to a Clean Energy Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluationOffi ceSupercharger

437

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures  

E-Print Network [OSTI]

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu Berlin, Germany December 46, 2012 NREL/PR6A2057018 Renewable Electricity Futures Study (2012). Hand, M is a low carbon, low air pollutant, low fuel use, low water use, domestic, and sustainable electricity

438

Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing  

SciTech Connect (OSTI)

This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

2013-04-13T23:59:59.000Z

439

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

440

The Future of the Local Large Scale Structure: the roles of Dark Matter and Dark Energy  

E-Print Network [OSTI]

We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda, will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web will remain the same, but clusters will be more `isolated' and the filaments will become thinner. This implies that the long-term fate of large scale structure as seen in comoving coordinates is determined primarily by the matter density. We conclude that although the LCDM model is accelerating at present due to its Dark Energy component while the OCDM model is non accelerating, their large scale structure in the future will look very similar in comoving coordinates.

Yehuda Hoffman; Ofer Lahav; Gustavo Yepes; Yaniv Dover

2007-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Future U.S. Energy Infrastructure - And Who Will Do the Work?  

SciTech Connect (OSTI)

This paper identifies the current state and future implications of power generating capacity in the U.S. It also discusses workforce planning and hiring options to support the anticipated staffing needs that will be required to construct and eventually operate these new plants. The Energy Information Administration forecasts that electricity consumption will increase approximately 40% by 2030. Therefore, new power plants, equivalent to 730 new base-load 400-megawatt power plants, will be required to ensure adequate electricity supplies for the future. Of the 104 operating nuclear plants in the U.S., a majority of them have already been operating approximately 20 to 30 years, and even longer. Over the next 50 years, many of these plants, both nuclear and non-nuclear, will have reached their maximum design basis operating lifetimes. Relatively young plants achieving 20 years of operation today will be completing a 40-year run by the year 2028 and a 70-year run, if allowed to do so, by the year 2058. Furthermore, as the oldest 'baby-boomers' begin retiring over the next several years, the lack of an experienced workforce may indirectly affect the needed workforce required to support the U.S. energy infrastructure from new construction through the safe operation of existing and next-generation nuclear plants. With the prospects of companies needing to hire 'passive' candidates, (i.e., experienced '40-something' workers who are not necessarily looking for a job, but are willing to discuss a career move if it offers a significant upside opportunity) to fill employment vacancies, there are 10 factors to consider when evaluating potential opportunities: 1) the job fit; 2) the job stretch; 3) opportunity for future learning and growth; 4) the chance to make an impact; 5) the hiring manager as mentor; 6) the quality of the team; 7) the company's prospects and strategy; 8) the company culture; 9) work/life balance; and 10) compensation and benefits. If the company is clearly not superior on the first nine factors, the candidate will likely reject the offer. Furthermore, if history serves as a guide to the future, failing to follow through with a cohesive, well-defined energy strategy offered by new plant construction will likely produce the same results following the indefinite deferral to reprocess commercial spent nuclear fuel. Since the deferral in 1977, billions of dollars have been spent, while producing few, if any, substantial results. The significance of maintaining the U.S. energy infrastructure and hiring a combination of both newly-graduated and experienced employees to perform the work must be recognized and acknowledged today to ensure that we have adequate, affordable, and reliable electricity for the future. If these programs fail, expect these scenarios to be repeated again over the next 30 years, instead of achieving energy independence - a truly substantial result. (authors)

Hylko, J.M. [Paducah Remediation Services, LLC, Kevil, KY (United States)

2008-07-01T23:59:59.000Z

442

Combined Heat and Power: Effective Energy Solutions for a Sustainable Future  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure modernization. The energy efficiency benefits of CHP offer significant, realistic solutions to near- and long-term energy issues facing the Nation. With growing demand for energy, tight supply options, and increasing environmental constraints, extracting the maximum output from primary fuel sources through efficiency is critical to sustained economic development and environmental stewardship. Investment in CHP would stimulate the creation of new 'green-collar' jobs, modernize aging energy infrastructure, and protect and enhance the competitiveness of US manufacturing industries. The complementary roles of energy efficiency, renewable energy, and responsible use of traditional energy supplies must be recognized. CHP's proven performance and potential for wider use are evidence of its near-term applicability and, with technological improvements and further elimination of market barriers, of its longer term promise to address the country's most important energy and environmental needs. A strategic approach is needed to encourage CHP where it can be applied today and address the regulatory and technical challenges preventing its long-term viability. Experience in the United States and other countries shows that a balanced set of policies, incentives, business models, and investments can stimulate sustained CHP growth and allow all stakeholders to reap its many well-documented benefits.

Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

2008-12-01T23:59:59.000Z

443

Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)  

SciTech Connect (OSTI)

The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

2012-09-28T23:59:59.000Z

444

Open Data for a Clean, Secure Energy Future | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo FearOfficeOil Oil For

445

ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4InFindingIR-2003-Transmission &50 1955of

446

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenterand functionalities | Center for

447

Chu at COP-16: Building a Sustainable Energy Future | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu Issues Call to ActionChu at

448

Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear PhysicsDo youTimDepartment ofSecretSpeaks on

449

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMANDCOMMERCIAL

450

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY VEHICLES VehicleTransportation

451

Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector  

SciTech Connect (OSTI)

An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-11-01T23:59:59.000Z

452

Quintessence versus phantom dark energy: the arbitrating power of current and future observations  

SciTech Connect (OSTI)

We analyze the possibility to distinguish between quintessence and phantom scalar field models of dark energy using observations of luminosity distance moduli of SNe Ia, CMB anisotropies and polarization, matter density perturbations and baryon acoustic oscillations. Among the present observations only Planck data on CMB anisotropy and SDSS DR9 data on baryon acoustic oscillations may be able to decide between quintessence or phantom scalar field models, however for each model a set of best-fit parameters exists, which matches all data with similar goodness of fit. We compare the relative differences of best-fit model predictions with observational uncertainties for each type of data and we show that the accuracy of SNe Ia luminosity distance data is far from the one necessary to distinguish these types of dark energy models, while the CMB data (WMAP, ACT, SPT and especially Planck) are close to being able to reliably distinguish them. Also an improvement of the large-scale structure data (future releases of SDSS BOSS and e.g. Euclid or BigBOSS) will enable us to surely decide between quintessence and phantom dark energy.

Novosyadlyj, B.; Sergijenko, O. [Astronomical Observatory of Ivan Franko National University of Lviv, Kyryla i Methodia str., 8, Lviv, 79005 (Ukraine); Durrer, R. [Université de Genève, Département de Physique Théorique and CAP, 24 quai Ernest-Ansermet, CH-1211 Genève 4 (Switzerland); Pelykh, V., E-mail: novos@astro.franko.lviv.ua, E-mail: olka@astro.franko.lviv.ua, E-mail: ruth.durrer@unige.ch, E-mail: pelykh@iapmm.lviv.ua [Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Naukova str., 3-b, Lviv, 79060 (Ukraine)

2013-06-01T23:59:59.000Z

453

Executive Summary Securing a Clean Energy Future for America An Agenda for the First 100 Days  

E-Print Network [OSTI]

It is critically important that the next President embrace a true clean energy revolution for a heavy toll on human health, the economy and the environment. Coal, natural gas and nuclear power are water-intensive, highly polluting and ultimately expensive technologies, and they can, over time, be replaced by a new, sustainable electric grid design. A modern electric power technologies. Its feasibility has been extensively documented, and extensive polling data show the public supports it. First, work to establish a much-needed national water policy in order to avert or mitigate the current and future water scarcity problems that face the nation if today’s electric and nuclear power. Power generation in the U.S. currently accounts for 50 percent of all water withdrawals and 41 percent of all fresh water withdrawals. Secondly, the President must establish sustainability criteria to guide the choice and deployment of new electricity generating technologies. Americans require and support substantially reduces public health impacts, improves environmental quality and addresses climate change. The incoming administration should work to eliminate all public support for energy technologies that do not meet these criteria. based renewable energy technologies the core of the electric power system and adopt power plants.

unknown authors

2012-01-01T23:59:59.000Z

454

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network [OSTI]

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

455

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

456

Living a Sustainable Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

457

Active stewardship: sustainable future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

458

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy. Wiser, R. ; Lantz,Economics of Wind Energy. ” Renewable and Sustainable EnergyGolden, CO: National Renewable Energy Laboratory. Carbon

Lantz, Eric

2014-01-01T23:59:59.000Z

459

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” Energy

Lantz, Eric

2014-01-01T23:59:59.000Z

460

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect (OSTI)

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cerium Doped LSO/LYSO Crystal Development for future High Energy Physics Experiments  

SciTech Connect (OSTI)

Because of their high stopping power and fast and bright scintillation, cerium doped LSO and LYSO crystals have attracted a broad interest in the physics community pursuing precision electromagnetic calorimeter for future high energy physics experiments. Their excellent radiation hardness against gamma-rays, neutrons and charged hadrons also makes them a preferred material for calorimeters to be operated in a severe radiation environment, such as the HL-LHC. An effort was made at SIPAT to grow 25 X{sub 0} (28 cm) long LYSO crystals for high energy physics applications. In this paper, the optical and scintillation properties and its radiation hardness against gamma-ray irradiations up to 1 Mrad are presented for the first 2.5 X 2.5 X 28 cm LYSO sample. An absorption band was found at the seed end of this sample and three other 20 cm long samples, which was traced back to a bad seed crystal used in the corresponding crystal growth process. Significant progresses in optical and scintillation properties were achieved for large size LYSO crystals after eliminating this absorption band.

Ren-Yuan Zhu

2012-03-25T23:59:59.000Z

462

The Future of Nuclear Energy: Facts and Fiction: An update using 2009/2010 Data  

E-Print Network [OSTI]

An update of our 2009 study, "The Future of Nuclear Energy, Facts and Fiction" using the 2009 and the available 2010 data, including a critical look at the just published 2009 edition of the Red Book, is presented. Since January 2009, eight reactors with a capacity of 4.9 GWe have been connected to the electric grid and four older reactors, with a combined capacity of 2.64 GWe have been terminated. Furthermore, 27 reactor constructions, dominated by China (18) and Russia (4), have been initiated. The nuclear fission produced electric energy in 2009 followed the slow decline, observed since 2007, with a total production of 2560 TWhe, 41 TWhe (1.6%) less than in 2008 and roughly 100 TWhe less than in the record year 2006. The preliminary data from the first 10 months of 2010 in the OECD countries indicate that nuclear power production in North-America remained at the 2009 levels, while one observes a recovery in Europe with an increase of 2.5% and a strong rise of 5% in the OECD Asia-Pacific area compared to th...

Dittmar, Michael

2011-01-01T23:59:59.000Z

463

Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario  

SciTech Connect (OSTI)

An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

1980-08-01T23:59:59.000Z

464

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect (OSTI)

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

465

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

ENVIRONMENTAL IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FORENVIRONMENTAL IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FORSocial Impacts of Alternative Energy Sources Some Material

Balderston, F.

2010-01-01T23:59:59.000Z

466

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

largely from nuclear energy, coal and oil shale. There is acoal Transportation Coal electric Energy Uses Energy sourcesdirect imports of energy (coal The dispersed technology end

Authors, Various

2010-01-01T23:59:59.000Z

467

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Laboratory. Danish Energy Agency (DEA). (1999). Wind2009) and the Danish Energy Agency (DEA) (1999), illustratedata is from the Danish Energy Agency wind turbine

Lantz, Eric

2014-01-01T23:59:59.000Z

468

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. ” Wind Energy (9:1–2); pp. 141–161.

Lantz, Eric

2014-01-01T23:59:59.000Z

469

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

for a reduction of energy intensity by 2010, whether and howbuildings; (3) energy intensity (particularly electricity)commercial building, energy intensity, energy efficiency,

Zhou, Nan

2008-01-01T23:59:59.000Z

470

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

by end users while primary energy consumption includes finalelectricity. When primary energy consumption in the end use37%) in terms of primary energy consumption. However, energy

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

471

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Speed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” EnergyThe Economics of Wind Energy. ” Renewable and Sustainable

Lantz, Eric

2014-01-01T23:59:59.000Z

472

Fuel cells for future transportation: The Department of Energy OTT/OUT partnership  

SciTech Connect (OSTI)

The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

1997-12-31T23:59:59.000Z

473

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect (OSTI)

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

474

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect (OSTI)

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

475

The Future of Nuclear Energy: Facts and Fiction: An update using 2009/2010 Data  

E-Print Network [OSTI]

An update of our 2009 study, "The Future of Nuclear Energy, Facts and Fiction" using the 2009 and the available 2010 data, including a critical look at the just published 2009 edition of the Red Book, is presented. Since January 2009, eight reactors with a capacity of 4.9 GWe have been connected to the electric grid and four older reactors, with a combined capacity of 2.64 GWe have been terminated. Furthermore, 27 reactor constructions, dominated by China (18) and Russia (4), have been initiated. The nuclear fission produced electric energy in 2009 followed the slow decline, observed since 2007, with a total production of 2560 TWhe, 41 TWhe (1.6%) less than in 2008 and roughly 100 TWhe less than in the record year 2006. The preliminary data from the first 10 months of 2010 in the OECD countries indicate that nuclear power production in North-America remained at the 2009 levels, while one observes a recovery in Europe with an increase of 2.5% and a strong rise of 5% in the OECD Asia-Pacific area compared to the same period in 2009. Worldwide uranium mining has increased during 2009 by about 7000 tons to almost 51000 tons. Still roughly 18000 tons of the 2010 world uranium requirements need to be provided from the civilian and military reserves. Perhaps the most remarkable new data from the just published 2009 edition of the Red Book, are that (1) the best understood RAR (reasonable assured) and IR (inferred) resources, with a price tag of less than 40 US dollars/Kg, have been inconsistently absorbed in the two to three times higher price categories and (2) uranium mining in Kazakhstan is presented with a short lifetime. The presented mining capacity numbers indicate an uranium extraction peak of 28000 tons during the years 2015-2020, from which it will decline quickly to 14000 tons by 2025 and to only 5000-6000 tons by 2035.

Michael Dittmar

2011-01-21T23:59:59.000Z

476

Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1  

SciTech Connect (OSTI)

This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

Not Available

2011-08-01T23:59:59.000Z

477

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

in future development. Geothermal power has been touted as ain three areas: Geothermal power has attracted regulatoryHydroelectric Power Geothermal Land Use and Potential for

Balderston, F.

2010-01-01T23:59:59.000Z

478

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

Strategies for Future Hydrogen Production and Use, Nationaldevelopment. 26 Off-peak hydrogen production could do thisfuels, the production of hydrogen, and the potential for

Yang, Christopher

2011-01-01T23:59:59.000Z

479

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

GDP per capita Transport Future outlook Drivers of Transport Energyenergy demand per passenger-km. Figure 20. Car Ownership and GDP

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

480

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

Transportation Solar electric Energy sources Energy usesSources and Uses of Biomass Biomass Waste Resources Energy Farms Ocean Kelp Farming Conversion to Fuels SOLAR ENERGY . .Source: Berdahl ( 1977) XBL 779-1989 Annual Variation of the Solar Energy

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dhabi future energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

2006. “Strengthening the Building Energy Efficiency (BEE)Summer Studies on Energy Efficiency in Buildings, Asilamor,energy efficiency improvement (-1.5%) and building mix (-

Zhou, Nan

2008-01-01T23:59:59.000Z

482

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Hydrogen Production, National Renewable Energy Laboratory,Production Using Concentrated Solar Energy, National Renewablethe production of hydrogen from renewable energy sources. In

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

483

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

E-Print Network [OSTI]

clustering in total energy consumption of different sets ofand technology trends, total energy consumption and carbonclustering in total energy consumption of different sets of

Zheng, Nina

2010-01-01T23:59:59.000Z

484

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

485

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

engaged in solar energy and conservation consulting. Energyto utilize solar energy, conservation, and other aspects of= Annual Energy/Solar Resource) & Water Conservation Case (

Balderston, F.

2010-01-01T23:59:59.000Z

486

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

STORAGE RESOURCES GEOTHERMAL ENERGY RENEWABLE OCEAN ENERGYHeat Utilization of Geothermal Energy, Lawrence BerkeleyJet Propulsion Laboratory, Geothermal Energy Resources in

Authors, Various

2010-01-01T23:59:59.000Z

487

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

possibly some forms of geothermal energy_ It rationalizes~ District heating \\dth geothermal energy should entail nofeeding into a grid Geothermal energy for non-electrical

Balderston, F.

2010-01-01T23:59:59.000Z

488

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

489

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

efficiency, nuclear power, renewable energy, biofuels etc. )and storage (CCS) and renewable energy. We look at two wayspower, or CCS or renewable energy, without worrying about

Yang, Christopher

2011-01-01T23:59:59.000Z

490

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

new small dams BIOMASS waste energy farms GEOTHERMAL heatpunish by law people who waste energy none of these other (solid waste and sewage; and 2) energy farm production,

Balderston, F.

2010-01-01T23:59:59.000Z

491

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

pumped hydro, compressed air energy storage (CAES), 25as-usual CAES Compressed air energy storage CARB Californiacompressed air energy Commercial time-of-use storage (CAES),

Yang, Christopher

2011-01-01T23:59:59.000Z

492

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

493

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

a direct impact on rural energy consumption. Residential16 Figure 11. 2020 Rural and Urban Energy Consumptionareas. Figure 11. 2020 Rural and Urban Energy Consumption

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

494

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

495

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

alternative. Ocean thermal energy conversion requires anpresent designs of ocean thermal energy systems are intendedthat ocean thermal gradients will contribute energy supplies

Authors, Various

2010-01-01T23:59:59.000Z

496

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

a solar and solar derivative energy sources mix. However, asof solar-solar derivative energy sources and distributedenergy sources (such as solar and wind energy). Please

Balderston, F.

2010-01-01T23:59:59.000Z

497

Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics  

E-Print Network [OSTI]

New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

AWAKE Collaboration; R. Assmann; R. Bingham; T. Bohl; C. Bracco; B. Buttenschon; A. Butterworth; A. Caldwell; S. Chattopadhyay; S. Cipiccia; E. Feldbaumer; R. A. Fonseca; B. Goddard; M. Gross; O. Grulke; E. Gschwendtner; J. Holloway; C. Huang; D. Jaroszynski; S. Jolly; P. Kempkes; N. Lopes; K. Lotov; J. Machacek; S. R. Mandry; J. W. McKenzie; M. Meddahi; B. L. Militsyn; N. Moschuering; P. Muggli; Z. Najmudin; T. C. Q. Noakes; P. A. Norreys; E. Oz; A. Pardons; A. Petrenko; A. Pukhov; K. Rieger; O. Reimann; H. Ruhl; E. Shaposhnikova; L. O. Silva; A. Sosedkin; R. Tarkeshian; R. M. G. N. Trines; T. Tuckmantel; J. Vieira; H. Vincke; M. Wing; G. Xia

2014-04-02T23:59:59.000Z

498

Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics  

E-Print Network [OSTI]

New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

2014-01-01T23:59:59.000Z

499

Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics  

E-Print Network [OSTI]

New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

2014-01-01T23:59:59.000Z

500

Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy  

SciTech Connect (OSTI)

Preamble The Blue Ribbon Commission on America’s Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners are Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr. John Rowe, and Rep. Phil Sharp. The Commission and its subcommittees met more than two dozen times between March 2010 and January 2012 to hear testimony from experts and stakeholders, to visit nuclear waste management facilities in the United States and abroad, and to discuss the issues identified in its Charter. Additionally, in September and October 2011, the Commission held five public meetings, in different regions of the country, to hear feedback on its draft report. A wide variety of organizations, interest groups, and individuals provided input to the Commission at these meetings and through the submission of written materials. Copies of all of these submissions, along with records and transcripts of past meetings, are available at the BRC website (www.brc.gov). This report highlights the Commission’s findings and conclusions and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.

none,

2012-01-01T23:59:59.000Z